Poisson Regression & Verallgemeinerte lineare Modelle

Größe: px
Ab Seite anzeigen:

Download "Poisson Regression & Verallgemeinerte lineare Modelle"

Transkript

1 Poisson Regression & Verallgemeinerte lineare Modelle

2 Motivation Ausgangslage Wir haben Anzahldaten (count data) Y i, cf. Vorlesung zu kategoriellen Variablen. Zu jeder Beobachtung Y i haben wir erklärende Grössen x i. Einführungsvorlesung Poisson-Verteilung in der Regel gut geeignet, um Anzahlen zu modellieren. Heute Verwendung der Poisson-Verteilung in einem Regressions-Kontext. Dies dient als weiteres Beispiel für verallgemeinerte lineare Modelle. 2

3 Beispiel: Schiffs-Havarien Poisson-Verteilung Zielvariable: Y Anzahl Schaden-Ereignisse (incidents) in Flotten von Schiffen Erklärende Variablen T Schiffstyp (type) A, B, C, D, E C Baujahr (year) 60 (60-64), 65 (65-69), 70 (70-74), 75 (75-79) P Beobachtungsperiode (period) 0 ( ), 1 ( ) M # Betriebsmonate (service) 3

4 Regressionsansatz Ziel Wir möchten für das Havarien-Beispiel ein Regressionsmodell konstruieren. Ansatz Wenn wir annehmen, dass Y i ~Pois λ i, wobei λ i > 0, dann gilt E Y i = λ i, Var Y i = λ i Regression Wir modellieren den Erwartungswert in Abhängigkeit von den erklärenden Variablen. Verwende also gleichen Ansatz wie bei multipler linearer Regression und logistischer Regression: E Y i x i 1, x i 2,, x i m = λ i = h x i 1, x i 2,, x i m 4

5 Poisson Regression Erinnerung Bei der logistischen Regression war E Y i x i = P Y i = 1 x i ) 0,1 und wir benötigten eine geeignete Link-Funktion (logit). Hier Wir haben E Y i x i = λ i > 0. -> Wähle wiederum geeignete Link-Funktion. Poisson Regression Wir nehmen den Logarithmus als Link-Funktion und modellieren dann linear g E Y i x i = g λ i = log λ i = x i T β Entsprechend gilt (inverse Link-Funktion): E Y i x i = λ i = exp x i T β Die Poisson Regression kombiniert die logarithmische Link-Funktion mit der Annahme der Poisson-Verteilung für die Zielgrösse. 5

6 Schätzungen und Tests Schätzung Parameterschätzung mit dem Maximum-Likelihood Prinzip Likelihood in Abhängigkeit der Parameter β : l β Übergang zu log-likelihood: ll β Maximierung mithilfe von iterativen Verfahren መβ Tests / Vertrauensintervalle Analog zur logistischen Regression Wald Tests aus dem iterativen Verfahren (z-tests) Likelihood Ratio Tests via Devianzen. Diese sind in der Regel vorzuziehen, da mehr Macht. 6

7 Interpretation der Parameter Schauen wir das Modell noch etwas genauer an. Es gilt: E Y i x i = λ i = exp x i T β = exp β 0 exp β 1 x i 1 exp βm x i (m) Ändert man x j um eine Einheit, bewirkt dies eine Multiplikation des Erwartungswertes mit dem Faktor exp β j. Dies ist sinnvoll. Wir wollen in der Regel Aussagen im Stil von «In der einen Gruppe ist die Anzahl um einen gewissen Faktor höher (z.b. 30%)» Mit zunehmendem x j gilt: Ist β j positiv Erwartungswert wird grösser Ist β j negativ Erwartungswert wird kleiner Ist β j = 0 Erwartungswert bleibt unverändert 7

8 Beispiel Schiffs-Havarien Zielvariable: Y Anzahl Schaden-Ereignisse (incidents) in Flotten von Schiffen Erklärende Variablen T Schiffstyp (type) A, B, C, D, E C Baujahr (year) 60 (60-64), 65 (65-69), 70 (70-74), 75 (75-79) P Beobachtungsperiode (period) 0 ( ), 1 ( ) M # Betriebsmonate (service) 8

9 Beispiel: Schiffs-Havarien Naheliegende Annahme Anzahl Schaden-Ereignisse Y i proportional zu Anzahl Betriebsmonate M i. In der linearen Regression hätten wir einfach die Rate Y i /M i als normalisierte Zielgrösse verwendet. Das ist hier nicht möglich. Y i /M i ist nicht mehr Poisson-verteilt. Gewünschtes Modell lautet eigentlich λ i = M i exp x i T β, beziehungsweise log λ i = log M i + x i T β Für log M i ist also kein Parameter zu schätzen. R-Hinweis Benutze das Argument offset in der Funktion glm(). 9

10 Beispiel: Schiffs-Havarien Auswertung mit R summary von gefittetem glm: Modellgleichung Poisson Regression Koeffizient für log(service) = log(m i ) wird nicht mitgeschätzt 10

11 Beispiel: Schiffs-Havarien Auswertung mit R summary von gefittetem glm: typea fehlt period60 fehlt year60 fehlt Referenzlevels: Schiffstyp A (typea), Beobachtungsperiode (period60) und Baujahr (year60) 11

12 Beispiel: Schiffs-Havarien Referenzlevels: Schiffstyp A (typea), Beobachtungsperiode (period60) und Baujahr (year60) Jeweils erstes Faktorlevel als Referenzlevel. Anderes Referenzlevel kann z.b. mit der R-Funktion relevel( ) festgelegt werden. 12

13 Beispiel: Schiffs-Havarien Modellgleichung (für Typ B, Beobachtungsperiode , Baujahr ) log( መλ i ) = መβ 0 + log M i + መβ typeb + መβ period75 = log M i Dementsprechend: መλ i = exp log M i = exp M i 13

14 Beispiel: Schiffs-Havarien p-werte Wie bereits besprochen sind p-werte für Faktoren wenig aussagekräftig. Zur Bestimmung der Signifikanz eines Faktors: R-Funktion: drop1(fit, test=«chisq») 14

15 Beispiel: Schiffs-Havarien Vergleiche und Vertrauensintervalle Typ B mit Typ C: መλ typeb መλ typec = exp exp = exp = 1.15 Typ B hat 15% mehr Havarien als Typ C (wegen multiplikativem Effekt) Typ C mit Typ A: exp = 0.5 (C hat halb so viele Havarien wie A) Approximatives 95%-Vertrauensintervall für Faktor-Level Typ C: [exp , exp ] = [0.26,0.96] 15

16 Verallgemeinerte lineare Modelle (GLM)

17 Motivation Bis jetzt gesehen: Logistische Regression Poisson Regression Gemeinsamkeiten In beiden Modellen hatten wir Einschränkungen an E Y i x i : Logistische Regression E Y i x i 0,1 Poisson Regression E Y i x i > 0 Wir haben dann E Y i x i mit einer Link-Funktion so transformiert, dass wir E Y i x i mit einer linearen Funktion der Parameter β i modellieren konnten. Idee: Dieses Konzept lässt sich verallgemeinern Verallgemeinerte lineare Modelle 17

18 Verallgemeinerte lineare Modelle Annahme (verallgemeinertes lineares Modell) Der Erwartungswert der Zielgrösse Y lässt sich, indem er durch eine geeignete Link-Funktion g transformiert wird, mit einer linearen Funktion der Parameter β, dem linearen Prädiktor η, gleichsetzen. g E Y i x i = η i = x i T β Die Verteilungsannahmen und Link-Funktionen waren jeweils unterschiedlich: Logistische Regression: Bernoulli-/Binomialverteilung g = logit Poisson Regression: Poisson-Verteilung g = log Bemerkung: Auch die lineare Regression folgt obiger Annahme mit g = Identität und Normalverteilungsannahme. 18

19 Exponentialfamilie Die Verteilung der Zufallsvariable Y gehört einer einfachen Exponentialfamilie an, wenn sich ihre Dichte f(y) oder Wahrscheinlichkeitsfunktion P(Y = y) schreiben lässt als f y; θ, φ, ω = exp yθ b θ φ ω + c y; φ, ω, wobei θ φ ω b c Kanonischer Parameter Dispersionsparameter Gewicht der Beobachtung Funktion, die die Verteilung festlegt Normierung auf Wahrscheinlichkeit 1 ( f Dichte/W keitsfunktion) 19

20 Exponentialfamilie Erwartungswert und Varianz von Y können allgemein ausgerechnet werden: μ = E Y = b θ Var Y = b θ φ ω Wir schreiben nun den kanonischen Parameter θ als θ = b 1 μ und erhalten somit: Var Y = b b 1 μ φ ω Varianzfunktion V(μ) Die Varianzfunktion V(μ) ist eine Funktion des Erwartungswerts. 20

21 Beispiel: Poisson-Verteilung Es gilt: P Y = y = λy y! Somit erhalten wir: exp λ log P Y = y = log y! + y log λ λ θ = log λ b θ = exp θ = λ φ = 1 ω = 1 c y; φ, ω = log(y!) 21

22 Beispiel: Normalverteilung Es gilt: Somit erhalten wir: log f y; μ, σ 2 = log 2πσ 1 2 = yμ 1 2 μ2 σ 2 θ = μ b θ = θ 2 /2 φ = σ 2 ω = 1 y2 2σ 2 log y μ σ 2πσ 2 c y; φ = 1 2 y 2 φ + log 2πφ 22

23 Weitere Beispiele Die Exponentialfamilie ist eine grosse Klasse von Verteilungen Weitere Beispiele sind: Binomialverteilung Exponentialverteilung Gamma-Verteilung Weibull-Verteilung 23

24 Link-Funktion Durch Verwendung der Link-Funktion sollen unmögliche Werte vermieden werden. Bisher gesehen: g μ = μ wenn E[Y] beliebig. g μ = log(μ) wenn E Y > 0 "μ = λ" g μ = log μ 1 μ wenn 0 < E Y < 1 "μ = π" 24

25 Kanonische Link-Funktion Die Link-Funktion heisst kanonische Link-Funktion, wenn η = g μ = θ mit θ = b 1 μ Der lineare Prädiktor η entspricht also gerade dem kanonischen Parameter θ. Die erklärenden Variablen wirken linear auf den kanonischen Parameter. Wähle die Link-Funktion: g = (b ) 1 Normalverteilung: Poisson-Verteilung: Binomial-Verteilung: g μ = μ g μ = log(μ) g μ = logit(μ) Vorteile: Existenz und Eindeutigkeit des ML-Schätzers, einfachere Schätzgleichungen 25

26 Schätzungen und Tests

27 Schätzungen und Tests Wie gesehen bei der logistischen Regression und Poisson-Regression: Parameterschätzungen mit Hilfe des Maximum-Likelihood Prinzips Verwendung von iterativen Verfahren zur numerischen Maximierung (Iteratively Reweighted Least Squares) Tests mit Wald-Tests beziehungsweise eher mit Likelihood-Ratio Tests (unter Verwendung der Devianzen) Für technische Details, siehe Skript, Abschnitt

28 Übergrosse Streuung

29 Übergrosse Streuung Bei bestimmten Verteilungen ist die Varianz durch das Modell festgelegt Beispiele: Poisson-Regression Var Y i = λ i Binomial-Regression Var Y i = nπ i (1 π i ) Oft hat man jedoch in den Daten eine grössere Streuung als durch das Modell erwartet würde. Man spricht von «overdispersion». Mögliche Gründe: Fehlende erklärende Variablen im Modell falls vorhanden, benutzen Korrelierte Beobachtungen (z.b. in Gruppen) 29

30 Quasi-Likelihood Modelle Damit man dennoch Statistik betreiben kann, braucht man ein neues Modell. Die einfachste Art und Weise, eine grössere Streuung als im Poisson-Modell zuzulassen, besteht darin, die jeweilige Varianzfunktion beizubehalten und den Dispersionsparameter φ nicht mehr auf 1 festzulegen. Dieser wird zu einem Störparameter. Beispiel: Bei der Poisson-Regression würde man das Modell erweitern zu E Y = μ, Var Y = φμ, mit φ 1 Da es dazu allerdings keine entsprechende Verteilung gibt, spricht man von Quasi-Modellen und Quasi-Likelihood. 30

31 Dispersionsparameter φ Frage Wie lässt sich eine übergrosse Streuung feststellen? Verwende zum Beispiel die Pearson Chiquadrat-Statistik: T = n ωi (y i μ i ) 2 i=1 φ V( μ i ) Wenn φ nicht aus den Daten geschätzt werden muss, ist T χ 2 -verteilt mit n p Freiheitsgraden. Man kann die Residuen-Devianz betrachten. Ein grosser Wert deutet darauf hin, dass etwas nicht stimmt. Man kann den Dispersionsparameter φ schätzen und schauen, was dies für Auswirkungen hat. 31

32 Schätzung von φ Schätzung des Dispersionsparameters φ via Pearson-Statistik: φ = 1 n p ω i (y i μ i ) 2 i V( μ i ) Alternativ kann man die Devianz verwenden: φ = 1 D y; μ n p Zuerst werden die «gewöhnlichen» Parameter geschätzt, und am Ende wird noch φ angepasst. R-Code: glm(): Wähle family = quasipoisson ( φ erst in summary.glm berechnet) regr(): Quasipoisson wird i.d.r. standardmässig verwendet 32

33 Overdispersion - Auswirkungen Schätzung der Parameter (Koeffizienten): keinen Einfluss Varianz Overdispersion verändert die Varianz um den Faktor φ Standardfehler verändert sich um den Faktor φ Vertrauensintervalle werden um den Faktor φ breiter 33

34 Beispiel: Schiffs-Havarien Poisson-Regression mit Schätzung der Overdispersion Andere Werte (Berücksichtigung von Overdispersion) φ Parameterschätzungen unverändert 34

35 Residuenanalyse

36 Residuen Es existieren mehrere mögliche Definitionen (vgl. logistische Regression) Rohe Residuen (response residuals) R i = Y i μ i, μ i = g 1 T x i መβ Prädiktor Residuen (working residuals, link residuals) R i (L) = Ri g μ i (in der Skala des Prädiktors ausgedrückt) Pearson Residuen R i (P) = Ri / V μ i /ω i (standardisiert) Devianz-Residuen R i (D) = sign(yi μ i ) d i wobei d i der i-te Summand der Residuen-Devianz ist. 36

37 Merkpunkte Verallgemeinerte lineare Modelle (GLMs) umfassen als Verteilungen der Zielgrösse: Normalverteilung Bernoulli- oder Binomialverteilung Poisson-Verteilung Exponential- und Gamma-Verteilung Theorie und Algorithmus für all diese Modelle: Maximum Likelihood Schätzung Iteratively Reweighted Least Squares Begriff der Devianzen In der Praxis: Möglichkeit der Overdispersion Residuen nicht eindeutig definiert und weniger nützlich, da «künstliche» Strukturen auftreten. Man braucht sie trotzdem! 37

Poisson Regression. Verallgemeinerte Lineare Modelle (GLMs)

Poisson Regression. Verallgemeinerte Lineare Modelle (GLMs) Poisson Regression Verallgemeinerte Lineare Modelle (GLMs) 28.11.2011 Poisson Regression Aus der Einführungsvorlesung Poisson-Verteilung ist in der Regel gut geeignet, um Anzahlen zu modellieren. Frage

Mehr

Logistische Regression

Logistische Regression Logistische Regression 13.11.2017 Motivation Regressionsrechnung: Untersuchung des Zusammenhangs zwischen einer (oder mehreren) Zielvariablen und einer oder mehreren erklärenden Variablen. Bisher gesehen:

Mehr

Kategorielle Zielgrössen

Kategorielle Zielgrössen Kategorielle Zielgrössen 27.11.2017 Motivation Bisher gesehen: Regressionsmodelle für diverse Arten von Zielgrössen Y. kontinuierliche Zielgrösse Lineare Regression Binäre/binomiale Zielgrösse Logistische

Mehr

Kap. 2: Generalisierte lineare Modelle (GLMs) Lineare und generalisierte lineare Modelle Schätzung und Inferenz in GLMs Literatur

Kap. 2: Generalisierte lineare Modelle (GLMs) Lineare und generalisierte lineare Modelle Schätzung und Inferenz in GLMs Literatur Kap. 2: Generalisierte lineare Modelle (GLMs) Lineare und generalisierte lineare Modelle Schätzung und Inferenz in GLMs Literatur 2.1 Lineare und generalisierte lineare Modelle Das klassische lineare Regressionsmodell

Mehr

Verallgemeinerte+Lineare+Modelle+(GLM)+

Verallgemeinerte+Lineare+Modelle+(GLM)+ VerallgemeinerteLineareModelle(GLM Eins4egüberPoisson8Regression BarbaraHellriegel 23.11.2015 Mo4va4on Ausgangssitua6on:alsZielvariableY i liegen Anzahldaten /Zähldaten(countdata,vgl. (k VLkategorielleVariablevorsowiezujederBeobachtungY

Mehr

Nicht-kontinuierliche abhängige Variablen: Das generalisierte lineare Modell und die Parameterschätzung via Maximum Likelihood

Nicht-kontinuierliche abhängige Variablen: Das generalisierte lineare Modell und die Parameterschätzung via Maximum Likelihood Nicht-kontinuierliche abhängige Variablen: Das generalisierte lineare Modell und die Parameterschätzung via Maximum Likelihood Interaktionseffekte Varianz-Kovarianz-Matrix Interaktionseffekte Varianz-Kovarianz-Matrix

Mehr

Maximum-Likelihood Schätzung

Maximum-Likelihood Schätzung Maximum-Likelihood Schätzung VL Forschungsmethoden 1 Wiederholung Einführung: Schätzung 2 Likelihood-Schätzung und Generalisiertes Lineares Modell Zufallsverteilungen 3 Lernziele 1 Grundzüge der Likelihood-Schätzung

Mehr

Varianzkomponentenschätzung

Varianzkomponentenschätzung Qualitas AG Varianzkomponentenschätzung Peter von Rohr Qualitas AG Peter von Rohr Folien ZL I+II LFW C11 October 29, 2015 2 / 23 Multiple Lineare Regression Annahmen Modell y = Xb + e Varianz der Fehler

Mehr

Maximum-Likelihood Schätzung. VL Forschungsmethoden

Maximum-Likelihood Schätzung. VL Forschungsmethoden Maximum-Likelihood Schätzung VL Forschungsmethoden Wiederholung Einführung: Schätzung Likelihood-Schätzung und Generalisiertes Lineares Modell Zufallsverteilungen Lernziele 1. Grundzüge der Likelihood-Schätzung

Mehr

Fortgeschrittene Ökonometrie: Maximum Likelihood

Fortgeschrittene Ökonometrie: Maximum Likelihood Universität Regensburg, Lehrstuhl für Ökonometrie Sommersemester 202 Fortgeschrittene Ökonometrie: Maximum Likelihood Poissonverteilung Man betrachte die poisson-verteilten Zufallsvariablen y t, t =, 2,...,

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

(G)LM. 24. November 2009

(G)LM. 24. November 2009 (G)LM 24 November 29 Dies ist eine kurze Zusammenfassung der Grundlagen von linearen Modellen, sowie aufbauend darauf von generalisierten linearen Modellen Sie dient lediglich zum Einstieg und zur knappen

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Inferenzstatistik in Regressionsmodellen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für

Mehr

8 Allgemeine Modelle & Robuste Regression

8 Allgemeine Modelle & Robuste Regression 8.1 Allgemeines Lineares Regressions-Modell 182 8 Allgemeine Modelle & Robuste Regression 8.1 Allgemeines Lineares Regressions-Modell a Modell. Y i F µ i, γ, g µ i = η i = x T i β b Weibull-Verteilung.

Mehr

Lineare Regression. Kapitel Regressionsgerade

Lineare Regression. Kapitel Regressionsgerade Kapitel 5 Lineare Regression 5 Regressionsgerade Eine reelle Zielgröße y hänge von einer reellen Einflussgröße x ab: y = yx) ; zb: Verkauf y eines Produkts in Stückzahl] hängt vom Preis in e] ab Das Modell

Mehr

Einfache lineare Regression. Statistik (Biol./Pharm./HST) FS 2015

Einfache lineare Regression. Statistik (Biol./Pharm./HST) FS 2015 Einfache lineare Regression Statistik (Biol./Pharm./HST) FS 2015 Wdh: Korrelation Big picture: Generalized Linear Models (GLMs) Bisher: Population wird mit einer Verteilung beschrieben Bsp: Medikament

Mehr

Teil XII. Einfache Lineare Regression. Woche 10: Lineare Regression. Lernziele. Zusammenfassung. Patric Müller

Teil XII. Einfache Lineare Regression. Woche 10: Lineare Regression. Lernziele. Zusammenfassung. Patric Müller Woche 10: Lineare Regression Patric Müller Teil XII Einfache Lineare Regression ETHZ WBL 17/19, 03.07.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Wahrscheinlichkeit

Mehr

Binomialverteilung. Häufigkeit, mit der Ereignis A bei n unabhängigen Versuchen eintritt. Träger von X : X = {0, 1, 2,..., n}.

Binomialverteilung. Häufigkeit, mit der Ereignis A bei n unabhängigen Versuchen eintritt. Träger von X : X = {0, 1, 2,..., n}. Binomialverteilung Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder nicht. X = Häufigkeit, mit

Mehr

Seminar zur Energiewirtschaft:

Seminar zur Energiewirtschaft: Seminar zur Energiewirtschaft: Ermittlung der Zahlungsbereitschaft für erneuerbare Energien bzw. bessere Umwelt Vladimir Udalov 1 Modelle mit diskreten abhängigen Variablen 2 - Ausgangssituation Eine Dummy-Variable

Mehr

Stochastik Praktikum Lineare Modelle

Stochastik Praktikum Lineare Modelle Stochastik Praktikum Lineare Modelle Thorsten Dickhaus Humboldt-Universität zu Berlin 06.10.2010 Übersicht 1 Einfache lineare Regression 2 Multiple lineare Regression 3 Varianzanalyse 4 Verallgemeinerte

Mehr

Schweizer Statistiktage, Aarau, 18. Nov. 2004

Schweizer Statistiktage, Aarau, 18. Nov. 2004 Schweizer Statistiktage, Aarau, 18. Nov. 2004 Qualitative Überprüfung der Modellannahmen in der linearen Regressionsrechnung am Beispiel der Untersuchung der Alterssterblichkeit bei Hitzeperioden in der

Mehr

Allgemeine lineare Modelle

Allgemeine lineare Modelle 262 Merkpunkte Allgemeine lineare Modelle Multiple lineare Regression mit nicht-normalen Zufallsabweichungen bilden eine harmlose" Verallgemeinerung der multiplen lin. Regr. Beispiele: Gumbel-Regression,

Mehr

Logistische Regression

Logistische Regression Logistische Regression Markus Kalisch 30.09.2014 1 Big Picture: Statistisches Lernen Supervised Learning (X,Y) Unsupervised Learning X VL 7, 11, 12 Regression Y kontinuierlich VL 1, 2, 4, 5, 6 Klassifikation

Mehr

Logistische Regression

Logistische Regression Logistische Regression Werner Brannath VO Biostatistik im WS 2006/2007 Inhalt Logistische Regression Beispiel 1: Herzerkrankungsdaten aus Framingham Log Odds Modell Beispiel 1: Einfluss von Blutdruck Maximum

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 6 Genzwertsätze Einführung 1 Wahrscheinlichkeit: Definition und Interpretation

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Wahrscheinlichkeitstheorie und Statistik Definitionen und Sätze Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2018 2.5.2018 Diskrete Wahrscheinlichkeitsräume Diskreter

Mehr

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme Binomialverteilung Wahrscheinlichkeitsfunktion Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder

Mehr

Statistische Datenanalyse

Statistische Datenanalyse Werner A. Stahel Statistische Datenanalyse Eine Einführung für Naturwissenschaftler 3., durchgesehene Auflage vieweg VII 1 Einleitung 1 1.1 Was ist Statistische Datenanalyse? 1 1.2 Ziele 6 1.3 Hinweise

Mehr

1 Gemischte Lineare Modelle

1 Gemischte Lineare Modelle 1 Gemischte Lineare Modelle Wir betrachten zunächst einige allgemeine Aussagen für Gemischte Lineare Modelle, ohne zu tief in die mathematisch-statistische Theorie vorzustoßen. Danach betrachten wir zunächst

Mehr

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar "Statistische Methoden in der Physik"

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar Statistische Methoden in der Physik Studentenseminar "Statistische Methoden in der Physik" Gliederung 1 2 3 Worum geht es hier? Gliederung 1 2 3 Stichproben Gegeben eine Beobachtungsreihe x = (x 1, x 2,..., x n ): Realisierung der n-dimensionalen

Mehr

Zusammenfassung 11. Sara dos Reis.

Zusammenfassung 11. Sara dos Reis. Zusammenfassung 11 Sara dos Reis sdosreis@student.ethz.ch Diese Zusammenfassungen wollen nicht ein Ersatz des Skriptes oder der Slides sein, sie sind nur eine Sammlung von Hinweise zur Theorie, die benötigt

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 1 Multivariate Verfahren Musterlösung Aufgabe 1 (40 Punkte) Auf der dem Kurs beigelegten CD finden Sie im Unterverzeichnis Daten/Excel/ die Datei zahlen.xlsx. Alternativ können Sie

Mehr

Punkte 2 und 3 genau gleich für stetige Verteilungen. zl uniform verteilte Zz. in (0,1)

Punkte 2 und 3 genau gleich für stetige Verteilungen. zl uniform verteilte Zz. in (0,1) 220 6.1 Stetige Verteilungen: Einleitung Repetition diskrete Verteilungen: 1. Verteilung gegeben durch die P X = x für alle mögl. Werte x (=0,1,2,... f. Zähldaten) 2. oder: durch (theoretische) kumulative

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung 11. Vorlesung Jochen Köhler 10.05.011 1 Inhalt der heutigen Vorlesung Zusammenfassung Parameterschätzung Übersicht über Schätzung und Modellbildung Modellevaluation

Mehr

Formelsammlung: Statistik und Wahrscheinlichkeitstheorie

Formelsammlung: Statistik und Wahrscheinlichkeitstheorie Formelsammlung: Statistik und Wahrscheinlichkeitstheorie Kapitel 1: Deskriptive und explorative Statistik Empirische Verteilungsfkt (S15): Quantile (S24): Bei Typ7 1.Pkt = 0 Danach 1/(n-1) Median (S24):

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Theorie-Teil: Aufgaben 1-3: 30 Punkte Programmier-Teil: Aufgaben 4-9: 60 Punkte

Theorie-Teil: Aufgaben 1-3: 30 Punkte Programmier-Teil: Aufgaben 4-9: 60 Punkte Hochschule RheinMain WS 2018/19 Prof. Dr. D. Lehmann Probe-Klausur zur Vorlesung Ökonometrie Theorie-Teil: Aufgaben 1-3: 30 Punkte Programmier-Teil: Aufgaben 4-9: 60 Punkte (die eigentliche Klausur wird

Mehr

VO Biostatistik im WS 2006/2007

VO Biostatistik im WS 2006/2007 VO Biostatistik im WS 2006/2007 1 Beispiel 1: Herzerkrankungsdaten aus Framingham für skoeffizienten : Leukemie-Daten 2 Beispiel 1: Herzerkrankungsdaten aus Framingham Stichprobe: 1329 männliche Bewohner

Mehr

Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen. Statistik II. Prof. Dr.

Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen. Statistik II. Prof. Dr. Statistik II Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen Statistik II 2. Parameterschätzung: 2.1 Grundbegriffe; 2.2 Maximum-Likelihood-Methode;

Mehr

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38 Dynamische Systeme und Zeitreihenanalyse Multivariate Normalverteilung und ML Schätzung Kapitel 11 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Multivariate

Mehr

Dr. L. Meier Statistik und Wahrscheinlichkeitsrechnung Sommer Musterlösung

Dr. L. Meier Statistik und Wahrscheinlichkeitsrechnung Sommer Musterlösung Dr. L. Meier Statistik und Wahrscheinlichkeitsrechnung Sommer 014 Musterlösung 1. 8 Punkte) a) 1 Pt)Für das Komplement gilt PR A) = 1 PR c A) = 0.968. b) 1 Pt)Nach Definition der bedingten Wahrscheinlichkeit

Mehr

Modellanpassung und Parameterschätzung. A: Übungsaufgaben

Modellanpassung und Parameterschätzung. A: Übungsaufgaben 7 Modellanpassung und Parameterschätzung 1 Kapitel 7: Modellanpassung und Parameterschätzung A: Übungsaufgaben [ 1 ] Bei n unabhängigen Wiederholungen eines Bernoulli-Experiments sei π die Wahrscheinlichkeit

Mehr

Verallgemeinerte lineare Modelle. Promotion. Promotion. Methoden empirischer Sozialforschung. 1 binäre und mehrere metrische und kategoriale Variablen

Verallgemeinerte lineare Modelle. Promotion. Promotion. Methoden empirischer Sozialforschung. 1 binäre und mehrere metrische und kategoriale Variablen Verallgemeinerte lineare Modelle 1 binäre und mehrere metrische und kategoriale Variablen Methoden empirischer Sozialforschung Verallgemeinerte lineare Modelle () Wie läßt sich die Abhängigkeit der Erfolgswahrscheinlichkeit

Mehr

Raschmodelle und generalisierte Regression. Sven Hilbert

Raschmodelle und generalisierte Regression. Sven Hilbert Raschmodelle und generalisierte Regression Sven Hilbert Generalisiertes lineares Modell () Bestandteile generalisierter linearer Modelle Zufällige Komponente Y mit zugehöriger Wahrscheinlichkeitsverteilung

Mehr

Thilo Moseler Bern,

Thilo Moseler Bern, Bern, 15.11.2013 (Verallgemeinerte) Lineare Modelle Stärken Schwächen Fazit und persönliche Erfahrung 2 i-te Beobachtung der zu erklärenden Variablen Yi ist gegeben durch Linearkombination von n erklärenden

Mehr

Lösung Übungsblatt 5

Lösung Übungsblatt 5 Lösung Übungsblatt 5 5. Januar 05 Aufgabe. Die sogenannte Halb-Normalverteilung spielt eine wichtige Rolle bei der statistischen Analyse von Ineffizienzen von Produktionseinheiten. In Abhängigkeit von

Mehr

Einführung in die Induktive Statistik: Regressionsanalyse

Einführung in die Induktive Statistik: Regressionsanalyse Einführung in die Induktive Statistik: Regressionsanalyse Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Regressionsanalyse Ziel: Analyse

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

Proxies, Endogenität, Instrumentvariablenschätzung

Proxies, Endogenität, Instrumentvariablenschätzung 1 4.2 Multivariate lineare Regression: Fehler in den Variablen, Proxies, Endogenität, Instrumentvariablenschätzung Literatur: Wooldridge, Kapitel 15, Appendix C.3 und Kapitel 9.4 Wahrscheinlichkeitslimes

Mehr

3.2 Maximum-Likelihood-Schätzung

3.2 Maximum-Likelihood-Schätzung 291 Die Maximum-Likelihood-Schätzung ist die populärste Methode zur Konstruktion von Punktschätzern bei rein parametrischen Problemstellungen. 292 3.2.1 Schätzkonzept Maximum-Likelihood-Prinzip: Finde

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 15.01.2009 Numerische Methoden und Algorithmen in der Physik Christian Autermann 1/ 47 Methode der kleinsten Quadrate

Mehr

Lineare Regression 1 Seminar für Statistik

Lineare Regression 1 Seminar für Statistik Lineare Regression 1 Seminar für Statistik Markus Kalisch 17.09.2014 1 Statistik 2: Ziele Konzepte von einer breiten Auswahl von Methoden verstehen Umsetzung mit R: Daten einlesen, Daten analysieren, Grafiken

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:

Mehr

Schätzung im multiplen linearen Modell VI

Schätzung im multiplen linearen Modell VI Schätzung im multiplen linearen Modell VI Wie im einfachen linearen Regressionsmodell definiert man zu den KQ/OLS-geschätzten Parametern β = ( β 0, β 1,..., β K ) mit ŷ i := β 0 + β 1 x 1i +... β K x Ki,

Mehr

Lösungen zur Prüfung Angewandte Statistische Methoden in den Nutzierwissenschaften FS 2016

Lösungen zur Prüfung Angewandte Statistische Methoden in den Nutzierwissenschaften FS 2016 ETH Zürich D-USYS Institut für Agrarwissenschaften Lösungen zur Prüfung Angewandte Statistische Methoden in den Nutzierwissenschaften FS 2016 Peter von Rohr Datum 30. Mai 2016 Beginn 08:00 Uhr Ende 08:45

Mehr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen Wir betrachten nun ein Verfahren zur Konstruktion von Schätzvariablen für Parameter von Verteilungen. Sei X = (X 1,..., X n ). Bei X

Mehr

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle Patric Müller ETHZ Teil VIII Zentraler Grenzwertsatz und Vertrauensintervalle WBL 17/19, 29.05.2017 Wahrscheinlichkeit

Mehr

Teil XIII. Multiple lineare Regression. Woche 11: Multiple lineare Regression. Zusammenfassung Einfache lineare Regression.

Teil XIII. Multiple lineare Regression. Woche 11: Multiple lineare Regression. Zusammenfassung Einfache lineare Regression. Woche 11: Multiple lineare Regression Patric Müller Teil XIII Multiple lineare Regression ETHZ WBL 17/19, 10.07.017 Wahrscheinlichkeit und Statistik Patric Müller WBL

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/51 Biostatistik, Sommer 2017 Wahrscheinlichkeitstheorie: Verteilungen, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 8. Vorlesung: 09.06.2017 2/51 Inhalt 1 Verteilungen Normalverteilung Normalapproximation

Mehr

Statistik Klausur Sommersemester 2013 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN!

Statistik Klausur Sommersemester 2013 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Statistik 2 1. Klausur Sommersemester 2013 Hamburg, 26.07.2013 A BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................ Vorname:.............................................................................

Mehr

Statistik. R. Frühwirth. Statistik. VO Februar R. Frühwirth Statistik 1/536

Statistik. R. Frühwirth. Statistik. VO Februar R. Frühwirth Statistik 1/536 fru@hephy.oeaw.ac.at VO 142.090 http://tinyurl.com/tu142090 Februar 2010 1/536 Übersicht über die Vorlesung Teil 1: Deskriptive Teil 2: Wahrscheinlichkeitsrechnung Teil 3: Zufallsvariable Teil 4: Parameterschätzung

Mehr

W-Rechnung und Statistik für Ingenieure Übung 8

W-Rechnung und Statistik für Ingenieure Übung 8 W-Rechnung und Statistik für Ingenieure Übung 8 Aufgabe 1 : Motivation Anhand von Daten soll eine Aussage über die voraussichtliche Verteilung zukünftiger Daten gemacht werden, z.b. die Wahrscheinlichkeit

Mehr

f(x) = P (X = x) = 0, sonst heißt Poisson-verteilt mit Parameter (oder Rate) λ > 0, kurz X P o(λ). Es gilt x x! 1 Wahrscheinlichkeitsrechnung 212

f(x) = P (X = x) = 0, sonst heißt Poisson-verteilt mit Parameter (oder Rate) λ > 0, kurz X P o(λ). Es gilt x x! 1 Wahrscheinlichkeitsrechnung 212 1.6.2 Poisson Verteilung Eine weitere wichtige diskrete Verteilung ist die Poisson-Verteilung. Sie modelliert die Anzahl (eher seltener) Ereignisse in einem Zeitintervall (Unfälle, Todesfälle; Sozialkontakte,

Mehr

Prognoseintervalle für y 0 gegeben x 0

Prognoseintervalle für y 0 gegeben x 0 10 Lineare Regression Punkt- und Intervallprognosen 10.5 Prognoseintervalle für y 0 gegeben x 0 Intervallprognosen für y 0 zur Vertrauenswahrscheinlichkeit 1 α erhält man also analog zu den Intervallprognosen

Mehr

2 Aufgaben aus [Teschl, Band 2]

2 Aufgaben aus [Teschl, Band 2] 20 2 Aufgaben aus [Teschl, Band 2] 2.1 Kap. 25: Beschreibende Statistik 25.3 Übungsaufgabe 25.3 a i. Arithmetisches Mittel: 10.5 ii. Median: 10.4 iii. Quartile: x 0.25 Y 4 10.1, x 0.75 Y 12 11.1 iv. Varianz:

Mehr

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen)

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) 3 Einfache lineare Regression Einfache lineare Modelle mit R 36 Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) > summary(lm(y~x)) Call: lm(formula =

Mehr

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen)

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) 3 Einfache lineare Regression Einfache lineare Modelle mit R 3.6 Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) > summary(lm(y~x)) Call: lm(formula

Mehr

1.2 Summen von Zufallsvariablen aus einer Zufallsstichprobe

1.2 Summen von Zufallsvariablen aus einer Zufallsstichprobe 1.2 Summen von Zufallsvariablen aus einer Zufallsstichprobe Nachdem eine Stichprobe X 1,..., X n gezogen wurde berechnen wir gewöhnlich irgendwelchen Wert damit. Sei dies T = T (X 1,..., X n, wobei T auch

Mehr

Formelsammlung zur Vorlesung: Einführung in die Bayes-Statistik

Formelsammlung zur Vorlesung: Einführung in die Bayes-Statistik 1 Verteilungen Formelsammlung zur Vorlesung: Einführung in die Bayes-Statistik 1.1 Diskrete Verteilungen Helga Wagner und Gero Walter Binomialverteilung: Y BiNom (n, π) Parameter: n > 0, π [0, 1] Wahrscheinlichkeitsfunktion:

Mehr

Diskrete Verteilungen

Diskrete Verteilungen Diskrete Verteilungen Bernoulli-Verteilung: X Bernoulli( ) Symbol für «verteilt wie» «Eperiment» mit zwei Ausgängen: «Erfolg» (X 1) oder «Misserfolg» (X ). Die Erfolgswahrscheinlichkeit sei. Wertebereich:

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Nachholklausur zur Vorlesung Schätzen und Testen I. 04. April Bitte ausfüllen und unterschreiben!!!

Nachholklausur zur Vorlesung Schätzen und Testen I. 04. April Bitte ausfüllen und unterschreiben!!! Nachholklausur zur Vorlesung Schätzen und Testen I 04. April 2013 Volker Schmid, Ludwig Bothmann, Julia Sommer Aufgabe 1 2 3 4 5 6 Punkte Note Bitte ausfüllen und unterschreiben!!! Name, Vorname: Matrikelnummer:

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2

Mehr

Teekonsum in den USA (in 1000 Tonnen), Nimmt den Wert 1 an für alle Perioden, Durchschnittlicher Preis des Tees in Periode t (in Tausend $/Tonne).

Teekonsum in den USA (in 1000 Tonnen), Nimmt den Wert 1 an für alle Perioden, Durchschnittlicher Preis des Tees in Periode t (in Tausend $/Tonne). Aufgabe 1 (5 Punkte) Gegeben sei ein lineares Regressionsmodell in der Form. Dabei ist y t = x t1 β 1 + x t β + e t, t = 1,..., 10 (1) y t : x t1 : x t : Teekonsum in den USA (in 1000 Tonnen), Nimmt den

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung. 5 Hypothesentests.

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung. 5 Hypothesentests. 0 Einführung 1 Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Intervallschätzung 5 Hypothesentests 6 Regression Lineare Regressionsmodelle Deskriptive Statistik:

Mehr

Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL)

Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Prof. Dr. P. Embrechts ETH Zürich Sommer 204 Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Schreiben Sie für Aufgabe 2-4 stets alle Zwischenschritte und -rechnungen sowie Begründungen auf. Vereinfachen

Mehr

Mathematische Statistik Aufgaben zum Üben. Schätzer

Mathematische Statistik Aufgaben zum Üben. Schätzer Prof. Dr. Z. Kabluchko Wintersemester 2016/17 Philipp Godland 14. November 2016 Mathematische Statistik Aufgaben zum Üben Keine Abgabe Aufgabe 1 Schätzer Es seien X 1,..., X n unabhängige und identisch

Mehr

Marcel Dettling. GdM 2: LinAlg & Statistik FS 2017 Woche 11. Winterthur, 10. Mai Institut für Datenanalyse und Prozessdesign

Marcel Dettling. GdM 2: LinAlg & Statistik FS 2017 Woche 11. Winterthur, 10. Mai Institut für Datenanalyse und Prozessdesign Marcel Dettling Institut für Datenanalyse und Prozessdesign Zürcher Hochschule für Angewandte Wissenschaften marcel.dettling@zhaw.ch http://stat.ethz.ch/~dettling Winterthur, 10. Mai 017 1 Zufallsvariablen:

Mehr

Odds: Verhältnis der Wahrscheinlichkeit, dass ein Ereignis eintritt zur Wahrscheinlichkeit,

Odds: Verhältnis der Wahrscheinlichkeit, dass ein Ereignis eintritt zur Wahrscheinlichkeit, 1 Odds and odds-ratio 1.1 Odds Odds: Verhältnis der Wahrscheinlichkeit, dass ein Ereignis eintritt zur Wahrscheinlichkeit, dass es nicht eintritt. Odds-Ratio: Verhältnis zweier Odds zueinander. OddsRatio

Mehr

Nachklausur Wahrscheinlichkeitstheorie und Inferenz II Sommersemester Oktober 2011

Nachklausur Wahrscheinlichkeitstheorie und Inferenz II Sommersemester Oktober 2011 Nachklausur Wahrscheinlichkeitstheorie und Inferenz II Sommersemester 2011 28. Oktober 2011 Prof. Dr. Torsten Hothorn Institut für Statistik Nachname: Vorname: Matrikelnummer: Anmerkungen: ˆ Schreiben

Mehr

9 Robuste Methoden. 9.1 Einfluss und Robustheit. i (x i x) 2 = i x iy i. c 1 = x 2 + i (x i x) 2. Einfache Regression: 9.1 Einfluss und Robustheit 205

9 Robuste Methoden. 9.1 Einfluss und Robustheit. i (x i x) 2 = i x iy i. c 1 = x 2 + i (x i x) 2. Einfache Regression: 9.1 Einfluss und Robustheit 205 9.1 Einfluss und Robustheit 205 9 Robuste Methoden 9.1 Einfluss und Robustheit a Sensitivität. Eine Beobachtung hinzufügen. Effekt? Einfache Regression: β = i(x i x)y i i (x i x) 2 = i x iy i β = β+ x,

Mehr

6.6 Poisson-Verteilung

6.6 Poisson-Verteilung 6.6 Poisson-Verteilung Die Poisson-Verteilung ist eine Wahrscheinlichkeitsverteilung, die zur Modellierung der Anzahl von zufälligen Vorkommnissen in einem bestimmten räumlichen oder zeitlichen Abschnitt

Mehr

1 Beispiel zur Methode der kleinsten Quadrate

1 Beispiel zur Methode der kleinsten Quadrate 1 Beispiel zur Methode der kleinsten Quadrate 1.1 Daten des Beispiels t x y x*y x 2 ŷ ˆɛ ˆɛ 2 1 1 3 3 1 2 1 1 2 2 3 6 4 3.5-0.5 0.25 3 3 4 12 9 5-1 1 4 4 6 24 16 6.5-0.5 0.25 5 5 9 45 25 8 1 1 Σ 15 25

Mehr

Beispiel 6 (Einige Aufgaben zur Gleichverteilung)

Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Aufgabe (Anwendung der Chebyshev-Ungleichung) Sei X eine Zufallsvariable mit E(X) = µ und var(x) = σ a) Schätzen Sie die Wahrscheinlichkeit dafür, daß

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Analyse und Modellierung von Daten von Prof. Dr. Rainer Schlittgen Universität Hamburg 12., korrigierte Auflage Oldenbourg Verlag München Inhaltsverzeichnis 1 Statistische Daten

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungen stetiger Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Musterlösung zur Klausur im Fach Fortgeschrittene Statistik am Gesamtpunktzahl: 60

Musterlösung zur Klausur im Fach Fortgeschrittene Statistik am Gesamtpunktzahl: 60 WESTFÄLISCHE WILHELMS - UNIVERSITÄT MÜNSTER Wirtschaftswissenschaftliche Faktultät Prof. Dr. Bernd Wilfling Professur für VWL, insbesondere Empirische Wirtschaftsforschung Musterlösung zur Klausur im Fach

Mehr

2 Klassische statistische Verfahren unter Normalverteilungs-Annahme

2 Klassische statistische Verfahren unter Normalverteilungs-Annahme 7 Klassische statistische Verfahren unter Normalverteilungs-Annahme. χ s, t s, F r,s -Verteilung a) N,..., N s uiv N (0, ) Verteilung von Y := N +... + N s heißt Chi-Quadrat-Verteilung mit s Freiheitsgraden

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 6 Genzwertsätze Einführung 1 Wahrscheinlichkeit: Definition und Interpretation

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Musterlösung der Klausur vom 29. Juli 2003

Musterlösung der Klausur vom 29. Juli 2003 Statistik für Bioinformatiker SoSe 2003 Rainer Spang Musterlösung der Klausur vom 29. Juli 2003 Aufgabe 1. 10 Definieren Sie die folgenden statistischen Begriffe in einem Satz oder in einer Formel: 1.

Mehr

How To Find Out If A Ball Is In An Urn

How To Find Out If A Ball Is In An Urn Prof. Dr. P. Embrechts ETH Zürich Sommer 2012 Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Schreiben Sie für Aufgabe 2-4 stets alle Zwischenschritte und -rechnungen sowie Begründungen auf. Aufgabe

Mehr

Frequentisten und Bayesianer. Volker Tresp

Frequentisten und Bayesianer. Volker Tresp Frequentisten und Bayesianer Volker Tresp 1 Frequentisten 2 Die W-Verteilung eines Datenmusters Nehmen wir an, dass die wahre Abhängigkeit linear ist, wir jedoch nur verrauschte Daten zur Verfügung haben

Mehr

Bachelorprüfung: Statistik (1 Stunde)

Bachelorprüfung: Statistik (1 Stunde) Prof. H.R. Künsch D-BIOL, D-CHAB Winter 2010 Bachelorprüfung: Statistik (1 Stunde) Bemerkungen: Es sind alle mitgebrachten schriftlichen Hilfsmittel und der Taschenrechner erlaubt. Natels sind auszuschalten!

Mehr

X =, y In welcher Annahme unterscheidet sich die einfache KQ Methode von der ML Methode?

X =, y In welcher Annahme unterscheidet sich die einfache KQ Methode von der ML Methode? Aufgabe 1 (25 Punkte) Zur Schätzung der Produktionsfunktion des Unternehmens WV wird ein lineares Regressionsmodell der Form angenommen. Dabei ist y t = β 1 + x t2 β 2 + e t, t = 1,..., T (1) y t : x t2

Mehr

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell Kapitel 8 Einfache Regression Josef Leydold c 2006 Mathematische Methoden VIII Einfache Regression 1 / 21 Lernziele Lineares Regressionsmodell Anpassen des linearen Regressionsmodells, OLS Eigenschaften

Mehr