6 Messung der relativen Permittivität ε r und des Verlustfaktors tan δ von Isolierstoffen bzw. Dielektrika



Ähnliche Dokumente
Versuch 1: Bestimmung der relativen Dielektrizitätszahl ε r

Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz

Der Elektrik-Trick für die Mittelstufe. Das Wort Kondensator leitet sich vom lateinischen condensare (= verdichten, dicht zusammenpressen) her.

Physik I TU Dortmund SS2018 Götz Uhrig Shaukat Khan Kapitel 1

Kon o d n e d ns n ator Klasse A Klasse A (Ergänzung) Norbert - DK6NF

Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R =

Das Wort Kondensator leitet sich vom lateinischen condensare (= verdichten, dicht zusammenpressen) her.

Musterloesung. 2. Klausur Grundlagen der Elektrotechnik I-B 17. Juni Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten

5.5 Elektrisches Zentralfeld, Coulombsches Gesetz

Abhängigkeiten der Kapazität eines Kondensators

IIE2. Modul Elektrizitätslehre II. Dielektrika

E2: Wärmelehre und Elektromagnetismus 14. Vorlesung

Elektrizitätslehre und Magnetismus

Wechselstromkreis E 31

Frequenzverhalten eines Kondensators Ein Kondensator hat bei 50 Hz einen kapazitiven Blindwiderstand von

v q,m Aufgabensammlung Experimentalphysik für ET

Misst man die Ladung in Abhängigkeit von der angelegten Spannung, so ergibt sich ein proportionaler Zusammenhang zwischen Ladung und Spannung:

Plattenkondensator C Q U C Q U DA. 0 8, As. [U] 1As V 1Farad 1F. E s. E s 0 r E A

Klausur Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5

24.4 Dielektrische Eigenschaftswerte

Hochschule Bremerhaven

Amateurfunkkurs. Erstellt: Landesverband Wien im ÖVSV. Passive Bauelemente. R. Schwarz OE1RSA. Übersicht. Widerstand R.

Sensorik polarer Kraftstoffe

Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.)

1. Laboreinheit - Hardwarepraktikum SS 2005

Physik III - Anfängerpraktikum- Versuch 302

Prüfung Wintersemester 2016/17 Grundlagen der Elektrotechnik Dauer: 90 Minuten

Name:...Vorname:... Seite 1 von 8. FH München, FB 03 Grundlagen der Elektrotechnik WS03/04. Studiengruppe:... Matrikelnr.:... Hörsaal:... Platz:...

r = F = q E Einheit: N/C oder V/m q

Anleitung zum Versuch : Elektrische Felder

81 Übungen und Lösungen

Elektrische Messtechnik, Labor

Amateurfunkkurs. Themen Übersicht. Erstellt: Landesverband Wien im ÖVSV. 1 Widerstand R. 2 Kapazität C. 3 Induktivität L.

Klausur Grundlagen der Elektrotechnik

Komplexe Zahlen und ihre Anwendung in der Elektrotechnik

Antworten zu Wiederholungsfragen Stand:

Experimentalphysik 2

1. Theorie: Kondensator:

2. Klausur in K1 am

Elektrotechnik I MAVT

Versuch 14 Wechselstromwiderstände

Ferienkurs Experimentalphysik II Elektrodynamik - Übungen

Aufgabe 1 Kondensatorformel

6.7.2 Was man wissen muss

Vorlesung 3: Elektrodynamik

PN 2 Einführung in die Experimentalphysik für Chemiker

Name:...Vorname:... Seite 1 von 8. FH München, FB 03 Grundlagen der Elektrotechnik SS 2003

7. Wechselspannung und Wechselstrom

K l a u s u r N r. 2 Gk Ph 12

2. Musterklausur in K1

Wechselstrom- und Impulsverhalten von RCL-Schaltungen

6.7 Zusammenfassungen zu Kapitel 6

Laborpraktikum 2 Kondensator und Kapazität

Seite 2 E 1. sin t, 2 T. Abb. 1 U R U L. 1 C P Idt 1C # I 0 cos t X C I 0 cos t (1) cos t X L

Praktikum ETiT 1. Grundlagen der Elektrotechnik

Passive Bauelemente. AnodenFolie. Anoden. Papier. Funktionsbereich. Kathode KathodenFolie

1. Plattenkondensator 2. 2 parallele Leiter 3. Magnetischer Kreis 4. Transformatorprinzip Summe Punkte

1. Plattenkondensator 2. 2 parallele Leiter 3. Magnetischer Kreis 4. Transformatorprinzip Summe Punkte

2. Klausur Grundlagen der Elektrotechnik I-B 17. Juni 2002

Labor für Grundlagen der Elektrotechnik. EE1- ETP1 Labor 4. Weitere Übungsteilnehmer: Messung von Kapazitäten und Induktivitäten

Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen)

Elektrotechnik II Wechselstrom Magnetisches Feld

Name:... Vorname:... Matr.-Nr.:...

2 Das elektrostatische Feld

Technische Universität Clausthal

Elektrolytischer Trog

Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 1

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

2. Parallel- und Reihenschaltung. Resonanz

Aufgaben zur Vorbereitung der Klausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/

Experimentalphysik 2

Labor Grundlagen Elektrotechnik

Protokollbuch. Friedrich-Schiller-Universität Jena. Physikalisch-Astronomische Fakultät SS Messtechnikpraktikum

Elektrotechnik Protokoll - Wechselstromkreise. André Grüneberg Mario Apitz Versuch: 16. Mai 2001 Protokoll: 29. Mai 2001

= Dimension: = (Farad)

Messtechnische Ermittlung der Größen komplexer Bauelemente

Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge

Elektrischer Schwingkreis

Halbleiterbauelemente

NAE Nachrichtentechnik und angewandte Elektronik

Oszillographenmessungen im Wechselstromkreis

Protokolle erstellen

Physik 4 Praktikum Auswertung Hall-Effekt

PrÄfung Sommersemester 2016 Grundlagen der Elektrotechnik Dauer: 90 Minuten

Othmar Marti Experimentelle Physik Universität Ulm

TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG. Versuch: Elektrische Leitfähigkeit (Sekundarstufe I) Moduli: Physikalische Eigenschaften

Anwendungen zu komplexen Zahlen

Diplomvorprüfung SS 2010 Fach: Grundlagen der Elektrotechnik Dauer: 90 Minuten

Die Kapazität eines Plattenkondensators mit Luftspalt wird als Funktion der. Spaltbreite gemessen sowie die Messung mit der Theorie verglichen.

Versuch 2 Halbleiterdioden II

Praktikum EE2 Grundlagen der Elektrotechnik. Name: Testat : Einführung

Klausur Grundlagen der Elektrotechnik

8 Wheatstonesche Brücke

E q q 4. Die elektrische Feldstärke ist eigentlich ein Vektor der in Richtung der Coulombkraft zeigt falls eine (positive) Ladung q vorhanden wäre.

Versuch B2/3: Parallelschwingkreis

1 Grundlagen. 1.8 Kondensator

Gleichstrom/Wechselstrom

III Elektrizität und Magnetismus

Wechselstromwiderstände

Berechnen der Kapazität von Kondensatoren ET-Buch Seite 88-89

Transkript:

63 6 Messung der relativen Permittivität ε r und des Verlustfaktors tan δ von Isolierstoffen bzw. Dielektrika 6.1 Einführung Die relative Permittivität ε r bestimmt die Erhöhung des Kapazitätswertes von beliebigen, spannungsführenden Elektroden bei Einlagerung eines Isolierstoffes. Die Kapazität bestimmt vor allem die Größe des Wechselstroms und die gespeicherte Blindleistung. Im Isolierstoff werden aber aufgrund der sehr geringen elektrischen Restleitfähigkeit, der Relaxation und der Reibung der verschobenen elektrischen Ladungsträger und Dipole auch Wirkleistungsverluste verursacht, die durch den Verlustfaktor tan δ beschrieben werden. Der Winkel δ ist die Abweichung des Phasenwinkels φ, den der kapazitive Strom, im idealen Fall mit 90, gegenüber der sinusförmigen Wechselspannung zeigt. Die Stärke eines elektrischen Feldes hängt nicht nur von Material ε r Epoxidharz 3,7 Glas 10 Luft 1 Polystyrol 2,5 Wasser 80 Polyäthylen 2,3 Transformatoröl 2,5 Tabelle 6.1: Relative Permittivität verschiedener Materialien der verursachenden Ladung Q und dem Abstand zwischen dem Ort der Ladung und dem Bezugspunkt ab, sondern auch gravierend von dem Stoff, von welchem die Ladung umgeben ist. Anhand der elektrischen Flussdichte D, sowie der Stärke des elektrischen Feldes E, ergibt sich diese Abhängigkeit des Stoffes und wird allgemein als Permittivität ε bezeichnet. As [D] D = ε E [ε] = [E] = m 2 V m = As Vm (6.1) 12 As ε = ε 0 ε r mit ε 0 = 8, 854 10 Vm (6.2)

6.1 Einführung 64 Die relative Permittivität ε r bestimmt die Erhöhung des Kapazitätswertes von beliebigen, spannungsführenden Elektroden, bei Einlagerung eines Isolierstoffes. Die Tabelle 6.1 zeigt Beispiele für die relative Permittivität. 6.1.1 Polarisationsarten Ist zwischen zwei wechselspannungsführenden Elektroden Materie eingebracht, so werden in der Materie elektrische Dipole erzeugt, sowie schon vorhandene in Feldrichtung ausgerichtet. Im Atom selbst werden Ladungen verschoben diesen Vorgang bezeichnet man als elektrische Polarisation. Die Polarisationsarten werden in drei Gruppen unterschieden: Elektronenpolarisation: Die Elektronenpolarisation tritt in allen Isolierstoffen auf. Ursache dieser Polarisation ist, dass ein äußeres, elektrisches Feld die Schwerpunkte der positiven und negativen Ladungen im Atom gegeneinander verschiebt. Stoffe, bei denen diese Art die einzige Polarisation bewirkt, werden als unpolare Dielektrika bezeichnet. Materialien: Polyäthylen, Polystyrol, Polypropylen, etc. Orientierungspolarisation: Viele Materialien sind aus Molekülen aufgebaut, die bereits ein permanentes Dipolmoment beinhalten. Diese Materialien erscheinen wegen der statisch räumlichen Verteilung, der permanenten Dipole, aufgrund der Wärmebewegung, als elektrisch neutral. Das Anlegen eines äußeren elektrischen Feldes bewirkt eine Ausrichtung dieser Dipole. Stoffe mit diesen Eigenschaften werden als polare Dielektrika bezeichnet. Materialien: Kautschuk, Epoxidharz, Phenolharz, Silikon, etc. Ionenpolarisation: In Materialien, welche als Kristallgitter bestehend aus Ionen aufgebaut sind, bewirkt das Anlegen eines äußeren Feldes eine Verschiebung der positiven, sowie der negativen Ionen gegeneinander, sodass Dipole im Material entstehen. Materialien: Keramik, Glas, Porzellan, etc. 6.1.2 Ersatzschaltbild eines Kondensators Abbildung 6.1 zeigt das vereinfachte Ersatzschaltbild sowie das Zeigerdiagramm eines Kondensators. Das Verhältnis von Strom i und Spannung u an einer verlustbehafteten Kapazität bei einem sinusförmigen, sich zeitlich verändernden Spannungsverlauf kann durch einen komplexen Leitwert Y ausgedrückt werden. Y = G + G + jb C = G + G + jωc (6.3)

6.1 Einführung 65 i C i G Im i CK î CK î C u t C( ) B C G ~ G - Re î G û C Abbildung 6.1: Ersatzschaltbild und Zeigerdiagramm eines Kondensators 1 Q = d = tan δ = G B C = G ωc (6.4) Der tan δ wird auch als Verlustfaktor d gleichbedeutend mit dem Kehrwert des Gütefaktors Q bezeichnet. G und G sind die Verlustleitwerte (Gleich- bzw. Wechselstromanteil). 6.1.3 Komplexe relative Permittivität Verwendet man generell eine komplexe relative Permittivität, die auf die verlustfreie Kapazität des Vakuums des jeweiligen Kondensators aufgeprägt wird, so ergibt sich mit der Definitionsgleichung: Ȳ C = jω C 0 ε r mit ε r = ε r jε r = C G j (6.5) C 0 ω C 0 ε r = ε r und tan δ = ε r ε r (6.6) Die verschiedenen Polarisationsmechanismen führen zu einer Frequenzabhängigkeit der komplexen Größe ε r oder ε r und tan δ. Für ε r entsteht vor allem ein Abfall mit steigender Frequenz durch die Relaxation das heißt durch die verzögerte Einstellung der Dipole gegenüber dem äußeren elektrischen Feld. Wenn ω < 1/τ d.h. T > τ (T =Periodendauer; τ =Relaxationszeit) ist, dann haben die Dipole genügend Zeit zur Ausrichtung und erreichen annähernd statische Werte. Mit steigender Frequenz können die Dipole dem äußeren Wechselfeld nicht mehr folgen und ε r sinkt auf Werte der Elektronenpolarisation. Mit folgender Gleichung kann ε r beschrieben werden: ε r = ε rn + ε rv ε rn 1 + (ω τ) 2 (6.7)

6.2 Vorbereitungen 66 Hierbei steht ε rn für ε r bei Elektronenpolarisation und ε rv bei Dipol- oder Orientierungspolarisation. 6.1.4 Ursachen der Verlustgrößen Restleitfähigkeit Bei niedrigen Frequenzen wird die Restleitfähigkeit, ausgedrückt durch den Gleichstromleitwert G, wirksam. G_ = γ A d mit 10 16 S cm γ S 10 12 cm tan δ 1 = G_ ω C (6.8) Hierbei steht A für die Fläche und d für den Abstand Relaxation Bei hohen Frequenzen werden die Verluste verstärkt durch die Relaxation erzeugt. Die verzögerte Einstellung der Dipole beeinflusst direkt den Phasenwinkel ϕ und damit auch den Winkel δ: 90 = ϕ + δ. Die maximalen Verluste werden für ω max = 1 τ erreicht. ε r und tan δ werden durch folgende Formeln beschrieben: ε r = ω τ (ε rv ε rn ) 1 + (ω τ) 2 tan δ 2 = ω τ (ε rv ε rn ) ε rv + ε rn (ω τ) 2 (6.9) 6.2 Vorbereitungen 6.2.1 Allgemein Bereiten Sie sich mit Hilfe der Einleitung, den Vorlesungsunterlagen und mit weiteren Quellen (Bibliothek, Internet) ausführlich vor. Sollten Fragen offen bleiben, wenden Sie sich bitte rechtzeitig an einen Betreuer oder Herrn Schneider, R. -1325, WA 73. 6.2.2 Fragen zur Vorbereitung Beantworten Sie bitte zur Vorbereitung dieses Versuches schriftlich folgende Fragen: 1. Erläutern Sie bitte folgende Begriffe: elektrisches Feld elektrische Ladung elektrische Flussdichte Permittivität ε 0, ε r und ε

6.3 Versuchsdurchführung 67 Dipol Relaxation Kapazität 2. Leiten Sie ausgehend von der Formel Q = D A die Kapazität eines Plattenkondensators, der Fläche (A) und dem Abstand der Platten (d), her. 3. Was ist der Unterschied zwischen tan δ und ϕ? 4. Es sind folgende Funktionen mit halblogarithmischem Frequenzmassstab von 10Hz bis 100kHz, also über 4 Dekaden, grafisch darzustellen. (a) ε r = ε rn + εrv εrn 1+(ω τ) 2 (b) tan δ 1 = γ ω ε r ε 0 (c) tan δ 2 = ω τ (εrv εrn) ε rv+ε rn (ω τ) 2 Gegeben sind folgende Werte: τ = 10 10 6 s; γ = 10 12 S ; ε 12 As cm rn = 2; ε rv = 4; ε r = 3; ε 0 = 8.85419 10 Vm Nutzen Sie folgende Rechenwerte für die Frequenz f: { f 0.010; 0.020; 0.050; 0.100; 0.200; 0.500; 1; 2; 5; 10; 20; 50; 100} khz Es ist möglich, diese Kurven auf einem DIN-A4-Blatt darzustellen; allerdings mit unterschiedlichen Massstäben auf Ordinate und Abszisse.- Ordinate:linear ; Abszisse:logarithmisch, mit vier Dekaden. 6.3 Versuchsdurchführung Im Praktikum wird ein sehr genaues digitales RLC-Messgerät verwendet. Der Verlustfaktor tan δ wird direkt angezeigt (DF-Dissipation Factor), während ε r mit Hilfe der Messergebnisse des mit Materie gefüllten Kondensators errechnet werden muss Der Plattenabstand bei Luft wird durch die Dicke des Materials vorgegeben. Bei der Kapazitätsmessung muss berücksichtigt werden, dass am Eingang der Brücke außer der gesuchten Kapazität der Elektroden es handelt sich um einen Plattenkondensator auch die Kapazität der Zuleitung und des Probenkondensatorgehäuses mit erfasst wird. Diese Fehlkapazität C F ist unabhängig von der Frequenz und muss selbstverständlich bei der Auswertung berücksichtigt d. h. abgezogen werden. 6.3.1 Ermitteln der Fehlkapazität des ausschließlich mit Luft gefüllten Plattenkondensators Bevor die Kapazität eines Kondensators ermittelt werden kann, muss die Fehlkapazität C F zunächst erfasst werden.

6.3 Versuchsdurchführung 68 Die Fehlkapazität kann mit folgenden Schritten ermittelt werden: Es ist bekannt, dass sich die Kapazität eines Kondensators verkleinert, wenn der Plattenabstand größer wird. Die Kapazität am Versuchsaufbau ergibt sich zu C = ε A d Wird der Abstand nun vergrößert, so ist für den Grenzübergang d : + C F (6.10) lim C = ε A d + C F = 0 + C F = C F (6.11) Bei einem größeren Plattenabstand geht die Kapazität des Plattenkondensators gegen Null und es bleibt C F übrig. Im Praktikum wird folgendermaßen verfahren : es soll die Kapazität C geml in Abhängigkeit des Plattenabstandes d gemessen und in einer Tabelle zusammengefasst werden. In einem Diagramm wird dann die Kapazität C geml über 1 aufgetragen. Diese Geradenfunktion C geml = f( 1) wird bis 1 = 0, d.h. bis d extrapoliert. Am Schnittpunkt des d d d Grafen mit der Ordinate lässt sich die Störkapazitat C F ablesen. Erhöhen Sie den Abstand der Platten entsprechend der Angaben in der Tabelle 6.2 und notieren Sie die Kapazitätswerte und berechnen Sie den inversen Plattenabstand. Tragen Sie C = f( 1 d ) auf und ermitteln Sie C F durch Interpolation. Plattenabstand d/ mm Kapazität C geml / nf 1 d / 1 mm 0,3 0,5 0,7 0,8 0,9 1 1,5 2 4 6 Tabelle 6.2: Kapazität C als Funktion des Plattenabstandes d

6.3 Versuchsdurchführung 69 Die Größe der Fehlkapazität beträgt C F = 6.3.2 Ermitteln der relativen Permittivität ε r verschiedener Dielektrika Bei verschiedenen Kunststoffproben sollen bei einer Frequenz von f 0 = 1 khz die Kapazitätswerte C geml und C gemm für Luft und für Material als Dielektrikum gemessen und in Tabelle 6.3 eingetragen werden. Der Verlustfaktor tan δ wird direkt abgelesen und ebenfalls notiert. Im Anschluss sind die Werte von ε r zu berechnen. Achtung: bei der Errechnung der relativen Permittivität muss die Fehlkapazität C F berücksichtigt werden. Ordnen Sie den einzelnen Materialien die entsprechenden Polarisationsmechanismen zu. Die relative Dielektrizitätskonstante wird durch folgende Formel bestimmt: ε r = C gemm C F C geml C F (6.12) 6.3.3 Ermitteln der Frequenzabhängigkeit der relativen Permittivität ε r bei zwei verschiedenen Dielektrika Messen Sie die Kapazitäten C gemm und C geml und den Verlustfaktor tan δ von zwei, in den Plattenkondensator, eingespannten Proben in Abhängigkeit von der Frequenz. Ermitteln Sie aus den gemessenen Werten ε r und tragen Sie Ihre Ergebnisse in die Tabelle 6.4 ein. Der Abstand

6.3 Versuchsdurchführung 70 Material C gemm / nf tan δ C geml / nf ε r Polarisationsmechanismus Tabelle 6.3: Polarisationsmechanismen dielektrischer Materialien d bei der Messung mit Luft muss den selben Abstand aufweisen wie die Materialdicke. D.h. Messen Sie C gemm, entnehmen Sie dann das Material und messen Sie nun C geml. Die relative Dielektrizitätskonstante wird durch folgende Formel bestimmt: ε r = C gemm C F C geml C F (6.13) Die Einstellung der Frequenz am RLC Meter erfolgt bei abgeschaltetem Messzyklus (Stop) nach Anwahl des entsprechenden Menüpunkts durch Betätigung der Program-Taste und zweimaligem Drücken der Taste. Im Anschluss lässt sich die Frequenz über die Pfeiltasten und variieren. Die Änderung ist über die Taste Program abzuschließen. Zeichnen Sie die Funktion ε r = f(f) beider Proben in das vorbereitete Diagramm 6.2, sowie die Funktion tan δ = f(f) beider Proben in das vorbereitete Diagramm 6.3. Beschriften Sie beide Diagramme. Achten Sie darauf, dass die Skalierung das Eintragen beider Materialproben ermöglicht.

6.3 Versuchsdurchführung 71 Probe 1: Hart-PVC Probe 2: Pertinax f/ Hz CgemM1/ nf tan δ1 CgemL1/ nf εr1 CgemM2/ nf tan δ2 CgemL2/ nf εr2 20 50 100 200 500 1.000 2.000 5.000 10.000 20.000 50.000 100.000 200.000 500.000 1.000.000 Tabelle 6.4: Frequenzabhängigkeit der relativen Permittivität

6.3 Versuchsdurchführung 72 Abbildung 6.2: Frequenzabhängigkeit der relativen Permittivität ε r

6.3 Versuchsdurchführung 73 Abbildung 6.3: Frequenzabhängigkeit des Verlustwinkels tan δ

6.3 Versuchsdurchführung 74 Diskutieren Sie die Diagramme der einzelnen Proben. Worin und warum unterscheiden sie sich? Welche Polarisationsarten liegen vor? 6.3.4 Spezifikation verschiedener Kondensatoren Am Praktikumsplatz finden Sie eine Reihe verschiedener Folienkondensatoren sowie die zugehörigen Datenblätter vor. Vermessen Sie die vorhandenen Kondensatoren (C, tan δ) bei f = 1 khz und vergleichen Sie die Werte mit den vorgegebenen Abweichungen im Datenblatt. Welches Dielektrikum wird für den jeweiligen Typ verwendet und was sind die Einsatzgebiete? Protokollieren Sie Ihre Ergebnisse in Tabelle 6.5. Gibt es einen Zusammenhang zwischen den eingesetzten Dielektrika und den Einsatzgebieten/Anwendungen?

6.3 Versuchsdurchführung 75 Typ CSoll/ µf CMess/ µf tan δmess C/% Dielektrikum Anwendung Bemerkung Tabelle 6.5: Spezifikation verschiedener Kondensatoren

6.4 Literatur 76 6.4 Literatur [1] CLAUSERT, H. ; WIESEMANN, G. : Grundgebiete der Elektrotechnik 1. 8. Auflage. München, Wien : Oldenbourg, 2003 [2] MÜNCH, W. : Werkstoffe der Elektrotechnik. 6. Auflage. Stuttgart : Teubner, 1989 [3] KORIES, R. ; SCHMIDT-WALTER, H. ; KORIES, R. (Hrsg.): Taschenbuch der Elektrotechnik. 3. Auflage. Thun, Frankfurt am Main : Verlag Harri Deutsch, 1998