Inhalt Kapitel II: Lineare Gleichungssysteme

Größe: px
Ab Seite anzeigen:

Download "Inhalt Kapitel II: Lineare Gleichungssysteme"

Transkript

1 Inhalt Kapitel II: Lineare Gleichungssysteme II Lineare Gleichungssysteme II1 Gestaffelte Systeme II2 LU-Zerlegung II3 QR-Algorithmen Kapitel II (UebersichtKapI) 1

2 Beispiel 1: Elektrischer Schaltkreis I R I R U I 2 R 2 R I 5 5 R I 3 Gegeben: Klemmspannung U, Widerstände R 1,,R 5 Gesucht: Ströme I 1,,I 5 Kapitel II (numalg2) 2

3 Elektrischer Schaltkreis lin Gleichungssystem Kirchhoffsche Gesetze, Ohmsches Gesetz führen auf Ax = b mit A = R 4 R 5 1 1, x = R 1 R 3 I 1 I 2 I 3 I 4 I 5, b = U Kapitel II (numalg3) 3

4 Elektrischer Schaltkreis Gauß Algorithmus A = A () = R 4 R R 1 R 3 A (1) = R 4 R R 1 + R 3 R 1 Kapitel II (numalg4) 4

5 A (2) = R 4 +R R 1 + +R 3 R 1 R A (3) = R 4 +R R 1 R 4 (1+ R 1 + R 3 ) R 3 R 5 (1+ R 1 + R 3 ) A (4) = R 4 +R R 1 R 3 (R 4 +R 5 )(1+ R 1 + R 3 ) Kapitel II (numalg5) 5

6 A = LU mit L = Elektrischer Schaltkreis, Gauß Algorithmus R 1 R R 1 + R 3 R 1 R 4 (1+ R 1 + R 3 ) 1 und U = A (4) = R 4 +R R 1 R 3 (R 4 +R 5 )(1+ R 1 + R 3 ) Kapitel II (numalg6) 6

7 Einfluss von Rundungsfehlern Beispiel: Löse das LGS Ax = b mit Gauß Elimination (Rechengenauigkeit fünf Dezimalstellen) A := ( ) , b := ( ) Richtige Lösung x := Gauß Elimination ohne Pivotsuche: A := ( ) ( ) ( ) x op := ( ) Kapitel II (numalg7) 7

8 Gauß Elimination mit Pivotsuche: ( ) ( ) x op x = ( ) x mp := ( ) 36, x mp x = ( ) 1 Verfahren mit Pivotsuche genauer! Kapitel II (numalg7) 8

9 LU-Zerlegung Pivotsuche Löse das LGS Ax = b mit ( ) ε 1 A :=, b := 1 1 ( ) 1 2 Gauß Elimination ohne Pivotsuche: ( )( ) 1 ε 1 A = L 1 U 1 = 1 ε ε Gauß Elimination mit Pivotsuche: ( )( ) PA = L 2 U 2 = ε 1 1 ε κ(u i ) in Abhängigkeit von ε 1 4 κ(u 1 ) ohne PS κ(u 2 ) mit PS Kondition wird durch Pivotsuche verbessert Kapitel II (numalg8) 9

10 LU-Zerlegung, Pivotsuche Vergleich mit Lösung auf 4 signifikante Stellen: ε x 1 ( exakt ) x 1 (ohne PS) x 1 (mit PS) ohne PS mit PS 1 8 rel Residuum := A x b 1 16 b Verfahren ohne Pivotsuche kann komplett falsche Ergebnisse liefern (Fehler > 1%) Kapitel II (numalg9) 1

11 Einfluss der Bandstruktur auf Fill-In Permutationsmatrizen P erlauben die Vertauschung der Zeilen (bei Multiplikation von links) und der Spalten (bei Multiplikation von rechts) einer Matrix A Für diese gelten P 1 = P Ax = b (PA)x = Pb, AP Px = b (AP )ˆx = b mit ˆx = Px Die Bandstruktur der Matrix A bleibt bei der LU-Zerlegung erhalten, dh außerhalb der Bandstruktur treten keine weiteren Einträge auf, jedoch können die Nulleinträge innerhalb der Bandstruktur verschwinden (Fill-In) Ziel: Finden von geeigneten Permutationen der Matrix A, so dass möglichst geringe Bandbreite entsteht Hierzu gibt es Minimierungsalgorithmen zb von Cuthill-McKee Kapitel II (numalg11) 11

12 LU Zerlegung: Matrix-Struktur Beispiel: 5-Punkte-Stern aus Finite-Differenzen Diskretisierung (lexikographische Numerierung) n = 64 n = 256 n = 124 A nz = 288 nz = 1216 nz = 4992 L nz = 519 nz = 4111 nz = Kapitel II (numalg12) 12

13 LU Zerlegung: Matrix-Struktur Beispiel: 5-Punkte-Stern aus Finite-Differenzen Diskretisierung (Zufalls-Numerierung) n = 64 n = 256 n = 124 A nz = 288 nz = 1216 nz = 4992 L nz = 622 nz = 59 nz = Kapitel II (numalg14) 13

14 LU Zerlegung: Rechenzeit 4 Zufall Lexikographisch n Rechenzeit stark (asymptotisch) von Nummerierung abhängig! Kapitel II (numalg15) 14

15 QR-Zerlegung mit Householder Zerlegung einer Matrix A R n m in A = QR mit orthonormaler Matrix Q R n n, dh Q Q = I, und oberer Rechtecksmatrix R R n m Q = Q n 1 Q n 2 Q 2 Q 1 Für den k-ten Schritt gilt Q k a 1 a n k = Kapitel II (numalg2) 15

16 Householder-Transformation a = ( 8, 15) 15 β = a 1 + a 2 sign(a 1 )e 1 v = 1 ( ) a+ a 2 sign(a 1 )e 1 β 1 a H = (1 6) Q = Id 2 ( vv ) v v ( ) = Qa = (17, ) v Qa Householder-Transformation entspricht Spiegelung an Hyperebene Kapitel II (numalg21) 16

17 QR-Zerlegung mit Givens-Rotationen Zerlegung einer Matrix A R n m in A = QR mit orthonormaler Matrix Q R n n, dh Q Q = I, und oberer Rechtecksmatrix R R n m Q T = Q n 1 Q 2 Q 1, Für die Rotation G (k) (j 1),j, j > k, gilt G (k) (j 1),j Q k = G (k) k,(k+1) G(k) (k+1),(k+2) G(k) (n 1),n a k a j 1 = a j Kapitel II (numalg23a) 17

18 Ü Prof Dr Barbara Wohlmuth Givens-Rotation G k,l G k,l x k x l = Id k l c s Id s c Id x k x l = r c = cos(ϕ) = x k x 2 l +x 2 k ÈË Ö Ö ÔÐ Ñ ÒØ = x k r, Ü Ð s = sin(ϕ) = x l x 2 l +x 2 k = x l r ³ Ö Givens Rotation entspricht Drehung auf die Richtung (,,,1,,,) Kapitel II (numalg23b) 18

19 Q Id QR-Zerlegung mit Givens (Algorithmus) for k=1,,m-1 { for i=m,,k+1 { Bestimme G (k) (i 1),i, so dass ( G (k) (i 1),i A )i,k = A G (k) (i 1),i A Q G (k) (i 1),i Q } } Q Q Kapitel II (numalg23c) 19

20 Vergleich LU mit QR Zerlegung Die Wilkinson-Matrix Löse das LGS Wx = b, W R n n, mit W := 1 1, b := ṇ n 2 n 1, mit LU Zerlegung und mit QR Zerlegung (Exakte Lösung: x = ( 1 n,, 1 n, 1 n )T ) Kapitel II (numalg16) 2

21 Vergleich LU mit QR Zerlegung Konditionszahl und Residuum 1 15 κ(w) κ(u) κ(u) 1 2 n2n κ(w) Residuum LU 1 5 Fehler LU Residuum QR Fehler QR rel Residuum := W x b b Schlechte Kondition der Rückwärtssubstitution (κ(w) κ(u)); QR robuster Kapitel II (numalg17) 21

22 Vergleich LU mit QR Zerlegung Nachiteration LGS Wx = b 1 15 Fehler LU mit Nach It x mittels LU Zerlegung berechnete Lösung Löse W x = b Ax (mit derselben LU-Zerlegung) 1 16 Fehler QR 1 x 1 := x + x Nachiteration verbessert die Robustheit der LU-Zerlegung als Löser Kapitel II (numalg18) 22

23 Residuum vs Fehler Die Hilbert-Matrix Löse das LGS Hx = b, mit H R n n gegeben durch h ij := für i,j = 1,,n und b j := 1 i+j 1 n h ij für j = 1,,n, i=1 mit LU Zerlegung und mit QR Zerlegung Exakte Lösung: x = (1,,1) T Fehler LU Fehler QR Residuum LU Residuum QR Bei schlecht konditionierter Systemmatrix sind beide Verfahren gleich schlecht Kapitel II (numalg19) 23

Elektrischer Schaltkreis lin. Gleichungssystem

Elektrischer Schaltkreis lin. Gleichungssystem Inhalt Kapitel II: Lineare Gleichungssysteme II Lineare Gleichungssysteme II Gestaffelte Systeme II2 LU-Zerlegung II3 QR-Algorithmen Kapitel II (UebersichtKapI) Beispiel : Elektrischer Schaltkreis I R

Mehr

Lineares Gleichungssystem

Lineares Gleichungssystem Lineares Gleichungssystem Ein System von m linearen Gleichungen in n Unbekannten besteht aus einer Menge von algebraischen Relationen der Form n a ij x j = b i, i =,...,m, j= wobei a ij R, i m, j n, die

Mehr

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische lineare Iterationsverfahren

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische lineare Iterationsverfahren III. Iterative Löser III.1 Direkte Löser und ihre Nachteile III.2 Klassische lineare Iterationsverfahren Typeset by FoilTEX 1 Erinnerung: Lineares Gleichungssystem bei FDM Diskretisierung einer linearen

Mehr

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische Iterationsverfahren

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische Iterationsverfahren III. Iterative Löser III.1 Direkte Löser und ihre Nachteile III.2 Klassische Iterationsverfahren Kapitel III (0) 1 Erinnerung: Lineares Gleichungssystem bei FDM Diskretisierung einer linearen PDGL 2. Ordnung

Mehr

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische Iterationsverfahren. III.3 GMRES und CG-Verfahren

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische Iterationsverfahren. III.3 GMRES und CG-Verfahren III. Iterative Löser III.1 Direkte Löser und ihre Nachteile III.2 Klassische Iterationsverfahren III.3 GMRES und CG-Verfahren Kapitel III (0) 1 Erinnerung: Lineares Gleichungssystem bei FDM Diskretisierung

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SoSe 3 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Jürgen Bräckle Numerisches Programmieren, Übungen Musterlösung 3. Übungsblatt:

Mehr

Der Gaußsche Algorithmus und Varianten Vorlesung vom

Der Gaußsche Algorithmus und Varianten Vorlesung vom Der Gaußsche Algorithmus und Varianten Vorlesung vom 17114 Gaußsche Elimination und Rückwärtssubstitution: Motivation am Beispiel, Verallgemeinerung und Algorithmus Achtung: Durchführbarkeit nur bei nichtverschwindenden

Mehr

Numerisches Programmieren

Numerisches Programmieren Informatics V - Scientific Computing Numerisches Programmieren Tutorübung 3 Jürgen Bräckle, Christoph Riesinger 16. Mai 2013 Tutorübung 3, 16. Mai 2013 1 Gauß-Elimination und Pivotsuche LR-Zerlegung QR-Zerlegung

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SoSe 8 Institut für Informatik Prof. Dr. Thomas Huckle Michael Rippl Fabio Gratl Numerisches Programmieren, Übungen Musterlösung 3. Übungsblatt: Gaußelimination mit Pivotsuche,

Mehr

Der Gaußsche Algorithmus und Varianten Vorlesung vom

Der Gaußsche Algorithmus und Varianten Vorlesung vom Der Gaußsche Algorithmus und Varianten Vorlesung vom 15.1.16 Gaußsche Elimination und Rückwärtssubstitution: Motivation am Beispiel, Verallgemeinerung und Algorithmus. Achtung: Durchführbarkeit nur bei

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme Vorlesungsskript HM-Numerik (SS 4): Kapitel Version: 9 Mai 4 Lineare Gleichungssysteme Gegeben: A R n n mit det(a) b R n Gesucht: x R n mit Ax = b Zeilenäquilibrierung Möchten zunächst die Kondition des

Mehr

Kapitel 2: Lineare Gleichungssysteme

Kapitel 2: Lineare Gleichungssysteme Vorlesung Höhere Mathematik: Numerik (für Ingenieure) Kapitel 2: Lineare Gleichungssysteme Jun.-Prof. Dr. Stephan Trenn AG Technomathematik, TU Kaiserslautern Sommersemester 205 HM: Numerik (SS 205), Kapitel

Mehr

Numerik für Informatiker und Bioinformatiker. Daniel Weiß

Numerik für Informatiker und Bioinformatiker. Daniel Weiß Numerik für Informatiker und Bioinformatiker Daniel Weiß SS 202 Folgende Literatur bildet die Grundlage dieser Vorlesung: P Deuflhard, A Hohmann, Numerische Mathematik, Eine algorithmisch orientierte Einführung,

Mehr

Lineare Ausgleichsprobleme

Lineare Ausgleichsprobleme Kapitel Lineare Ausgleichsprobleme Einführung Bemerkung Aufgabenstellung, Motivation Bei linearen Ausgleichsproblemen handeltes sichebenfalls um Bestapproximations Probleme Allerdingsist hier keine Funktion

Mehr

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

Iterative Löser: Einführung

Iterative Löser: Einführung Iterative Löser: Einführung Im vergangenen Semester wurden folgende Löser für LGS betrachtet: LU-Zerlegung (mit und ohne Pivotisierung) QR-Zerlegung (Householder und Givens) Lösung beliebiger, regulärer,

Mehr

Der Gaußsche Algorithmus und Varianten Vorlesung vom

Der Gaußsche Algorithmus und Varianten Vorlesung vom Der Gaußsche Algorithmus und Varianten Vorlesung vom 19.1.18 Gaußsche Elimination und Rückwärtssubstitution: Motivation am Beispiel, Verallgemeinerung und Algorithmus. Achtung: Durchführbarkeit nur bei

Mehr

Lineare Algebra. 10. Übungsstunde. Steven Battilana.

Lineare Algebra. 10. Übungsstunde. Steven Battilana. Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch November 3, 26 Erinnerung Gram-Schmidt Verfahren Sei V ein euklidischer/unitärer Vektorraum mit dim(v ) n < Gegeben: W span{v,...,

Mehr

QR Zerlegung mit Householder Transformationen. Numerische Mathematik1 WS 2011/12

QR Zerlegung mit Householder Transformationen. Numerische Mathematik1 WS 2011/12 QR Zerlegung mit Householder Transformationen Numerische Mathematik1 WS 0/1 Orthogonales Eliminieren /33 Sei x R n ein Vektor x = 0. Ziel: Ein orthogonales H R n;n bestimmen, sodass Hx = kxke 1 ; ein Vielfaches

Mehr

4. Großübung. Lösung linearer Gleichungssysteme

4. Großübung. Lösung linearer Gleichungssysteme 4. Großübung Lösung linearer Gleichungssysteme Gesucht x, x, x 3, x 4 R, sodass gilt. mit A R 4 4, x R 4, b R 4 x x + 3x 3 + x 4 = 5 6x 3x 7x x 4 = 5 4x + 4x + 5x 3 5x 4 = 3 8x + x + x 3 + x 4 = 8 3 x

Mehr

Lineare Gleichungssysteme, LR-Zerlegung

Lineare Gleichungssysteme, LR-Zerlegung Prof Thomas Richter 2 Juni 27 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomasrichter@ovgude Material zur Vorlesung Algorithmische Mathematik II am 22627 Lineare Gleichungssysteme,

Mehr

In diesem Kapitel betrachten wir direkte Verfahren zur Lösung von linearen Gleichungssystemen.

In diesem Kapitel betrachten wir direkte Verfahren zur Lösung von linearen Gleichungssystemen. Kapitel 4 Lineare Gleichungssysteme 4 Problemstellung und Einführung In diesem Kapitel betrachten wir direkte Verfahren zur Lösung von linearen Gleichungssystemen Lineares Gleichungssystem: Gesucht ist

Mehr

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016 Verständnisfragen-Teil ( Punkte) Jeder der Verständnisfragenblöcke besteht aus Verständnisfragen. Werden alle Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block Punkte.

Mehr

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,...

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,... Cramersche Regel Satz 2.4. Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei A j := (a,...,a j,b,a j+,...,a n ) also die Matrix, die entsteht, wenn in A die j-spalte durch den

Mehr

Herbstsemester a b 1. c d. e 0 f B = (iii) e = 0 (iv) ) 2 + ( 1. Das Skalarprodukt des ersten und zweiten Spaltenvektors muss null ergeben:

Herbstsemester a b 1. c d. e 0 f B = (iii) e = 0 (iv) ) 2 + ( 1. Das Skalarprodukt des ersten und zweiten Spaltenvektors muss null ergeben: Dr V Gradinaru D Devaud Herbstsemester 5 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 5 Aufgabe 5 Multiple Choice: Online abzugeben Gegeben sei die orthogonale Matrix

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München WiSe 7 / 8 Institut für Informatik Univ.-Prof. Dr. Hans-Joachim Bungartz Michael Obersteiner Philipp Samfass Numerisches Programmieren, Übungen Musterlösung 8. Übungsblatt:

Mehr

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR LR-Zerlegung bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR Definition 2.17 Unter einer LR-Zerlegung einer Matrix A R n n verstehen wir eine

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 4. Aufgabe 4.1. Dr. V. Gradinaru D. Devaud A. Hiltebrand.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 4. Aufgabe 4.1. Dr. V. Gradinaru D. Devaud A. Hiltebrand. Dr V Gradinaru D Devaud A Hiltebrand Herbstsemester 4 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 4 Aufgabe 4 Multiple Choice: Online abzugeben 4a) Wir betrachten

Mehr

Cramersche Regel. Satz 2.26

Cramersche Regel. Satz 2.26 ramersche Regel Satz 6 Es sei A R n n eine quadratische Matrix mit det(a) 6= Für das LGS Ax = b sei A j := (a,,a j, b, a j+,,a n ), also die Matrix, die entsteht, wenn in A die j-te Spalte durch den Vektor

Mehr

Computergestützte Mathematik zur Linearen Algebra

Computergestützte Mathematik zur Linearen Algebra Computergestützte Mathematik zur Linearen Algebra Pivotwahl und Gleitkommaarithmetik Achim Schädle 3. und 20. Dezember 208 Achim Schaedle (HHU) CompLinA 3. und 20. Dezember 208 Instabilitäten bei Gauß-Elimination

Mehr

Kondition linearer Gleichungssysteme Vorlesung vom

Kondition linearer Gleichungssysteme Vorlesung vom Kondition linearer Gleichungssysteme Vorlesung vom 8.1.16 Konvergenz in normierten Räumen Definition: x (ν) x x x (ν) 0, für ν Satz: Die Konvergenz in R n und R n,n ist äquivalent zur komponentenweise

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme Höhere Ableitungen Interpolationsbedingungen d k Φ dx k (x j) = y (k) j, ( j =,,..., n; k =,,..., c j ) bestimmen das Hermite Interpolationspolynom Φ Π r mit r + = n ( + c j ). j= 2 Lineare Gleichungssysteme

Mehr

Herbstsemester ist es.

Herbstsemester ist es. Dr V Gradinaru K Imeri Herbstsemester 8 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 4 Aufgabe 4 Multiple Choice: Online abzugeben 4a) Gegeben seien: Dann gilt: (i)

Mehr

Diplom VP Informatik / Numerik 2. September 2002

Diplom VP Informatik / Numerik 2. September 2002 Diplom VP Informatik / Numerik. September 00 Aufgabe Gegeben sei das lineare Gleichungssystem A x = b mit 0 4 0 0 0 0 A = 4 0 0 0 0 0 0 0 0 und b = 4 4 8 5. Punkte a Berechnen Sie die Cholesky Zerlegung

Mehr

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b.

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b. NumaMB F14 Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Bewertung: Vier Fragen richtig beantwortet

Mehr

Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV Aufgabe N1 (LR-Zerlegung mit Pivotisierung) Gegeben seien R 3.

Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV Aufgabe N1 (LR-Zerlegung mit Pivotisierung) Gegeben seien R 3. Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV 7.7.6 Aufgabe N (LR-Zerlegung mit Pivotisierung) Gegeben seien 6 8 A = 8 6 R und b = 6 R. a) Berechnen Sie die LR-Zerlegung von A mit Spaltenpivotisierung.

Mehr

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen y1 = a11x1+ a12x2 + a13x3 y2 = a21x1+ a22x2 + a23x3... Koeffizienten a ij i - te Gleichung (Zeile), i

Mehr

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf.

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H11 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

a ij i - te Gleichung (Zeile), i = 1, 2,3,..., m I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen

a ij i - te Gleichung (Zeile), i = 1, 2,3,..., m I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen y 1 = a 11 x 1 + a 12 x 2 + a 13 x3 y 2 = a 21 x 1 + a 22 x 2 + a 23 x3... Koeffizienten a ij i - te Gleichung

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen IGPM RWTH Aachen Institut für Geometrie und Praktische Mathematik Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen

Mehr

3 Lineare Gleichungssysteme

3 Lineare Gleichungssysteme 3 Lineare Gleichungssysteme 3 Fortsetzung des Matrizenkalküls Als erstes beweisen wir einen einfachen Satz über den Rang von Matrizenprodukten Satz 3 (a) Für Matrizen A : Ã l m, B : Ã m n gilt rang AB

Mehr

Rechenaufwand der LR- und LDL T - Zerlegung

Rechenaufwand der LR- und LDL T - Zerlegung 6. Großübung Rechenaufwand der LR- und LDL T - Zerlegung Rückwärtseinsetzen Der Algorithmus kann der Folie 3.0 entnommen werden. Dieser kann in die folgenden Rechenoperationen aufgesplittet werden: Für

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Numerik I. Universität zu Köln SS 2009 Mathematisches Institut Prof. Dr. C. Tischendorf Dr. M. Selva,

Numerik I. Universität zu Köln SS 2009 Mathematisches Institut Prof. Dr. C. Tischendorf Dr. M. Selva, Universität zu Köln SS 009 Mathematisches Institut Prof. Dr. C. Tischendorf Dr. M. Selva, mselva@math.uni-koeln.de Numerik I Musterlösung 1. praktische Aufgabe, Bandmatrizen Bei der Diskretisierung von

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

Numerische Mathematik

Numerische Mathematik Numerische Mathematik Oliver Ernst Professur Numerische Mathematik Sommersemester 2015 Inhalt I 1 Einführung und Begriffe 1.1 Mathematische Modellbildung und numerische Simulation am Beispiel eines Wasserkreislaufs

Mehr

3. Lineare Gleichungssysteme

3. Lineare Gleichungssysteme 3. Lineare Gleichungssysteme 1 3.1. Problemstellung 2 3.2. Direkte Verfahren 3 3.3. Normen und Fehleranalyse 4 3.4. Iterative Verfahren 5 3.5. Konvergenz von linearen Iterationsverfahren 6 3.6. Gradienten-Verfahren

Mehr

Klausur Numerische Mathematik (für Elektrotechniker), Samstag, 19. August 2017

Klausur Numerische Mathematik (für Elektrotechniker), Samstag, 19. August 2017 Verständnisfragen-Teil (5 Punkte) Jeder der 5 Verständnisfragenblöcke besteht aus 5 Verständnisfragen. Werden alle 5 Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block

Mehr

Diplom VP Numerik 27. August 2007

Diplom VP Numerik 27. August 2007 Diplom VP Numerik 27. August 2007 Multiple-Choice-Test 30 Punkte Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine einzige Aussage angekreuzt, gilt diese

Mehr

Erweiterungen der LR-Zerlegung

Erweiterungen der LR-Zerlegung Prof. Thomas Richter 6. Juli 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomas.richter@ovgu.de Material zur Vorlesung Algorithmische Mathematik II am 06.07.2017 Erweiterungen

Mehr

4.4 Orthogonalisierungsverfahren und die QR-Zerlegung

4.4 Orthogonalisierungsverfahren und die QR-Zerlegung 4.4 Orthogonalisierungsverfahren und die QR-Zerlegung Die Zerlegung einer regulären Matrix A R n n in die beiden Dreiecksmatrizen L und R basiert auf der Elimination mit Frobeniusmatrizen, d.h. R = FA,

Mehr

D-INFK Lineare Algebra HS 2018 Özlem Imamoglu Olga Sorkine-Hornung. Musterlösung 5

D-INFK Lineare Algebra HS 2018 Özlem Imamoglu Olga Sorkine-Hornung. Musterlösung 5 D-INFK Lineare Algebra HS 2018 Özlem Imamoglu Olga Sorkine-Hornung Musterlösung 5 1. a) 1 0 0 1 3 5 LR = 0 1 0 2 6 7 0 0 1 3 10 10 1 0 0 1 3 5 = 2 1 0 0 0 3 3 0 1 0 1 5 1 0 0 1 3 5 1 0 0 = 3 1 0 0 1 5,

Mehr

Lineares Gleichungssystem

Lineares Gleichungssystem Lineares Gleichungssystem Ein lineares Gleichungssystem hat die Form a 1,1 x 1 + + a 1,n x n = b 1...... Ax = b a m,1 x 1 + + a m,n x n = b m mit einer Koeffizientenmatrix A = (a i,j ), zu bestimmenden

Mehr

(d) das zu Grunde liegende Problem gut konditioniert ist.

(d) das zu Grunde liegende Problem gut konditioniert ist. Aufgabe 0: (6 Punkte) Bitte kreuzen Sie die richtige Lösung an. Es ist jeweils genau eine Antwort korrekt. Für jede richtige Antwort erhalten Sie einen Punkt, für jede falsche Antwort wird Ihnen ein Punkt

Mehr

Spezielle Matrixformen

Spezielle Matrixformen Definition B57 (Transposition) Eine einfache aber wichtige Operation auf Matrizen ist die Transposition, die aus einer (m n) Matrix A eine (n m) Matrix B = A T macht Hierbei gilt β i j = α j i, so daß

Mehr

Lineare Ausgleichsprobleme. Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte

Lineare Ausgleichsprobleme. Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte Lineare Ausgleichsprobleme Bisher: Lösung linearer GS Ax = b, A R n,n, A regulär, b R n Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte Ax = b mit A R m,n, b R m, m n, rg(a)

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 6. Vorlesung 170004 Numerische Methoden I Clemens Brand 25. März 2010 Nachträge Gliederung Nachträge it Nachträge Wichtige Begriffe Eine Zusammenfassung der Folien 8 16 der letzten

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Institut für Geometrie und Praktische Mathematik Multiple-Choice-Test NumaMB F08 (30 Punkte) Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine

Mehr

Orthogonale Matrix. Definition 4.19

Orthogonale Matrix. Definition 4.19 Orthogonale Matrix Ausgleichsprobleme sind häufig schlecht konditioniert. Matrix des Normalengleichungssystems kann nahezu singulär sein. Spezielle Matrixzerlegung für höhere numerische Stabilität: QR-Zerlegung

Mehr

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

6 Lineare Gleichungssysteme

6 Lineare Gleichungssysteme 6 LINEARE GLEICHUNGSSYSTEME 3 6 Lineare Gleichungssysteme Unter einem linearen Gleichungssystem verstehen wir ein System von Gleichungen α ξ + + α n ξ n = β α m ξ + + α mn ξ n = β m mit Koeffizienten α

Mehr

4 Lineare Ausgleichsrechnung

4 Lineare Ausgleichsrechnung Numerik I 15 4 Lineare Ausgleichsrechnung Die folgende Tabelle zeigt die Bevölkerungsentwicklung in den U.S.A. 19 191 192 193 194 75.995 91.972 15.711 123.23 131.669 195 196 197 198 199 15.697 179.323

Mehr

1 Euklidische Approximation

1 Euklidische Approximation 1 Euklidische Approximation Sei V ein reeller euklidischer Vektorraum. Das Skalarprodukt in V wird mit, V und die Norm mit V bezeichnet. V N V sei ein Teilraum der Dimension N < mit Basis {φ n } n=1,...,n.

Mehr

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren 2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren Problem (P2): Löse Ax = b, A R n und b R. 2.1 Satz: Die folgenden Aussagen sind äquivalent: (i) Ax = b ist für jedes b eindeutig lösbar;

Mehr

Direkte Verfahren für Lineare Gleichungssysteme

Direkte Verfahren für Lineare Gleichungssysteme Kapitel 1 Direkte Verfahren für Lineare Gleichungssysteme 11 Einführung (mündlich) 12 Das Gaußsche Eliminationsverfahren Es sei A IK n n eine invertierbare Matrix und b IK n ein gegebener Vektor Gesucht

Mehr

Lineare Gleichungssystem

Lineare Gleichungssystem Lineare Gleichungssystem 8. Juli 07 Inhaltsverzeichnis Einleitung Der Gauß-Algorithmus 4 3 Lösbarkeit von Gleichungssystemen 6 Einleitung Wir haben uns bisher hauptsächlich mit dem Finden von Nullstellen

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 5 Aufgabe 5.1 Kommutierende Matrizen In der Vorlesung und vergangenen

Mehr

Überbestimmte Gleichungssysteme

Überbestimmte Gleichungssysteme Siebente Vorlesung, 8. Mai 2008, Inhalt Überbestimmte Gleichungssysteme Kleinste Quadrate: einfaches Beispiel, elementare Herleitung Normalengleichungen Transformation mit QR-Zerlegung und SVD Nichtlineare

Mehr

Rückwärts-Einsetzen. Bei einem linearen Gleichungssystem in oberer Dreiecksform, nacheinander bestimmt werden: r n,n x n = b n. = x n = b n /r n,n

Rückwärts-Einsetzen. Bei einem linearen Gleichungssystem in oberer Dreiecksform, nacheinander bestimmt werden: r n,n x n = b n. = x n = b n /r n,n Rückwärts-Einsetzen Bei einem linearen Gleichungssystem in oberer Dreiecksform, r 1,1 r 1,n x 1 b 1..... =., } 0 {{ r n,n } x n b n R mit det R = r 1,1 r n,n 0 können die Unbekannten x n,..., x 1 nacheinander

Mehr

2 Direkte Lösungsverfahren für lineare Gleichungen

2 Direkte Lösungsverfahren für lineare Gleichungen 2 Direkte Lösungsverfahren für lineare Gleichungen (2.1) Sei L R N N eine normierte untere Dreiecksmatrix und b R N. Dann ist L invertierbar und das Lineare Gleichungssystem (LGS) Ly = b ist mit O(N 2

Mehr

Diplom VP Numerik 28. August 2006

Diplom VP Numerik 28. August 2006 Diplom VP Numerik 8. August 6 Multiple-Choice-Test Punkte) Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine einzige Aussage angekreuzt, gilt diese Aufgabe

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2015 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen 8 Such-Algorithmen

Mehr

Numerische Lineare Algebra Spezielle Systeme

Numerische Lineare Algebra Spezielle Systeme Numerische Lineare Algebra Spezielle Systeme Friedrich Solowjow 2. Mai 2012, Bonn 1 / 34 1 Einleitung Übersicht Definitionen 2 3 Datenzugriff Speichertechniken 2 / 34 Übersicht Definitionen Gliederung

Mehr

3 Direkte Verfahren zur Lösung linearer Gleichungssysteme

3 Direkte Verfahren zur Lösung linearer Gleichungssysteme Numerik I 97 3 Direkte Verfahren zur Lösung linearer Gleichungssysteme The simplest model in applied mathematics is a system of linear equations. It is also by far the most important... (Gilbert Strang,

Mehr

Zusammenfassung Numerische Mathematik für Elektrotechniker

Zusammenfassung Numerische Mathematik für Elektrotechniker Zusammenfassung Numerische Mathematik für Elektrotechniker RWTH Aachen, SS 2006, Prof. Dr. W. Dahmen c 2006 by Sebastian Strache, Ralf Wilke Korrekturen bitte an Ralf.Wilke@rwth-aachen.de 27. August 2006

Mehr

Remarks on Floating Points

Remarks on Floating Points Remarks on Floating Points Prof. Dr. Jian-Jia Chen Department of Computer Science, Chair 2 TU Dortmund University, Germany October 3, 208 (based on the slides from Sedgewick and Wayne from University of

Mehr

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching October 2, 207 Erinnerung Definition. Ein Skalarprodukt ist eine Abbildung, : E n E n E, v, w v, w = n k= v

Mehr

3 Lineare Gleichungssysteme

3 Lineare Gleichungssysteme Lineare Gleichungssysteme Wir wissen bereits, dass ein lineares Gleichungssystem genau dann eindeutig lösbar ist, wenn die zugehörige Matrix regulär ist. In diesem Kapitel lernen wir unterschiedliche Verfahren

Mehr

3 Lineare Algebra Vektorräume

3 Lineare Algebra Vektorräume 3 Lineare Algebra Vektorräume (31) Sei K ein Körper Eine kommutative Gruppe V bzgl der Operation + ist ein Vektorraum über K, wenn eine Operation : K V V (λ, v) λv existiert mit i) v,w V λ,µ K: λ (v +

Mehr

Lineare Gleichungssysteme: direkte Verfahren

Lineare Gleichungssysteme: direkte Verfahren Sechste Vorlesung, 24. April 2008, Inhalt Lineare Gleichungssysteme: direkte Verfahren Dreiecksmatrizen Gauß-Elimination LR-Zerlegung Anwendungen: Determinante, Inverse 1 Lösungsverfahren für lineare Gleichungssysteme

Mehr

LR Zerlegung. Michael Sagraloff

LR Zerlegung. Michael Sagraloff LR Zerlegung Michael Sagraloff Beispiel eines linearen Gleichungssystems in der Ökonomie (Input-Output Analyse Wir nehmen an, dass es 3 Güter G, G, und G 3 gibt Dann entspricht der Eintrag a i,j der sogenannten

Mehr

1 Euklidische Approximation

1 Euklidische Approximation 1 Euklidische Approximation Sei V ein reeller euklidischer Vektorraum. Das Skalarprodukt in V wird mit, V und die Norm mit V bezeichnet. V N V sei ein Teilraum der Dimension N < mit Basis {φ n } n=1,...,n.

Mehr

Kapitel 3. Lineare Ausgleichsrechnung. Problem: Löse A x = b, A R m n, b R m, wobei. Rang(A) < Rang([A;b])

Kapitel 3. Lineare Ausgleichsrechnung. Problem: Löse A x = b, A R m n, b R m, wobei. Rang(A) < Rang([A;b]) Kapitel 3. Lineare Ausgleichsrechnung Problem: Löse A x = b, A R m n, b R m, wobei Rang(A) < Rang([A;b]) zugelassen ist, d.h. Ax = b ist nur im weitesten Sinne lösbar. 3.1 Lineares Ausgleichsproblem: Zu

Mehr

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09) Vorlesung Mathematik für Ingenieure Wintersemester 8/9 Kapitel 4: Matrizen, lineare Abbildungen und Gleichungssysteme Volker Kaibel Otto-von-Guericke Universität Magdeburg Version vom 5. November 8 Page-Rank

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Lineare Gleichungssysteme Das System a x + a x +... + a n x n = b a x + a x +... + a n x n = b. +. +... +. =. a m x + a m x +... + a mn x n = b m heißt lineares Gleichungssystem

Mehr

Numerisches Programmieren (IN0019)

Numerisches Programmieren (IN0019) Numerisches Programmieren (IN009) Frank R. Schmidt Winter Semester 06/07 4. QR-Zerlegung................................................................................................. Gauß-Elimination

Mehr

Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt

Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt Übersicht Partielle Differentialgleichungen, Approximation der Lösung Finite Elemente, lineare und höhere Ansatzfunktionen Dünn

Mehr

Lineare Gleichungssysteme und Matrizen

Lineare Gleichungssysteme und Matrizen Kapitel 11 Lineare Gleichungssysteme und Matrizen Ein lineares Gleichungssystem (lgs) mit m linearen Gleichungen in den n Unbekannten x 1, x 2,..., x n hat die Gestalt: Mit a 11 x 1 + a 12 x 2 + a 13 x

Mehr

Lösung Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Lösung Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 06 Dr. Meike Akveld Lösung Serie : Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung. Um zu zeigen, dass es sich bei den gegebenen Vektoren um Basen handelt,

Mehr

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11 D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung Serie 11 1. Wir betrachten das überbestimmte Gleichungssystem Ax = y mit 1 1 1 1 A := 1 1 0 1 0 1, y := 2 3 0 0 1 4 Berechnen Sie die

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2017 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen 8

Mehr

Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011)

Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011) M. Sc. Frank Gimbel Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011) 1 Motivation Ziel ist es, ein gegebenes lineares Gleichungssystem der Form Ax = b (1) mit x, b R n und A R n n zu lösen.

Mehr

Serie 8: Online-Test

Serie 8: Online-Test D-MAVT Lineare Algebra I HS 017 Prof Dr N Hungerbühler Serie 8: Online-Test Einsendeschluss: Freitag, der 4 November um 14:00 Uhr Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen

Mehr

PS Numerische Mathematik für LAK WS 08/09, LV-Nr.: , HS Übungsblatt (bis )

PS Numerische Mathematik für LAK WS 08/09, LV-Nr.: , HS Übungsblatt (bis ) . Übungsblatt (bis 5.0.2008). Aufgabe. Skizzieren Sie die Einheitskugeln K (0,) im R 2 für die Normen, 2 und. 2. Aufgabe. Beweisen Sie x x 2 n x für alle x R n. 3. Aufgabe. Bestimmen Sie die relative Konditionszahl

Mehr

1.4 Stabilität der Gauß-Elimination

1.4 Stabilität der Gauß-Elimination KAPIEL 1. LINEARE GLEICHUNGSSYSEME 18 1.4 Stabilität der Gauß-Elimination Bezeichne x die exakte Lösung von Ax = b bzw. ˆx die mit einem (zunächst beliebigen Algorithmus berechnete Näherungslösung (inklusive

Mehr

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v.

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v. Teil I Lineare Algebra I Vorlesung Sommersemester 2 Olga Holtz MA 378 Sprechstunde Fr 4-6 und nv holtz@mathtu-berlinde Sadegh Jokar MA 373 Sprechstunde, Do 2-4 und nv jokar@mathtu-berlinde Kapitel 4 Der

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Versus QR Matrizen mit vollem Rang 27. Mai 2011 Versus QR Inhaltsverzeichnis 1 2 3 Beispiel 4 Beispiel 5 6 Versus QR Kondition Vergleich Beispiel Versus QR Zu finden: Gerade, die den Punkten (0, 6), (1,

Mehr

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Lineare : Einführung Beispiele linearer a) b) c) 2x 1 3x 2 = 1 x 1 +

Mehr

eps für alle x D. 4. Die Zahl 256 ist in M(2, 4, 6, 6) exakt darstellbar.

eps für alle x D. 4. Die Zahl 256 ist in M(2, 4, 6, 6) exakt darstellbar. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H13 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr