Seminar Numerik 1. Seminar Numerik 1. Ulrike Leffler. Mathematisches Institut der Universität Leipzig. 13. und 15. April 2016

Größe: px
Ab Seite anzeigen:

Download "Seminar Numerik 1. Seminar Numerik 1. Ulrike Leffler. Mathematisches Institut der Universität Leipzig. 13. und 15. April 2016"

Transkript

1 Seminar Numerik 1 Ulrike Leffler Mathematisches Institut der Universität Leipzig 13. und 15. April 2016

2

3 Aufgaben sollen in Gruppen von 3 bis 4 Studenten bearbeitet werden Lösungen sowie zusätzliche Aufgaben werden in den Übungen besprochen bzw. bearbeitet 50% der Punkte sind für die Zulassung zur Klausur hinreichend Quellcode sollte in C, C++, Java oder Fortran geschrieben werden und ist gut zu kommentieren! Programmausgabe und Quellcode ausdrucken und an die Papierhausaufgaben heften! Bitte an die die wissenschaftliche Notation der Ausgabe denken!

4

5 Material und Informationen zur Vorlesung findet man auf der Homepage von Prof. Kunkel: kunkel/

6 Material und Informationen zur Vorlesung findet man auf der Homepage von Prof. Kunkel: kunkel/ Material und Informationen zur Übung findet man auf meiner Homepage: leffler/

7 Material und Informationen zur Vorlesung findet man auf der Homepage von Prof. Kunkel: kunkel/ Material und Informationen zur Übung findet man auf meiner Homepage: leffler/ Übungsaufgaben befinden sich auf der Homepage von Prof. Kunkel und dem Übungsaufgabenserver. Fragen/Probleme und Anregungen zu den Übungen bitte an: oder Sprechzeiten: nach Vereinbarung! Zimmer A-326

8 Klausur

9 Klausur Klausurtermin Dienstag von 9-11 Uhr im HS 7 Erlaubte Hilfsmittel sind beliebig viele Bücher, Skripte und eigene Aufzeichnungen sowie ein nichtprogrammierbarer Taschenrechner. Man beachte, daß Taschenrechner mit (numerischer) Differentiations- bzw. Integrationsfunktion als programmierbar gelten. Andere elektronische Geräte wie etwa Smartphones sind grundsätzlich nicht erlaubt.

10 Literatur

11 Literatur Stoer/Bulirsch: Numerische Mathematik 1; Springer. Deufelhard/Hohmann: Numerische Mathematik I; Walter de Gruyter.

12 Einleitung-Fehleranalyse Fehleranalyse

13 Einleitung-Fehleranalyse Fehleranalyse wichtigste Aufgabe der numerischen Mathematik ist die Beurteilung der Genauigkeit eines Rechenergebnisses es gibt im wesentlichen drei verschiedene Arten von Fehlern: Fehler in den Eingangsdaten (z.b. Messwerte) Rundungsfehler Approximationsfehler (Methode liefert meist nicht die Lösung eines Problems P sondern die eines Problems P, welches P approximiert.) Quelle: Stoer/Bulirsch: Numerische Mathematik 1; Springer.

14 Einleitung-Fehleranalyse Beispiele Approximationsfehler Sei P das Problem der Berechnung der Zahl e mittels der unendlichen Reihe e = ! + 1 2! + 1 3! + P entspricht dann der Summation von endlich vielen Reihengliedern Abbrechfehler P erhält man häufig durch Diskretisierung von P Integrale werden durch endliche Summen approximiert Differentialquotienten durch Differenzenquotienten Diskretisierungsfehler Quelle: Stoer/Bulirsch: Numerische Mathematik 1; Springer.

15 Numerische Effekte Numerische Effekte Auslöschung entsteht bei Subtraktion von nahezu gleichgroßen Werten. Aufgabe 1 Gegeben sind die beiden Terme x 2 + x x und x x 2 + x + x 1 Man zeige, dass die beiden Terme gleichwertig sind!

16 Numerische Effekte Numerische Effekte Auslöschung entsteht bei Subtraktion von nahezu gleichgroßen Werten. Aufgabe 1 Gegeben sind die beiden Terme x 2 + x x und 1 Man zeige, dass die beiden Terme gleichwertig sind! x x 2 + x + x 2 Man berechne mit dem Taschenrechner den Wert der Terme für die Argumente x = 10, x = 10 8, x = 10 18

17 Numerische Effekte Numerische Effekte Auslöschung entsteht bei Subtraktion von nahezu gleichgroßen Werten. Aufgabe 1 Gegeben sind die beiden Terme x 2 + x x und 1 Man zeige, dass die beiden Terme gleichwertig sind! x x 2 + x + x 2 Man berechne mit dem Taschenrechner den Wert der Terme für die Argumente x = 10, x = 10 8, x = Was kann man feststellen?

18 Numerische Effekte Numerische Effekte Lösung x x 2 + x x x x 2 + x + x 10 0, , , 5 0, , 0 0, 5 Fazit: Es ist zu erkennen, dass bei der Berechnung von analytisch äquivalenten Ausdrücken, unterschiedliche Ergebnisse auftreten können.

19 Numerische Effekte Numerische Effekte Beispiel Gegeben sind die beiden Terme 1 x ( 1 x) und x exp (ln(x)) Welchen exakten Wert haben beide Terme? In einem Rechner können die Werte für x = 10, 10 8, wie folgt berechnet sein: x 1 x ( ) 1 x x exp (ln(x)) 10 5, , , , , ,

20 Numerische Effekte Numerische Effekte Fazit: Ausdrücke, welche eigentlich Null sein müssten, sind bei der numerischen Berechnung fast nie genau Null. Meist liegen sie nur in einer Umgebung von Null. Dies ist bei Abbruchtests zu beachten!

21 Computerarithmetik Zahldarstellung zu deiner Basis Satz: Sei b N \ {1}. Jedes x R besitzt eine Darstellung x = ± d i b r i, i=1 mit d i {0,..., b 1} Bemerkung: Alternativ kann ein x R auch in der Form x = v m b e v ±1, m = i=1 d ib r e i v - Vorzeichen, b - Basis, m - Mantisse, e Z - Exponent dargestellt werden. Wählt man e = r so gilt m [0, 1]. Wählt man [ im ] Fall x 0 außerdem 1 r derart, dass d 1 0 ist, so gilt sogar m b, 1. Dies entspricht der normalisierten Darstellung von x.

22 Computerarithmetik Normalisierte Fließkommazahlen Definition: Die auf einem Rechner verfügbaren Zahlen (Maschinenzahlen) seien gegeben durch M b,l = {± l d i b r i d i {0,..., b 1}, d 1 0, r Z} {0} R i=1 wobei b N \ {1} und l N. Man nennt M b,l die Menge der normalisierten Fließkommazahlen zur Basis b mit Mantissenlänge l.

23 Computerarithmetik Fließkommarealisierung

24 Computerarithmetik Fließkommarealisierung Man kann bei den Grundrechenarten nicht erwarten, dass die Verknüpfung zweier Maschinenzahlen wieder eine Maschinenzahl ist. Als Modell verwenden wir deshalb für die Grundrechenarten folgende Fließkommarealisierungen: x y = fl(x + y), x y = fl(x y), x y = fl(x y), x y = fl(x/y), entsprechend für sogenannte Standardfunktionen f (x) = fl(f(x)), etwa mit f {sqrt, exp, log, sin, cos, arctan,... }

25 Wiederholung Rechnerarithmetik Wiederholung Aufgabe5 In der Arithmetik von M 10,3 berechne man den folgenden Wert: y = (x 1 x 2 + x 3 x 4 )(x 5 x 6 ) wobei x 1 = 0, 234; x 2 = 0, 341; x 3 = 0, 123; x 4 = 0, 143; x 5 = 0, 157; x 6 = 0, 888 sind.

26 Wiederholung Rechnerarithmetik Wiederholung Aufgabe5 In der Arithmetik von M 10,3 berechne man den folgenden Wert: y = (x 1 x 2 + x 3 x 4 )(x 5 x 6 ) wobei x 1 = 0, 234; x 2 = 0, 341; x 3 = 0, 123; x 4 = 0, 143; x 5 = 0, 157; x 6 = 0, 888 sind. Weitere Aufgaben in der Übung!

Numerische Mathematik I: Grundlagen

Numerische Mathematik I: Grundlagen Numerische Mathematik I: Grundlagen 09.10.2017 Inhalt der Lehrveranstaltung Inhaltlich sollen Sie in der Lehrveranstaltung Numerische Mathematik I insbesondere vertraut gemacht werden mit der Numerik linearer

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 19 Fehlerbetrachtung R. Steuding

Mehr

3 Numerisches Rechnen

3 Numerisches Rechnen E Luik: Numerisches Rechnen 65 3 Numerisches Rechnen 31 Zahlen und ihre Darstellung Grundlage der Analysis bilden die reellen Zahlen Wir sind heute daran gewöhnt, eine reelle Zahl im Dezimalsystem als

Mehr

Numerik für Ingenieure I Wintersemester 2008

Numerik für Ingenieure I Wintersemester 2008 1 / 34 Numerik für Ingenieure I Wintersemester 2008 J. Michael Fried Lehrstuhl Angewandte Mathematik III 7.1.2009 2 / 34 Technisches Vorlesungswebsite: http://www.am.uni-erlangen.de/am3/de/lehre/ws08/numing1/

Mehr

Werkstatt Multiplikation Posten: Rundung im Quadrat. Informationsblatt für die Lehrkraft. Rundung im Quadrat

Werkstatt Multiplikation Posten: Rundung im Quadrat. Informationsblatt für die Lehrkraft. Rundung im Quadrat Informationsblatt für die Lehrkraft Rundung im Quadrat Informationsblatt für die Lehrkraft Thema: Schultyp: Vorkenntnisse: Bearbeitungsdauer: Numerische Grenzen des Computers Mittelschule, technische Berufsschule,

Mehr

1. Rechnerzahlen, Kondition, Stabilität

1. Rechnerzahlen, Kondition, Stabilität 1. Rechnerzahlen, Kondition, Stabilität 1 1.1. Rechnerzahlen 2 1.2. Kondition 3 1.3. Stabilität 1. Rechnerzahlen, Kondition, Stabilität 1 / 18 1.1. Rechnerzahlen allgemeine Zahlendarstellung zur Basis

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 20 Wiederholung: Fehlerbetrachtung.

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 1 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 2010 Prof. Dr. Klaus Höllig (IMNG)

Mehr

Numerik I Einführung in die Numerik

Numerik I Einführung in die Numerik Numerik I Einführung in die Numerik M. Gutting 18. Oktober 2016 Termine Termine Vorlesung: dienstags von 12:15 Uhr bis 13:45 Uhr in ENC-D 201 und freitags von 14:15 Uhr bis 15:45 Uhr in ENC-D 223, Übung:

Mehr

bekannt Analog reduzieren wir die Randwerte im 2d-System. Man erhält dann eine Blocktridia-

bekannt Analog reduzieren wir die Randwerte im 2d-System. Man erhält dann eine Blocktridia- 3.. Jetzt: Eliminiere 1. und 2. wie folgt u 2 + 2u 1 = h 2 f 1 + α }{{} bekannt Nun: Au = b mit A R n,n, b R n, u R n und A hat die Gestalt 2 1 1 2 1 A =......... =: tridiag( 1, 2, 1)...... 1 1 2 Analog

Mehr

Rundungsfehler-Problematik bei Gleitpunktzahlen

Rundungsfehler-Problematik bei Gleitpunktzahlen Rundungsfehler-Problematik bei Gleitpunktzahlen 1 Rechnerzahlen 2 Die Rundung 3 Fehlerverstärkung bei der Addition Rundungsfehler-Problematik 1 1. Rechnerzahlen allgemeine Zahlendarstellung zur Basis b

Mehr

Numerik für Informatiker, Elektrotechniker und Naturfreunde von Michael Lehn

Numerik für Informatiker, Elektrotechniker und Naturfreunde von Michael Lehn Numerik für Informatiker, Elektrotechniker und Naturfreunde von Michael Lehn Verfasst von Patrick Schneider E-Mail: Patrick.Schneider@uni-ulm.de Universität Ulm Institut für Numerische Mathematik Sommersemester

Mehr

Kapitel 1: Fehleranalyse, Kondition, Stabilität

Kapitel 1: Fehleranalyse, Kondition, Stabilität Vorlesung Höhere Mathematik: Numerik (für Ingenieure) Kapitel 1: Fehleranalyse, Kondition, Stabilität Jun.-Prof. Dr. Stephan Trenn AG Technomathematik, TU Kaiserslautern Sommersemester 2015 HM: Numerik

Mehr

1. Rechnerarithmetik und. Rundungsfehler

1. Rechnerarithmetik und. Rundungsfehler 1. Rechnerarithmetik und Rundungsfehler 1 Rundung (1) Die natürlichen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk, L. Kronecker Ohne Zahlendarstellung auf einem Rechner wiederholen

Mehr

0 = x 2 + px + q (1) lösen. Die Lösungen können wir leicht mit Hilfe quadratischer Ergänzung konstruieren

0 = x 2 + px + q (1) lösen. Die Lösungen können wir leicht mit Hilfe quadratischer Ergänzung konstruieren Ergänzung zum Kapitel: Numerische Fehler und Grenzen Als Ausgangspunkt der Diskussion betrachten wir ein einfaches Problem: wir möchten eine quadratische Gleichung der Form 0 = x 2 + px + q (1) lösen.

Mehr

Algorithmen & Programmierung. Reelle Zahlen in C (1) Darstellung reeller Zahlen

Algorithmen & Programmierung. Reelle Zahlen in C (1) Darstellung reeller Zahlen Algorithmen & Programmierung Reelle Zahlen in C (1) Darstellung reeller Zahlen Reelle Zahlen in C Datentyp für reelle Zahlen Eine Möglichkeit, Berechnungen mit reellen Zahlen in C durchzuführen, ist die

Mehr

Rechnet mein Taschenrechner richtig?

Rechnet mein Taschenrechner richtig? Rechnet mein Taschenrechner richtig? René Lamour Humboldt-Universität zu Berlin Institut für Mathematik Lange Nacht der Wissenschaften 2011 Unser Institutsgebäude c 2010 WISTA-MANAGEMENT GMBH www.adlershof.de

Mehr

Numerik gewöhnlicher Differentialgleichungen Wintersemester 2014/15. Kapitel 0

Numerik gewöhnlicher Differentialgleichungen Wintersemester 2014/15. Kapitel 0 Numerik gewöhnlicher Differentialgleichungen Wintersemester 2014/15 Kapitel 0 Jun.-Prof. Dr. Thorsten Raasch Johannes Gutenberg-Universität Mainz Institut für Mathematik 29. Oktober 2015 Numerik was ist

Mehr

Der Satz von Taylor. Kapitel 7

Der Satz von Taylor. Kapitel 7 Kapitel 7 Der Satz von Taylor Wir haben bereits die Darstellung verschiedener Funktionen, wie der Exponentialfunktion, der Cosinus- oder Sinus-Funktion, durch unendliche Reihen kennen gelernt. In diesem

Mehr

Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik

Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik Axel Arnold Institut für Computerphysik Universität Stuttgart Wintersemester 2010/11 Wie rechnet ein Computer? Ein Mikroprozessor ist ein

Mehr

Numerik für Informatiker

Numerik für Informatiker Numerik für Informatiker Lars Grüne Lehrstuhl für Angewandte Mathematik Mathematisches Institut Universität Bayreuth 95440 Bayreuth lars.gruene@uni-bayreuth.de www.math.uni-bayreuth.de/ lgruene/ Karl Worthmann

Mehr

Algorithmische Mathematik und Programmieren

Algorithmische Mathematik und Programmieren Algorithmische Mathematik und Programmieren Martin Lanser Universität zu Köln WS 2016/2017 Organisatorisches M. Lanser (UzK) Alg. Math. und Programmieren WS 2016/2017 1 Ablauf der Vorlesung und der Übungen

Mehr

Grundlagen der Numerischen Mathematik Sommersemester Kapitel 0. Jun.-Prof. Dr. Thorsten Raasch (JGU Mainz) 23. April 2014

Grundlagen der Numerischen Mathematik Sommersemester Kapitel 0. Jun.-Prof. Dr. Thorsten Raasch (JGU Mainz) 23. April 2014 Grundlagen der Numerischen Mathematik Sommersemester 2014 Kapitel 0 Jun.-Prof. Dr. Thorsten Raasch Johannes Gutenberg-Universität Mainz Institut für Mathematik 23. April 2014 Numerik Was ist das? Was ist

Mehr

Computer-orientierte Mathematik

Computer-orientierte Mathematik Computer-orientierte Mathematik 3. Vorlesung - Christof Schuette 11.11.16 Memo: Rationale und reelle Zahlen Rationale Zahlen: Rationale Zahlen als Brüche ganzer Zahlen. q-adische Brüche, periodische q-adische

Mehr

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 14

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 14 Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark 03.02.2019 Dr. Markus Lange Analysis 1 Aufgabenzettel 14 Dieser Zettel wird in der letzten Übung des Semesters am 08.02.2019 besprochen Aufgabe

Mehr

, 2017S Übungstermin: Di.,

, 2017S Übungstermin: Di., VU Technische Grundlagen der Informatik Übung 1: Zahlendarstellungen, Numerik 183.579, 2017S Übungstermin: Di., 14.03.2017 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen

Mehr

2 Zahldarstellungen und Fehleranalyse *

2 Zahldarstellungen und Fehleranalyse * 5 2 Zahldarstellungen und Fehleranalyse * Im Rahmen der angewandten Mathematik wird, und das sollte nicht wirklich überraschen, der Computer als eines der zentralen Hilfsmittel eingesetzt und ist bei anspruchsvollen

Mehr

Mathematik I Herbstsemester 2018 Kapitel 5: Integralrechnung

Mathematik I Herbstsemester 2018 Kapitel 5: Integralrechnung Mathematik I Herbstsemester 208 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas / 70 5. Integralrechnung Grundbegriffe Das bestimmte Integral als Flächeninhalt Der Fundamentalsatz Partielle

Mehr

Kombinatorik. Dr. Lucia Draque Penso. Universität Ulm. Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 26

Kombinatorik. Dr. Lucia Draque Penso. Universität Ulm. Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 26 Kombinatorik Dr. Lucia Draque Penso Universität Ulm Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 26 Erste Vorlesung Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 2 / 26 Formales Vorlesung:

Mehr

1 Grundlagen der Numerik

1 Grundlagen der Numerik 1 Grundlagen der Numerik 1.1 Gleitpunkt-Arithmetik Es gibt nur endlich viele Zahlen auf dem Computer. Gleitpunktzahl: x = σmb E σ: Vorzeichen B: Basis (feste Zahl >1); M: Mantisse E: Exponent B = 2 : Dualzahl

Mehr

Computergestützte Mathematik zur Linearen Algebra

Computergestützte Mathematik zur Linearen Algebra Computergestützte Mathematik zur Linearen Algebra Pivotwahl und Gleitkommaarithmetik Achim Schädle 3. und 20. Dezember 208 Achim Schaedle (HHU) CompLinA 3. und 20. Dezember 208 Instabilitäten bei Gauß-Elimination

Mehr

7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012)

7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Technische Universität München Zentrum Mathematik, M1 Prof. Dr. Boris Vexler Dr. Ira Neitzel Dipl.-Math. Alana Kirchner 7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Diese Auswahl

Mehr

Numerische Mathematik

Numerische Mathematik Michael Knorrenschild Mathematik-Studienhilfen Numerische Mathematik Eine beispielorientierte Einführung 6., aktualisierte und erweiterte Auflage 1.1 Grundbegriffe und Gleitpunktarithmetik 15 second, also

Mehr

Maß- und Integrationstheorie (MA2003)

Maß- und Integrationstheorie (MA2003) Maß- und Integrationstheorie (MA2003) Elisabeth Ullmann Zentrum Mathematik Elisabeth Ullmann (TUM) MA2003 1 / 12 Allgemeines Vorlesung: Montag, 14:00 15:30 Uhr im Interimshörsaal 2 Übungsgruppen: Gruppe

Mehr

Mathematik I Herbstsemester 2018 Kapitel 6: Potenzreihen

Mathematik I Herbstsemester 2018 Kapitel 6: Potenzreihen Mathematik I Herbstsemester 208 Kapitel 6: Potenzreihen Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas / 58 6. Potenzreihen Reihen (Zahlenreihen) Konvergenzkriterien für Reihen Notwendiges

Mehr

Mathematische Werkzeuge für Computergrafik 2016/17. Gleitkommzahlen

Mathematische Werkzeuge für Computergrafik 2016/17. Gleitkommzahlen Mathematische Werkzeuge für Computergrafik 2016/17 Gleitkommzahlen 1 Grundlagen 1 Da im Computer nur endliche Ressourcen zur Verfügung stehen, können reelle Zahlen in vielen Fällen nicht exakt dargestellt

Mehr

Computergrundlagen Zahlensysteme

Computergrundlagen Zahlensysteme Computergrundlagen Zahlensysteme Institut für Computerphysik Universität Stuttgart Wintersemester 2012/13 Wie rechnet ein Computer? Ein Mikroprozessor ist ein Netz von Transistoren, Widerständen und Kondensatoren

Mehr

Wertebereiche, Overflow und Underflow

Wertebereiche, Overflow und Underflow Wertebereiche, Overflow und Underflow s exponent fraction 1 Bit 8 Bits 23 Bits Kleinste darstellbare nicht negative Zahl annähernd 2,0 * 10 38 Größte darstellbare Zahl annähernd 2,0 * 10 38 Was, wenn die

Mehr

GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida

GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida GMA Grundlagen Mathematik und Analysis Reelle Funktionen 3 Christian Cenker Gabriele Uchida Data Analytics and Computing Nullstellen cos log : 0, 0,? 1 Fixpunkte Beispiel 1 Beispiel 2 1 0 0 und 1 1sin,?

Mehr

Mathematik I Herbstsemester 2018 Kapitel 3: Differentialrechnung

Mathematik I Herbstsemester 2018 Kapitel 3: Differentialrechnung Mathematik I Herbstsemester 2018 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 39 3. Differentialrechnung Einführung Ableitung elementarer Funktionen Ableitungsregeln Kettenregel Ableitung

Mehr

Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik

Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik Axel Arnold Institut für Computerphysik Universität Stuttgart Wintersemester 2011/12 Wie rechnet ein Computer? Ein Mikroprozessor ist ein

Mehr

Programmieren in der Computerorientierten Mathematik I

Programmieren in der Computerorientierten Mathematik I Programmieren in der Computerorientierten Mathematik I Einführungsveranstaltung Freie Universität Berlin 20. Oktober 2017 Tobias Kies Angewandte Mathematiker und ihre Fehler reales Problem Modellfehler

Mehr

Helmut Harbrecht Büro Department Mathematik und Informatik Spiegelgasse 1 Universität Basel

Helmut Harbrecht Büro Department Mathematik und Informatik Spiegelgasse 1 Universität Basel Helmut Harbrecht Büro 05.007 Department Mathematik und Informatik Spiegelgasse 1 Universität Basel helmut.harbrecht@unibas.ch Einführung in die Numerik: Vorlesung 10477 (mdl. Examen, 3 KP) Mo 14:15 16:00

Mehr

Darstellung rationaler und reeller Zahlen Vorlesung vom

Darstellung rationaler und reeller Zahlen Vorlesung vom Darstellung rationaler und reeller Zahlen Vorlesung vom 30.10.15 Rationale Zahlen: Rationale Zahlen als Brüche ganzer Zahlen. q-adische Brüche, periodische q-adische Brüche. Beispiele. Satz: Jede rationale

Mehr

Logarithmen und Exponentialgleichungen

Logarithmen und Exponentialgleichungen Logarithmen und Exponentialgleichungen W. Kippels 8. April 2011 Inhaltsverzeichnis 1 Definitionen 4 2 Gesetze 5 3 Logarithmen und Taschenrechner 5 4 Exponentialgleichungen 7 5 Übungsaufgaben zu Exponentialgleichungen

Mehr

2. Mathematische Grundlagen

2. Mathematische Grundlagen 2. Mathematische Grundlagen Erforderliche mathematische Hilfsmittel: Summen und Produkte Exponential- und Logarithmusfunktionen 21 2.1 Endliche Summen und Produkte Betrachte n reelle Zahlen a 1, a 2,...,

Mehr

Rechnet mein Computer richtig?

Rechnet mein Computer richtig? Rechnet mein Computer richtig? René Lamour Humboldt-Universität zu Berlin Tag der Mathematik 5. Mai 2007 Taschenrechner und PCs erlauben (rechnerisch) anspruchsvollere Aufgaben zu stellen. Taschenrechner

Mehr

Der Zahlenformatstandard IEEE 754

Der Zahlenformatstandard IEEE 754 Der Zahlenformatstandard IEEE 754 Single Precision Double Precision Insgesamt 32 Bits s exponent fraction 1 Bit 8 Bits 23 Bits Insgesamt 64 Bits s exponent fraction 1 Bit 11 Bits 52 Bits Bit Aufteilungen

Mehr

(x a) 3 + f (a) 4! x 4 4! Wir werden im Folgenden vor allem Maclaurin-Reihen betrachten, dies alles funktioniert aber auch. f (x) = sin x f (0) = 0

(x a) 3 + f (a) 4! x 4 4! Wir werden im Folgenden vor allem Maclaurin-Reihen betrachten, dies alles funktioniert aber auch. f (x) = sin x f (0) = 0 Taylor-Reihen Einführung Mathematik GLF / 6 Christian Neukirchen Oft können wir bestimmte mathematische Funktionen nicht genau ausrechnen, besonders die trigonometrischen Funktionen wie, cos x, oder die

Mehr

N Bit Darstellung von Gleitkommazahlen

N Bit Darstellung von Gleitkommazahlen N Bit Darstellung von Gleitkommazahlen Normalisierte, wissenschaftliche Darstellung zur Basis 2. Beispiel: Allgemein: Sign and Magnitude Darstellung für beispielsweise 32 Bits: (s=0 für + und s=1 für )

Mehr

Grundlagen Kondition Demo. Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang

Grundlagen Kondition Demo. Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen

Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Wintersemester 2012/201 Zwischentest Teil 1: 1. Was bedeuten die Bezeichnungen O(h) und o(h)? (Definition) (siehe Skript!)

Mehr

3 Rechnerarithmetik und Rundungsfehler

3 Rechnerarithmetik und Rundungsfehler Neuronales Netz (Ein Schicht Modell, linear) Verhalten des Netzes bestimmt durch Gewichte w 1,..., w n Training des Netzes Wähle w 1,..., w n so, dass eine große Zahl von Tests mit vorgegebenen Eingangsdaten

Mehr

, 2014W Übungstermin: Fr.,

, 2014W Übungstermin: Fr., VU Technische Grundlagen der Informatik Übung 1: Zahlendarstellungen, Numerik 183.579, 2014W Übungstermin: Fr., 17.10.2014 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen

Mehr

2 Computerarithmetik 2.1 Gleitkommazahlen

2 Computerarithmetik 2.1 Gleitkommazahlen 2 Computerarithmetik 2.1 Gleitkommazahlen Mathematische Modelle beschreiben Phänomene quantitativ mittels unendlicher Systeme von Zahlen. Beispiele sind die rationalen Zahlen Q (abzählbar unendlich) sowie

Mehr

Der Taylorsche Satz Herleitung und Anwendungen

Der Taylorsche Satz Herleitung und Anwendungen Der Taylorsche Satz Herleitung und Anwendungen Joachim Schneider Juni 2004 Zusammenfassung Es wird ein enfacher Beweis des Taylorsche Satz über die lokale Approximierbarkeit hinreichend glatter Funktionen

Mehr

Besonderheiten des Numerischen Rechnens

Besonderheiten des Numerischen Rechnens Kapitel 2 Besonderheiten des Numerischen Rechnens 2.1 Zahlendarstellung Jede reelle Zahl x 0 lässt sich folgendermaßen darstellen: x = ± ( α m 10 m + α m 1 10 m 1 + α m 2 10 m 2 +... ) mit m Z, α i {0,

Mehr

Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 3. Übung

Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 3. Übung TU Bergakademie Freiberg Vorl. Frau Prof. Dr. Swanhild Bernstein Übung Dipl.-Math. Daniel Lorenz Freiberg, 25. Oktober 2016 Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 3. Übung Aufgabe

Mehr

Computerarithmetik (6a)

Computerarithmetik (6a) Computerarithmetik (6a) Weitere Nachteile: erfordert separates Subtrahierwerk erfordert zusätzliche Logik, um zu entscheiden, welches Vorzeichen das Ergebnis der Operation hat 2. Die Komplement - Darstellung

Mehr

Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 3. Übung

Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 3. Übung TU Bergakademie Freiberg Vorl. Frau Prof. Dr. Swanhild Bernstein Übung Dipl.-Math. Daniel Lorenz Freiberg, WS 2017/18 Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 3. Übung Aufgabe

Mehr

Nummer Seite Bemerkungen

Nummer Seite Bemerkungen Zahlenmengen A. Zahlenmengen A.1 Einführung siehe Frommenwiler Kapitel 1.1.1 ab Seite 8! A.2 Übungen, Frommenwiler Lösen Sie die folgenden Aufgaben: Nummer Seite Bemerkungen 3 8 4 9 A.3 Doppelstrich-Buchstaben

Mehr

Übung Praktische Informatik II

Übung Praktische Informatik II Übung Praktische Informatik II FSS 2009 Benjamin Guthier Lehrstuhl für Praktische Informatik IV Universität Mannheim guthier@pi4.informatik.uni-mannheim.de 06.03.09 2-1 Heutige große Übung Allgemeines

Mehr

Übung Programmieren - Zahlendarstellung, SSH, SCP, Shellskripte -

Übung Programmieren - Zahlendarstellung, SSH, SCP, Shellskripte - Übung Programmieren - Zahlendarstellung, SSH, SCP, Shellskripte - Sebastian Ebers Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/users/ebers Zahlendarstellung 201010? 16 2010

Mehr

Computergestützte Mathematik zur Linearen Algebra

Computergestützte Mathematik zur Linearen Algebra Computergestützte Mathematik zur Linearen Algebra Erste Schritte am Rechner Christiane Helzel Übungsleiter: Pawel Buchmüller Tutoren: Valdrin Bajrami, Janka Heyer, Niclas Janssen, David Kerkmann, Tran

Mehr

Logarithmen und Exponentialgleichungen

Logarithmen und Exponentialgleichungen Logarithmen und Exponentialgleichungen W. Kippels 27. Oktober 2018 Inhaltsverzeichnis 1 Vorwort 4 2 Definitionen 5 3 Gesetze 6 4 Logarithmen und Taschenrechner 6 5 Exponentialgleichungen 8 6 Übungsaufgaben

Mehr

Vorkurs Mathematik-Physik, Teil 2 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 2 c 2016 A. Kersch Differentialrechnung. Definition Vorkurs Mathematik-Physik, Teil c 06 A. Kersch Geometrische Interpretation Die Ableitung einer Funktion f() an einer Stelle = 0 ist über den Grenzwert des Differenzenquotienten

Mehr

, 2015S Übungstermin: Mi.,

, 2015S Übungstermin: Mi., VU Grundlagen digitaler Systeme Übung 1: Zahlendarstellungen, Numerik 183.580, 2015S Übungstermin: Mi., 18.03.2015 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen Hilfsmittel

Mehr

D - 2 Gleitkommadarstellung und -arithmetik

D - 2 Gleitkommadarstellung und -arithmetik Numerik im Überblick Was ist, was will Numerik Numerische Grundaufgaben und ihre Lösbarkeit Warnung Alles wird beliebig viel schwieriger wenn einige Variablen ganzzahlig sein müssen und / oder die Lösung

Mehr

Remarks on Floating Points

Remarks on Floating Points Remarks on Floating Points Prof. Dr. Jian-Jia Chen Department of Computer Science, Chair 2 TU Dortmund University, Germany October 3, 208 (based on the slides from Sedgewick and Wayne from University of

Mehr

Übungsklausur Höhere Mathematik I für die Fachrichtung Physik

Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT) Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 6..3 Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((3++5) Punkte)

Mehr

8 Dezimalzahlen und Fehlerfortpflanzung

8 Dezimalzahlen und Fehlerfortpflanzung 7 Dezimalzahlen und Fehlerfortpflanzung 29 8 Dezimalzahlen und Fehlerfortpflanzung Lernziele: Konzepte: Dezimalzahlen und Runden Methoden: spezielle Umrechungen Kompetenzen: Einschätzen von Fehlerfortpflanzungen

Mehr

IEEE 754 Encoding. Wie stellt man im IEEE 754 Format eigentlich die 0 dar!? Double Precision (Bias=1023)

IEEE 754 Encoding. Wie stellt man im IEEE 754 Format eigentlich die 0 dar!? Double Precision (Bias=1023) IEEE 754 Encoding Wie stellt man im IEEE 754 Format eigentlich die 0 dar!? ( 1) S * (1 + Fraction) * 2 (Exponent Bias) Single Precision (Bias=127) Double Precision (Bias=1023) Dargestelltes Objekt Exponent

Mehr

Computerorientiertes Problemlösen

Computerorientiertes Problemlösen Computerorientiertes Problemlösen 23. 27. September 2013 Dr. Robert Strehl WS 2013-2014 Organisatorisches 23.09. 27.09. Zeit Mo Di Mi Do Fr 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 Vorlesung hier

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 2007 8. Vorlesung Inhalt Gleitkomma-Darstellung Normalisierte Darstellung Denormalisierte Darstellung Rechnerarchitekturen Von Neumann-Architektur Harvard-Architektur Rechenwerk (ALU)

Mehr

Die Zahl ist: (z 2, z 1, z 0 ) (z ) : 7 = 0 Rest z 2

Die Zahl ist: (z 2, z 1, z 0 ) (z ) : 7 = 0 Rest z 2 Übungen zur Vorlesung Technische Informatik I, SS Hauck / Guenkova-Luy / Prager / Chen Übungsblatt 4 Rechnerarithmetik Aufgabe : a) Bestimmen Sie die Darstellung der Zahl 3 zur Basis 7. 3 = 7 (Sehen Sie

Mehr

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Es gibt 5 Punkte pro Teilaufgabe, also insgesamt 85 Punkte. Die Klausureinsicht findet am Montag, den 5..8 ab : Uhr im H3 statt. Aufgabe. (a) Lösen Sie

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 4 Wintersemester 2017/18 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Teil

Mehr

5. Numerische Differentiation. und Integration

5. Numerische Differentiation. und Integration 5. Numerische Differentiation und Integration 1 Numerische Differentiation Problemstellung: Gegeben ist eine differenzierbare Funktion f : [a,b] R und x (a,b). Gesucht sind Näherungen für die Ableitungen

Mehr

INGENIEURMATHEMATIK. 8. Reihen. Sommersemester Prof. Dr. Gunar Matthies

INGENIEURMATHEMATIK. 8. Reihen. Sommersemester Prof. Dr. Gunar Matthies Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik INGENIEURMATHEMATIK 8. Reihen Prof. Dr. Gunar Matthies Sommersemester 2016 G. Matthies Ingenieurmathematik

Mehr

Grundzüge der Informatik Tutorium Gruppe 6

Grundzüge der Informatik Tutorium Gruppe 6 Grundzüge der Informatik Tutorium Gruppe 6 Inhalt Einführung Numerik Fest- und Termin 5 07.2.2006 Apfelthaler Kathrin Test-Beispiel e0225369@student.tuwien.ac.at Numerik Festpunkt-Darstellung Berechnung

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 4 Wintersemester 2018/19 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2018 Steven Köhler Wintersemester 2018/19 Inhaltsverzeichnis Teil 1 Teil

Mehr

1 Zahlenmengen und einige mathematische Symbole

1 Zahlenmengen und einige mathematische Symbole 1 Zahlenmengen und einige mathematische Symbole Inhalt 1.1 Vorbemerkung................................................... 3 1.2 Zahlenmengen................................................... 4 1.3 Summenzeichen..................................................

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 4 Wintersemester 018/19 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de c 018 Steven Köhler Wintersemester 018/19 Inhaltsverzeichnis Teil 1 Teil Teil

Mehr

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15 Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 14/15 Prof. Dr Jian-Jia Chen Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund lars.hildebrand@tu-.de http://ls1-www.cs.tu-.de Übersicht

Mehr

Fehlerfortpflanzung. Fehler bei Fließkomma-Arithmetik. Addition x ` y ` z. Fehlerfortpflanzung. Analyse des Relativen Fehlers

Fehlerfortpflanzung. Fehler bei Fließkomma-Arithmetik. Addition x ` y ` z. Fehlerfortpflanzung. Analyse des Relativen Fehlers Numerisches Programmieren (IN0019) Frank R. Schmidt. Kondition und Stabilität Winter Semester 016/017 Fließkommazahlen (Wdh.) Eine Fließkommazahl benutzt die folgende Zahlendarstellung Fließkomma-Arithmetik

Mehr

Numerik 1. Ch. Helzel. Vorlesung: Mi. + Do. 10:30-12:15

Numerik 1. Ch. Helzel. Vorlesung: Mi. + Do. 10:30-12:15 Numerik 1 Ch. Helzel Vorlesung: Mi. + Do. 10:30-12:15 Organisatorisches Mitarbeiter: David Kerkmann und Marina Fischer (Übungen), Felix Lieder (Organisatorisches), Andreas Troll (Programmierübungen) Organisatorisches

Mehr

Unter den endlich vielen Maschinenzahlen gibt es zwangsläufig eine größte und eine kleinste:

Unter den endlich vielen Maschinenzahlen gibt es zwangsläufig eine größte und eine kleinste: 1.1 Grundbegriffe und Gleitpunktarithmetik 11 Aufgaben 1.4 Bestimmen Sie alle dualen 3-stelligen Gleitpunktzahlen mit einstelligem Exponenten sowie ihren dezimalen Wert. Hinweis: Sie sollten 9 finden.

Mehr

Numerische Methoden. Thomas Huckle Stefan Schneider. Eine Einführung für Informatiker, Naturwissenschaftler, Ingenieure und Mathematiker.

Numerische Methoden. Thomas Huckle Stefan Schneider. Eine Einführung für Informatiker, Naturwissenschaftler, Ingenieure und Mathematiker. Thomas Huckle Stefan Schneider Numerische Methoden Eine Einführung für Informatiker, Naturwissenschaftler, Ingenieure und Mathematiker 2. Auflage Mit 103 Abbildungen und 9 Tabellen 4Q Springer Inhaltsverzeichnis

Mehr

Münchner Volkshochschule. Planung. Tag 02

Münchner Volkshochschule. Planung. Tag 02 Planung Tag 02 Prof.Dr. Nils Mahnke Mathematischer Vorkurs Folie: 45 Mengenlehre VII Mengenoperationen: 1) Vereinigungsmenge: A B { x x A x B} 2) Schnittmenge: A 3) Differenzmenge: B { x x A x B} A \ B

Mehr

Meromorphe Funktionen

Meromorphe Funktionen Kapitel Meromorphe Funktionen Der Satz von Mittag-Leffler Zur Erinnerung: Die holomorphe Funktion f habe in z 0 C eine isolierte Singularität. Liegt eine Polstelle vor, so gibt es eine offene Umgebung

Mehr

Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17

Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17 1/37 0. Organisatorisches 2/37 Übung Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17 Dr. Udo Lorz TU Bergakademie Freiberg Fakultät für Mathematik und Informatik Links zur Vorlesung Website

Mehr