Remarks on Floating Points

Größe: px
Ab Seite anzeigen:

Download "Remarks on Floating Points"

Transkript

1 Remarks on Floating Points Prof. Dr. Jian-Jia Chen Department of Computer Science, Chair 2 TU Dortmund University, Germany October 3, 208 (based on the slides from Sedgewick and Wayne from University of Princeton) Prof. Dr. Chen (LS 2, TU Dortmund) / 25

2 Floating Point Hinweis: Die meisten reellen Zahlen können nicht exakt dargestellt werden, z.b. π oder 0. Rundungsfehler entstehen aus nicht intuitivem Verhalten. Beispiel aus der Finanzwelt: Die Gebühren eines Telefonanrufes (50 Cent) sollen um 9% erhöht werden. Kaufmännisches Runden Prof. Dr. Chen (LS 2, TU Dortmund) 2 / 25

3 Floating Point Hinweis: Die meisten reellen Zahlen können nicht exakt dargestellt werden, z.b. π oder 0. Rundungsfehler entstehen aus nicht intuitivem Verhalten. Prof. Dr. Chen (LS 2, TU Dortmund) 3 / 25

4 Auslöschung Gegeben: Sei die Funktion f (x) = cos x x 2 Gesucht: Die grafische Darstellung von f (x) für die Werte x Exakte Darstellung Prof. Dr. Chen (LS 2, TU Dortmund) 4 / 25

5 Auslöschung Gegeben: Sei die Funktion f (x) = cos x x 2 Gesucht: Die grafische Darstellung von f (x) für die Werte x Darstellung nach Standard IEEE 754 Prof. Dr. Chen (LS 2, TU Dortmund) 5 / 25

6 Auslöschung Beispiel: Evaluierung von fl(x) für x = Math.cos(x) = Math.cos(x) = Math.cos(x) x x = Unter Auslöschung (engl. cancellation) versteht man in der Numerik den Verlust an Genauigkeit bei der Subtraktion fast gleich großer Gleitkommazahlen. Quelle: [Wolfgang Dahmen, Arnold Reusken: Numerik für Ingenieure und Naturwissenschaftler. 2. Auflage. Springer-Verlag, Berlin 2008, ISBN , S. 4] Prof. Dr. Chen (LS 2, TU Dortmund) 6 / 25

7 Berühmt-berüchtigte Softwarefehler Ariane 5 Rakete, 04. Juni 996 Ein Projekt der europäische Weltraumorganisation ESA (0 Jahre Entwicklung, ca $) explodiert direkt nach dem Start, wegen einer 64-bit float zu 6-bit signed int Konvertierung. Aktien Handel in Vancouver (Kanada), November 983 Im Januar 982 wurde der Index mit einem Wert von 000 initialisiert, und bei jedem Handel (ca mal pro Tag) bis auf drei Stellen hinter dem Komma abgeschnitten. Nach 22 Monaten entstand ein truncation error von mehr als 44%. Prof. Dr. Chen (LS 2, TU Dortmund) 7 / 25

8 Lineare Gleichungssysteme (LGS) a x + b y + c z = d a 2 x + b 2 y + c 2 z = d 2 a 3 x + b 3 y + c 3 z = d 3 a b c d A = a 2 b 2 c 2, b = d 2 a 3 b 3 c 3 d 3 Matrixform: Finde x, sodass Ax = b Grundlegende Probleme der Natur- und Ingenieurswissenschaften: Chemisches Gleichgewicht Lineare und nicht lineare Optimierung Kirchhoffsche Regeln Hookesches Gesetz Numerische Lösungen für Differenzialgleichungen... Prof. Dr. Chen (LS 2, TU Dortmund) 8 / 25

9 Dreiecksmatrix Für eine obere Dreiecksmatrix gilt: a ij = 0 for i > j 2x 0 + 4x 2x 2 = 2 0x 0 + x + x 2 = 4 0x 0 + 0x + 2x 2 = 24 Rückwärtseinsetzen: Gleichung 2: x 2 = 24 2 = 2 Gleichung : x = 4 x 2 = 2 Gleichung 0: x 0 = 2 4x +2x 2 2 = Prof. Dr. Chen (LS 2, TU Dortmund) 9 / 25

10 Gaußsches Eliminationsverfahren 0x 0 + x + x 2 = 4 2x 0 + 4x 2 2x 2 = 2 0x 0 + 3x 2 + 5x 2 = 36 Tausche Reihe0 mit Reihe 2x 0 + 4x 2 2x 2 = 2 0x 0 + x + x 2 = 4 0x 0 + 3x 2 + 5x 2 = 36 Reihe3 (Reihe2 3) 2x 0 + 4x 2 2x 2 = 2 0x 0 + x + x 2 = 4 0x 0 + 0x 2 + 2x 2 = 24 Prof. Dr. Chen (LS 2, TU Dortmund) 0 / 25

11 Gaußsches Eliminationsverfahren: Vorwärtseinsetzen Arithmetischer Operationen nutzen, um eine obere Dreiecksmatrix zu erzeugen. Pivotisierung: Einträge unter dem Pivotelement a pp Nullen. Prof. Dr. Chen (LS 2, TU Dortmund) / 25

12 Gaußsches Eliminationsverfahren: Vorwärtseinsetzen Arithmetischer Operationen nutzen, um eine obere Dreiecksmatrix zu erzeugen. Pivotisierung: Einträge unter dem Pivotelement a pp Nullen. Prof. Dr. Chen (LS 2, TU Dortmund) 2 / 25

13 Gaußsches Eliminationsverfahren: Beispiel Prof. Dr. Chen (LS 2, TU Dortmund) 3 / 25

14 Gaußsches Eliminationsverfahren: Beispiel Prof. Dr. Chen (LS 2, TU Dortmund) 4 / 25

15 Gaußsches Eliminationsverfahren: Beispiel Prof. Dr. Chen (LS 2, TU Dortmund) 5 / 25

16 Gaußsches Eliminationsverfahren: Beispiel Prof. Dr. Chen (LS 2, TU Dortmund) 6 / 25

17 Gaußsches Eliminationsverfahren: Beispiel Prof. Dr. Chen (LS 2, TU Dortmund) 7 / 25

18 Gaußsches Eliminationsverfahren: Teilpivotisierung Hinweis: Der Code schlägt fehl, wenn das Pivotelement a pp = 0. Prof. Dr. Chen (LS 2, TU Dortmund) 8 / 25

19 Gaußsches Eliminationsverfahren: Teilpivotisierung Teilpivotisierung: Tausche Reihe p mit der Reihe, welche den größten Eintrag in Spalte p entlang der Reihen i unter der Diagonalen hat. Frage: Was passiert, wenn Pivotelement a pp = 0 während der Teilpivotisierung? Prof. Dr. Chen (LS 2, TU Dortmund) 9 / 25

20 Gaußsches Eliminationsverfahren: Teilpivotisierung Teilpivotisierung: Tausche Reihe p mit der Reihe, welche den größten Eintrag in Spalte p entlang der Reihen i unter der Diagonalen hat. Frage: Was passiert, wenn Pivotelement a pp = 0 während der Teilpivotisierung? Antwort: Das Gleichungssystem hat keine oder unendliche viele Lösungen. Prof. Dr. Chen (LS 2, TU Dortmund) 9 / 25

21 Stabilität Stabilität: Algorithmus fl(x) um f (x) zu berechnen ist numerisch stabil, wenn fl(x) f (x + ɛ) für einige geringe Störungen ɛ. Beispiel : Numerisch instabiler weg zur Berechnung von f (x) = cos x x 2. fl(. 0 8 ) = (eigentlich 2 ) Hinweis: Numerisch stabile Gleichung von f (x) = 2 sin2 ( x 2 ) x 2 Prof. Dr. Chen (LS 2, TU Dortmund) 20 / 25

22 Stabilität Stabilität: Algorithmus fl(x) um f (x) zu berechnen ist numerisch stabil, wenn fl(x) f (x + ɛ) für einige geringe Störungen ɛ. Beispiel 2: Gaußsches Eliminationsverfahren ohne Teilpivotierung kann fehlschlagen. Theorem: Teilpivotierung verbessert die numerische stabilität. Prof. Dr. Chen (LS 2, TU Dortmund) 2 / 25

23 Schlecht konditionierte Probleme Konditionierung: Ein Problem ist gut konditioniert, wenn f (x) f (x + ɛ) für alle geringen Störeinflüsse ɛ. Beispiel : arccos() and tan() Funktionen. arccos( ) , tan(.57078) arccos( ) , tan(.57079) Folgerung: Die folgende Gleichung, um die Großkreisentfernung zwischen (x, y ) and (x 2, y 2 ), ist ungenau für benachbarte Punkte! d = 60 arccos(sin x sin x 2 + cos x cos x 2 cos(y y 2 )) Prof. Dr. Chen (LS 2, TU Dortmund) 22 / 25

24 Schlecht konditionierte Probleme Konditionierung: Ein Problem ist gut konditioniert, wenn f (x) f (x + ɛ) für alle geringen Störeinflüsse ɛ. Beispiel 2: Hilbert-Matrix. Kleine Störungen in H n machen die Matrix singulär. H 2 x = b kann nicht durch die Benutzung von floating points gelöst werden. 2 H n = n. n+ 3 n 4 n+ 5 n n+2 2n Konditionszahl: Die Konditionszahl stellt ein Maß für die Abhängigkeit zwischen der Lösung eines Problems und der Störung der Eingangsdaten dar; sie beschreibt den Faktor, um den der Eingangsfehler im ungünstigsten Fall verstärkt wird. Prof. Dr. Chen (LS 2, TU Dortmund) 23 / 25

25 Fazit Präzision ist von Stabilität sowie Kondition abhängig! Gefährlich: Anwendung eines instabilen Algorithmus auf ein gut konditioniertes Problem. Gefährlich: Anwendung eines stabilen Algorithmus auf ein schlecht konditioniertes Problem. Sicher: Anwendung eines stabilen Algorithmus auf ein gut konditioniertes Problem. Numerische Analyse ist die Kunst bzw. Wissenschaft einen numerisch stabilen Algorithmus für ein gut konditioniertes Problem zu entwerfen. Prof. Dr. Chen (LS 2, TU Dortmund) 24 / 25

26 Fazit Merke: Manche Algorithmen sind nicht geeignet für floating-point Berechnungen. 2 Floating-point Berechnungen sind ungeeignet für manche Probleme. Prof. Dr. Chen (LS 2, TU Dortmund) 25 / 25

4. Großübung. Lösung linearer Gleichungssysteme

4. Großübung. Lösung linearer Gleichungssysteme 4. Großübung Lösung linearer Gleichungssysteme Gesucht x, x, x 3, x 4 R, sodass gilt. mit A R 4 4, x R 4, b R 4 x x + 3x 3 + x 4 = 5 6x 3x 7x x 4 = 5 4x + 4x + 5x 3 5x 4 = 3 8x + x + x 3 + x 4 = 8 3 x

Mehr

Computergestützte Mathematik zur Linearen Algebra

Computergestützte Mathematik zur Linearen Algebra Computergestützte Mathematik zur Linearen Algebra Pivotwahl und Gleitkommaarithmetik Achim Schädle 3. und 20. Dezember 208 Achim Schaedle (HHU) CompLinA 3. und 20. Dezember 208 Instabilitäten bei Gauß-Elimination

Mehr

Numerische Verfahren

Numerische Verfahren Numerische Verfahren 1. Kapitel: Prof. Dr.-Ing. K. Warendorf Hochschule für Angewandte Wissenschaften München Fakultät 03 WS 13/14 Prof. Dr.-Ing. K. Warendorf (Fakultät 03) Numerische Verfahren WS 13/14

Mehr

Erweiterungen der LR-Zerlegung

Erweiterungen der LR-Zerlegung Prof. Thomas Richter 6. Juli 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomas.richter@ovgu.de Material zur Vorlesung Algorithmische Mathematik II am 06.07.2017 Erweiterungen

Mehr

Lineare Gleichungssysteme, LR-Zerlegung

Lineare Gleichungssysteme, LR-Zerlegung Prof Thomas Richter 2 Juni 27 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomasrichter@ovgude Material zur Vorlesung Algorithmische Mathematik II am 22627 Lineare Gleichungssysteme,

Mehr

Linear Systems and Least Squares

Linear Systems and Least Squares Linear Systems and Least Squares Vortragender: Gelin Jiofack Nguedong Betreuer: Prof. Dr. Joachim Weickert Proseminar: Matrixmethoden in Datenanalyse und Mustererkennung Wintersemester 2015/2016 18. November

Mehr

1. Rechnerzahlen, Kondition, Stabilität

1. Rechnerzahlen, Kondition, Stabilität 1. Rechnerzahlen, Kondition, Stabilität 1 1.1. Rechnerzahlen 2 1.2. Kondition 3 1.3. Stabilität 1. Rechnerzahlen, Kondition, Stabilität 1 / 18 1.1. Rechnerzahlen allgemeine Zahlendarstellung zur Basis

Mehr

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,...

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,... Cramersche Regel Satz 2.4. Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei A j := (a,...,a j,b,a j+,...,a n ) also die Matrix, die entsteht, wenn in A die j-spalte durch den

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme Vorlesungsskript HM-Numerik (SS 4): Kapitel Version: 9 Mai 4 Lineare Gleichungssysteme Gegeben: A R n n mit det(a) b R n Gesucht: x R n mit Ax = b Zeilenäquilibrierung Möchten zunächst die Kondition des

Mehr

1. Rechnerarithmetik und. Rundungsfehler

1. Rechnerarithmetik und. Rundungsfehler 1. Rechnerarithmetik und Rundungsfehler 1 Rundung (1) Die natürlichen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk, L. Kronecker Ohne Zahlendarstellung auf einem Rechner wiederholen

Mehr

Numerische Mathematik I: Grundlagen

Numerische Mathematik I: Grundlagen Numerische Mathematik I: Grundlagen 09.10.2017 Inhalt der Lehrveranstaltung Inhaltlich sollen Sie in der Lehrveranstaltung Numerische Mathematik I insbesondere vertraut gemacht werden mit der Numerik linearer

Mehr

Kapitel 2: Lineare Gleichungssysteme

Kapitel 2: Lineare Gleichungssysteme Vorlesung Höhere Mathematik: Numerik (für Ingenieure) Kapitel 2: Lineare Gleichungssysteme Jun.-Prof. Dr. Stephan Trenn AG Technomathematik, TU Kaiserslautern Sommersemester 205 HM: Numerik (SS 205), Kapitel

Mehr

Lineare Gleichungssystem

Lineare Gleichungssystem Lineare Gleichungssystem 8. Juli 07 Inhaltsverzeichnis Einleitung Der Gauß-Algorithmus 4 3 Lösbarkeit von Gleichungssystemen 6 Einleitung Wir haben uns bisher hauptsächlich mit dem Finden von Nullstellen

Mehr

Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen

Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Wintersemester 2012/201 Zwischentest Teil 1: 1. Was bedeuten die Bezeichnungen O(h) und o(h)? (Definition) (siehe Skript!)

Mehr

Cramersche Regel. Satz 2.26

Cramersche Regel. Satz 2.26 ramersche Regel Satz 6 Es sei A R n n eine quadratische Matrix mit det(a) 6= Für das LGS Ax = b sei A j := (a,,a j, b, a j+,,a n ), also die Matrix, die entsteht, wenn in A die j-te Spalte durch den Vektor

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b

Mehr

Multiplikationen und Divisionen Hauptarbeit des Algorithmus liegt somit in der Berechnung der LR-Zerlegung. (n 1)n(2n 1) 6. = n3 3 n2.

Multiplikationen und Divisionen Hauptarbeit des Algorithmus liegt somit in der Berechnung der LR-Zerlegung. (n 1)n(2n 1) 6. = n3 3 n2. KAPITEL LINEARE GLEICHUNGSSYSTEME 7 Rechenaufwand der LR-Zerlegung: A A : n Divisionen, n 2 Multiplikationen und Additionen A L, R: Also insgesamt n j= j2 + j = n3 3 n 3 Multiplikationen und Divisionen

Mehr

Numerik für Informatiker und Bioinformatiker. Daniel Weiß

Numerik für Informatiker und Bioinformatiker. Daniel Weiß Numerik für Informatiker und Bioinformatiker Daniel Weiß SS 202 Folgende Literatur bildet die Grundlage dieser Vorlesung: P Deuflhard, A Hohmann, Numerische Mathematik, Eine algorithmisch orientierte Einführung,

Mehr

1 Arithmetische Grundlagen

1 Arithmetische Grundlagen Am 4. Juni 1996 explodierte kurz nach dem Start die erste Ariane 5 Rakete durch einen Softwarefehler. Die Horizontalgeschwindigkeit wurde durch eine Gleitkommazahl v [ 10 308, 10 308 ] {0} [10 308,10 308

Mehr

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR LR-Zerlegung bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR Definition 2.17 Unter einer LR-Zerlegung einer Matrix A R n n verstehen wir eine

Mehr

Mathematischer Vorkurs

Mathematischer Vorkurs Mathematischer Vorkurs Dr. Agnes Lamacz Mathematischer Vorkurs TU Dortmund Seite 1 / 170 Vollständige Induktion Kapitel 13 Vollständige Induktion Mathematischer Vorkurs TU Dortmund Seite 117 / 170 Vollständige

Mehr

Kapitel 1: Fehleranalyse, Kondition, Stabilität

Kapitel 1: Fehleranalyse, Kondition, Stabilität Vorlesung Höhere Mathematik: Numerik (für Ingenieure) Kapitel 1: Fehleranalyse, Kondition, Stabilität Jun.-Prof. Dr. Stephan Trenn AG Technomathematik, TU Kaiserslautern Sommersemester 2015 HM: Numerik

Mehr

Formelsammlung Mathematik Grundkurs Inhalt

Formelsammlung Mathematik Grundkurs Inhalt Formelsammlung Mathematik Grundkurs Inhalt Inhalt...1 Trigonometrie Grundlagen... Vektoren...3 Skalarprodukt...4 Geraden...5 Abstandsberechnungen...6 Ebenen...7 Lineare Gleichungssysteme (LGS)...8 Gauß'sches

Mehr

Orthogonale Matrix. Definition 4.19

Orthogonale Matrix. Definition 4.19 Orthogonale Matrix Ausgleichsprobleme sind häufig schlecht konditioniert. Matrix des Normalengleichungssystems kann nahezu singulär sein. Spezielle Matrixzerlegung für höhere numerische Stabilität: QR-Zerlegung

Mehr

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf.

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H11 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

Original - d.h. unvertauschte Reihenfolge

Original - d.h. unvertauschte Reihenfolge NumaMB F6 Verständnisfragen-Teil (3 Punkte) Jeder der 6 Verständnisfragenblöcke besteht aus Verständnisfragen. Werden alle Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es dafür 5

Mehr

LR Zerlegung. Michael Sagraloff

LR Zerlegung. Michael Sagraloff LR Zerlegung Michael Sagraloff Beispiel eines linearen Gleichungssystems in der Ökonomie (Input-Output Analyse Wir nehmen an, dass es 3 Güter G, G, und G 3 gibt Dann entspricht der Eintrag a i,j der sogenannten

Mehr

Mathematische Werkzeuge für Computergrafik 2016/17. Gleitkommzahlen

Mathematische Werkzeuge für Computergrafik 2016/17. Gleitkommzahlen Mathematische Werkzeuge für Computergrafik 2016/17 Gleitkommzahlen 1 Grundlagen 1 Da im Computer nur endliche Ressourcen zur Verfügung stehen, können reelle Zahlen in vielen Fällen nicht exakt dargestellt

Mehr

Lineare Algebra. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching October 6, 017 1 Erinnerung: Lineare Gleichungssysteme LGS Der allgemeine Fall hat m lineare Gleichungen, n

Mehr

Elektrischer Schaltkreis lin. Gleichungssystem

Elektrischer Schaltkreis lin. Gleichungssystem Inhalt Kapitel II: Lineare Gleichungssysteme II Lineare Gleichungssysteme II Gestaffelte Systeme II2 LU-Zerlegung II3 QR-Algorithmen Kapitel II (UebersichtKapI) Beispiel : Elektrischer Schaltkreis I R

Mehr

Inhalt Kapitel II: Lineare Gleichungssysteme

Inhalt Kapitel II: Lineare Gleichungssysteme Inhalt Kapitel II: Lineare Gleichungssysteme II Lineare Gleichungssysteme II1 Gestaffelte Systeme II2 LU-Zerlegung II3 QR-Algorithmen Kapitel II (UebersichtKapI) 1 Beispiel 1: Elektrischer Schaltkreis

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen IGPM RWTH Aachen Institut für Geometrie und Praktische Mathematik Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen

Mehr

Numerik I. Universität zu Köln SS 2009 Mathematisches Institut Prof. Dr. C. Tischendorf Dr. M. Selva,

Numerik I. Universität zu Köln SS 2009 Mathematisches Institut Prof. Dr. C. Tischendorf Dr. M. Selva, Universität zu Köln SS 009 Mathematisches Institut Prof. Dr. C. Tischendorf Dr. M. Selva, mselva@math.uni-koeln.de Numerik I Musterlösung 1. praktische Aufgabe, Bandmatrizen Bei der Diskretisierung von

Mehr

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren 2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren Problem (P2): Löse Ax = b, A R n und b R. 2.1 Satz: Die folgenden Aussagen sind äquivalent: (i) Ax = b ist für jedes b eindeutig lösbar;

Mehr

FERIENKURS ZUM PROPÄDEUTIKUM NUMERIK -

FERIENKURS ZUM PROPÄDEUTIKUM NUMERIK - FERIENKURS ZUM PROPÄDEUTIKUM NUMERIK - LÖSUNGEN MATTHIAS VESTNER. Grundlagen Aufgae.. Bezeichne z 0 zw. z die kleinste Maschinenzahl einfacher Genauigkeit, die noch größer ist als 0 zw.. Gee für die folgenden

Mehr

eps für alle x D. 4. Die Zahl 256 ist in M(2, 4, 6, 6) exakt darstellbar.

eps für alle x D. 4. Die Zahl 256 ist in M(2, 4, 6, 6) exakt darstellbar. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H13 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14.

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14. Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Wintersemester 2009/0 4. Januar 200 Instabilitäten

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Bernhard Hanke Universität Augsburg 17.10.2012 Bernhard Hanke 1 / 9 Wir beschreiben den folgenden Algorithmus zur Lösung linearer Gleichungssysteme, das sogenannte Gaußsche

Mehr

MAV-NUM Applied Numerics Frühlingssemester Serie 4. (a) Berechnen Sie per Hand die LR-Zerlegung der Matrix

MAV-NUM Applied Numerics Frühlingssemester Serie 4. (a) Berechnen Sie per Hand die LR-Zerlegung der Matrix MAV-NUM Applied Numerics Frühlingssemester 08 Dr. Evelyne Knapp ZHAW Winterthur Serie 4 Aufgabe (LR Zerlegung Theorie): (a) Berechnen Sie per Hand die LR-Zerlegung der Matrix 3 0 0 0 (b) Lösen Sie mit

Mehr

Lösung Semesterendprüfung

Lösung Semesterendprüfung MNUM Mathematik: Numerische Methoden Herbstsemester 17 Dr Christoph Kirsch ZHAW Winterthur Aufgabe 1 : Lösung Semesterendprüfung Wir schreiben zuerst die Gleichungen f(x i ; a, a 1, a y i, i 1,,, 1, als

Mehr

Klausur Numerische Mathematik (für Elektrotechniker), Samstag, 19. August 2017

Klausur Numerische Mathematik (für Elektrotechniker), Samstag, 19. August 2017 Verständnisfragen-Teil (5 Punkte) Jeder der 5 Verständnisfragenblöcke besteht aus 5 Verständnisfragen. Werden alle 5 Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block

Mehr

Numerik für Informatiker

Numerik für Informatiker Numerik für Informatiker Lars Grüne Lehrstuhl für Angewandte Mathematik Mathematisches Institut Universität Bayreuth 95440 Bayreuth lars.gruene@uni-bayreuth.de www.math.uni-bayreuth.de/ lgruene/ Karl Worthmann

Mehr

1 Euklidische Approximation

1 Euklidische Approximation 1 Euklidische Approximation Sei V ein reeller euklidischer Vektorraum. Das Skalarprodukt in V wird mit, V und die Norm mit V bezeichnet. V N V sei ein Teilraum der Dimension N < mit Basis {φ n } n=1,...,n.

Mehr

Übungsblatt 8 Musterlösung

Übungsblatt 8 Musterlösung NumLinAlg WS1516 Übungsblatt 8 Musterlösung Lösung 9 (Kondition des Eigenwertsproblems) a) Sei λ i (0) = λ i eine einfache Nullstelle vom Polynom p. Wir lassen jetzt den Index i weg. Wir untersuchen die

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Institut für Geometrie und Praktische Mathematik Multiple-Choice-Test NumaMB F08 (30 Punkte) Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine

Mehr

1 Euklidische Approximation

1 Euklidische Approximation 1 Euklidische Approximation Sei V ein reeller euklidischer Vektorraum. Das Skalarprodukt in V wird mit, V und die Norm mit V bezeichnet. V N V sei ein Teilraum der Dimension N < mit Basis {φ n } n=1,...,n.

Mehr

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Lineare : Einführung Beispiele linearer a) b) c) 2x 1 3x 2 = 1 x 1 +

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SoSe 8 Institut für Informatik Prof. Dr. Thomas Huckle Michael Rippl Fabio Gratl Numerisches Programmieren, Übungen Musterlösung 3. Übungsblatt: Gaußelimination mit Pivotsuche,

Mehr

7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012)

7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Technische Universität München Zentrum Mathematik, M1 Prof. Dr. Boris Vexler Dr. Ira Neitzel Dipl.-Math. Alana Kirchner 7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Diese Auswahl

Mehr

Lösbarkeit linearer Gleichungssysteme

Lösbarkeit linearer Gleichungssysteme Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn

Mehr

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 14: Ferienserie

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 14: Ferienserie D-MAVT Lineare Algebra I HS 7 Prof. Dr. N. Hungerbühler Lösungen Serie 4: Ferienserie . Finden Sie ein Erzeugendensystem des Lösungsraums L R 5 des Systems x + x x 3 + 3x 4 x 5 = 3x x + 4x 3 x 4 + 5x 5

Mehr

Ferienkurs Mathematik für Physiker I Skript Teil 3 ( )

Ferienkurs Mathematik für Physiker I Skript Teil 3 ( ) Ferienkurs Mathematik für Physiker I WS 2016/17 Ferienkurs Mathematik für Physiker I Skript Teil 3 (29032017) 1 Lineare Gleichungssysteme Oft hat man es in der Physik mit unbekannten Größen zu tun, für

Mehr

9 Lineare Gleichungssysteme

9 Lineare Gleichungssysteme 9 Lineare Gleichungssysteme Eine der häufigsten mathematischen Aufgaben ist die Lösung linearer Gleichungssysteme In diesem Abschnitt beschäftigen wir uns zunächst mit Lösbarkeitsbedingungen und mit der

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2016 Lineare Gleichungssysteme Schwerpunkte: Interpretation und Verständnis der Gleichungen Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik unter

Mehr

Der Gaußsche Algorithmus und Varianten Vorlesung vom

Der Gaußsche Algorithmus und Varianten Vorlesung vom Der Gaußsche Algorithmus und Varianten Vorlesung vom 19.1.18 Gaußsche Elimination und Rückwärtssubstitution: Motivation am Beispiel, Verallgemeinerung und Algorithmus. Achtung: Durchführbarkeit nur bei

Mehr

Matrixzerlegungen. 6. Vorlesung Numerische Methoden I. Clemens Brand. 2. April Nachträge und Wiederholung. Links-Rechts- Zerlegung

Matrixzerlegungen. 6. Vorlesung Numerische Methoden I. Clemens Brand. 2. April Nachträge und Wiederholung. Links-Rechts- Zerlegung Matrixzerlegungen. 6. Vorlesung 170004 Numerische Methoden I Clemens Brand QR- QR- 2. April 2009 Gliederung Elimination faktorisiert A = L R QR- QR- QR- QR- Eine Zusammenfassung der Folien 6 14 der letzten

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Verständnisfragen-Teil Institut für Geometrie und Praktische Mathematik (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben).

Mehr

3. Das Gleichungssystem

3. Das Gleichungssystem Lagerung: Damit das Fachwerk Kräfte aufnehmen kann, muss es gelagert werden, Die Lagerung muss so beschaffen sein, dass keine Starrkörperbewegungen oder Mechanismen mehr möglich sind. Die Verschiebungen

Mehr

(d) das zu Grunde liegende Problem gut konditioniert ist.

(d) das zu Grunde liegende Problem gut konditioniert ist. Aufgabe 0: (6 Punkte) Bitte kreuzen Sie die richtige Lösung an. Es ist jeweils genau eine Antwort korrekt. Für jede richtige Antwort erhalten Sie einen Punkt, für jede falsche Antwort wird Ihnen ein Punkt

Mehr

1 Grundlagen der Numerik

1 Grundlagen der Numerik 1 Grundlagen der Numerik 1.1 Gleitpunkt-Arithmetik Es gibt nur endlich viele Zahlen auf dem Computer. Gleitpunktzahl: x = σmb E σ: Vorzeichen B: Basis (feste Zahl >1); M: Mantisse E: Exponent B = 2 : Dualzahl

Mehr

Practical Numerical Training UKNum

Practical Numerical Training UKNum Practical Numerical Training UKNum Lineare Gleichungssysteme Dr. H. Klahr & Dr. C. Mordasini Max Planck Institute für Astronomie, Heidelberg Programm: 1) Einführung 2) Gauss Elimination 3) Gauss mit Pivotisierung

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R. Käppeli L. Herrmann W. Wu Herbstsemester 2016 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 6 Aufgabe 6.1 Berechnen Sie die Determinanten der beiden

Mehr

bekannt Analog reduzieren wir die Randwerte im 2d-System. Man erhält dann eine Blocktridia-

bekannt Analog reduzieren wir die Randwerte im 2d-System. Man erhält dann eine Blocktridia- 3.. Jetzt: Eliminiere 1. und 2. wie folgt u 2 + 2u 1 = h 2 f 1 + α }{{} bekannt Nun: Au = b mit A R n,n, b R n, u R n und A hat die Gestalt 2 1 1 2 1 A =......... =: tridiag( 1, 2, 1)...... 1 1 2 Analog

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 5 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 21 Prof. Dr. Klaus Höllig (IMNG)

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 2016/17

Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 2016/17 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 6/7 837 Aufgabe Punkte): Gegeben sei das lineare Gleichungssystem Ax = b mit A = 6 3 und

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 18.10.2012 Alexander Lytchak 1 / 12 Lineare Gleichungssysteme Wir untersuchen nun allgemeiner Gleichungssysteme der

Mehr

Numerisches Rechnen. (für Informatiker) M. Grepl J. Berger & J.T. Frings. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl J. Berger & J.T. Frings. Institut für Geometrie und Praktische Mathematik RWTH Aachen (für Informatiker) M. Grepl J. Berger & J.T. Frings Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2010/11 Heute Themen: Dahmen & Reusken Kap. 2.2/2.3 und Rundungsfehler evtl.

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg Lineare : Einführung Beispiele linearer a) b) c) 2x 1 3x 2 = 1 x 1 + x 2 =

Mehr

3 Rechnerarithmetik und Rundungsfehler

3 Rechnerarithmetik und Rundungsfehler Neuronales Netz (Ein Schicht Modell, linear) Verhalten des Netzes bestimmt durch Gewichte w 1,..., w n Training des Netzes Wähle w 1,..., w n so, dass eine große Zahl von Tests mit vorgegebenen Eingangsdaten

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SoSe 3 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Jürgen Bräckle Numerisches Programmieren, Übungen Musterlösung 3. Übungsblatt:

Mehr

Lineare Gleichungssysteme und die Methode der kleinsten Quadrate

Lineare Gleichungssysteme und die Methode der kleinsten Quadrate Ludwig-Maximilians-Universität München Department für Computerlinguistik WS 2010/11 Hauptseminar Matrixmethoden in Textmining Dozent: Prof. Dr. Klaus Schulz Referentin: Sarah Söhlemann Lineare Gleichungssysteme

Mehr

A2.3 Lineare Gleichungssysteme

A2.3 Lineare Gleichungssysteme A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen

Mehr

Kapitel 3. Lineare Ausgleichsrechnung. Problem: Löse A x = b, A R m n, b R m, wobei. Rang(A) < Rang([A;b])

Kapitel 3. Lineare Ausgleichsrechnung. Problem: Löse A x = b, A R m n, b R m, wobei. Rang(A) < Rang([A;b]) Kapitel 3. Lineare Ausgleichsrechnung Problem: Löse A x = b, A R m n, b R m, wobei Rang(A) < Rang([A;b]) zugelassen ist, d.h. Ax = b ist nur im weitesten Sinne lösbar. 3.1 Lineares Ausgleichsproblem: Zu

Mehr

Technische Numerik Einführung

Technische Numerik Einführung W I S S E N T E C H N I K L E I D E N S C H A F T Technische Numerik Einführung Peter Gangl Institut für Angewandte Mathematik, Technische Universität Graz c Alle Rechte vorbehalten. Nachdruck und Weitergabe

Mehr

3 Lineare Gleichungen

3 Lineare Gleichungen Aufgabe 3. Man löse die lineare Gleichung a 2 x b 2 a a(b ax) b + b2 a = a, a b nach der Unbekannten x auf und diskutiere die möglichen Fälle. a 2 x b 2 a a(b ax) b + b2 a = a a b a 2 bx b 3 a 2 b + a

Mehr

WH: Arithmetik: Floating Point

WH: Arithmetik: Floating Point WH: Arithmetik: Floating Point Elmar Langetepe University of Bonn Robuste Implementierungen Floating Point Arithmetik Bonn 06 1 Real RAM Robuste Implementierungen Floating Point Arithmetik Bonn 06 2 Real

Mehr

Lineares Gleichungssystem

Lineares Gleichungssystem Lineares Gleichungssystem Ein System von m linearen Gleichungen in n Unbekannten besteht aus einer Menge von algebraischen Relationen der Form n a ij x j = b i, i =,...,m, j= wobei a ij R, i m, j n, die

Mehr

Numerik für Informatiker, Elektrotechniker und Naturfreunde von Michael Lehn

Numerik für Informatiker, Elektrotechniker und Naturfreunde von Michael Lehn Numerik für Informatiker, Elektrotechniker und Naturfreunde von Michael Lehn Verfasst von Patrick Schneider E-Mail: Patrick.Schneider@uni-ulm.de Universität Ulm Institut für Numerische Mathematik Sommersemester

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Versus QR Matrizen mit vollem Rang 27. Mai 2011 Versus QR Inhaltsverzeichnis 1 2 3 Beispiel 4 Beispiel 5 6 Versus QR Kondition Vergleich Beispiel Versus QR Zu finden: Gerade, die den Punkten (0, 6), (1,

Mehr

Lineare Gleichungssysteme: direkte Verfahren

Lineare Gleichungssysteme: direkte Verfahren Sechste Vorlesung, 24. April 2008, Inhalt Lineare Gleichungssysteme: direkte Verfahren Dreiecksmatrizen Gauß-Elimination LR-Zerlegung Anwendungen: Determinante, Inverse 1 Lösungsverfahren für lineare Gleichungssysteme

Mehr

Der Gaußsche Algorithmus

Der Gaußsche Algorithmus Der Gaußsche Algorithmus Der Gaußsche Algorithmus beinhaltet das Vertauschen der Zeilen der erweiterten Koeffizientenmatrix (A, b) und das Additionsverfahren. Ziel ist es, möglichst viele Nullen unterhalb

Mehr

Kapitel 10 Komplexe Zahlen

Kapitel 10 Komplexe Zahlen Komplexe Zahlen Kapitel 10 Komplexe Zahlen Mathematischer Vorkurs TU Dortmund Seite 94 / 112 Komplexe Zahlen Die komplexen Zahlen entstehen aus den reellen Zahlen, indem eine neues Element i (in der Elektrotechnik

Mehr

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016 Verständnisfragen-Teil ( Punkte) Jeder der Verständnisfragenblöcke besteht aus Verständnisfragen. Werden alle Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block Punkte.

Mehr

ÜBUNGSAUFGABEN ZUR NUMERIK 1

ÜBUNGSAUFGABEN ZUR NUMERIK 1 ÜBUNGSAUFGABEN ZUR NUMERIK 1 MARTIN EHLER, WS 2015/16 Teil 1. Matlab,... Aufgabe 1. Arbeiten Sie die Matlab Einführung von Waltraud Huyer durch, die unter dem Link http://www.mat.univie.ac.at/ huyer/matlab.pdf

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr

1 Fehleranalyse, Kondition, Stabilität

1 Fehleranalyse, Kondition, Stabilität Fehleranalyse, Kondition, Stabilität Fehlerquellen: Modellierungsfehler z.b. Ohmsches Gesetz u = Ri berücksichtigt nicht die Temperaturabhängigkeit des Widerstandes Messfehler z.b. digitaler Temperatursensor

Mehr

Brückenkurs Mathematik. Mittwoch Freitag

Brückenkurs Mathematik. Mittwoch Freitag Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs

Mehr

3 Lineare Gleichungssysteme

3 Lineare Gleichungssysteme Lineare Gleichungssysteme Wir wissen bereits, dass ein lineares Gleichungssystem genau dann eindeutig lösbar ist, wenn die zugehörige Matrix regulär ist. In diesem Kapitel lernen wir unterschiedliche Verfahren

Mehr

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2.

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2. MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE 9.8.7 KLAUSUR zur Numerik I mit Lösungen Aufgabe : ( Punkte) [ wahr falsch ]. Die maximale Ordnung einer s-stufigen Quadraturformel ist s. [ ]. Der Clenshaw

Mehr

1.4 Stabilität der Gauß-Elimination

1.4 Stabilität der Gauß-Elimination KAPIEL 1. LINEARE GLEICHUNGSSYSEME 18 1.4 Stabilität der Gauß-Elimination Bezeichne x die exakte Lösung von Ax = b bzw. ˆx die mit einem (zunächst beliebigen Algorithmus berechnete Näherungslösung (inklusive

Mehr

Norm Kondtition. Norm und Kondition. Metin Tapirdamaz

Norm Kondtition. Norm und Kondition. Metin Tapirdamaz 29.04.2011 Inhaltsverzeichnis 1 Vektornorm Eigenschaften von Vektornormen Matrixnorm 2 Vektornorm Eigenschaften von Vektornormen Matrixnorm Vektornorm Eine definiert auf einem Vektorraum eine Längenfunktion.

Mehr

Kapitel 15 Lineare Gleichungssysteme

Kapitel 15 Lineare Gleichungssysteme Kapitel 15 Lineare Gleichungssysteme Kapitel 15 Lineare Gleichungssysteme Mathematischer Vorkurs TU Dortmund Seite 1 / 27 Kapitel 15 Lineare Gleichungssysteme Definition 15.1 (Lineares Gleichungssystem

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München WiSe 7 / 8 Institut für Informatik Univ.-Prof. Dr. Hans-Joachim Bungartz Michael Obersteiner Philipp Samfass Numerisches Programmieren, Übungen Musterlösung 8. Übungsblatt:

Mehr

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Inhaltsverzeichnis Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Auf dieser Seite werden Matrizen und Vektoren fett gedruckt, um sie von Zahlen zu unterscheiden. Betrachtet wird das

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr