Radioaktivität und Kernstrahlungen

Größe: px
Ab Seite anzeigen:

Download "Radioaktivität und Kernstrahlungen"

Transkript

1 Radiaktivität und Kernstrahlungen Aufbau: Atmkern Prtnen (p) eutrnen (n) m p, kg q p +,6 0-9 C Ordnungszahl A X Z m n, kg q n 0 eutrnenzahl Massenzahl: A Z + Ausschliesslich für den Unterrichtsgebrauch Istpe: Kerne mit gleicher Prtnenzahl aber mit unterschiedlicher eutrnenzahl Ismere: Kerne mit gleicher Massen- und Prtnenzahl aber verschiedenem Anregungszustand Radiaktiver Zerfall Henri Bequerel 896 Rutherfrd, Sddy, Villard Ehepaar Marie und Pierre Curie Radium, Plnium Radiaktivität: die spntane Umwandlung vn instabilen Atmkernen. Der instabile Atmkern kann spntan einen tieferen, mehr stabilen Energiezustand erreichen. Bei der Umwandlung vn Atmkernen wird inisierende Strahlung ausgesendet. Ein Atmkern ist instabil, wenn der Kern einen hhen Prtnen-/eutrnenüberschuß besitzt. 3 4

2 α - Zerfall z.b.: in Uranium-Radium-Reihe +86 kev γ Y A X A 4 Z Z + α Teilchen 4 He Ra 38 86Rn36+ He I/ E α-teilchen Charakterisierung: relative Atmmasse: A 4 elektrische Ladung: q + e kinetische Energie: einige MeV Teilchengeschwindigkeit: /0 c 0 atürliche Zerfallsreihen: 3 Th (Thriumreihe), 37 p (eptuniumreihe), 38 U (Uranium- Radium-Reihe) und 35 U (Uranium-Aktinium-Reihe) 5 E kin (MeV)! Linienspektrum! Die kinetische Energie eines α-teilchens hängt vm zerfallenden Kern ab. 6 Das Schalenmdell des Atmkerns Die Energieniveaus sind gequantelt; getrennt für Prtnen und eutrnen Besitzt auch der Atmkern eine Schalenstruktur? Erklärt das bebachtete Linienspektrum des α-zerfalls, und auch der γ-strahlung. 7 8

3 Wechselwirkung der α Strahlung mit der Materie Wechselwirkung der α Strahlung mit der Materie Inisatinsvermögen hch n x (fast) geradlinige Bahn. lineare Inendichte: n x R: in der Luft: einige cm, in weichem Gewebe 0 00 µm. lineare Energieübertragung (LET) / Bremsvermögen (s): E n E s s x x Inenpaar Reichweite ( R ): die Distanz, die ein Teilchen in einem Medium zurückgelegt hat, während seine Anfangsenergie auf den thermischen Wert abgesunken ist. x ( cm) E 9 Inenpaar zur Erzeugung eines Inenpaares ntwendige Energie 0 Geschichte: Sddy 93 β - Zerfall Geschichte: Sddy 93 β - Zerfall A X A Z + Z Y + β 0 Elektrn A X ' A Z ' + Z Y + β +0 Psitrn Bezeichnungen: 0 β, β, β, e Elektrn β, β Psitrn

4 Bei Atmkernen mit eutrnenüberschuß Prtnenüberschuß P S n p+ β 0 β C B p n β β Das Spektrum der β-strahlung Erwartet: Linienspektrum Bebachtet: kntinuierliches Spektrum, mit maximaler Energie!! 3 5 P Charakterisierung: Masse: m e 9, 0-3 kg elektrische Ladung: q ± e kinetische Energie: einige MeV Teilchengeschwindigkeit: bis zu 0,99 c 0 Obwhl Mutter- und Tchterkern whldefinierte Energie besitzen, ergibt sich für das Elektrn keine feste kinetische Energie n + β +ν 0 p Antineutrin Elektrn 0 p + + β +ν 0n eutrin Psitrn P 6 S + 0 β +ν C B 0 β +ν Die Energiedifferenz, E ist zwischen β-teilchen und einem neutralen Teilchen, dem eutrin. aufgeteilt Pauli 930. Erhaltungsgesetze: Energie, Ladung, Impuls,

5 Bemerkungen: Psitrnenstrahlung tritt bei künstlichen radiaktiven Istpen auf (bei den ksmgenen Radinuklide auch) Die Lebensdauer eines Psitrns ist sehr kurz Reichweite der β -Strahlung mehrere Kllisinen zick-zack-förmige Bahn β + e Wechselwirkung mit einem Elektrn Annihilatin Vernichtungsstrahlung γ-phtnen vn jeweils 50 kev werden in entgegengesetzten Richtungen zerstrahlt Inisatinsvermögen ~ 000x kleiner als bei den α - Teilchen Reichweite: in der Luft: 0 cm einige Meter, in weichem Gewebe einige mm Mehr später bei Psitrn Emissin Tmgraphy 7 8 γ - Strahlung A X * Z A X Z + γ Eine Emissin vn γ-phtnen(quanten) bedeutet keine Veränderung der Massen- der Ordnungszahl. Sie stellt jedch eine Energieänderung des Kerns dar. 9 0

6 γ - Strahlung Das Spektrum der γ-strahlung Charakterisierung: elektrmagnetische Welle bzw. Phtn Dualismus mit einer Ruhemaße vn 0 keine elektrische Ladung Phtnenenergie: MeV Geschwindigkeit: c 0 (Vakuumlichtgeschwindigkeit) Linienspektrum charakteristisch für Istp 5 Cr: W γ 0,3 MeV 37 Cs: W γ 0,66 MeV (Praktikum: γ-energie) Identifizierung der Atmkernen anhand der γ-strahlung Istpendiagnstik Prmpte γ-strahlung z.b.: 98,89d Au 80 Hg + β + γ (0,4MeV ) 8,04d 3 53 I 54 Xe + β (*) + γ (*) J innerhalb 0-3 bis 0-8 s! Prmpte γ-strahlung Begleiteffekt vn α und β-strahlung Der angeregte Kern gibt seine Energieüberschuß innerhalb einer sehr kurzen Zeit in einem der in mehreren Schritten durch Emissin vn γ-strahlung ab Xe 3 4

7 Ismerer Übergang Technetium Generatr M h 99m Tc + β m 6,0h 99 43Tc 43Tc +γ (40keV) Der Kern bleibt nach der Teilchenemissin für eine relativ lange Zeit (länger als 0-0 s) in angeregtem Zustand. metastabiler Zustand Ismer des Kerns 99 43Tc s. Praktikum: Istpendiagnstik β - H 4 MO 4 H 4m TcO 4 H 4 m TcO 4 + acl a m TcO 4 + H 4 Cl 5 6 Technetium Generatr m Tc-99 ist das meistbenützte Istp für unterschiedliche Radipharmaka a.) a-pertechnetat-lösung (Generatr-Eluat) für Darstellung der Schilddrüse und der Speicheldrüsen; b.) HSA-Makraggregate für Lungenperfusins- Szintigraphie; c.) Iminessigsäure-Derivate für Chleszintigraphie, Bestimmung der hepatbilären Funktin;. 7 8

8 Beschreibung des Zerfallsprzesses Beschreibung des Zerfallsprzesses Zerfall.exe t Radiaktiver Zerfall ist ein zufälliger Vrgang. Die einzelnen Umwandlungen in einem Radinuklid-Präparat erflgen zeitlich und räumlich völlig ungerdnet. Es lassen sich lediglich statistische Aussagen über diesen Vrgang für eine grße Anzahl vn Kernen machen. 9 t 0 t(s) : Anzahl der radiaktiven Kerne zur Zeit t 0 30? (t): zerfallene radiaktive Kerne im Zeitintervall t (t): radiaktive Atmkerne zur Zeit t ( ) Vrzeichen: die Zahl der Zerfälle mit der Zeit abnimmt. t ( t) < () t () t t ~ t 0 t(s) () t () t λ t λ Zerfallsknstante [λ] /s 3 3

9 d: zerfallene radiaktive Kerne im Zeitintervall dt (t): radiaktive Atmkerne zur Zeit t ( ) Vrzeichen: die Zahl der Zerfälle mit der Zeit abnimmt. infinitesimale Frm: d() t ~ ()dt t d () t () t λ dt λ Zerfallsknstante [λ] /s 33 λ t () t e t 0 Zerfallsgesetz - die Anzahl der instabilen Kerne zur Zeit t 0 e - Eulersche Zahl; e,78888 λ Zerfallsknstante 3,00E+06,00E ,50E+06,00E+06,00E+06,50E+06,00E+05,00E+06,00E+04 5,00E+05 0,00E+00,00E t t 0 lineare Darstellung halblgarithmische Darstellung 34 t Deutung der Zerfallsknstante: () t () t λ t Anteil der zerfallenen Kerne im Zeitinterval t λ t ist die Wahrscheinlichkeit, daß ein Kern während t zerfällt. 35 λ Zerfallsknstante τ λ mittlere Lebensdauer Wie viele instabile Kerne sind nach t τ langer Zeit im Präparat vrhanden? λ τ ( τ ) e ( τ ) λ ( τ ) e τ gibt an, nach welcher Zeit die Anzahl der instabilen Kerne auf den e-ten (37%) Teil ihres Anfangswertes gesunken ist. λ e 36

10 ach welcher Zeit hat sich die Hälfte der zum Zeitpunkt t 0 vrhandenen instabilen Kerne umgewandelt? Halbwertszeit: T / λ T ( t T ) e ( ) / t T / e λ T / e λ T / e / λ T / Die Halbwertszeit (T / ) ist diejenige Zeit, in der die Anzahl der vrhandenen instabile Atmkerne jeweils auf die Hälfte abnimmt. ln ln λ / ( e ) T ln λ T / 37 ln T / λ t () t e λ λ () t t / / ln T / T 38 (t)/ ,00E+06 0,50E ,00E t/t /,50E+06 0 /,00E+06 0 /e 5,0E+05 tt / t3*t /,00E+03 T 0 / τ t5 tt / Kerne 500 Kerne

11 Wieviel Kerne zerfallen pr Sekunde: / t? Aktivität eines Präparates ( t) d() t Λ () t Λ( t) t d( t) λ dt Λ Λ () t λ ( t) λ t () t Λ e 0 e λ t Λ 0 λ Bezeichnungen: Λ, A [ Λ ] Zerfall/Sekunde Bq ( Becquerel) 0 dt Bemerkung:. spezifische Aktivität auf die Masseneinheit bezgene Aktivität Einheit: Bq/g. Aktivitätsknzentratin auf die Vlumeneinheit bezgene Aktivität Einheit: Bq/ml 4 4 Knsequenzen: ln Λ λ T.) wenn anfangs dieselbe Kernmenge ( ) vrhanden ist, kürzere Halbwertszeit erhöht die Aktivität: mehr Kerne zerfallen pr Zeiteinheit..) um eine gewünschte Aktivität zu erreichen, ist eine kleinere Anfangsmenge aus einem Istp kürzerer Halbwertszeit nötig. / kleinere Strahlenbelastung bei Istpendiagnstik!!! uklid Halbwertszeit Zerfallsart Verwendung Tc-99m 6h IÜ(00) D J-3 8,05d ß - T/D C-57 70d EE D Cr-5 7,7d EE D Xe-33 5,3d ß - D Kr-8m 3s IÜ D P-3 4,3d ß - T C- 0,4m ß + D O-5 s ß + D Cs-37 30a β - Zerfallsart: EE: Elektrneneinfang, ß - : Beta-Zerfall, ß + : Beta-Plus- Zerfall, IÜ: ismerer Übergang Verwendung: D: Diagnstik, T: Therapie 43 44

12 Radiaktive Istpe im menschlichen Körper uklid Uran 35 Uran 38 Thrium 3 Radium 6 Radn Kalium 40 einige natürliche Radinuklide Symbl Halbwertszeit atürliche Aktivität 35 U 7.04 x 0 8 J 0.7% des vrkmmenden Urans 38 U 4.47 x 0 9 J % des vrkmmenden Urans; 0.5 t 4.7 ppm Gesamturan in den allgemeinen Gesteinstypen 3 Th.4 x 0 0 J.6 t 0 ppm in den allgemeinen Gesteinstypen 6 Ra.60 x 0 3 J 6 Bq/kg in Lehm und 48 Bq/kg in Eruptivgestein Rn 3.8 Tage Edelgas; jährliche Luftknzentratin in USA vn 0.6 Bq/m3 t 8 Bq/m3 40 K.8 x 0 9 J Bden Bq/g 3800 (48%) 400 (43%) Aktivität in Bq 40 K 4 C 87 Rb 0 Pb, 0 Bi, 0 P kurzlebige Radn-Zerfallsprdukte 3 H 7 Be Snstige 650 (7%) auf 70 kg bezgend Gesamtaktivität ~ 9000 Bq Bilgische und effektive Halbwertszeit Bilgische und effektive Halbwertszeit λ phys - physikalische Zerfallsknstante λ bil - bilgische Zerfallsknstante Sei λ eff t die Wahrscheinlichkeit dafür, daß ein Kern während t zerfällt der ausgeschieden wird. λ eff t λ phys t + λ bil t λ eff λ phys + λ bil ln ln ln + T T T eff phys bil T eff T phys + T bil 47 48

Radioaktivität und Kernstrahlungen

Radioaktivität und Kernstrahlungen Radiaktivität und Kernstrahlungen Der tmkern und seine Bestandteile ufbau: Prtnen (p) eutrnen (n) uklen uklen Prtn Symblschreibweise Ruhemasse Ruheenergie Ladung,676 7 kg,776 u 938,8 MeV e,6 9 C eutrn,67493

Mehr

Radioaktivität und Kernstrahlungen

Radioaktivität und Kernstrahlungen Radiaktivität und Kernstrahlungen Der tmkern und seine Bestandteile ufbau: Prtnen (p) eutrnen (n) uklen uklen Prtn Symblschreibweise Ruhemasse Ruheenergie Ladung,676 7 kg,776 u 938,8 MeV + e,6 9 C eutrn,67493

Mehr

Kernphysik. Modelle für den Atomkern. Bindungsenergie. Tröpfchenmodell:

Kernphysik. Modelle für den Atomkern. Bindungsenergie. Tröpfchenmodell: Kernphysik Mdelle für den Atmkern Tröpfchenmdell: Atmkern besteht aus Prtnen und Neutrnen dicht gepackt verhalten sich ähnlich wie ein Wassertrpfen inkmpressibel Kernmaterie hat sehr grße Dichte, stabiles

Mehr

Radioaktivität und Kernstrahlung

Radioaktivität und Kernstrahlung Wchslwirkung dr α Srahlung mi dr Mari Radiakiviä und Krnsrahlung Inisainsvrmögn hch (fas) gradlinig Bahn. linar Inndich: n x Ausschlisslich für dn Unrrichsgbrauch Wchslwirkung dr α Srahlung mi dr Mari

Mehr

42. Radioaktivität. 35. Lektion Radioaktivität

42. Radioaktivität. 35. Lektion Radioaktivität 42. Radioaktivität 35. Lektion Radioaktivität Lernziel: Unstabile Kerne zerfallen unter Emission von α, β, oder γ Strahlung Begriffe Begriffe Radioaktiver Zerfall ktivität Natürliche Radioaktivität Künstliche

Mehr

(in)stabile Kerne & Radioaktivität

(in)stabile Kerne & Radioaktivität Übersicht (in)stabile Kerne & Radioaktivität Zerfallsgesetz Natürliche und künstliche Radioaktivität Einteilung der natürlichen Radionuklide Zerfallsreihen Zerfallsarten Untersuchung der Strahlungsarten

Mehr

Radioaktiver Zerfall Strahlung Nukliderzeugung. Nukliderzeugung

Radioaktiver Zerfall Strahlung Nukliderzeugung. Nukliderzeugung Radioaktiver Zerfall Strahlung Nukliderzeugung Wiederholung: Struktur der Materie Radioaktivität Nuklidkarte, Nuklide Zerfallsarten Strahlung Aktivität Nukliderzeugung Was ist Radioaktivität? Eigenschaft

Mehr

2) Kernstabilität und radioaktive Strahlung (2)

2) Kernstabilität und radioaktive Strahlung (2) 2) Kernstabilität und radioaktive Strahlung (2) Periodensystem der Elemente vs. Nuklidkarte ca. 115 unterschiedliche chemische Elemente Periodensystem der Elemente 7 2) Kernstabilität und radioaktive Strahlung

Mehr

Radioaktivität. den 7 Oktober Dr. Emőke Bódis

Radioaktivität. den 7 Oktober Dr. Emőke Bódis Radioaktivität den 7 Oktober 2016 Dr. Emőke Bódis Prüfungsfrage Die Eigenschaften und Entstehung der radioaktiver Strahlungen: Alpha- Beta- und Gamma- Strahlungen. Aktivität. Zerfallgesetz. Halbwertzeit.

Mehr

SMART. Sammlung mathematischer Aufgaben als Hypertext mit TEX. Kernphysik (Physik)

SMART. Sammlung mathematischer Aufgaben als Hypertext mit TEX. Kernphysik (Physik) SMART Sammlung mathematischer Aufgaben als Hypertext mit TEX Kernphysik (Physik) herausgegeben vom Zentrum zur Förderung des mathematisch-naturwissenschaftlichen Unterrichts der Universität Bayreuth 1.

Mehr

Theoretische Grundlagen Physikalisches Praktikum. Versuch 8: Radioaktivität

Theoretische Grundlagen Physikalisches Praktikum. Versuch 8: Radioaktivität Theoretische Grundlagen Physikalisches Praktikum Versuch 8: Radioaktivität Radioaktivität spontane Umwandlung instabiler tomkerne natürliche Radioaktivität: langlebige Urnuklide und deren Zerfallsprodukte

Mehr

1. Physikalische Grundlagen

1. Physikalische Grundlagen 1.2. Kernumwandlung und Radioaktivität - Entdeckung Antoine Henri Becquerel Entdeckte Radioaktivität 1896 Ehepaar Marie und Pierre Curie Nobelpreise 1903 und 1911 Liese Meitner, Otto Hahn 1. Kernspaltung

Mehr

Physik für Mediziner Radioaktivität

Physik für Mediziner  Radioaktivität Physik für Mediziner http://www.mh-hannover.de/physik.html Radioaktivität Peter-Alexander Kovermann Institut für Neurophysiologie Kovermann.peter@mh-hannover.de Der Aufbau von Atomen 0-5 - 0-4 m 0-0 -4

Mehr

Strahlenphysik Grundlagen

Strahlenphysik Grundlagen Dr. Martin Werner, 17.02.2010 Strahlentherapie und spezielle Onkologie Elektromagnetisches Spektrum aus Strahlentherapie und Radioonkologie aus interdisziplinärer Sicht, 5. Auflage, Lehmanns Media Ionisierende

Mehr

41. Kerne. 34. Lektion. Kernzerfälle

41. Kerne. 34. Lektion. Kernzerfälle 41. Kerne 34. Lektion Kernzerfälle Lernziel: Stabilität von Kernen ist an das Verhältnis von Protonen zu Neutronen geknüpft. Zu viele oder zu wenige Neutronen führen zum spontanen Zerfall. Begriffe Stabilität

Mehr

Abgabetermin

Abgabetermin Aufgaben Serie 1 1 Abgabetermin 20.10.2016 1. Streuexperiment Illustrieren Sie die Streuexperimente von Rutherford. Welche Aussagen über Grösse und Struktur des Kerns lassen sich daraus ziehen? Welches

Mehr

Röntgenstrahlen. Röntgenröhre von Wilhelm Konrad Röntgen. Foto: Deutsches Museum München.

Röntgenstrahlen. Röntgenröhre von Wilhelm Konrad Röntgen. Foto: Deutsches Museum München. Röntgenstrahlen 1 Wilhelm Konrad Röntgen Foto: Deutsches Museum München. Röntgenröhre von 1896 2 1 ev = 1 Elektronenvolt = Energie die ein Elektron nach Durchlaufen der Potentialdifferenz 1V hat (1.6 10-19

Mehr

Übung zu Atomen. Welche der folgenden Aussagen trifft für alle Atome, einschließlich des Wasserstoffatoms, zu?

Übung zu Atomen. Welche der folgenden Aussagen trifft für alle Atome, einschließlich des Wasserstoffatoms, zu? Allgemeine und Anrganische Chemie Aufgabe 1: Übung zu Atmen Welche der flgenden Aussagen trifft für alle Atme, einschließlich des Wasserstffatms, zu? Sie enthalten im Kern immer die flgenden Elementarteilchen:

Mehr

Fortgeschrittene Experimentalphysik für Lehramtsstudierende. Teil II: Kern- und Teilchenphysik

Fortgeschrittene Experimentalphysik für Lehramtsstudierende. Teil II: Kern- und Teilchenphysik Fortgeschrittene Experimentalphysik für Lehramtsstudierende Markus Schumacher 30.5.2013 Teil II: Kern- und Teilchenphysik Prof. Markus Schumacher Sommersemester 2013 Kapitel 4: Zerfälle instabiler Kerne

Mehr

Radioaktiver Zerfall des Atomkernes: α-zerfall

Radioaktiver Zerfall des Atomkernes: α-zerfall Radioaktiver Zerfall des Atomkernes: α-zerfall Schwere Atomkerne (hohes Z, hohes N) sind instabil gegen spontanen Zerfall. Die mögliche Emission einzelner Protonen oder einzelner Neutronen ist nicht häufig.

Mehr

Einführungsseminar S2 zum Physikalischen Praktikum

Einführungsseminar S2 zum Physikalischen Praktikum Einführungsseminar S2 zum Physikalischen Praktikum 1. Organisatorisches 2. Unterweisung 3. Demo-Versuch Radioaktiver Zerfall 4. Am Schluss: Unterschriften! Praktischer Strahlenschutz Wechselwirkung von

Mehr

Dieter Suter Physik B3

Dieter Suter Physik B3 Dieter Suter - 421 - Physik B3 9.2 Radioaktivität 9.2.1 Historisches, Grundlagen Die Radioaktivität wurde im Jahre 1896 entdeckt, als Becquerel feststellte, dass Uransalze Strahlen aussenden, welche den

Mehr

15 Kernphysik Der Atomkern 15.2 Kernspin Zerfallsgesetz radioaktiver Kerne

15 Kernphysik Der Atomkern 15.2 Kernspin Zerfallsgesetz radioaktiver Kerne 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität ität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 1553K 15.5.3 Kettenreaktion 15. Kernphysik

Mehr

Physikalische Grundlagen ionisierender Strahlung

Physikalische Grundlagen ionisierender Strahlung Physikalische Grundlagen ionisierender Strahlung Bernd Kopka, Labor für Radioisotope an der Universität Göttingen www.radioisotope.de Einfaches Atommodell L-Schale K-Schale Kern Korrekte Schreibweise

Mehr

15 Kernphysik Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne

15 Kernphysik Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne Inhalt 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion Der Atomkern

Mehr

15 Kernphysik Physik für E-Techniker. 15 Kernphysik

15 Kernphysik Physik für E-Techniker. 15 Kernphysik 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion 15. Kernphysik 15.

Mehr

Atombausteine Protonen p (1, g; 938 MeV; e + ) Neutronen n (1, g; 939 MeV; 0) Elektronen e - (9, g; 0,511 MeV; e - )

Atombausteine Protonen p (1, g; 938 MeV; e + ) Neutronen n (1, g; 939 MeV; 0) Elektronen e - (9, g; 0,511 MeV; e - ) Grundlagen der Strahlenmesstechnik Atome (Nuklide) Atombausteine Protonen p (1,672 10-24 g; 938 MeV; e + ) Neutronen n (1,675 10-24 g; 939 MeV; 0) Elektronen e - (9,11 10-28 g; 0,511 MeV; e - ) Nuklide

Mehr

1. Aufbau des Atomkerns

1. Aufbau des Atomkerns 801-1 1.1 Bausteine des Atomkerns VIII. Der Atomkern und Kernstrahlung 1. Aufbau des Atomkerns 1.1 Bausteine des Atomkerns Der Atomkern ist aus den Nukleonen aufgebaut. Dazu gehören die Protonen (p) und

Mehr

Radioaktivität. Die Nuklidkarte. Der Alpha-Zerfall I. Zerfallsarten. Alphazerfall (α) Beta-minus-Umwandlung (β-) Beta-plus-Umwandlung (β+)

Radioaktivität. Die Nuklidkarte. Der Alpha-Zerfall I. Zerfallsarten. Alphazerfall (α) Beta-minus-Umwandlung (β-) Beta-plus-Umwandlung (β+) Radioaktivität erfallsarten Alphazerfall (α) Beta-minus-Umwandlung (β-) Beta-plus-Umwandlung (β) Elektroneneinfang (EC) Gammaemission (γ) Henri Becquerel 1852-1908 Innere Konversion (IC) Protonenzerfall

Mehr

Lernziele zu Radioaktivität 1. Radioaktive Strahlung. Entdeckung der Radioaktivität. Entdeckung der Radioaktivität

Lernziele zu Radioaktivität 1. Radioaktive Strahlung. Entdeckung der Radioaktivität. Entdeckung der Radioaktivität Radioaktive Strahlung Entstehung Nutzen Gefahren du weisst, Lernziele zu Radioaktivität 1 dass Elementarteilchen nur bedingt «elementar» sind. welche unterschiedlichen Arten von radioaktiven Strahlungen

Mehr

Physik Jahrgangsstufe 12 Grundwissen:

Physik Jahrgangsstufe 12 Grundwissen: Physik Jahrgangsstufe 12 Grundwissen: 12.1 Eigenschaften vn Quantenbjekten Überblick B. S. 35 Teilchencharakter vn Phtnen Phteffekt, Deutung nach Einstein, Auslösearbeit, Grenzfrequenz Energiebilanz des

Mehr

Versuch A07: Zählstatistik und β-spektrometer

Versuch A07: Zählstatistik und β-spektrometer Versuch A07: Zählstatistik und β-spektrometer 5. April 2018 I Theorie I.1 Das Zerfallsgesetz Instabile Atomkerne zerfallen spontan nach einem gewissen Zeitintervall dt, mit einer Wahrscheinlichkeit, die

Mehr

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)

Mehr

5. Kernzerfälle und Kernspaltung

5. Kernzerfälle und Kernspaltung 5. Kernzerfälle und Kernspaltung 1. Zerfallsgesetz 2. α Zerfall 3. Kernspaltung 4. ß Zerfall 5. γ Zerfall 1 5.1 Das Zerfallsgesetz 2 Mittlere Lebensdauer und Linienbreite 3 Mehrere Zerfallskanäle 4 Zerfallsketten

Mehr

d 10 m Cusanus-Gymnasium Wittlich Das Bohrsche Atomodell Nils Bohr Atomdurchmesser 10 Kerndurchmesser 14 d 10 m Atom

d 10 m Cusanus-Gymnasium Wittlich Das Bohrsche Atomodell Nils Bohr Atomdurchmesser 10 Kerndurchmesser 14 d 10 m Atom Das Bohrsche Atomodell Nils Bohr 1885-1962 Atomdurchmesser 10 d 10 m Atom Kerndurchmesser 14 http://www.matrixquantenenergie.de d 10 m Kern 14 dkern 10 m 10 datom 10 m Masse und Ladung der Elementarteilchen

Mehr

11. Kernzerfälle und Kernspaltung

11. Kernzerfälle und Kernspaltung 11. Kernzerfälle und Kernspaltung 1. Zerfallsgesetz 2. α Zerfall 3. Kernspaltung 4. ß Zerfall 5. γ - Zerfall 1 11.1 Das Zerfallsgesetz 2 Zerfallsketten 3 4 11.2 α-zerfall Abspaltung eines 4 He Kerns 5

Mehr

Masse etwa 1 u = e-27 kg = MeV/c^2. Neutron (Entdeckung 1932 James Chadwick)

Masse etwa 1 u = e-27 kg = MeV/c^2. Neutron (Entdeckung 1932 James Chadwick) Masse etwa 1 u = 1.6605e-27 kg = 931.5 MeV/c^2 Neutron (Entdeckung 1932 James Chadwick) Kraft Reichweite (cm) Stärke bei 10 13 cm im Vergleich zu starker Kraft Gravitation unendlich 10 38 elektrische Kraft

Mehr

9. Kernphysik 9.1. Zusammensetzung der Atomkerne

9. Kernphysik 9.1. Zusammensetzung der Atomkerne Prof. Dieter Suter Physik B2 SS 01 9. Kernphysik 9.1. Zusammensetzung der Atomkerne 9.1.1. Nukelonen Die Atomkerne bestehen aus Protonen und Neutronen. Die Zahl der Nukleonen wird durch die Massenzahl

Mehr

Thema heute: Aufbau der Materie: Kernumwandlungen, Spaltung von Atomkernen

Thema heute: Aufbau der Materie: Kernumwandlungen, Spaltung von Atomkernen Wiederholung der letzten Vorlesungsstunde: Experiment von Rutherford, Atombau, atomare Masseneinheit u, 118 bekannte Elemente, Isotope, Mischisotope, Massenspektroskopie, Massenverlust 4H 4 He, Einstein:

Mehr

Radioaktivität und Radiochemie. Dr. Udo Gerstmann

Radioaktivität und Radiochemie. Dr. Udo Gerstmann Wintersemester 2011/2012 Radioaktivität und Radiochemie 20.10.2011 Dr. Udo Gerstmann Bundesamt für Strahlenschutz ugerstmann@bfs.de & gerstmann@gmx.de 089-31603-2430 Vorlesungsinhalte 1. Radioaktivität

Mehr

Natürliche Radionuklide

Natürliche Radionuklide Dr. L. Eichinger, Schweitenkirchen Grundlagen Natürliche Radioaktivität: Zerfallsreihen 238 4468 Mio a 234m Pa 1,2 min 234 Th 24,1 d -238 Zerfallsreihe 234 246 000 a 230 Th 75 400 a Ra 1600 a 222 Rn 3,8

Mehr

Norddeutsches Seminar für Strahlenschutz. Gefahren ionisierender Strahlung

Norddeutsches Seminar für Strahlenschutz. Gefahren ionisierender Strahlung Norddeutsches Seminar für Strahlenschutz Gefahren ionisierender Strahlung Ionisation Entfernen eines oder mehrerer Elektronen aus dem neutralen Atom A A + + e - Aus einem elektrisch neutralem Atom wurden

Mehr

3) Natürliche und künstliche Radioaktivität (1)

3) Natürliche und künstliche Radioaktivität (1) 3) Natürliche und künstliche Radioaktivität (1) Kosmische Strahlung - Protonen (93 %) - Alpha-Teilchen (6.3 %) - schwerere Kerne (0. %) - Ohne Zerfallsreihen - 0 radioaktive Nuklide, die primordial auf

Mehr

Energie wird normalerweise in Joule gemessen. Ein Joule (J) einspricht einem Newtonmeter

Energie wird normalerweise in Joule gemessen. Ein Joule (J) einspricht einem Newtonmeter Maße wie Gammastrahlen abgeschwächt werden. Im Gegensatz zu den Gammastrahlen sind die Neutronenstrahlen auch Teilchenstrahlen wie Alpha- und Betastrahlen. Die Reichweiten von Strahlen mit einer Energie

Mehr

Musterlösung Übung 4

Musterlösung Übung 4 Musterlösung Übung 4 Aufgabe 1: Radon im Keller a) 222 86Rn hat 86 Protonen, 86 Elektronen und 136 Neutronen. Der Kern hat demnach eine gerade Anzahl Protonen und eine gerade Anzahl Neutronen und gehört

Mehr

Physik am Samstagmorgen 19. November Radioaktivität. Ein unbestechlicher Zeitzeuge. Christiane Rhodius

Physik am Samstagmorgen 19. November Radioaktivität. Ein unbestechlicher Zeitzeuge. Christiane Rhodius Physik am Samstagmorgen 19. November 2005 Radioaktivität Ein unbestechlicher Zeitzeuge Christiane Rhodius Archäochronometrie Warum und wie datieren wir? Ereignisse innerhalb der menschlichen Kulturentwicklung

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I K20 Name: Halbwertszeit von Rn Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #28 10/12/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Reichweite radioaktiver Strahlung Alpha-Strahlung: Wenige cm in Luft Abschirmung durch Blatt Papier,

Mehr

3.3 Zählstatistik und Beta-Spektrometer

3.3 Zählstatistik und Beta-Spektrometer Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 3 - Atomphysik 3.3 Zählstatistik und Beta-Spektrometer 1 Theorie 1.1 Das Zerfallgesetz Instabile Atomkerne zerfallen spontan nach einem gewissen Zeitintervall

Mehr

Radioaktivität und Strahlenschutz. FOS: Kernumwandlungen und Radioaktivität

Radioaktivität und Strahlenschutz. FOS: Kernumwandlungen und Radioaktivität R. Brinkmann http://brinkmann-du.de Seite 25..23 -, Beta- und Gammastrahlen Radioaktivität und Strahlenschutz FOS: Kernumwandlungen und Radioaktivität Bestimmte Nuklide haben die Eigenschaft, sich von

Mehr

- Emission eines Heliumkerns - Diskrete Energien der Alphateilchen ermöglichen Indetifikation

- Emission eines Heliumkerns - Diskrete Energien der Alphateilchen ermöglichen Indetifikation Mtivatin Therapie und Diagnstik Funktinelle Bildgebung Darstellung systemischer Vrgänge Lkalisatinsdiagnstik Tracerprinzip Freie Nuklide zur unspez. Dartellung der als Radipharmaka Einteilung Diagnstik

Mehr

Lernzettel 6 Röntgenstrahlung, Laser und Kernphysik. - Die Funktionsweise einer Röntgenröhre zur Erzeugung von Röntgenstrahlen erklären

Lernzettel 6 Röntgenstrahlung, Laser und Kernphysik. - Die Funktionsweise einer Röntgenröhre zur Erzeugung von Röntgenstrahlen erklären PHYSX - Die Funktinsweise einer Röntgenröhre zur Erzeugung vn Röntgenstrahlen erklären Die Heizspannung U h erhitzt die Kathde. Gleichzeitig liegt an der Ande eine sehr grße Beschleunigungsspannung U a

Mehr

Natürliche Radioaktivität

Natürliche Radioaktivität Natürliche Radioaktivität Definition Natürliche Radioaktivität Die Eigenschaft von Atomkernen sich spontan in andere umzuwandeln, wobei Energie in Form von Teilchen oder Strahlung frei wird, nennt man

Mehr

1 Dorn Bader Physik der Struktur der Materie

1 Dorn Bader Physik der Struktur der Materie 1 Dorn Bader Physik der Struktur der Materie 1.1 S. 308 Nachweisgeräte A 2: a) Was lässt sich aus der Länge der Spuren in einer Nebelkammer folgern? Die Länge der Spuren in der Nebelkammer sind ein Maß

Mehr

Radiologie Modul I. Teil 1 Grundlagen Röntgen

Radiologie Modul I. Teil 1 Grundlagen Röntgen Radiologie Modul I Teil 1 Grundlagen Röntgen Teil 1 Inhalt Physikalische Grundlagen Röntgen Strahlenbiologie Technische Grundlagen Röntgen ROENTGENTECHNIK STRAHLENPHYSIK GRUNDLAGEN RADIOLOGIE STRAHLENBIOLOGIE

Mehr

1.4. Aufgaben zum Atombau

1.4. Aufgaben zum Atombau 1.4. Aufgaben zum Atombau Aufgabe 1: Elementarteilchen a) Nenne die drei klassischen Elementarteilchen und vergleiche ihre Massen und Ladungen. b) Wie kann man Elektronen nachweisen? c) Welche Rolle spielen

Mehr

Leistungskurs Physik 13PH2 Kursarbeit 13-1 Leistungsfachanforderungen. ame:

Leistungskurs Physik 13PH2 Kursarbeit 13-1 Leistungsfachanforderungen. ame: ame: Rohpunkte: Aufgabe 1 von 10 Aufgabe 2 von 12 Aufgabe 3 von 22 Aufgabe 4 von 28 Aufgabe 5 von 6 Summe von 76 MSS-Punkte: ote: Aufgabe 1: Millikan-Versuch [2+2+2+4=11 Punkte] Beim Millikan-Versuch wird

Mehr

Physikalische. Grundlagen. L. Kölling, Fw Minden

Physikalische. Grundlagen. L. Kölling, Fw Minden Physikalische Grundlagen L. Kölling, Fw Minden Radioaktivität kann man weder sehen, hören, fühlen, riechen oder schmecken. Daher muss sie der FA (SB) zumindest verstehen, um im Einsatzfall die erforderlichen

Mehr

Strahlung. Arten und Auswirkungen

Strahlung. Arten und Auswirkungen Strahlung Arten und Auswirkungen Themen Alpha-Strahlung (α) Strahlung Zerfall Entdeckung Verwendung Beta-Strahlung (β) Entstehung Wechselwirkung mit Materie Anwendungen Forschungsgeschichte Gamma-Strahlung

Mehr

Technologie/Informatik Kernaufbau und Kernzerfälle. Dipl.-Phys. Michael Conzelmann, StR Staatliche FOS und BOS Bad Neustadt a. d.

Technologie/Informatik Kernaufbau und Kernzerfälle. Dipl.-Phys. Michael Conzelmann, StR Staatliche FOS und BOS Bad Neustadt a. d. Technologie/Informatik Kernaufbau und Kernzerfälle Dipl.-Phys. Michael Conzelmann, StR Staatliche FOS und BOS Bad Neustadt a. d. Saale Übersicht Kernaufbau Rutherford-Experiment, Nukleonen Schreibweise,

Mehr

Lagerung des Abfalls. radioaktiver Abfall

Lagerung des Abfalls. radioaktiver Abfall Lagerung des Abfalls radioaktiver Abfall Radioaktivität Was ist Radioaktivität? Welche Eigenschaften besitz sie? Welche Auswirkungen kann sie haben? Warnung vor radioaktiver Strahlung Internationale Strahlenschutzzeichen

Mehr

Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl.

Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl. Klausurinformation Zeit: Mittwoch, 3.Februar, 12:00, Dauer :90 Minuten Ort: Veterinärmediziner: Großer Phys. Hörsaal ( = Hörsaal der Vorlesung) Geowissenschaftler u.a.: Raum A140, Hauptgebäude 1. Stock,

Mehr

NR - Natürliche Radioaktivität Praktikum Wintersemester 2005/06

NR - Natürliche Radioaktivität Praktikum Wintersemester 2005/06 NR - Natürliche Radioaktivität Praktikum Wintersemester 25/6 Alexander Rembold, Philipp Buchegger, Johannes Märkle Assistent Dr. Torsten Hehl Tübingen, den 7. Dezember 25 Theorie und Grundlagen Halbwertszeit

Mehr

Wo ist wann wieviel von der applizierten Aktivität? (Aktivität A = # Zerfälle pro Sekunde)

Wo ist wann wieviel von der applizierten Aktivität? (Aktivität A = # Zerfälle pro Sekunde) Nukleardiagnostik Nuklearmedizin: Diagnostik / Therapie Nukleardiagnostik: Ziel: Wo ist wann wieviel von der applizierten Aktivität? (Aktivität A = # Zerfälle pro Sekunde) Nukleardiagnostik soll funktionelle

Mehr

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften Praxisseminar Strahlenschutz Teil 2: Ionisierende Strahlung Markus Drapalik 14.03.2013 26.03.2013 Praxisseminar Strahlenschutz Teil 2: Ionisierende Strahlung 1 1 Inhalt Aufbau des Atoms Atomarer Zerfall

Mehr

1 Natürliche Radioaktivität

1 Natürliche Radioaktivität 1 NATÜRLICHE RADIOAKTIVITÄT 1 1 Natürliche Radioaktivität 1.1 Entdeckung 1896: Henri BEQUEREL: Versuch zur Fluoreszenz = Emission einer durchdringenden Stahlung bei fluoreszierenden Uran-Verbindungen Eigenschaften:

Mehr

Physik V. Kern- und Teilchenphysik. Dr. Daniel Bick. 12. Januar Daniel Bick Physik V WS 2015/ Januar / 25

Physik V. Kern- und Teilchenphysik. Dr. Daniel Bick. 12. Januar Daniel Bick Physik V WS 2015/ Januar / 25 Physik V Kern- und Teilchenphysik Dr. Daniel Bick 12. Januar 2016 Daniel Bick Physik V WS 2015/16 12. Januar 2016 1 / 25 Korrektur Verlauf des Stabilitätstals Z = A 2 1 1 + a CA 2/3 4a A Daniel Bick Physik

Mehr

Klausur 3 Kurs 12Ph1e Physik

Klausur 3 Kurs 12Ph1e Physik 0-03-07 Klausur 3 Kurs Phe Physik Name: Rohpunkte : / Bewertung : Punkte ( ) Erläutern Sie jeweils, woraus α-, β- und γ-strahlen bestehen und geben Sie jeweils mindestens eine Methode an, wie man sie identifizieren

Mehr

43. Strahlenschutz und Dosimetrie. 36. Lektion Wechselwirkung und Reichweite von Strahlung

43. Strahlenschutz und Dosimetrie. 36. Lektion Wechselwirkung und Reichweite von Strahlung 43. Strahlenschutz und Dosimetrie 36. Lektion Wechselwirkung und Reichweite von Strahlung Lernziel: Die Wechselwirkung von radioaktiver Strahlung (α,β,γ( α,β,γ) ) ist unterschiedlich. Nur im Fall von α-

Mehr

Experimentalphysik Modul PH-EP4 / PH-DP-EP4

Experimentalphysik Modul PH-EP4 / PH-DP-EP4 10 Kernphysik Universität Leipzig, Fakultät für Physik und Geowissenschaften Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Script für Vorlesung 29. Juni 2009 Nachdem in den vorangegangenen Kapiteln die Moleküle

Mehr

Praktikum Radioaktivität und Dosimetrie" Alpha-Strahlung

Praktikum Radioaktivität und Dosimetrie Alpha-Strahlung Praktikum Radioaktivität und Dosimetrie" Alpha-Strahlung 1. Aufgabenstellung 1.1 Bestimmung der Luftäquivalenz der Abdeckung eines Ra-226-Präparates mittels der experimentellen Reichweitebestimmung der

Mehr

Gammaspektroskopie. Typische Detektoren: Szintillationszähler: (NaI, CsI, Plastik- oder Flüssigszintillator, ) Ge Detektoren (hohe Energieauflösung)

Gammaspektroskopie. Typische Detektoren: Szintillationszähler: (NaI, CsI, Plastik- oder Flüssigszintillator, ) Ge Detektoren (hohe Energieauflösung) Gammaspektroskopie Typische Detektoren: Szintillationszähler: (NaI, CsI, Plastik- oder Flüssigszintillator, ) Ge Detektoren (hohe Energieauflösung) Wiederholung: WW von Gamma-Strahlung mit Materie Photoeffekt,

Mehr

3.3 Zählstatistik und Beta-Spektrometer

3.3 Zählstatistik und Beta-Spektrometer Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 3 - Atomphysik 3.3 Zählstatistik und Beta-Spektrometer Stichwörter Beta Zerfall, Drehimpulserhaltung, Ladungserhaltung, Energieerhaltung, Zerfallsgesetz,

Mehr

Übungen zu Moderne Experimentalphysik III (Kerne und Teilchen) Sommersemester 2017

Übungen zu Moderne Experimentalphysik III (Kerne und Teilchen) Sommersemester 2017 Übungen zu Moderne Experimentalphysik III (Kerne und Teilchen) Sommersemester 2017 Übungsblatt Nr. 6: Musterlösungen Aufgabe 1: Zerfallsreihen und radioaktives Gleichgewicht a) Die Anzahl der Nuklide in

Mehr

Kernphysik. Elemententstehung. 2. Kernphysik. Cora Fechner. Universität Potsdam SS 2014

Kernphysik. Elemententstehung. 2. Kernphysik. Cora Fechner. Universität Potsdam SS 2014 Elemententstehung 2. Cora Fechner Universität Potsdam SS 2014 alische Grundlagen Kernladungszahl: Z = Anzahl der Protonen Massenzahl: A = Anzahl der Protonen + Anzahl der Neutronen Bindungsenergie: B

Mehr

Lernzettel 7. Stefan Pielsticker und Hendrik-Jörn Günther 1 PHYSX

Lernzettel 7. Stefan Pielsticker und Hendrik-Jörn Günther 1 PHYSX - Die Zusammensetzung vn Atmkernen beschreiben Atmkerne bestehen aus psitiv geladenen Prtnen und neutralen Neutrnen insgesamt ist der Kern als psitiv geladen. Der Atmkern beinhaltet über 99% der Masse

Mehr

t ½ =ln(2)/(1,2*1/h). 0,7/(1,2*1/h) 0,6h 4

t ½ =ln(2)/(1,2*1/h). 0,7/(1,2*1/h) 0,6h 4 1 Wie kann man α, β, γ-strahlen unterscheiden? 1 Im elektrischen Feld (+ geladene Platte zieht e - an, - geladene Platte α-teilchen) und magnetischen Feld (α rechte Hand- Regel, β linke Hand-Regel). γ-strahlen

Mehr

Das Magnetfeld. Das elektrische Feld

Das Magnetfeld. Das elektrische Feld Seite 1 von 5 Magnetisches und elektrisches Feld Das Magnetfeld beschreibt Eigenschaften der Umgebung eines Magneten. Auch bewegte Ladungen rufen Magnetfelder hervor. Mithilfe von Feldlinienbilder können

Mehr

= strahlungsaktiv; Teilchen oder Energie abstrahlend. Eine dem Licht verwandte energiereiche Strahlung, die bei vielen Kernprozessen auftritt.

= strahlungsaktiv; Teilchen oder Energie abstrahlend. Eine dem Licht verwandte energiereiche Strahlung, die bei vielen Kernprozessen auftritt. Radioaktivität 1 Die Bausteine des Kernes (n 0 und p + ) halten mittels der sehr starken aber nur über eine sehr kurze Distanz wirkenden Kernkräfte zusammen. Sie verhindern ein Auseinanderbrechen der Kerne

Mehr

Einführung in die Vorlesung "Radioaktivität und Radiochemie"

Einführung in die Vorlesung Radioaktivität und Radiochemie Wintersemester 2010/2011 Radioaktivität und Radiochemie Einführung in die Vorlesung "Radioaktivität und Radiochemie" 21.10.2010 Udo Gerstmann Bundesamt für Strahlenschutz Vorlesung "Radioaktivität und

Mehr

Kernmodell der Quantenphysik

Kernmodell der Quantenphysik Kernmodell der Quantenphysik M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis 1 Atomkerne 2 Potentialtopfmodell In diesem Abschnitt 1 Atomkerne 1.1 Aufbau 1.2 Starke Wechselwirkungen 2 Potentialtopfmodell

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 25..203 Oberstufe: se und ausführliche Lösungen zur Klassenarbeit zur Elektrik und Kernphysik se: E Eine Glühlampe 4V/3W (4 Volt, 3 Watt) soll an eine Autobatterie

Mehr

β + -Strahlung besteht aus positiven Elektronen (M, Z) (M, Z 1)

β + -Strahlung besteht aus positiven Elektronen (M, Z) (M, Z 1) Kernphysikalische Grundlagen und Stabilität der Atomkerne, Radioaktivität 9 eines negativen Elektrons, welches einen Teil der Energieabgabe übernimmt. Der restliche Teil wird von einem so genannten Antineutrino

Mehr

Lösungsvorschlag Übung 5

Lösungsvorschlag Übung 5 Lösungsvorschlag Übung 5 Aufgabe : Zerfallsprozesse Um zu erörtern, welche Zerfallsprozesse für einen gegebenen Kern zu erwarten sind, lassen sich empirische Regeln zur Abschätzung der Stabilität heranziehen.

Mehr

Klausur -Informationen

Klausur -Informationen Klausur -Informationen Datum: 4.2.2009 Uhrzeit und Ort : 11 25 im großen Physikhörsaal (Tiermediziner) 12 25 ibidem Empore links (Nachzügler Tiermedizin, bitte bei Aufsichtsperson Ankunft melden) 11 25

Mehr

5) Messung radioaktiver Strahlung (1)

5) Messung radioaktiver Strahlung (1) 5) Messung radioaktiver Strahlung (1) Registrierung von Wechselwirkungen zwischen Strahlung und Materie Universelles Prinzip: Messung der Ionisierungswirkung Messung der Ionisierung Messung der Dosis.

Mehr

Aufbau des Atomkerns a) Gib an, aus wie vielen Protonen und Neutronen die

Aufbau des Atomkerns a) Gib an, aus wie vielen Protonen und Neutronen die Aufbau des Atomkerns a) Gib an, aus wie vielen Protonen und Neutronen die Atomkerne von Cl bestehen. b) Erkläre, was man unter Isotopen versteht. Gib ein Beispiel an. 3, Cl c) Im Periodensystem wird die

Mehr

Kernmodell der Quantenphysik

Kernmodell der Quantenphysik M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis In diesem Abschnitt 1.1 Aufbau 1.2 Starke Wechselwirkungen Aufbau Tröpfchenmodell Atomkerns Wesentliche Eigenschaften von n können im Tröpfchenmodell

Mehr

Prof. Dr.-Ing. Wolfgang Schubert. Fachkunde im Strahlenschutz Kurs September Naturwissenschaftliche Grundlagen I

Prof. Dr.-Ing. Wolfgang Schubert. Fachkunde im Strahlenschutz Kurs September Naturwissenschaftliche Grundlagen I Fachkunde im Strahlenschutz Kurs September 01 Naturwissenschaftliche Grundlagen I 1 Themen - Aufbau der Materie - Elemente, Nuklide - Radioaktiver Zerfall - Aktivität - Zerfallsarten - Strahlung, Strahlungsarten

Mehr

Kurs Juli Grundlagen I

Kurs Juli Grundlagen I Fachkunde im Strahlenschutz Kurs Juli 2010 Naturwissenschaftliche Grundlagen I Themen - Aufbau der Materie - Elemente, Nuklide - Radioaktiver Zerfall - Aktivität -Zerfallsarten fll - Strahlung, Strahlungsarten

Mehr

4.3 α-zerfall. Zerfälle lassen sich 4 verschiedenen Zerfallsketten zuordnen: T 1/ a a a a

4.3 α-zerfall. Zerfälle lassen sich 4 verschiedenen Zerfallsketten zuordnen: T 1/ a a a a 4.3 α-zerfall A A 4 4 Z XN Z YN + He Zerfälle lassen sich 4 verschiedenen Zerfallsketten zuordnen: A 4n 4n+ 4n+ 4n+3 Reihe Thorium Neptunium Uranium Aktinium Mutterkern 3 Th 37 Np 38 U 3 U T /.4 0 0 a.

Mehr

Atome. Definition: das kleinste Teilchen eines chemischen Elementes, das mit chemischen Verfahren nicht mehr zerlegbar ist.

Atome. Definition: das kleinste Teilchen eines chemischen Elementes, das mit chemischen Verfahren nicht mehr zerlegbar ist. Atome Definition: das kleinste Teilchen eines chemischen Elementes, das mit chemischen Verfahren nicht mehr zerlegbar ist. Das Atom besitzt einen positiv geladene Atomkern und eine negative Elektronenhülle.

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #47 am

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #47 am Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 007 VL #47 am 0.07.007 Vladimir Dyakonov Kernphysik 1 Zusammensetzung von Kernen Atomkerne bestehen

Mehr

Hauptseminar Quantenmechanisches Tunneln WS 2010/2011. Thema: Tunneln durch einfache Potentialbarrieren und Alphazerfall

Hauptseminar Quantenmechanisches Tunneln WS 2010/2011. Thema: Tunneln durch einfache Potentialbarrieren und Alphazerfall Hauptseminar Quantenmechanisches Tunneln WS 2010/2011 Thema: Tunneln durch einfache Potentialbarrieren und Alphazerfall Torben Kloss, Manuel Heinzmann Gliederung Was ist tunneln? Tunneln durch ein beliebiges

Mehr

Nuklidkarte. Experimentalphysik I/II für Studierende der Biologie und Zahnmedizin Caren Hagner V

Nuklidkarte. Experimentalphysik I/II für Studierende der Biologie und Zahnmedizin Caren Hagner V Z Nuklidkarte 1 N 2 Instabilität der Atomkerne: radioaktive Zerfälle Bekannteste Arten: α-zerfall: β-zerfall: γ-zerfall: Mutterkern Tochterkern + Heliumkern Mutterkern Tochterkern + Elektron + Neutrino

Mehr

Kerne und Teilchen. Moderne Physik III

Kerne und Teilchen. Moderne Physik III Kerne und Teilchen Moderne Physik III Vorlesung # 07 Guido Drexlin, Institut für Experimentelle Kernphysik 3. Instabile Kerne - radioaktiver Zerfall: Grundlagen - Lebensdauer, Zerfallskonstante - Verzweigung

Mehr

2. Der Aufbau der Atome wird mit dem Rutherford schen und dem Bohr schen Atommodellen beschrieben. Ordne die Aussagen zu und verbinde.

2. Der Aufbau der Atome wird mit dem Rutherford schen und dem Bohr schen Atommodellen beschrieben. Ordne die Aussagen zu und verbinde. Atommodelle 1. Vervollständige den Lückentext. Atome bestehen aus einer mit negativ geladenen und einem mit positiv geladenen und elektrisch neutralen. Die Masse des Atoms ist im konzentriert. Die Massenzahl

Mehr

Versuch 24 Radioaktivität

Versuch 24 Radioaktivität Grundpraktikum der Fakultät für Physik Georg August Universität Göttingen Versuch 24 Radioaktivität Praktikant: Joscha Knolle Ole Schumann E-Mail: joscha@htilde.de Durchgeführt am: 6.3.213 Abgabe: 7.3.213

Mehr