Der Gaußsche Algorithmus und Varianten Vorlesung vom

Größe: px
Ab Seite anzeigen:

Download "Der Gaußsche Algorithmus und Varianten Vorlesung vom"

Transkript

1 Der Gaußsche Algorithmus und Varianten Vorlesung vom Gaußsche Elimination und Rückwärtssubstitution: Motivation am Beispiel, Verallgemeinerung und Algorithmus Achtung: Durchführbarkeit nur bei nichtverschwindenden Pivotelementen! Aufwand des Gaußschen Algorithmus: 1 3 n3 + O(n 2 ) (Aufwandsmaß: Punktoperationen) Gaußsche Elimination, Eliminationsmatrizen G k und LR Zerlegung A = LR Vorteile der LR Zerlegung bei vielen rechten Seiten und gleicher Koeffizientenmatrix Reduktion des Aufwands durch Ausnutzen von Spezialstruktur: Tridiagonalmatrizen: Invarianz der Besetzungsstruktur unter Gaußelimination Keine Elimination der ohnehin vorhandenen Subdiagonalnullen: Aufwand O(n)

2 Problem und Algorithmus Problem: Löse das lineare Gleichungssystem Ax = b Auswertung des Lösungsoperators f(a, b) =A 1 b zu Daten A R n,n, b R n Satz 97 Relative Kondition des Problems κ rel = κ(a) Algorithmus: Zerlegung des Lösungsoperators in Elementaroperationen x = A 1 b = g m g 1 (A, b) Qualitätskriterien: Aufwand und Stabilität

3 Algorithmus: Gaußsche Elimination (Algorithmus 912) for k =1:n 1 do { for i = k +1:n do (falls a (k 1) { } } l ik = a(k 1) ik ; b (k) a (k 1) i for j = k +1:n do { } a (k) ij = a (k 1) ij 0!) = b (k 1) i l ik a (k 1) kj ; l ik b (k 1) k ; a (k) ik =0;

4 Gestaffeltes Gleichungssystem: und Rückwärtssubstitution 12 a (n 1) 1n 0 a (n 1) 22 a (n 1) 2n 0 0 a (n 1) nn a (n 1) 11 a (n 1) Algorithmus 913 (Rückwärtssubstitution) x 1 x 2 x n b (n 1) 1 b (n 1) 2 b (n 1) n x n = 1 a (n 1) b (n 1) n nn for i = n 1:( 1) : 1 do x i = 1 n b (n 1) a (n 1) i ii j=i+1 a (n 1) ij x j

5 Matrix-Schreibweise A (k) =(I G k )A (k 1),A (0) = A, b (k) =(I G k )b (k 1), b (0) = b x = R 1 z, R = A (n 1), z = b (n 1) Eliminationsmatrizen: G k = l k+1,k l n,k 0 0 0, l i,k = a(k 1) ik a (k 1)

6 Numerisches Beispiel gut konditioniertes System: κ (A) =32 A = , b = Ax, x = /7 1/11 1/13 Lösung mit dem Gaußschen Algorithmus: x x x > 10 3 Von 15 gültigen Stellen sind höchstens noch 3 übrig!

7 Stabilität Algorithmus: Zerlegung des Lösungsoperators in Elementaroperationen x = A 1 b = f(a, b) =g m g 1 (A, b) Runden der Elementaroperationen: g i =rd(g i ) Auswertungsfehler: x x x = f(a, b) = g m g 1 (A, b) relative, normweise Stabilität: Die kleinste Zahl σ mit der Eigenschaft x x x σeps + o(eps)

8 Hochauflösendes Stabilitätsanalyse (nur Elimination) for k =1:n 1 do { for i = k +1:n do (falls ã (k 1) { l ik = rd (ã(k 1) ) ik ; b(k) ã (k 1) i for j = k +1:n do } } { } ã (k) ij = rd(ã (k 1) ij 0!) = rd( b (k 1) i rd( l ik ã (k 1) kj )) ; rd( l ik b(k 1) k )) ; ã (k) ik =0;

9 Vereinfachtes Stabilitätsanalyse I Ã (k) = rd((i G k )Ã(k 1) )),A (0) = A, b(k) = rd((i G k )b (k 1) )), b (0) = b x = rd( R 1 z)), R = Ã (n 1), z = b (n 1) Elementaroperationen: g k (B, y) =((I G k )B, (I G k )y), k =1,,n 1, g n (R, z) =R 1 z Vereinfachungen: exakte Eliminationsmatrizen G k exakte Auswertung von (I G k )Ã(k 1) und (I G k ) b (k 1) exakte Auswertung von R 1 z

10 Vereinfachtes Stabilitätsanalyse I Ã (k) =rd((i G k )Ã(k 1) ),A (0) = A, b(k) =rd((i G k )b (k 1) ), b (0) = b x =rd( R 1 z), R = Ã (n 1), z = b (n 1) Satz 919 x x x σ G eps + o(eps), σ G =2κ(A)σ K σ E σ K = n 1 k=1 κ(i G k ), σ E = n 1 i=1 n 1 j=i+1 κ(i G k ),

11 Vereinfachtes Stabilitätsanalyse II A (k) =(I G k )A (k 1),A (0) = A, b (k) =(I G k )b (k 1), b (0) = b x = R 1 z, R = rd(a (n 1) ), z = rd(b (n 1) ) Vereinfachungen: exakte Auswertung des gesamten Eliminationsschritts Satz: Unter der Voraussetzung R R / R < 1/κ (R) gilt x x x 2κ(R)eps + o(eps) Beweis: Satz 97

12 Abschätzung der Kondition von R κ(r) =κ ( n 1 ) (I G n k )A k=1 κ(a) n 1 k=1 κ(i G k )=κ(a)σ K Satz: Es gilt κ(i G k )= I G k (I G k ) 1 = max (1+ l ik ) 2, i=k+1,,n l ik = a(k 1) ik a (k 1) Insbesondere ist κ(i G k )=1 a (k 1) ik =0 i = k +1,,n

13 Numerisches Beispiel gut konditioniertes System: κ (A) =32 A = , b = Ax, x = /7 1/11 1/13 Gauß Elimination: R = x x x > /3, κ (R) > /3

14 Beispiel: Die Wilkinson Matrix W n W n = R n,n κ(w) κ(r) κ (W n ) und κ (R n )

15 Algorithmische Konsequenzen Satz 920: κ(i G k )= I G k (I G k ) 1 = max (1 + l ik ) 2, i=k+1,,n l ik = a(k 1) ik a (k 1) Folgerungen: a (k 1) a (k 1) ik = l ik = a (k 1) a (k 1) ik = l ik = a (k 1) ik a (k 1) a (k 1) ik a (k 1) 0 = κ(i G k) 1 0 = κ(i G k) 1 Stabilität, falls a (k 1) a (k 1) ik

16 Gaußscher Algorithmus mit Spaltenpivotsuche Algorithmus 923 for k =1:n 1 do { k 0 = k for i = k +1:n do { } falls a (k 1) ik > a (k 1) k 0,k, setze k 0 := i Vertausche die k te Zeile mit der k 0 ten Zeile k ter Eliminationsschritt wie in Algorithmus 912 } Folgerung: l ik 1 = κ(i G k ) 4 = κ(r) 4 n 1 κ(a)

17 LR Zerlegung mit Spaltenpivotsuche Satz 925: Die Gaußsche Elimination mit Spaltenpivotsuche liefert eine Zerlegung LR = PA mit unterer Dreiecksmatrix L, oberer Dreiecksmatrix R und einer Permutationsmatrix P PA unterscheidet sich von A also nur durch Vertauschung der Zeilen Beispiel: A = , P = , PA =

18 Numerisches Beispiel gut konditioniertes System: κ (A) =32 A = , b = Ax, x = /7 1/11 1/13 Gaußschen Algorithmus mit Spaltenpivotsuche: R = , κ (R) = x x x < Lösung auf 15 gültigen Stellen!

Stabilitätsanalyse des Gaußsche Algorithmus Vorlesung vom

Stabilitätsanalyse des Gaußsche Algorithmus Vorlesung vom Stabilitätsanalyse des Gaußsche Algorithmus Vorlesung vom 22.1.16 Auswirkung von Auswertungsfehlern: Beispiel und Definition der Stabilität. Stabilitätsanalyse in drei verschiedenen Auflösungen. Einfachster

Mehr

Computerorientierte Mathematik II

Computerorientierte Mathematik II Computerorientierte Mathematik II Vorlesungen: Christoph Wehmeyer, Frank Noé Übungszettel: Christoph Wehmeyer Tutorien: Anna Dittus, Felix Mann, Dominik Otto 1. Anmeldung im KVV und im Campus Management!

Mehr

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR LR-Zerlegung bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR Definition 2.17 Unter einer LR-Zerlegung einer Matrix A R n n verstehen wir eine

Mehr

Vektor und Matrixnormen Vorlesung vom

Vektor und Matrixnormen Vorlesung vom Vektor und Matrixnormen Vorlesung vom 18.12.15 Grundlagen: Matrix Vektor und Matrixprodukt. Lineare Räume. Beispiele. Problem: Berechne die Lösung x von Ax = b zu gegebenem A R n,n und b R n. Ziele: Konditionsanalyse

Mehr

Vektor und Matrixnormen Vorlesung vom

Vektor und Matrixnormen Vorlesung vom Vektor und Matrixnormen Vorlesung vom 20.12.13 Grundlagen: Matrix Vektor und Matrixprodukt. Lineare Räume. Beispiele. Problem: Berechne die Lösung x von Ax = b zu gegebenem A R n,n und b R n. Ziele: Konditionsanalyse

Mehr

Lineare Gleichungssysteme, LR-Zerlegung

Lineare Gleichungssysteme, LR-Zerlegung Prof Thomas Richter 2 Juni 27 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomasrichter@ovgude Material zur Vorlesung Algorithmische Mathematik II am 22627 Lineare Gleichungssysteme,

Mehr

In diesem Kapitel betrachten wir direkte Verfahren zur Lösung von linearen Gleichungssystemen.

In diesem Kapitel betrachten wir direkte Verfahren zur Lösung von linearen Gleichungssystemen. Kapitel 4 Lineare Gleichungssysteme 4 Problemstellung und Einführung In diesem Kapitel betrachten wir direkte Verfahren zur Lösung von linearen Gleichungssystemen Lineares Gleichungssystem: Gesucht ist

Mehr

Direkte Verfahren für Lineare Gleichungssysteme

Direkte Verfahren für Lineare Gleichungssysteme Kapitel 1 Direkte Verfahren für Lineare Gleichungssysteme 11 Einführung (mündlich) 12 Das Gaußsche Eliminationsverfahren Es sei A IK n n eine invertierbare Matrix und b IK n ein gegebener Vektor Gesucht

Mehr

1.4 Stabilität der Gauß-Elimination

1.4 Stabilität der Gauß-Elimination KAPIEL 1. LINEARE GLEICHUNGSSYSEME 18 1.4 Stabilität der Gauß-Elimination Bezeichne x die exakte Lösung von Ax = b bzw. ˆx die mit einem (zunächst beliebigen Algorithmus berechnete Näherungslösung (inklusive

Mehr

Lineare Gleichungssysteme: direkte Verfahren

Lineare Gleichungssysteme: direkte Verfahren Sechste Vorlesung, 24. April 2008, Inhalt Lineare Gleichungssysteme: direkte Verfahren Dreiecksmatrizen Gauß-Elimination LR-Zerlegung Anwendungen: Determinante, Inverse 1 Lösungsverfahren für lineare Gleichungssysteme

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 6. Vorlesung 170004 Numerische Methoden I Clemens Brand 25. März 2010 Nachträge Gliederung Nachträge it Nachträge Wichtige Begriffe Eine Zusammenfassung der Folien 8 16 der letzten

Mehr

1 Matrizenrechnung zweiter Teil

1 Matrizenrechnung zweiter Teil MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten

Mehr

3 Lineare Algebra Vektorräume

3 Lineare Algebra Vektorräume 3 Lineare Algebra Vektorräume (31) Sei K ein Körper Eine kommutative Gruppe V bzgl der Operation + ist ein Vektorraum über K, wenn eine Operation : K V V (λ, v) λv existiert mit i) v,w V λ,µ K: λ (v +

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Beispiel: Feder Masse System festes Ende Feder k 1 Masse m 1 k 2 m 2 k 3 m 3 k 4 festes Ende u 0 = 0 Federkraft y 1 Verschiebung u 1 y 2 u 2 y 3 u 3 y 4 u 4 = 0 Grundlagen der

Mehr

Kapitel 2: Lineare Gleichungssysteme

Kapitel 2: Lineare Gleichungssysteme Vorlesung Höhere Mathematik: Numerik (für Ingenieure) Kapitel 2: Lineare Gleichungssysteme Jun.-Prof. Dr. Stephan Trenn AG Technomathematik, TU Kaiserslautern Sommersemester 205 HM: Numerik (SS 205), Kapitel

Mehr

2 Direkte Lösungsverfahren für lineare Gleichungen

2 Direkte Lösungsverfahren für lineare Gleichungen (2.1) Sei x = (x n ) n=1,...,n R N, A = (a m,n ) m=1,...,m, n=1,...,n R M,N. a) Sei 1 m n N. Dann ist x[m : n] = (x k ) k=m,...,n R 1+n m Teilvektor von x. b) Seien 1 m 1 m 2 M, 1 n 1 n 2 N. Dann ist A[m

Mehr

LR Zerlegung. Michael Sagraloff

LR Zerlegung. Michael Sagraloff LR Zerlegung Michael Sagraloff Beispiel eines linearen Gleichungssystems in der Ökonomie (Input-Output Analyse Wir nehmen an, dass es 3 Güter G, G, und G 3 gibt Dann entspricht der Eintrag a i,j der sogenannten

Mehr

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,...

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,... Cramersche Regel Satz 2.4. Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei A j := (a,...,a j,b,a j+,...,a n ) also die Matrix, die entsteht, wenn in A die j-spalte durch den

Mehr

Lineare Gleichungssysteme und Matrizen

Lineare Gleichungssysteme und Matrizen Kapitel 11 Lineare Gleichungssysteme und Matrizen Ein lineares Gleichungssystem (lgs) mit m linearen Gleichungen in den n Unbekannten x 1, x 2,..., x n hat die Gestalt: Mit a 11 x 1 + a 12 x 2 + a 13 x

Mehr

Cramersche Regel. Satz 2.26

Cramersche Regel. Satz 2.26 ramersche Regel Satz 6 Es sei A R n n eine quadratische Matrix mit det(a) 6= Für das LGS Ax = b sei A j := (a,,a j, b, a j+,,a n ), also die Matrix, die entsteht, wenn in A die j-te Spalte durch den Vektor

Mehr

Multiplikationen und Divisionen Hauptarbeit des Algorithmus liegt somit in der Berechnung der LR-Zerlegung. (n 1)n(2n 1) 6. = n3 3 n2.

Multiplikationen und Divisionen Hauptarbeit des Algorithmus liegt somit in der Berechnung der LR-Zerlegung. (n 1)n(2n 1) 6. = n3 3 n2. KAPITEL LINEARE GLEICHUNGSSYSTEME 7 Rechenaufwand der LR-Zerlegung: A A : n Divisionen, n 2 Multiplikationen und Additionen A L, R: Also insgesamt n j= j2 + j = n3 3 n 3 Multiplikationen und Divisionen

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme Höhere Ableitungen Interpolationsbedingungen d k Φ dx k (x j) = y (k) j, ( j =,,..., n; k =,,..., c j ) bestimmen das Hermite Interpolationspolynom Φ Π r mit r + = n ( + c j ). j= 2 Lineare Gleichungssysteme

Mehr

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel Vorlesung 2 22 bzw 23 Januar 204 Lineares Gleichungssystem a a 2 b b 2 = F a a 2 a 3 b b 2 b 3 c c 2 c 3 = V V =< a, b c > c b a b a F V Seite 70 a x + a 2 x 2 + a 3 x 3 b = 0 < a x + a 2 x 2 + a 3 x 3

Mehr

Lineare Gleichungssysteme und die Methode der kleinsten Quadrate

Lineare Gleichungssysteme und die Methode der kleinsten Quadrate Ludwig-Maximilians-Universität München Department für Computerlinguistik WS 2010/11 Hauptseminar Matrixmethoden in Textmining Dozent: Prof. Dr. Klaus Schulz Referentin: Sarah Söhlemann Lineare Gleichungssysteme

Mehr

Linear Systems and Least Squares

Linear Systems and Least Squares Linear Systems and Least Squares Vortragender: Gelin Jiofack Nguedong Betreuer: Prof. Dr. Joachim Weickert Proseminar: Matrixmethoden in Datenanalyse und Mustererkennung Wintersemester 2015/2016 18. November

Mehr

Numerik I. Universität zu Köln SS 2009 Mathematisches Institut Prof. Dr. C. Tischendorf Dr. M. Selva,

Numerik I. Universität zu Köln SS 2009 Mathematisches Institut Prof. Dr. C. Tischendorf Dr. M. Selva, Universität zu Köln SS 009 Mathematisches Institut Prof. Dr. C. Tischendorf Dr. M. Selva, mselva@math.uni-koeln.de Numerik I Musterlösung 1. praktische Aufgabe, Bandmatrizen Bei der Diskretisierung von

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

2. Direkte Verfahren zur Lösung. linearer Gleichungssysteme

2. Direkte Verfahren zur Lösung. linearer Gleichungssysteme 2. Direkte Verfahren zur Lösung linearer Gleichungssysteme 1 Einleitung (1) Eine zentrale Rolle bei numerischen Berechnungen spielen lineare Gleichungssysteme Es sind die am häufigsten auftretenden numerischen

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SoSe 3 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Jürgen Bräckle Numerisches Programmieren, Übungen Musterlösung 3. Übungsblatt:

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 3 und lineare Gleichungssysteme und

Mehr

Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011)

Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011) M. Sc. Frank Gimbel Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011) 1 Motivation Ziel ist es, ein gegebenes lineares Gleichungssystem der Form Ax = b (1) mit x, b R n und A R n n zu lösen.

Mehr

4 Determinanten. 4.1 Eigenschaften der Determinante. ME Lineare Algebra HT

4 Determinanten. 4.1 Eigenschaften der Determinante. ME Lineare Algebra HT ME Lineare Algebra HT 2008 86 4 Determinanten 4. Eigenschaften der Determinante Anstatt die Determinante als eine Funktion IC n n IC durch eine explizite Formel zu definieren, bringen wir zunächst eine

Mehr

Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen

Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Wintersemester 2012/201 Zwischentest Teil 1: 1. Was bedeuten die Bezeichnungen O(h) und o(h)? (Definition) (siehe Skript!)

Mehr

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Lineare : Einführung Beispiele linearer a) b) c) 2x 1 3x 2 = 1 x 1 +

Mehr

Lineare Algebra. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching October 6, 017 1 Erinnerung: Lineare Gleichungssysteme LGS Der allgemeine Fall hat m lineare Gleichungen, n

Mehr

Erweiterungen der LR-Zerlegung

Erweiterungen der LR-Zerlegung Prof. Thomas Richter 6. Juli 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomas.richter@ovgu.de Material zur Vorlesung Algorithmische Mathematik II am 06.07.2017 Erweiterungen

Mehr

6 Lineare Gleichungssysteme

6 Lineare Gleichungssysteme 6 LINEARE GLEICHUNGSSYSTEME 3 6 Lineare Gleichungssysteme Unter einem linearen Gleichungssystem verstehen wir ein System von Gleichungen α ξ + + α n ξ n = β α m ξ + + α mn ξ n = β m mit Koeffizienten α

Mehr

Orthogonale Matrix. Definition 4.19

Orthogonale Matrix. Definition 4.19 Orthogonale Matrix Ausgleichsprobleme sind häufig schlecht konditioniert. Matrix des Normalengleichungssystems kann nahezu singulär sein. Spezielle Matrixzerlegung für höhere numerische Stabilität: QR-Zerlegung

Mehr

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14.

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14. Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Wintersemester 2009/0 4. Januar 200 Instabilitäten

Mehr

Rechenaufwand der LR- und LDL T - Zerlegung

Rechenaufwand der LR- und LDL T - Zerlegung 6. Großübung Rechenaufwand der LR- und LDL T - Zerlegung Rückwärtseinsetzen Der Algorithmus kann der Folie 3.0 entnommen werden. Dieser kann in die folgenden Rechenoperationen aufgesplittet werden: Für

Mehr

Lineare Gleichungssysteme - Grundlagen

Lineare Gleichungssysteme - Grundlagen Lineare Gleichungssysteme - Grundlagen Betrachtet wird ein System linearer Gleichungen (im deutschen Sprachraum: lineares Gleichungssystem mit m Gleichungen für n Unbekannte, m, n N. Gegeben sind m n Elemente

Mehr

Rückwärts-Einsetzen. Bei einem linearen Gleichungssystem in oberer Dreiecksform, nacheinander bestimmt werden: r n,n x n = b n. = x n = b n /r n,n

Rückwärts-Einsetzen. Bei einem linearen Gleichungssystem in oberer Dreiecksform, nacheinander bestimmt werden: r n,n x n = b n. = x n = b n /r n,n Rückwärts-Einsetzen Bei einem linearen Gleichungssystem in oberer Dreiecksform, r 1,1 r 1,n x 1 b 1..... =., } 0 {{ r n,n } x n b n R mit det R = r 1,1 r n,n 0 können die Unbekannten x n,..., x 1 nacheinander

Mehr

6 Numerische Verfahren zur Lösung linearer Gleichungssysteme

6 Numerische Verfahren zur Lösung linearer Gleichungssysteme Numerische Mathematik für ingenieurwissenschaftliche Studiengänge 208 6 Numerische Verfahren zur Lösung linearer Gleichungssysteme The simplest model in applied mathematics is a system of linear equations.

Mehr

4.2.3 LR-Zerlegung für diagonaldominante Matrizen

4.2.3 LR-Zerlegung für diagonaldominante Matrizen 4.2 Lösungsmethoden für lineare Gleichungssysteme 4.2.3 LR-Zerlegung für diagonaldominante Matrizen Satz 4.28 besagt, dass die LR-Zerlegung für beliebige reguläre Matrizen mit Pivotierung möglich ist.

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 18.10.2012 Alexander Lytchak 1 / 12 Lineare Gleichungssysteme Wir untersuchen nun allgemeiner Gleichungssysteme der

Mehr

3.4 Der Gaußsche Algorithmus

3.4 Der Gaußsche Algorithmus 94 34 Der Gaußsche Algorithmus Wir kommen jetzt zur expliziten numerischen Lösung des eingangs als eine Motivierung für die Lineare Algebra angegebenen linearen Gleichungssystems 341 n 1 a ik x k = b i,

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme 2 Lineare Gleichungssysteme Wir betrachten das lineare Gleichungssystem Ax = b mit der n n-koeffizientenmatrix A und der rechten Seite b R n. Wir leiten zuerst eine Variante des Gauss-Algorithmus (LR-Zerlegung)

Mehr

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q:

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q: Lineare Algebra D-MATH, HS 214 Prof Richard Pink Serie 5 1 [Aufgabe] Invertieren Sie folgende Matrizen über Q: 1 a) 1 1 1 1 1 2 1 1 1 b) 1 2 1 1 1 1 2 1 1 1 1 2 1 2 3 1 c) 1 3 3 2 2 1 5 3 1 2 6 1 [Lösung]

Mehr

TEIL II LINEARE ALGEBRA

TEIL II LINEARE ALGEBRA TEIL II LINEARE ALGEBRA 1 Kapitel 10 Lineare Gleichungssysteme 101 Motivation Sei K ein fest gewählter Körper (zb K = R, C, Q, F p ) Betrachten das lineare Gleichungssystem (L) α 11 x 1 + α 12 x 2 + +

Mehr

Matrizen. Lineare Algebra I. Kapitel April 2011

Matrizen. Lineare Algebra I. Kapitel April 2011 Matrizen Lineare Algebra I Kapitel 2 26. April 2011 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/~holtz Email: holtz@math.tu-berlin.de Assistent: Sadegh

Mehr

Spezielle Matrizen. Invertierbarkeit.

Spezielle Matrizen. Invertierbarkeit. Spezielle Matrizen. Invertierbarkeit. Lineare Algebra I Kapitel 4 2. Mai 2012 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de

Mehr

36 2 Lineare Algebra

36 2 Lineare Algebra 6 Lineare Algebra Quadratische Matrizen a a n sei jetzt n m, A, a ij R, i, j,, n a n a nn Definition Eine quadratische Matrix A heißt invertierbar genau dann, wenn es eine quadratische Matrix B gibt, so

Mehr

Mathematik IT 2 (Lineare Algebra)

Mathematik IT 2 (Lineare Algebra) Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof Dr L Cromme Mathematik IT (Lineare Algebra für die Studiengänge Informatik, IMT und ebusiness im Sommersemester 3 Lineare Gleichungssysteme

Mehr

2 Direkte Lösungsverfahren für lineare Gleichungen

2 Direkte Lösungsverfahren für lineare Gleichungen 2 Direkte Lösungsverfahren für lineare Gleichungen Sei A R invertierbar und b R. Löse Ax = b genau und effizient. Die LR-Zerlegung Wir berechnen eine Zerlegung A = LR mit L, R R und den folgen Eigenschaften:

Mehr

Determinanten. I. Permutationen

Determinanten. I. Permutationen Determinanten Durch Bildung der Determinante wird einer quadratischen (! Matrix eine gewisse Zahl zuordnet. Die Determinante tritt besonders bei Fragen der Flächen- bzw. Volumsberechnung auf (siehe auch

Mehr

Lösungsskizzen zum Buch Mathematik für Informatiker Kapitel 8 Peter Hartmann

Lösungsskizzen zum Buch Mathematik für Informatiker Kapitel 8 Peter Hartmann 1. Bestimmen Sie jeweils den Rang der folgenden Matrizen: 1 2 5 4 1 2 2 1 1 2 2 1 1 4 1 5 1 2 0 4 4 5 5 7,,,. 1 4 2 4 8 7 2 11 5 8 1 6 1 2 7 6 1 2 1 9 10 1 2 2 5 8 Die Ränge der Matrizen sind der Reihe

Mehr

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2.

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2. MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE 9.8.7 KLAUSUR zur Numerik I mit Lösungen Aufgabe : ( Punkte) [ wahr falsch ]. Die maximale Ordnung einer s-stufigen Quadraturformel ist s. [ ]. Der Clenshaw

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme Beispiel.5: Funktion von Runge (V) Beispiel Martin-Luther-Universität Halle-Wittenberg, NWF III, Institut für Mathematik Martin Arnold: Grundkurs Numerische Mathematik (WiS 27/8) Abbildung.3: Interpolation

Mehr

4 Matrizenrechnung. Beide Operationen geschehen also koeffizientenweise. Daher übertragen sich die Rechenregeln von K(m n, k).

4 Matrizenrechnung. Beide Operationen geschehen also koeffizientenweise. Daher übertragen sich die Rechenregeln von K(m n, k). 4 Matrizenrechnung Der Vektorraum der m n Matrizen über K Sei K ein Körper und m, n N\{0} A sei eine m n Matrix über K: a a 2 a n a 2 a 22 a 2n A = = (a ij) mit a ij K a m a m2 a mn Die a ij heißen die

Mehr

Kapitel 2: Lineare Gleichungssysteme. 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen

Kapitel 2: Lineare Gleichungssysteme. 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen Kapitel 2: Lineare Gleichungssysteme 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen B(n, m) : Ω {0,...,255}, n = 1,...,N, m = 1,...,M. dig. Camera Realisierung

Mehr

Numerische Verfahren

Numerische Verfahren Numerische Verfahren Jens-Peter M. Zemke zemke@tu-harburg.de Institut für Numerische Simulation Technische Universität Hamburg-Harburg 29.04.2008 TUHH Jens-Peter M. Zemke Numerische Verfahren Lineare Systeme

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Bernhard Hanke Universität Augsburg 17.10.2012 Bernhard Hanke 1 / 9 Wir beschreiben den folgenden Algorithmus zur Lösung linearer Gleichungssysteme, das sogenannte Gaußsche

Mehr

KAPITEL 3. Lineare Gleichungssysteme, direkte Lösungsverfahren

KAPITEL 3. Lineare Gleichungssysteme, direkte Lösungsverfahren KAPITEL 3. Lineare Gleichungssysteme, direkte Lösungsverfahren Beispiel 3.2. Gesucht u(x), das eine Differentialgleichung vom Typ u (x) + λ(x)u(x) = f(x), x [0,], mit den Randbedingungen u(0) = u() = 0

Mehr

3. Lineare Gleichungssysteme

3. Lineare Gleichungssysteme 3. Lineare Gleichungssysteme 1 3.1. Problemstellung 2 3.2. Direkte Verfahren 3 3.3. Normen und Fehleranalyse 4 3.4. Iterative Verfahren 5 3.5. Konvergenz von linearen Iterationsverfahren 6 3.6. Gradienten-Verfahren

Mehr

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching October 2, 207 Erinnerung Definition. Ein Skalarprodukt ist eine Abbildung, : E n E n E, v, w v, w = n k= v

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Lineare Gleichungssysteme treten oft als Teilprobleme bei numerischen Verfahren auf, zb: Lineare Ausgleichsprobleme (Normalgleichungen) Partielle Differentialgleichungen bei manchen

Mehr

3 Matrizen und Lineare Gleichungssysteme

3 Matrizen und Lineare Gleichungssysteme 3 Matrizen und LGS Pink: Lineare Algebra HS 2014 Seite 38 3 Matrizen und Lineare Gleichungssysteme 3.1 Definitionen Sei K ein Körper, und seien m,n,l natürliche Zahlen. Definition: Eine Matrix mit m Zeilen

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

5.3 Iterative Lösungsverfahren für lineare Gleichungssysteme

5.3 Iterative Lösungsverfahren für lineare Gleichungssysteme 5.3 Iterative Lösungsverfahren für lineare Gleichungssysteme Als zweite Hauptanwendung des Banachschen Fixpunktsatzes besprechen wir in diesem Kapitel die iterative Lösung linearer Gleichungssysteme. Die

Mehr

Zusammenfassung Numerische Mathematik für Elektrotechniker

Zusammenfassung Numerische Mathematik für Elektrotechniker Zusammenfassung Numerische Mathematik für Elektrotechniker RWTH Aachen, SS 2006, Prof. Dr. W. Dahmen c 2006 by Sebastian Strache, Ralf Wilke Korrekturen bitte an Ralf.Wilke@rwth-aachen.de 27. August 2006

Mehr

Lineare Ausgleichsprobleme. Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte

Lineare Ausgleichsprobleme. Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte Lineare Ausgleichsprobleme Bisher: Lösung linearer GS Ax = b, A R n,n, A regulär, b R n Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte Ax = b mit A R m,n, b R m, m n, rg(a)

Mehr

3 Determinanten, Eigenwerte, Normalformen

3 Determinanten, Eigenwerte, Normalformen Determinanten, Eigenwerte, Normalformen.1 Determinanten Beispiel. Betrachte folgendes Parallelogramm in der Ebene R 2 : y (a + c, b + d) (c, d) (a, b) x Man rechnet leicht nach, dass die Fläche F dieses

Mehr

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

Begleitmaterial zur Vorlesung Numerik I

Begleitmaterial zur Vorlesung Numerik I Begleitmaterial zur Vorlesung Numerik I Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik I 1 / 49 Inhalte der Numerik

Mehr

bekannt Analog reduzieren wir die Randwerte im 2d-System. Man erhält dann eine Blocktridia-

bekannt Analog reduzieren wir die Randwerte im 2d-System. Man erhält dann eine Blocktridia- 3.. Jetzt: Eliminiere 1. und 2. wie folgt u 2 + 2u 1 = h 2 f 1 + α }{{} bekannt Nun: Au = b mit A R n,n, b R n, u R n und A hat die Gestalt 2 1 1 2 1 A =......... =: tridiag( 1, 2, 1)...... 1 1 2 Analog

Mehr

Dreiecksysteme und LR-Faktorzerlegung

Dreiecksysteme und LR-Faktorzerlegung Dreiecksysteme und 06.05.2011 Dreiecksysteme und Inhaltsverzeichnis 1 Dreieckssysteme Vorwärts-Substitution (Zeilen-Version) Rückwärts-Substitution (Zeilen-Version) Vorwärts-Substitution (Spalten-Version)

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

Einführung in die numerische Mathematik

Einführung in die numerische Mathematik Prof. Dr. M. Günther K. Gausling, M.Sc. C. Hendricks, M.Sc. Sommersemester 204 Bergische Universität Wuppertal Fachbereich C Mathematik und Naturwissenschaften Angewandte Mathematik / Numerische Analysis

Mehr

3.4 Kondition eines Problems

3.4 Kondition eines Problems 38 KAPITEL 3. FEHLERANALYSE Beispiel 3.18 Betrachte M(10, 5, 1). Dann sind x 4.2832, y 4.2821, z 5.7632 darstellare Zahlen und (x y)z 0.00633952. Das korrekte Ergenis in M ist daher 0.0063395. Der Ausdruck

Mehr

Zeilenstufenform eines Gleichungssystems

Zeilenstufenform eines Gleichungssystems Zeilenstufenform eines Gleichungssystems Ein lineares Gleichungssystem mit einer m n-koeffizientenmatrix lässt sich mit Gauß-Transformationen auf Zeilenstufenform (Echelon-Form) transformieren: Ax = b...

Mehr

Praktikumsbeispiele zum Lehrgebiet WR II, Numerische Mathematik und CAS Serie LGS. b 1 b 2... b n. n a ij x j = b i, i = 1, 2,..., n.

Praktikumsbeispiele zum Lehrgebiet WR II, Numerische Mathematik und CAS Serie LGS. b 1 b 2... b n. n a ij x j = b i, i = 1, 2,..., n. TU Ilmenau Institut für Mathematik FG Numerische Mathematik und Informationsverarbeitung PD Dr. W. Neundorf Datei: pb lgs.tex Praktikumsbeispiele zum Lehrgebiet WR II, Numerische Mathematik und CAS Serie

Mehr

Die Lösung linearer Gleichungssysteme

Die Lösung linearer Gleichungssysteme Die Lösung linearer Gleichungssysteme Lineare Algebra I Kapitel 6 6 Mai 22 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 4-6 Webseite: wwwmathtu-berlinde/ holtz Email: holtz@mathtu-berlinde

Mehr

PLU Zerlegung, Rang und Äquivalenz von Matrizen

PLU Zerlegung, Rang und Äquivalenz von Matrizen PLU Zerlegung, Rang und Äquivalenz von Matrizen Lineare Algebra I Kapitel 5 5. Mai 202 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 4-6 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de

Mehr

Definition Sei R ein kommutativer Ring mit multiplikativ neutralem Element 1. Eine Abbildung D : R (n,n) R heißt n-linear, wenn gilt

Definition Sei R ein kommutativer Ring mit multiplikativ neutralem Element 1. Eine Abbildung D : R (n,n) R heißt n-linear, wenn gilt Kapitel 5 Determinanten 51 Definition und Existenz Definition 511 Sei R ein kommutativer Ring mit multiplikativ neutralem Element 1 Eine Abbildung D : R (n,n) R heißt n-linear, wenn gilt [D1] D ist linear

Mehr

3 Direkte Lösung Linearer Gleichungssysteme

3 Direkte Lösung Linearer Gleichungssysteme 3 Direkte Lösung Linearer Gleichungssysteme Wir schreiben lineare Gleichungssysteme in der Form Ax = b; (3 hier ist A R n n eine reguläre Matrix, b R n ist gegeben, und x R n ist die gesuchte Lösung Die

Mehr

Computer-orientierte Mathematik

Computer-orientierte Mathematik Computer-orientierte Mathematik 3. Vorlesung - Christof Schuette 11.11.16 Memo: Rationale und reelle Zahlen Rationale Zahlen: Rationale Zahlen als Brüche ganzer Zahlen. q-adische Brüche, periodische q-adische

Mehr

7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012)

7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Technische Universität München Zentrum Mathematik, M1 Prof. Dr. Boris Vexler Dr. Ira Neitzel Dipl.-Math. Alana Kirchner 7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Diese Auswahl

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Versus QR Matrizen mit vollem Rang 27. Mai 2011 Versus QR Inhaltsverzeichnis 1 2 3 Beispiel 4 Beispiel 5 6 Versus QR Kondition Vergleich Beispiel Versus QR Zu finden: Gerade, die den Punkten (0, 6), (1,

Mehr

7 Matrizen über R und C

7 Matrizen über R und C Mathematik für Physiker I, WS 06/07 Montag 9 $Id: matrixtex,v 7 06//9 :58: hk Exp $ 7 Matrizen über R und C 7 Addition und Multiplikation von Matrizen In der letzten Sitzung haben wir begonnen uns mit

Mehr

Invertierbarkeit von Matrizen

Invertierbarkeit von Matrizen Invertierbarkeit von Matrizen Lineare Algebra I Kapitel 4 24. April 2013 Logistik Dozent: Olga Holtz, MA 417, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de

Mehr

05. Lineare Gleichungssysteme

05. Lineare Gleichungssysteme 05 Lineare Gleichungssysteme Wir betrachten ein System von m Gleichungen in n Unbestimmten (Unbekannten) x 1,, x n von der Form a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 5 Aufgabe 5.1 Kommutierende Matrizen In der Vorlesung und vergangenen

Mehr

2 Direkte Lösungsverfahren für lineare Gleichungen

2 Direkte Lösungsverfahren für lineare Gleichungen 2 Direkte Lösungsverfahren für lineare Gleichungen (2.1) Sei L R N N eine normierte untere Dreiecksmatrix und b R N. Dann ist L invertierbar und das Lineare Gleichungssystem (LGS) Ly = b ist mit O(N 2

Mehr

1 Zum Aufwärmen. 1.1 Notationen. 1.2 Lineare Abbildungen und Matrizen. 1.3 Darstellungsmatrizen

1 Zum Aufwärmen. 1.1 Notationen. 1.2 Lineare Abbildungen und Matrizen. 1.3 Darstellungsmatrizen 1 Zum Aufwärmen 1.1 Notationen In diesem Teil der Vorlesung bezeichnen wir Körper mit K, Matrizen mit Buchstaben A,B,..., Vektoren mit u,v,w,... und Skalare mit λ,µ,... Die Menge der m n Matrizen bezeichnen

Mehr

Eigenwerte. Vorlesung Computergestützte Mathematik zur Linearen Algebra. Lehrstuhl für Angewandte Mathematik Sommersemester 2009

Eigenwerte. Vorlesung Computergestützte Mathematik zur Linearen Algebra. Lehrstuhl für Angewandte Mathematik Sommersemester 2009 Eigenwerte Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Sommersemester 2009 25. Juni + 2.+9. Juli 2009 Grundlagen Definition Ist für A C n,n, Ax = λx

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns anschließend mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren einmal den begrifflichen Aspekt, d.h.

Mehr

Kurzform. Choleskyzerlegung. Julia Hoeboer. 13. Mai 2011

Kurzform. Choleskyzerlegung. Julia Hoeboer. 13. Mai 2011 Choleskyzerlegung Julia Hoeboer 13 Mai 2011 Inhalt: LDM T Zerlegung LDL T Zerlegung Cholesky Zerlegung Person Berechnung Gaxpy Algorithmus Effektivität LDM T Zerlegung LDM T Zerlegung lässt sich aus LR

Mehr

MNM 1 RUNDUNGSFEHLER 1. ,... können im Computer nicht exakt dargestellt werden.

MNM 1 RUNDUNGSFEHLER 1. ,... können im Computer nicht exakt dargestellt werden. MNM 1 RUNDUNGSFEHLER 1 1 Rundungsfehler 2, 6 7, 5 3, können im Computer nicht exakt dargestellt werden Sei x R: ˆx eine Computerzahl, die x approximiert ˆx ist i allg mit einem Fehler behaftet Es gibt

Mehr

Lineare Gleichungssysteme und der Gauß-Algorithmus

Lineare Gleichungssysteme und der Gauß-Algorithmus Kapitel 5 Lineare Gleichungssysteme und der Gauß-Algorithmus Verständnisfragen Sachfragen 1. Was ist ein lineares Gleichungssystem? 2. Was ist die erweiterte Koeffizientenmatrix eines linearen Gleichungssystems?

Mehr