Übungen zu Experimentalphysik 1 für MSE

Ähnliche Dokumente
Übungen zu Experimentalphysik 1 für MSE

Physik 1 ET, WS 2012 Aufgaben mit Lösung 6. Übung (KW 49) Zwei Kugeln )

Übungsblatt 3 ( ) mit Lösungen

E1 Mechanik Musterlösung Übungsblatt 6

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE

Musterlösung 2. Klausur Physik für Maschinenbauer

Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen

Physik 1. Stoßprozesse Impulserhaltung.

m 1 und E kin, 2 = 1 2 m v 2 Die Gesamtenergie des Systems Zwei Wagen vor dem Stoß ist dann:

Blatt Musterlösung Seite 1. Aufgabe 1: Schwingender Stab

EXPERIMENTALPHYSIK I - 4. Übungsblatt

Wiederholung Physik I - Mechanik

Besprechung am

Besprechung am

Klausur 3 Kurs 11Ph1e Physik

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an.

Physikunterricht 11. Jahrgang P. HEINECKE.

Lösungen Aufgabenblatt 6

5 Schwingungen und Wellen

Brückenkurs Physik SS11. V-Prof. Oda Becker

Übungsaufgaben Physik II

Formelsammlung: Physik I für Naturwissenschaftler

Experimentalphysik I: Mechanik

Grundlagen der Physik 1 Lösung zu Übungsblatt 6

Klausur Physik 1 (GPH1) am Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau

Grundwissen. Physik. Jahrgangsstufe 10

Physik 1 Hydrologen/VNT, WS 2014/15 Lösungen Aufgabenblatt 8. Feder )

Lösung VIII Veröentlicht:

Physik für Biologen und Geowissenschaftler 15. Juni Grundlagen 2 SI - Einheiten... 2 Fehlerberechnung... 2

Experimentalphysik EP, WS 2011/12

B.1 Lösungsskizzen der Übungsaufgaben zum Kapitel 1

Versuch 2 - Elastischer und inelastischer Stoß

Blatt 4. Stoß und Streuung - Lösungsvorschlag

Experimentalphysik E1

Experimentalphysik I: Mechanik

Mechanische Schwingungen Aufgaben 1

Vordiplomsklausur in Physik Dienstag, 27. September 2005, :00 Uhr für die Studiengänge: EST, Vt, Wiing, GBEÖ, KST, GKB, Met, Wewi, UST

Prüfungsklausur - Lösung

Physik 1 Zusammenfassung

Übungen zu Physik 1 für Maschinenwesen

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II

Vordiplomsklausur in Physik Mittwoch, 23. Februar 2005, :00 Uhr für den Studiengang: Mb, Inft, Geol, Ciw

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am )

2.4 Stoßprozesse. entweder nicht interessiert o- der keine Möglichkeit hat, sie zu untersuchen oder zu beeinflussen.

Beachten sie bitte die Punkteverteilung

Experimentalphysik E1

Vorlesung 3: Roter Faden:

1.1 Eindimensionale Bewegung. Aufgaben

Weitere Beispiele zu harmonischen Schwingungen

Schwingungen, Impuls und Energie, Harmonische Schwingung, Pendel

4. Stoßvorgänge. Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten.

Aufgaben zur Übungsklausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/

Übungsaufgaben zum Thema Impuls und Impulserhaltung Lösungen

Übung zu Mechanik 3 Seite 48

F r = m v2 r. Bewegt sich der Körper mit der konstanten Winkelgeschwindigkeit ω = 2π, T

3. Erhaltungsgrößen und die Newton schen Axiome

Grundwissen Physik 8. Klasse Schuljahr 2011/12

Übungsblatt 13 Physik für Ingenieure 1

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Das führt zu einer periodischen Hin- und Herbewegung (Schwingung) Applet Federpendel (

Tutorium Physik 1. Kinematik, Dynamik

Nachklausur Physik für Ingenieure 1, Diplom Elektrotechnik, Diplom Informationstechnologie

Übungsblatt IX Veröffentlicht:

Grundlagen Arbeit & Energie Translation & Rotation Erhaltungssätze Gravitation Reibung Hydrodynamik. Physik: Mechanik. Daniel Kraft. 2.

4.2 Der Harmonische Oszillator

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr

Probeklausur zur T1 (Klassische Mechanik)

Bestimmung von Federkonstanten Test

Rechenübungen zur Physik I im WS 2009/2010

Physik I Musterlösung 2

Lösung VII Veröffentlicht:

Physik für Biologen und Zahnmediziner

Ferienkurs Experimentalphysik 1

Grund- und Angleichungsvorlesung Energie, Arbeit & Leistung.

Physik LK 11, 3. Klausur Schwingungen und Wellen Lösung

Lösung Serie 3 (Modellieren (SIMULINK + MATLAB))

Vordiplomsklausur Physik

Experimentalphysik EP, WS 2012/13

M1 Maxwellsches Rad. 1. Grundlagen

4. Stoßvorgänge. Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten.

Allgemeine Bewegungsgleichung

Physik 2 am

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Ferienkurs Experimentalphysik 3

Physik 1 für Chemiker und Biologen 7. Vorlesung

A. v = 8.9 m/s B. v = 6.3 m/s C. v = 12.5 m/s D. v = 4.4 m/s E. v = 1.3 m/s

v A e y v By = v B sinα 2 = v A 2 v By

Aufgabe 1: A. 7.7 kj B kj C. 200 kj D kj E. 770 J. Aufgabe 2:

1. Eindimensionale Bewegung

2.4 Fall, Wurf und Federkräfte

Spezialfall m 1 = m 2 und v 2 = 0

Hochschule Düsseldorf University of Applied Sciences. 01. Dezember 2016 HSD. Physik. Impuls

Probeklausur Physik für Ingenieure 1

Name: Gruppe: Matrikel-Nummer: Aufgabe Punkte

Übungen Theoretische Physik I (Mechanik) Blatt 7 (Austeilung am: , Abgabe am )

Transkript:

Physik-Department LS für Funktionelle Materialien WS 214/15 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Daniel Moseguí González, Pascal Neibecker, Nitin Saxena, Johannes Schlipf Vorlesung 12.11.214, Übungen 17.11. und 19.11.214 Blatt 6 1. Eisstockschießen Beim Eisstockschießen trifft der weiße Eisstock eines Spielers mit = 4,5 m/s auf einen sich in Ruhe befindenden silbernen Eisstock. Beide Eisstöcke haben die gleiche Masse und stoßen elastisch. Reibungseffekte werden vernachlässigt. Nach dem Stoß bewege sich der silberne Eisstock unter einem Winkel von ϕ s = 36, zur Einfallsrichtung des weißen Eisstocks (siehe Abbildung). a) Bestimmen Sie die Bewegungsrichtung des weißen Eisstocks nach dem Stoß, d. h. bestimmen Sie die Winkelablenkung ϕ w des weißen Eisstocks gegenüber der Einfallsrichtung!

Impulserhaltung: p = p s + p w m = m v s +m v w = v s + v w Energieerhaltung: 1 2 mv2 = 1 2 mv2 s + 1 2 mv2 w Pythagoras: a 2 = b 2 + c 2 9, Winkel zwischen v s und v w v 2 = v 2 s + v 2 w Winkelsumme im Dreieck: ϕ s + ϕ w + 9, = 18 ϕ s + ϕ w = 9, ϕ w = 9, 36, = 54, Der weiße Eisstock wird um ϕ w = 54, in die entgegengesetzte Richtung abgelenkt wie der silberne Eisstock. b) Bestimmen Sie die Geschwindigkeiten v s und v w beider Eisstöcke nach dem Stoß durch Nutzung der Impuls- und Energieerhaltung. Gesucht: v s = v s und v w = v w Impulserhaltungssatz: x-richtung: m = mv sx + mv wx y-richtung: = v sy + v wy v sy = sin ϕ s v s ; v wy = sin ϕ w v w 2

v s = v w sin ϕ w sin ϕ s ( ) v 2 = v 2 w sin2 ϕ w sin 2 + v 2 w = v 2 w 1 + sin2 ϕ w ϕ s sin 2 ϕ s v w = 1 + sin2 ϕ w sin 2 ϕ s v 2 = v 2 s sin2 ϕ s sin 2 ϕ w + v 2 s = v 2 s = 2,65 m/s ( ) 1 + sin2 ϕ s sin 2 ϕ w v s = 1 + sin2 ϕ s sin 2 ϕ w = 3,64 m/s c) Bestimmen Sie die Geschwindigkeiten v s und v w geometrisch mit den Winkeln ϕ s und ϕ w. Aus a) und b) ist bekannt: = v s + v w sin ϕ w = v s ; v s = sin ϕ w = 3,64 m/s sin ϕ s = v w ; v w = sin ϕ s = 2,65 m/s 3

2. Kohlenzug Ein Zug aus fünf leeren Eisenbahnwaggons rollt ohne Antrieb und näherungsweise reibungsfrei mit einer Anfangsgeschwindigkeit = 3 m/s unter einer Beladestation vorbei. Das Leergewicht des Zuges beträgt m = 1 t, seine Gesamtlänge 15 m. Ab dem Zeitpunkt t = wird nun senkrecht von oben Kohle mit einer konstanten Rate von = 2 t/s in die offenen Waggons fallen gelassen, wo sie dann liegen bleibt. Zwischen den Waggons geht keine Kohle verloren und das Beladen wird automatisch beendet, sobald der Zug die Station vollständig passiert hat. a) Erläutern Sie kurz, wie es sich mit der Impulserhaltung bei diesem Vorgang verhält. Wo wird Impuls übertragen? Der Impuls des Systems Kohle und Zug in horizontaler Richtung bleibt erhalten. Der Zug überträgt Impuls an die Kohle. In vertikaler Richtung wird der Zug von den Gleisen und somit von der Erde gestützt. Impuls wird von der in den Zug fallenden Kohle an die Erde übertragen. Daher ist der Impuls des Systems Kohle und Zug in vertikaler Richtung nicht erhalten. b) Geben Sie einen Ausdruck für die Rollgeschwindigkeit v(t) des Zuges während des Beladens an. Wie schnell ist der Zug nach 3 Sekunden? Aus der in a) erläuterten Impulserhaltung folgt: p x (t) = m(t) v(t) = m = const. v(t) = p x(t) m(t) = m m + t Die Geschwindigkeit des Zugs wird also kleiner, solange Kohle zugeladen wird. Selbst mit der Anfangsgeschwindikeit 3 m/s wäre der 15 Meter lange Zug innerhalb von 3 Sekunden 9 Meter weit gefahren, hätte also die Ladestation noch nicht vollständig passiert. Bis zu diesem Zeitpunkt ist also die Beladung auf jeden Fall noch im Gange. Somit folgt für die Geschwindigkeit nach 3 Sekunden: v(3 s = 1 5 kg 3 m/s 1 5 kg + 2 1 3 kg/s 3 s = 2 m/s c) Geben Sie einen Ausdruck für die Strecke s(t) an, die der Zug in der Zeit t während des Beladens rollt. Welche Strecke ist der Zug in 3 Sekunden gerollt? 4

Die zurückgelegte Strecke ergibt sich aus dem Integral der Geschwindigkeit über die Zeit: = m s(t) = = t t v(t )dt m m + t dt t = m = v [ m ln [ ln = m ( m 1 m + t dt ( m + t )] t ) + t ln m ] )) (1 + tm ( ln s(3 s) =,7 km 5

3. Zusammenstoß mit Feder Ein zunächst ruhender Gegenstand der Masse m 1 = 2, kg befindet sich auf einer horizontalen Oberfläche und ist an einer entspannten Feder mit der Federkonstanten k = 6 N m befestigt. Auf dieser Oberfläche kann der Gegenstand reibungsfrei gleiten. Ein zweiter Gegenstand der Masse m 2 = 1, kg gleite ebenfalls reibungsfrei mit einer Geschwindigkeit von v = 6, m s unter einem Winkel von, auf den ersten zu. a) Bestimmen Sie die Amplitude der Schwingung, wenn die Gegenstände einen idealen inelastischen Stoß ausführen. Das bedeutet, dass die beiden Massen nach dem Stoß aneinanderhaften. Ein Teil der kinetischen Energie der Massen ist dabei in Verformungsarbeit umgewandelt worden, Impulserhaltung gilt aber trotzdem. Wie groß ist die Schwingungsdauer? Körper haften aneinander = eine gemeinsame Geschwindigkeit beider Körper nach dem Stoß: v e Impulserhaltung: m 2 v = (m 1 + m 2 )v e = v e = m 2v m 1 + m 2 Dies ist gleichzeitig die Maximalgeschwindigkeit, da es die Geschwindigkeit im Gleichgewichtspunkt der Feder ist: E kin = E pot 1 2 (m 1 + m 2 )v 2 e = 1 2 ka2 1 mit A 1 Maximalauslenkung der Feder (m1 + m 2 )v = A 1 = 2 e m 2 2 = v2 (1, k (m 1 + m 2 )k = kg)2 (6, m s )2 3, kg 6 N m =,141 m Nach Vorlesung: ω 2 = k m = Schwingungsdauer T 1 = 1 f = 2π ω = 2π m1 +m 2 k 3, kg = 2π =,444 s 6 m N b) Bestimmen Sie Amplitude und Schwingungsdauer im Falle eines elastischen Stoßes. Geschwindigkeiten nach dem Stoß: v 1 bzw. v 2 Impulserhaltung: m 2 v = m 1 v 1 + m 2 v 2 Energieerhaltung: 1 2 m 2v 2 = 1 2 m 1v 2 1 + 1 2 m 2v 2 2 Formeln für v 1 und v 2 : siehe Aufgabe Pendelkette (aber Vorsicht mit den Indices und der Definition von α)! v 1 = 2v 1+ m 1 m 2 = 2vm 2 m 2 +m 1 ( = wieder Maximalgeschwindigkeit der schwingenden Feder) = A 2 = m 1 v 2 1 k = E kin = E pot 1 2 m 1v 2 1 = 1 2 ka2 2 4m 1 v 2 m 2 2 k(m 2 + m 1 ) 2 = m1 T 2 = 2π k 4 2, kg (6, m s )2 (1, kg) 2 6 N m (3, kg)2 =,231 m = 2π 2, kg 6 N =,363 s m 6

c) Beschreiben Sie die Auslenkung des an der Feder befestigten Gegenstandes für beide Stoßarten als Funktion der Zeit, unter der Annahme, der Stoß erfolge zur Zeit t =. Skizzieren Sie die beiden Funktionen. In beiden Fällen harmonische Schwingung mit x() = = x(t) = A i sin(ω i t) = A i sin( 2π T i t) d) Wo besitzt das System nach dem Stoß die höchste potentielle Energie und wo die höchste kinetische Energie? Potentielle Energie: Bei x = ±A ist F maximal, d.h. am Umkehrpunkt ist die Feder maximal gespannt und die Kugel ist in Ruhe Geschwindigkeit v = = E kin = Wegen Energieerhaltung besitzt das System an der Stelle x = ±A die höchste potentielle Energie. Kinetische Energie: Bei x = ist F =, d.h. die Feder ist entspannt Auslenkung x = = E pot = Wegen Energieerhaltung besitzt das System an der Stelle x = die höchste kinetische Energie. 7