Wirtschaftsmathematik - Übungen SS 2017

Ähnliche Dokumente
Wirtschaftsmathematik - Übungen WS 2017/18

Wirtschaftsmathematik - Übungen SS 2018

Wirtschaftsmathematik - Übungen WS 2018

Wirtschaftsmathematik - Übungen SS 2019

Klausur Wirtschaftsmathematik VO

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0!

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3

a n := 5n4 + 2n 2 2n n + 1. a n := n 5n 2 n 2 + 7n + 8 b n := ( 1) n c n := ( 1) n+1 6n2 + 13n 5n 3 + 7

Kosten- & Preistheorie Grundlagen

Kapitel II Funktionen reeller Variabler

2 Funktionen einer Variablen

Expertengruppe A: Kostenfunktion

Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung

streng monoton steigend. streng monoton fallend. Ist f eine in einem Intervall stetige und im Innern des Intervalls differenzierbare Funktion mit

Mathemathik-Prüfungen

Univariate Analysis. Analysis und nichtlineare Modelle Sommersemester

1 Funktionen einer Variablen

Prüfungsfragen Mathematik I für Wirtschaftswissenschaftler

Übungsaufgaben zur Kurvendiskussion

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)

Klausur Wirtschaftsmathematik VO

Differenzialrechung Herbert Paukert 1

Analysis 5.

Funktionen. x : Variable von f oder Argument f x : Funktionswert, Wert der Funktion f an der Stelle x D f. : Definitionsmenge(Urbildmenge)

Seite 1. ax² + bx + c = 0. Beispiel 1. Die Gewinnschwelle ist G'(x) = 0

Wirtschaftsmathematik - Übungen SS 2018

Abitur 2014 Mathematik Infinitesimalrechnung I

Anwendungen der Differentialrechnung

Mathematischer Vorbereitungskurs für das MINT-Studium

c) f(x)= 1 4 x x2 + 2x Überprüfe, ob der Punkte A(3/f(3)) in einer Links- oder in einer Rechtskrümmung liegt!

Aufgaben zur e-funktion

Abitur 2017 Mathematik Infinitesimalrechnung I

Höhere Mathematik II. Variante C

6 Übungsaufgaben. 6.1 Übungsaufgaben zu Kapitel ÜBUNGSAUFGABEN

Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur Sommersemester

Höhere Mathematik II. Variante A

Unter Kurvendiskussion versteht man die Untersuchung einer gegebenen Funktion auf bestimmte Merkmale und Eigenschaften:

Diskussion einzelner Funktionen

13. Übungsblatt zur Mathematik I für Maschinenbau

Kurvendiskussion: Ganzrationale Funktionen 2. Grades: 1. f(x) = x². 2. f(x) = x² - x f(x) = 2x² - 12x f(x) = - 4x² + 4x + 3

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x.

1. Aufgabe 8 Punkte. f (x) = (x 2 + 1) e x2. Es gilt. f (x) = 2xe x2 + ( x ) e x2 ( 2x) = 2x 3 e x2.

Aufgaben zu Ableitung und Integral der ln-funktion

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007

3.2 Funktionsuntersuchungen mittels Differentialrechnung

Aufgaben zur e- und ln-funktion

Wirtschaftsmathematik

Klausur Wirtschaftsmathematik VO

Analysis in der Ökonomie (Teil 1) Aufgaben

Analysis I. 1. Beispielklausur mit Lösungen

Aufgaben für Analysis in der Oberstufe. Robert Rothhardt

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 6. (n+1)!. Daraus folgt, dass e 1/x < (n+

Degressiver Kostenverlauf Die Kosten wachsen verhältnismäßig langsamer als die Stückzahl. Gesamtkosten sind streng monoton steigend K'(x) 0

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe)

LMU MÜNCHEN. Mathematik für Studierende der Biologie Wintersemester 2016/17. GRUNDLAGENTUTORIUM 5 - Lösungen. Anmerkung

Kurvendiskussion. Mag. Mone Denninger 10. Oktober Extremwerte (=Lokale Extrema) 2. 5 Monotonieverhalten 3. 6 Krümmungsverhalten 4

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1. 1 Grundlagen 2. 2 Der Graph einer Funktion 4. 3 Umkehrbarkeit 5

Höhere Mathematik 1 Übung 9

Analysis 1 für Informatiker (An1I)

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis

2 Von der Relation zur Funktion

Abitur 2015 Mathematik Infinitesimalrechnung I

Beispiel 1.20 Wir betrachten die folgenden vier Mengen: A = {x : x R und 1 x 6} B = {x : x N und x < 6} C = {x : x N und x 2} D = {x : x R und x < 6}

Nachfrage im Angebotsmonopol

5 Grundlagen der Differentialrechnung

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung)

WHB12 - Mathematik Übungen für die Klausur am

Hauptprüfung Fachhochschulreife Baden-Württemberg

a) Prüfen Sie, ob die Graphen der Funktionen f und g orthogonal sind: f(x) = 1,5x 1; g(x) =

Mathematik für Betriebswirte II (Analysis) 2. Klausur Sommersemester

HTWD, FB Informatik/Mathematik. Mathematik für Bauingenieure. Wiederholungsaufgaben: Mathematik I

Kostenrechnung. Mengenangaben (Betriebsoptimum, gewinnmaximierende Menge) sind immer auf ganze ME zu runden.

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x.

mathphys-online Abschlussprüfung Berufliche Oberschule 2011 Mathematik 12 Technik - A II - Lösung Teilaufgabe 1.0

hat den maximalen Definitionsbereich R\{0}.

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6

Kapitel 7. Differentialrechnung. Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56

Übungsaufgaben. Grundkurs Höhere Mathematik für Wirtschaftswissenschaftler. Teil 2: Analysis. Sommersemester

Prüfungklausur HM 1 (Ing), Lösungshinweise

Abitur 2010 Mathematik GK Infinitesimalrechnung I

1 Funktionen einer Variablen

Analysis. Faktensammlung Analysis Im Modul Wirtschaftsmathematik Sommersemester Prof. Dr. Nikolaus Wolik Wirtschaftsmathematik und Statistik

Kurvendiskussion von Polynomfunktionen

Aufgabe 1 Beschriften Sie in der folgenden Darstellung die einzelnen Funktionen und geben Sie die Bedeutung der Punkte A H an.

Grundlagen der Mathematik - Lösungsskizze zur Aufgabensammlung

Aufgabe V1. Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2n n 3 b) lim. n n 7 c) lim 1 1 ) 3n.

WM.4.2 Mathematische Modelle für Kosten- und Gewinnfunktionen

Analysis 2. f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt:

Aufgabe 51. Gegeben ist die Preis-Absatz-Funktion. p W R C! R C mit p.x/ D 20 2x :

Zusammenfassung An1I HS2012 Analysis für Informatiker 1

Ein Kennzeichen stetiger Funktionen ist es, dass ihre Graphen (evtl. auch nur in Intervallen) nicht. Knicke im Funktionsgraphen auftreten.

Hausaufgabe Analysis-Buch Seite 172, Aufgabe 23. Gegeben ist die Funktion f k mit f k (x) = x2 k 2. , wobei k > 0 ist.

Abschlussprüfung Mathematik 12 Nichttechnik A I - Lösung

Prüfungsfragen zur Theorie

2 Funktionen einer Variablen

Erste Schularbeit Mathematik Klasse 8A G am

Ansgar Schiffler Untersuchung einer ökonomischen Funktion

Transkript:

Wirtschaftsmathematik - Übungen SS 017 Blatt 4: Funktionen von einer Variablen 1. Gegeben sind die Mengen M 1 = {0, 1,, 3, 4, 5, 6, 7, 8, 9} und M = { 1, 0, 1, } sowie die Zuordnungsvorschrift f : M 1 æ M,x æ f(x) mit Y _] _[ 0 für x gerade und x> 1 für x Æ 1 für x ungerade und durch 3 teilbar sonst a) Skizzieren Sie diese Zuordnungsvorschrift in einem Pfeildiagramm und begründen Sie, warum durch die Vorschrift f eine Funktion definiert ist! b) Bestimmen Sie jeweils die Bildmenge der Mengen {1,, 3} und {4, 6, 8} c) Ist die Funktion f injektiv, surjektiv, bijektiv? Existiert eine Inverse zu f? Begründen Sie! WM Übungen Blatt 4 1 SS 017

. P Gegeben sind die Mengen A = {x1, x, x3, x4 } und B = {y1, y, y3 }, sowie die folgenden Zuordnungsvorschriften: B A x1 f1 : A y1 x B mit y x3 y3 x4 B A x1 f : A B mit y1 x y x3 y3 x4 f3 : A \ {x3, x4 } æ B mit f3 (x1 ) = y, f3 (x ) = y1 a) Was versteht man unter einer Funktion? Welche der Vorschriften sind Funktionen? b) Erkla ren Sie die Begriffe injektiv, surjektiv, bijektiv. Welche der Funktionen aus a) sind injektiv, surjektiv, bijektiv? c) Zu welcher der Funktionen aus a) existiert eine Umkehrfunktion? 3. P Gegeben sind die Funktionen f : R æ R, x æ x + x 8 und g : R+ æ R+, x æ Ô x Bilden Sie nun, wenn mo glich, die Funktionen f a) f + g sowie. g b) f g = f (g (x)) sowie g f = g (f (x)) Welche Voraussetzungen sind dabei zu beachten? WM U bungen Blatt 4 SS 017

4. Gegeben sind die folgenden Funktionen: i) f 1 (x) = Ô x f (x) = 1 x ii) f 3 (x) =ln (x) f 4 (x) =e x a) Skizzieren Sie diese Funktionen ohne Erstellung einer Wertetabelle. b) Bestimmen Sie jeweils den größtmöglichen Definitionsbereich der Funktionen und geben Sie die jeweilige Bildmenge an! c) Untersuchen Sie für alle Funktionen anhand der Skizze Monotonie, Beschränktheit sowie das Verhalten im Unendlichen! d) Welche dieser Funktionen sind als Abbildungen von D æ R injektiv, surjektiv, bijektiv? 5. P Gegeben sind die folgenden Funktionen: f (x) = 1 x 1 g (x) = 1 3 x 3 a) Skizzieren Sie diese Funktionen ohne Erstellung einer Wertetabelle. b) Bestimmen Sie jeweils den größtmöglichen Definitionsbereich der Funktionen und geben Sie die jeweilige Bildmenge an! c) Untersuchen Sie für alle Funktionen anhand der Skizze Monotonie, Beschränktheit sowie das Verhalten im Unendlichen! d) Welche dieser Funktionen sind als Abbildungen von R æ R injektiv, surjektiv, bijektiv? 6. Für welche reellen Zahlen x ist die folgende Funktion f(x) definiert? Ô x +3x +10 ln(x 6) 7. P Skizzieren Sie jeweils in ein eigenes Koordinatensystem die Graphen der Funktionen f (x) = Ô x und g (x) = 1 Ôx, f (x) = Ô x und h (x) = Ô x +1, f (x) = Ô x und j (x) = Ô x +, f (x) = Ô x und k (x) = Ô x, und beschreiben Sie, wie jeweils der Graph der Funktionen g, h, j und k aus dem Graphen der Funktion f hervorgeht. WM Übungen Blatt 4 3 SS 017

8. Bestimmen Sie, wenn möglich, die Inverse zur Polynomfunktion 1 x + im Intervall [-3, 0]! 9. Gegeben ist die Funktion: ln (x 1) a) Berechnen Sie eventuelle Nullstellen und skizzieren Sie den Graphen der Funktion f. b) Bestimmen Sie deren größtmöglichen Definitionsbereich und geben Sie die Bildmenge an! c) Bestimmen Sie nun die erste Ableitung und untersuchen Sie, ob die Funktion über ihrem Definitionsbereich (streng) monoton fallend bzw. steigend ist? d) Bestimmen Sie die zweite Ableitung und untersuchen Sie die Funktion auf Konvexität (Konkavität) in ihrem Definitionsbereich! 10. P Gegeben ist die Funktion: g(x) =e x+1 1 a) Berechnen Sie eventuelle Nullstellen und skizzieren Sie den Graphen der Funktion g. b) Bestimmen Sie deren größtmöglichen Definitionsbereich und geben Sie die Bildmenge an! c) Bestimmen Sie nun die erste Ableitung und untersuchen Sie, ob die Funktion über ihrem Definitionsbereich (streng) monoton fallend bzw. steigend ist? d) Bestimmen Sie die zweite Ableitung und untersuchen Sie die Funktion auf Konvexität (Konkavität) in ihrem Definitionsbereich! WM Übungen Blatt 4 4 SS 017

11. Die nachfolgende Abbildung zeigt den Graphen einer Funktion. Skizzieren Sie die erste Ableitung dieser Funktion! 5 4 3 1-5 -4-3 - -1 0 1 3 4 5 6-1 - -3-4 1. Gegeben ist die Funktion x x +3 Diskutieren Sie diese Funktion, d.h. bestimmen Sie die größtmögliche Definitionsmenge, Nullstellen, Extremstellen, Wendepunkte, Monotonie, das Krümmungsverhalten und das Verhalten im Unendlichen. Skizzieren Sie den Graphen! 13. P Gegeben ist die Funktion: Û x +1 a) Bestimmen Sie die größtmögliche Definitionsmenge D µ R von f(x)! b) Wie lautet die erste Ableitung von f? 14. Bestimmen Sie die Grenzwerte: x a) lim xæ x x 4 ln x b) lim Ô c) lim xæœ x xæ0 x ln x + 15. Bestimmen Sie die Taylorentwicklung um den Punkt x 0 (mit Gliedern bis einschließlich zweiter Ordnung): 3 f (x) = ln 1 x 4 x 0 =0 WM Übungen Blatt 4 5 SS 017

16. P Gegeben ist die Funktion f : R æ R mit e 1 x 1. a) Bestimmen Sie das Taylor-Polynom p(x) zweiten Grades mit Entwicklungsstelle x 0 =! b) Approximieren Sie e 0,5 mit Hilfe des Polynoms aus a), indem Sie den Funktionswert von p an der Stelle x = 3 berechnen! 17. Berechnen Sie sämtliche Stammfunktionen und das bestimmte Integral im Intervall [0, 1] für: e x + x 1 Hinweis: e 3, 69 18. P Bestimmen Sie alle Funktionen, deren erste Ableitung f Õ (x) =x + e 1 x ist! Welche dieser Funktionen geht durch den Punkt P (0, 3)? 19. Bestimmen Sie: a) ˆ x ln(x ) dx b) ˆ1 x (x +1) 5 dx 0 0. P Bestimmen Sie: a) ˆ e t dt b) ˆ1 3Ô x Ô x dx 0 1. P Gegeben ist die Funktion 1 x + x. Berechnen Sie das bestimmte Integral im Intervall [-1, 1] und skizzieren Sie die Funktion! Begründen Sie, warum der Wert des bestimmten Integrals in diesem Fall nicht der Fläche zwischen der Funktion und der x-achse im angegebenen Intervall entspricht! Wie groß ist diese Fläche?. Skizzieren Sie die folgenden Funktionen und berechnen Sie, wenn möglich, die uneigentlichen Integrale: a) ˆŒ 1 3 dx b) x ˆŒ 0 (1 + e x ) dx WM Übungen Blatt 4 6 SS 017

3. Eine Grenzkostenfunktion ist gegeben durch K Õ (x) =3x x +. a) Erklären Sie den Begri Grenzkosten. Was gibt die Grenzkostenfunktion an? b) Bestimmen Sie die Kostenfunktion, wenn für eine Produktion von zwei Einheiten Gesamtkosten in Höhe von 31 anfallen! c) Wie hoch sind die Fixkosten der Produktion? d) Welche Kosten fallen bei einer Produktion von x = 4 an und wie hoch sind an dieser Stelle die Grenzkosten? e) Bestimmen Sie die Durchschnittskostenfunktion und deren Wert an der Stelle x =! f) Das Produkt wird zu einem konstanten Preis von p = 55 abgesetzt. Bestimmen Sie die Gewinnfunktion, die gewinnmaximale Ausbringungsmenge und den Maximalgewinn! 4. P Ein Unternehmen stellt ein Produkt her und operiert dabei mit der Gewinnfunktion G (x) = 1 10 x +10x 90 Das Produkt kann am Markt zu einem Preis p = 16 abgesetzt werden. a) Berechnen Sie die Menge, bei der der Gewinn maximal ist, sowie die Höhe des maximalen Gewinns. Weisen Sie nach, dass es sich um ein Maximum handelt! b) Bestimmen Sie den Bereich, in dem das Unternehmen positiven Gewinn erzielt. c) Bestimmen Sie Kostenfunktion sowie die Durchschnittskostenfunktion. d) Bestimmen Sie das Minimum der Durchschnittskosten und damit die minimalen Durchschnittskosten (die so genannte langfristige Preisuntergrenze). 5. Der S-förmige Kostenverlauf eines Betriebes wird durch ein Polynom 3. Grades beschrieben. Die Fixkosten der Produktion betragen 6 GE. Die Grenzkosten sind an der Stelle x = 6 minimal. Die Gesamtkosten an dieser Stelle betragen 4 GE. Die Grenzkosten an der Stelle x = 0 betragen 18 GE. Die Preis-Absatzfunktion lässt sich durch p(x) = 3 x +18 beschreiben. a) Bestimmen Sie Höchstpreis und Sättigungsmenge! b) Bestimmen Sie die Kostenfunktion K(x), sowie die Erlösfunktion E(x)! c) Ermitteln Sie die gewinnmaximale Ausbringungsmenge sowie den maximalen Gewinn! Ist die Preiselastizität der Nachfrage an dieser Stelle elastisch/unelastisch/einselastisch? (Hinweis: die Nachfragefunktion lautet: n (p) = 3 p +1) d) Ab welcher Erzeugungsmenge gilt das Gesetz der schließlich zunehmenden Grenzkosten? WM Übungen Blatt 4 7 SS 017

6. Gegeben ist die Funktion f : Ræ R, mit: I 0 x<0 3 e 3x x Ø 0 a) Bestimmen Sie den linksseitigen sowie den rechtsseitigen Grenzwert an der Stelle x 0 =0.Istf an der Stelle x 0 = 0 stetig? b) Berechnen Sie die erste Ableitung und bestimmen Sie das globale Maximum sowie das globale Minimum der Funktion f(x). Prüfen Sie f(x) für x Ø 0 auf Monotonie. Hinweis: Fertigen Sie eine Skizze an! c) Bestimmen Sie alle Stammfunktionen F (x) vonf(x) für x Ø 0. d) Bestimmen Sie ˆ1 0 f(x)dx. Hinweis: e 3 0, 05 e) Bestimmen Sie die Fläche, die f(x) mit der Abszisse einschließt, also die Fläche zwischen der Funktion und der x-achse über ganz R. 7. P Gegeben ist die Funktion f : R æ R, mit: Y ] 1 [ x +4 x Æ a x > a) Bestimmen Sie a derart, dass f(x) über ganz R stetig ist. Ist die Funktion an der Stelle x = di erenzierbar? b) Wie groß ist die Fläche für a = 5, die die Funktion f und die x-achse im Intervall [0; 3] einschließen? Die mit P gekennzeichneten Beispiele sind von den Studierenden vorzubereiten und nach Aufruf durch den/die Lehrveranstaltungsleiter/in an der Tafel zu präsentieren! WM Übungen Blatt 4 8 SS 017