Der Gaußsche Algorithmus und Varianten Vorlesung vom

Größe: px
Ab Seite anzeigen:

Download "Der Gaußsche Algorithmus und Varianten Vorlesung vom"

Transkript

1 Der Gaußsche Algorithmus und Varianten Vorlesung vom Gaußsche Elimination und Rückwärtssubstitution: Motivation am Beispiel, Verallgemeinerung und Algorithmus. Achtung: Durchführbarkeit nur bei nichtverschwindenden Pivotelementen! Aufwand des Gaußschen Algorithmus: 1 3 n3 + O(n 2 ) (Aufwandsmaß: Punktoperationen). Gaußsche Elimination, Eliminationsmatrizen G k und LR Zerlegung A = LR. Vorteile der LR Zerlegung bei vielen rechten Seiten und gleicher Koeffizientenmatrix. Reduktion des Aufwands durch Ausnutzen von Spezialstruktur: Tridiagonalmatrizen: Invarianz der Besetzungsstruktur unter Gaußelimination. Keine Elimination der ohnehin vorhandenen Subdiagonalnullen: Aufwand O(n).

2 Problem und Algorithmus Problem: Löse das lineare Gleichungssystem Ax = b Auswertung des Lösungsoperators f(a,b) = A 1 b zu Daten A R n,n, b R n Satz 9.7 Relative Kondition des Problems κ rel = κ(a) Algorithmus: Zerlegung des Lösungsoperators in Elementaroperationen x = A 1 b = g m g 1 (A,b) Qualitätskriterien: Aufwand und Stabilität

3 Algorithmus: Gaußsche Elimination... (Algorithmus 9.12) for k = 1 : n 1 do { for i = k + 1 : n do (falls a (k 1) 0!) { } } l ik = a(k 1) ik ; b (k) a (k 1) i for j = k + 1 : n do { } a (k) ij = a (k 1) ij = b (k 1) i l ik a (k 1) kj ; l ik b (k 1) k ; a (k) ik = 0 ;

4 Gestaffeltes Gleichungssystem:...und Rückwärtssubstitution 12 a (n 1) 1n 0 a (n 1) 22 a (n 1) 2n a (n 1) nn a (n 1) 11 a (n 1) Algorithmus 9.13 (Rückwärtssubstitution) x 1 x 2. x n b (n 1) 1 b (n 1) 2. b (n 1) n x n = 1 a (n 1) b (n 1) n nn for i = n 1 : ( 1) : 1 do x i = 1 n b (n 1) a (n 1) i ii j=i+1 a (n 1) ij x j

5 Aufwand des Gaußschen Eliminationsverfahrens Aufwandsmaß: Anzahl der Punktoperationen Gaußsches Eliminationsverfahren: Aufwand des Eliminationsschritts: = 1 3 (n3 n) (n2 n) = 1 3 n3 + O(n 2 ) Aufwand der Rücksubstitution: 1 2 (n2 + n) = O(n 2 ) Gesamtaufwand: 1 3 n3 + n n = 1 3 n3 + O(n 2 ) Tridiagonalmatrizen: 5n 4 = O(n) Cramersche Regel: x i = detb i deta, B i = (A 1,...,b,...,A n ), i = 1,...,n Invertierung von A: (i) Berechnung von A 1 mit Hilfe einer LR-Zerlegung von A (ii) x = A 1 b

6 Numerisches Beispiel gut konditioniertes System: κ (A) = 32 A = , b = Ax, x = /7 1/11 = 1/ Lösung mit dem Gaußschen Algorithmus: x = x x x Von 15 gültigen Stellen sind höchstens noch 2 übrig!

7 Stabilität Algorithmus: Zerlegung des Lösungsoperators in Elementaroperationen x = A 1 b = f(a,b) = g m g 1 (A,b) Runden der Elementaroperationen: g i = rd(g i ) Auswertungsfehler: x x x = f(a,b) = g m g 1 (A,b) relative, normweise Stabilität: Die kleinste Zahl σ mit der Eigenschaft x x x σeps + o(eps)

8 Wirklichkeit und Modell Eisenbahn Modelleisenbahn

9 Wirklichkeit und Modell gesucht: Stabkräfte K = (k ij ) Modellannahmen: starre Stäbe, reibungsfreie Verbindungen Kräftegleichgewicht: AK = F Brücke mathematisches Modell

10 Wirklichkeit und Modell exakt: Ax = b, b 0 gestört: Ã x = b exakt: Ax = b, b 0 gestört: Ã x = b x x x κ(a) ( A Ã A + ) b b + o( A Ã + b b ) b x x x κ(a) ( A Ã A + ) b b b Auswirkung von Störungen linearisiertes Modell

11 Hochauflösendes Stabilitätsmodell (nur Elimination) for k = 1 : n 1 do { for i = k + 1 : n do (falls ã (k 1) 0!) { } } l ik = rd (ã(k 1) ) ik ; b(k) ã (k 1) i for j = k + 1 : n do { } ã (k) ij = rd(ã (k 1) ij = rd( b (k 1) i rd( l ik ã (k 1) kj )) ; rd( l ik b(k 1) k )) ; ã (k) ik = 0 ;

12 Matrix-Schreibweise A (k) = (I G k )A (k 1),A (0) = A, b (k) = (I G k )b (k 1), b (0) = b x = R 1 z, R = A (n 1), z = b (n 1) Eliminationsmatrizen: G k =.. l k+1,k l n,k 0 0 0, l i,k = a(k 1) ik a (k 1)

13 Effizientes Stabilitätsmodell I Ã (k) = rd((i G k )Ã(k 1) ),A (0) = A, b(k) = rd((i G k )b (k 1) ), b (0) = b Elementaroperationen: x = rd( R 1 z), R = Ã (n 1), z = b (n 1) g k (B,y) = ((I G k )B,(I G k )y), k = 1,...,n 1, g n (R,z) = R 1 z Vereinfachungen: exakte Eliminationsmatrizen G k exakte Auswertung von (I G k )Ã(k 1) und (I G k ) b (k 1) exakte Auswertung von R 1 z

14 Effizientes Stabilitätsmodell I Ã (k) = rd((i G k )Ã (k 1) ),A (0) = A, b(k) = rd((i G k )b (k 1) ), b (0) = b x = rd( R 1 z), R = Ã (n 1), z = b (n 1) Satz 9.19 Es gelte R R R /κ(r). Dann gilt x x x σ G eps + o(eps), σ G = 2κ(A)σ K σ E mit und σ K = n 1 k=1 κ k, κ k = κ(i G k ) σ E = 1 + n 2 k=1 κ k+1 κ n 1 = 1 + (κ n 1 (1 + κ n 2 (1 + κ 3 (1 + κ 2 )) ).

15 Beweis: Effizientes Stabilitätsmodell I Lemma 9.18 Es gilt: R R R σ E eps + o(eps), R = A (n 1) mit z z z σ E eps + o(eps) z = b (n 1) σ E = 1 + n 2 k=1 κ k+1 κ n 1 = 1 + (κ n 1 (1 + κ n 2 (1 + κ 3 (1 + κ 2 )) )

16 Effizientes Stabilitätsmodell II A (k) = (I G k )A (k 1),A (0) = A, b (k) = (I G k )b (k 1), b (0) = b Weitere Vereinfachung: x = R 1 z, R = rd(a (n 1) ), z = rd(b (n 1) ) exakte Auswertung des gesamten Eliminationsschritts Satz: Unter der Voraussetzung R R / R < 1/κ (R) gilt x x x 2κ(R)eps + o(eps) 2κ(A)σ K eps + o(eps) Beweis: Satz 9.7

17 Abschätzung der Kondition von R κ(r) = κ ) (I G n k )A ( n 1 k=1 κ(a) n 1 k=1 κ(i G k ) = κ(a)σ K Satz: Es gilt κ(i G k ) = I G k (I G k ) 1 = max i=k+1,...,n (1+ l ik ) 2, l ik = a(k 1) ik a (k 1). Insbesondere ist κ(i G k ) = 1 a (k 1) ik = 0 i = k + 1,...,n.

18 Numerisches Beispiel gut konditioniertes System: κ (A) = 32 A = , b = Ax, x = /7 1/11 1/13 Lösung mit dem Gaußschen Algorithmus: R = x x x /3, κ (R) > /3

19 Beispiel: Die Wilkinson Matrix W n W n = R n,n κ(w) κ(r) κ (W n ) und κ (R n )

20 Algorithmische Konsequenzen Satz 9.20: κ(i G k ) = I G k (I G k ) 1 = max i=k+1,...,n (1+ l ik ) 2, l ik = a(k 1) ik a (k 1) Folgerungen: a (k 1) a (k 1) ik = l ik = a (k 1) a (k 1) ik = l ik = a (k 1) ik a (k 1) a (k 1) ik a (k 1) 1 = κ(i G k) 1 1 = κ(i G k) 1 Stabilität, falls a (k 1) a (k 1) ik

21 Gaußscher Algorithmus mit Spaltenpivotsuche Algorithmus 9.23 for k = 1 : n 1 do { k 0 = k for i = k + 1 : n do { } falls a (k 1) ik > a (k 1) k 0,k, setze k 0 := i Vertausche die k te Zeile mit der k 0 ten Zeile k ter Eliminationsschritt wie in Algorithmus } Folgerung: l ik 1 = κ(i G k ) 4 = κ(r) 4 n 1 κ(a)

22 LR Zerlegung mit Spaltenpivotsuche Satz 9.25: Die Gaußsche Elimination mit Spaltenpivotsuche liefert eine Zerlegung LR = PA mit unterer Dreiecksmatrix L, oberer Dreiecksmatrix R und einer Permutationsmatrix P. P A unterscheidet sich von A also nur durch Vertauschung der Zeilen. Beispiel: A = , P = , PA =

23 Numerisches Beispiel gut konditioniertes System: κ (A) = 32 A = , b = Ax, x = /7 1/11 1/13 Gaußschen Algorithmus mit Spaltenpivotsuche: R = , κ (R) = x x x < Lösung auf 15 gültigen Stellen!

Vektor und Matrixnormen Vorlesung vom

Vektor und Matrixnormen Vorlesung vom Vektor und Matrixnormen Vorlesung vom 18.12.15 Grundlagen: Matrix Vektor und Matrixprodukt. Lineare Räume. Beispiele. Problem: Berechne die Lösung x von Ax = b zu gegebenem A R n,n und b R n. Ziele: Konditionsanalyse

Mehr

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel Vorlesung 2 22 bzw 23 Januar 204 Lineares Gleichungssystem a a 2 b b 2 = F a a 2 a 3 b b 2 b 3 c c 2 c 3 = V V =< a, b c > c b a b a F V Seite 70 a x + a 2 x 2 + a 3 x 3 b = 0 < a x + a 2 x 2 + a 3 x 3

Mehr

Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011)

Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011) M. Sc. Frank Gimbel Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011) 1 Motivation Ziel ist es, ein gegebenes lineares Gleichungssystem der Form Ax = b (1) mit x, b R n und A R n n zu lösen.

Mehr

6 Numerische Verfahren zur Lösung linearer Gleichungssysteme

6 Numerische Verfahren zur Lösung linearer Gleichungssysteme Numerische Mathematik für ingenieurwissenschaftliche Studiengänge 208 6 Numerische Verfahren zur Lösung linearer Gleichungssysteme The simplest model in applied mathematics is a system of linear equations.

Mehr

Lineare Gleichungssysteme - Grundlagen

Lineare Gleichungssysteme - Grundlagen Lineare Gleichungssysteme - Grundlagen Betrachtet wird ein System linearer Gleichungen (im deutschen Sprachraum: lineares Gleichungssystem mit m Gleichungen für n Unbekannte, m, n N. Gegeben sind m n Elemente

Mehr

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1) 34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)

Mehr

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14.

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14. Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Wintersemester 2009/0 4. Januar 200 Instabilitäten

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme Beispiel.5: Funktion von Runge (V) Beispiel Martin-Luther-Universität Halle-Wittenberg, NWF III, Institut für Mathematik Martin Arnold: Grundkurs Numerische Mathematik (WiS 27/8) Abbildung.3: Interpolation

Mehr

KAPITEL 3. Lineare Gleichungssysteme, direkte Lösungsverfahren

KAPITEL 3. Lineare Gleichungssysteme, direkte Lösungsverfahren KAPITEL 3. Lineare Gleichungssysteme, direkte Lösungsverfahren Beispiel 3.2. Gesucht u(x), das eine Differentialgleichung vom Typ u (x) + λ(x)u(x) = f(x), x [0,], mit den Randbedingungen u(0) = u() = 0

Mehr

4.2.3 LR-Zerlegung für diagonaldominante Matrizen

4.2.3 LR-Zerlegung für diagonaldominante Matrizen 4.2 Lösungsmethoden für lineare Gleichungssysteme 4.2.3 LR-Zerlegung für diagonaldominante Matrizen Satz 4.28 besagt, dass die LR-Zerlegung für beliebige reguläre Matrizen mit Pivotierung möglich ist.

Mehr

7 Die Determinante einer Matrix

7 Die Determinante einer Matrix 7 Die Determinante einer Matrix ( ) a11 a Die Determinante einer 2 2 Matrix A = 12 ist erklärt als a 21 a 22 det A := a 11 a 22 a 12 a 21 Es ist S 2 = { id, τ}, τ = (1, 2) und sign (id) = 1, sign (τ) =

Mehr

Gliederung. Links-Rechts-Zerlegung Elimination faktorisiert A = L R. Determinante Inverse. Kleinste Quadrate. Lösung durch. Links-Rechts- Zerlegung

Gliederung. Links-Rechts-Zerlegung Elimination faktorisiert A = L R. Determinante Inverse. Kleinste Quadrate. Lösung durch. Links-Rechts- Zerlegung Matrixzerlegungen. 7. Vorlesung 170004 Numerische Methoden I Clemens Brand 29. April 2010 Gliederung Elimination faktorisiert A = L R Die A = L R Faktorisieren: Zerlege A in ein Produkt (einfacherer) Angenommen,

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

2 Direkte Lösungsverfahren für lineare Gleichungen

2 Direkte Lösungsverfahren für lineare Gleichungen 2 Direkte Lösungsverfahren für lineare Gleichungen Sei A R invertierbar und b R. Löse Ax = b genau und effizient. Die LR-Zerlegung Wir berechnen eine Zerlegung A = LR mit L, R R und den folgen Eigenschaften:

Mehr

Lineare Algebra. Teil III. Inhaltsangabe

Lineare Algebra. Teil III. Inhaltsangabe Teil III Lineare Algebra Inhaltsangabe 3 Lineare Algebra 22 3.1 Einführung.......................... 22 3.2 Matrizen und Vektoren.................... 23 3.3 Spezielle Matrizen...................... 24

Mehr

6 Lösung linearer Gleichungssysteme I: LR-Zerlegung und Verwandte

6 Lösung linearer Gleichungssysteme I: LR-Zerlegung und Verwandte Numerik I Version: 240608 40 6 Lösung linearer Gleichungssysteme I: LR-Zerlegung und Verwandte Die zwei wichtigsten Aufgaben der linearen Algebra: Lösung linearer Gleichungssysteme: Ax = b, wobei die n

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Copyright, Page 1 of 5 Die Determinante

Copyright, Page 1 of 5 Die Determinante wwwmathematik-netzde Copyright, Page 1 of 5 Die Determinante Determinanten sind ein äußerst wichtiges Instrument zur Untersuchung von Matrizen und linearen Abbildungen Außerhalb der linearen Algebra ist

Mehr

Lineare Ausgleichsprobleme. Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte

Lineare Ausgleichsprobleme. Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte Lineare Ausgleichsprobleme Bisher: Lösung linearer GS Ax = b, A R n,n, A regulär, b R n Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte Ax = b mit A R m,n, b R m, m n, rg(a)

Mehr

3.4 Der Gaußsche Algorithmus

3.4 Der Gaußsche Algorithmus 94 34 Der Gaußsche Algorithmus Wir kommen jetzt zur expliziten numerischen Lösung des eingangs als eine Motivierung für die Lineare Algebra angegebenen linearen Gleichungssystems 341 n 1 a ik x k = b i,

Mehr

Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden:

Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden: Inverse Matritzen Spezialfall: Die Gleichung ax b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a a 1 gelöst werden: ax b x b a a 1 b. Verallgemeinerung auf Ax b mit einer n nmatrix A: Wenn es

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

3 Direkte Lösung Linearer Gleichungssysteme

3 Direkte Lösung Linearer Gleichungssysteme 3 Direkte Lösung Linearer Gleichungssysteme Wir schreiben lineare Gleichungssysteme in der Form Ax = b; (3 hier ist A R n n eine reguläre Matrix, b R n ist gegeben, und x R n ist die gesuchte Lösung Die

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Matrizen und Determinanten 1 Matrizen und Determinanten 1 Einführung in den Matrizenbegriff Zur Beschreibung und Lösung vieler physikalischer Probleme ist die Vektorrechnung vonnöten Durch Verwendung von

Mehr

4 Vorlesung: 21.11. 2005 Matrix und Determinante

4 Vorlesung: 21.11. 2005 Matrix und Determinante 4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2016 Lineare Gleichungssysteme Schwerpunkte: Interpretation und Verständnis der Gleichungen Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik unter

Mehr

Quadratische Matrizen

Quadratische Matrizen Quadratische Matrizen (n n)-matrizen heißen quadratische Die entsprechenden linearen Abbildungen sind laut Definition Endomorphismen des R n (weil f A : R n R n ) Das Produkt von (n n)- Matrizen ist auch

Mehr

Abschnitt: Determinanten

Abschnitt: Determinanten Abschnitt: Determinanten Bezeichnung Die i-te Zeile werden wir mit [a i ] bezeichnen Die Null-Zeile werden wir mit 0 bezeichnen A = a 11 a 1n a n1 a nn = [a 1 ] [a n] Def Eine Abbildung det : Mat(n, n)

Mehr

Leitfaden Lineare Algebra: Determinanten

Leitfaden Lineare Algebra: Determinanten Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv

Mehr

1 Lineare Gleichungssysteme

1 Lineare Gleichungssysteme MLAN1 1 LINEARE GLEICHUNGSSYSTEME 1 Literatur: K Nipp/D Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4 Auflage, 1998, oder neuer 1 Lineare Gleichungssysteme Zu den grundlegenden

Mehr

( ) Lineare Gleichungssysteme

( ) Lineare Gleichungssysteme 102 III. LINEARE ALGEBRA Aufgabe 13.37 Berechne die Eigenwerte der folgenden Matrizen: ( ) 1 1 0 1 1 2 0 3 0 0, 2 1 1 1 2 1. 1 1 0 3 Aufgabe 13.38 Überprüfe, ob die folgenden symmetrischen Matrizen positiv

Mehr

Kapitel 17. Determinanten

Kapitel 17. Determinanten Kapitel 17. Determinanten Vorschau: Determinanten Es gibt drei Problemfelder, für die Determinanten von großem Nutzen sind: die formelmäßige Überprüfung der linearen Unabhängigkeit eines Systems von n

Mehr

Quadratische Matrizen Inverse und Determinante

Quadratische Matrizen Inverse und Determinante Kapitel 2 Quadratische Matrizen Inverse und Determinante In diesem Abschnitt sei A M(n, n) stets eine quadratische n n Matrix. Für nicht-quadratische Matrizen ergeben die folgenden Betrachtungen keinen

Mehr

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen.

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen. Zusätze zum Gelben Rechenbuch LU-Zerlegung Peter Furlan Verlag Martina Furlan Inhaltsverzeichnis Definitionen 2 (Allgemeine) LU-Zerlegung 2 3 Vereinfachte LU-Zerlegung 3 4 Lösung eines linearen Gleichungssystems

Mehr

Kapitel 5. LU Zerlegung. 5.1 L- und U-Matrizen

Kapitel 5. LU Zerlegung. 5.1 L- und U-Matrizen Kapitel 5 LU Zerlegung In vielen Fällen interessiert uns die inverse Matrix A 1 gar nicht. Stattdessen suchen wir die Lösung der Matrixgleichung Ax = b bzw. x = A 1 b 5.1) für einen oder wenige Vektoren

Mehr

V DETERMINANTEN In diesem Kapitel entwickeln wir die Theorie der Determinanten Die folgenden Beispiele sollen die Einfuhrung dieses Begries motivieren

V DETERMINANTEN In diesem Kapitel entwickeln wir die Theorie der Determinanten Die folgenden Beispiele sollen die Einfuhrung dieses Begries motivieren SKRIPTUM { LINEARE ALGEBRA II JB COOPER Inhaltsverzeichnis: x Determinanten x Eigenwerte x Euklidische Raume x8 Dualitat, Tensorprodukte, Alternierende Formen Anhang: ) Mengen, Abbildungen ) Gruppen )

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

A2.3 Lineare Gleichungssysteme

A2.3 Lineare Gleichungssysteme A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen

Mehr

Ranking by Reordering Tobias Joppen

Ranking by Reordering Tobias Joppen Ranking by Reordering Tobias Joppen 09.07.2014 Fachbereich Informatik Knowledge Engineering Prof. Johannes Fürnkranz 1 Überblick Einleitung Rank-differential Methode Idee Problemdefinition Beispiel Vereinfachung

Mehr

HEUTE. Beispiel 1. Gleichungssysteme: theoretische Aspekte. warum Matrizen? etwas Hintergrund

HEUTE. Beispiel 1. Gleichungssysteme: theoretische Aspekte. warum Matrizen? etwas Hintergrund ..3 HEUTE..3 3 Beispiel Gleichungssysteme: theoretische Aspekte Teile einen Kuchen auf 8 Leute gleichmäßig auf. Wieiel bekommt jeder? warum Matrien? etwas Hintergrund Gleichungssysteme: praktische Aspekte

Mehr

Lineare Algebra KAPITEL III. 12 Matrizen und der Gauß-Algorithmus. I) Matrizen

Lineare Algebra KAPITEL III. 12 Matrizen und der Gauß-Algorithmus. I) Matrizen KAPITEL III Lineare Algebra 12 Matrizen und der Gauß-Algorithmus I Matrizen Definition 121 Matrizen und der R n Es seien m,n 1 zwei positive ganze Zahlen a Eine m n-matrix über R ist ein rechteckiges Schema

Mehr

Numerische Lineare Algebra. Cholesky-Zerlegung

Numerische Lineare Algebra. Cholesky-Zerlegung Numerische Lineare Algebra Proseminar Cholesky-Zerlegung von Franz Brauße vorgelegt am Fachbereich IV der Universität Trier bei Frau Dipl.-Math. Christina Jager 06.02.2012 Inhaltsverzeichnis 1 Einleitung

Mehr

4.13. Permutationen. Definition. Eine Permutation der Elementen {1,..., n} ist eine bijektive Abbildung

4.13. Permutationen. Definition. Eine Permutation der Elementen {1,..., n} ist eine bijektive Abbildung 43 Permutationen Definition Eine Permutation der Elementen {,, n} ist eine bijektive Abbildung σ : {,,n} {,,n} Es ist leicht zu sehen, dass die Hintereinanderführung zweier Permutationen ergibt wieder

Mehr

Es wurde in der Vorlesung gezeigt, daß man die Matrixgleichung Ax=b auch in der Form

Es wurde in der Vorlesung gezeigt, daß man die Matrixgleichung Ax=b auch in der Form Gaußscher Algorithmus zur Lösung linearer Gleichungssysteme Wir gehen aus vom Gleichungssystem A=b. Dabei ist A M m n K, b K m. Gesucht werden ein oder alle Elemente K n, so daß obige Gleichung erfüllt

Mehr

Lösungen - Serie 2 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie

Lösungen - Serie 2 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie Lösungen - Serie zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie Aufgabe : Berechnen Sie für die folgenden Elemente x in einer Körpererweiterung L K die Norm Nm L K (x) und die Spur T r

Mehr

Lineare Gleichungssysteme (Teschl/Teschl 11.1)

Lineare Gleichungssysteme (Teschl/Teschl 11.1) Lineare Gleichungssysteme (Teschl/Teschl.) Ein Lineares Gleichungssystem (LGS) besteht aus m Gleichungen mit n Unbekannten x,...,x n und hat die Form a x + a 2 x 2 +... + a n x n b a 2 x + a 22 x 2 +...

Mehr

x LINEARE GLEICHUNGSSYSTEME In diesem Paragraph beginnen wir mit einer elementaren Behandlung linearer Gleichungssysteme Bevor wir versuchen eine allg

x LINEARE GLEICHUNGSSYSTEME In diesem Paragraph beginnen wir mit einer elementaren Behandlung linearer Gleichungssysteme Bevor wir versuchen eine allg SKRIPTUM { LINEARE ALGEBRA I JB COOPER Inhaltsverzeichnis: x Lineare Gleichungssysteme x Geometrie der Ebene und des Raumes x Vektorraume x Lineare Abbildungen Typeset by AMS-T E X x LINEARE GLEICHUNGSSYSTEME

Mehr

Numerische Lösung linearer Gleichungssysteme

Numerische Lösung linearer Gleichungssysteme Kapitel 2 Numerische Lösung linearer Gleichungssysteme Dieses Kapitel behandelt numerische Verfahren zur Lösung linearer Gleichungssysteme der Gestalt Ax = b, A R n n, x, b R n (21) mit a 11 a 1n A = a

Mehr

Lineare Algebra Mathematical Engineering

Lineare Algebra Mathematical Engineering Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Universität der Bundeswehr München Lineare Algebra Mathematical Engineering Vorlesungsskript Univ. Prof. Dr. sc. math.

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra Effiziente Algorithmen und Datenstrukturen I Kapitel 10: Lineare Algebra Christian Scheideler WS 2008 19.02.2009 Kapitel 10 1 Überblick Notation Arithmetik auf großen Zahlen (Addition und Multiplikation)

Mehr

4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung

4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung 4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung In vielen Anwendungen treten lineare Gleichungssysteme auf, die eine unterschiedliche Anzahl von Gleichungen und Unbekannten besitzen: Ax

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Timo Stöcker Erstsemestereinführung Informatik TU Dortmund 22. März 2011 Heute Themen Lineare Gleichungssysteme Matrizen Timo Stöcker https://fsinfo.cs.tu-dortmund.de/studis/ese/vorkurse/mathe

Mehr

QR-Zerlegung Allgemeines. Householder-Spiegelung. Givens-Rotation. Gram-Schmidt-Orthogonalisierung. Fazit. QR-Zerlegung.

QR-Zerlegung Allgemeines. Householder-Spiegelung. Givens-Rotation. Gram-Schmidt-Orthogonalisierung. Fazit. QR-Zerlegung. 20.0.2011 Inhaltsverzeichnis 1 2 3 4 1 2 3 4 der Matrix A R mxn, m n A = Q R Matrix Q: Q R nxn orthogonale Matrix (Spalten paarweise orthogonal) Q Q T = E Matrix R: R R mxn obere Dreiecksmatrix r 11 r

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D. Dr. V. Gradinaru D. Devaud Herbstsemester 5 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie Aufgabe..a Bezüglich des euklidischen Skalarprodukts in R ist die Orthogonalprojektion

Mehr

Lineare Gleichungssysteme. Lineare Gleichungssysteme. LR Zerlegung ohne Pivotsuche. Zerlegung regulärer Matrizen

Lineare Gleichungssysteme. Lineare Gleichungssysteme. LR Zerlegung ohne Pivotsuche. Zerlegung regulärer Matrizen Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Institute for Numerical Simulation Betrachte ein lineares Gleichungssystem Ax = b (1) Es sei A C n n eine gegebene regulär Matrix. Dann

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

1 Singulärwertzerlegung und Pseudoinverse

1 Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung A sei eine Matrix mit n Spalten und m Zeilen. Zunächst sei n m. Bilde B = A A. Dies ist eine n n-matrix. Berechne die Eigenwerte von B. Diese

Mehr

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48 Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48 Grundbegriffe der Informatik Einheit 12: Erste Algorithmen in Graphen Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009

Mehr

Quadratische Formen und Definitheit

Quadratische Formen und Definitheit Universität Basel Wirtschaftswissenschaftliches Zentrum Quadratische Formen und Definitheit Dr. Thomas Zehrt Inhalt: 1. Quadratische Formen 2. Quadratische Approximation von Funktionen 3. Definitheit von

Mehr

4 Direkte Verfahren für spezielle Systeme

4 Direkte Verfahren für spezielle Systeme Numerische Mathematik 150 4 Direkte Verfahren für spezielle Systeme 4.1 Die Cholesky-Zerlegung Satz 4.1 Es sei A = [a i,j ] R n n [C n n ] symmetrisch [Hermitesch]. Dann sind die folgenden Aussagen äquivalent:

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 5 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie Aufgabe. Skalarprodukt und Orthogonalität.a) Bezüglich des euklidischen

Mehr

Damit läßt sich die Aufgabe durch einfaches Rechnen zeigen: k=1

Damit läßt sich die Aufgabe durch einfaches Rechnen zeigen: k=1 Aufgabe (4 Punte) Sei A eine n m-matrix Die Matrix A T ist die m n-matrix, die durch Vertauschen der Zeilen und Spalten aus A hervorgeht (dh: aus Zeilen werden Spalten, und umgeehrt) Die Matrix A T heißt

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Numerische Mathematik

Numerische Mathematik Otmar Scherzer Numerische Mathematik Vorlesungsskriptum SS 2011 Computational Science Center Universität Wien Nordbergstr. 15 1090 Wien 2 Inhaltsverzeichnis 1 Rundefehler, Kondition und Stabilität 5 1.1

Mehr

Numerische Mathematik I

Numerische Mathematik I Numerische Mathematik I Lars Grüne Mathematisches Institut Fakultät für Mathematik und Physik Universität Bayreuth 95440 Bayreuth larsgruene@uni-bayreuthde wwwuni-bayreuthde/departments/math/ lgruene/

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

Stefan Funken Numerik I

Stefan Funken Numerik I Stefan Funken Numerik I (Einführung in die Numerische Lineare Algebra) 0000000000 00000000000 000000000000 A = L + D + R SKRIPT, UNIVERSITÄT ULM, WINTERSEMESTER 2008/2009 i Danksagung. Frau Kristin Kirchner

Mehr

20 Kapitel 2: Eigenwertprobleme

20 Kapitel 2: Eigenwertprobleme 20 Kapitel 2: Eigenwertprobleme 2.3 POTENZMETHODE Die Potenzmethode oder Vektoriteration ist eine sehr einfache, aber dennoch effektive Methode zur Bestimmung des betragsmäßig größten Eigenwertes. Um die

Mehr

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn.

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn. Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2016/17 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

1 Lineare Optimierung, Simplex-Verfahren

1 Lineare Optimierung, Simplex-Verfahren 1 Lineare Optimierung, Simplex-Verfahren 1.1 Einführung Beispiel: In einer Fabrik werden n Produkte A 1, A 2,..., A n hergestellt. Dazu werden m Rohstoffe B 1, B 2,..., B m (inklusive Arbeitskräfte und

Mehr

3. Das Gleichungssystem

3. Das Gleichungssystem Lagerung: Damit das Fachwerk Kräfte aufnehmen kann, muss es gelagert werden, Die Lagerung muss so beschaffen sein, dass keine Starrkörperbewegungen oder Mechanismen mehr möglich sind. Die Verschiebungen

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13

Corinne Schenka Vorkurs Mathematik WiSe 2012/13 4. Lineare Gleichungssysteme Ein lineares Gleichungssystem ist ein System aus Gleichungen mit Unbekannten, die nur linear vorkommen. Dieses kann abkürzend auch in Matrizenschreibweise 1 notiert werden:

Mehr

Iterative Lösung Linearer Gleichungssysteme

Iterative Lösung Linearer Gleichungssysteme Iterative Lösung Linearer Gleichungssysteme E. Olszewski, H. Röck, M. Watzl 1. Jänner 00 E. Olszewski, H. Röck, M. Watzl: WAP (WS 01/0) 1 Vorwort C.F.Gauß in einem Brief vom 6.1.18 an Gerling:

Mehr

Matrix-Algorithmen Matrixmultiplikation Allgemeiner Matrizen

Matrix-Algorithmen Matrixmultiplikation Allgemeiner Matrizen Matrix-Algorithmen Matrixmultiplikation Allgemeiner Matrizen 15.04.2011 Inhaltsverzeichnis Grundlagen 1 Grundlagen Matrizen Vektoren 2 Skalarprodukt und Saxpy Matrix-Vektor-Multiplikation Gaxpy Matrix-Matrix-Multiplikation

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg Spezialfälle und Rechenregeln Spezialfälle der Matrimultiplikation A = (m

Mehr

6. Übungsblatt zur Mathematik I für Maschinenbau

6. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 6. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 2/ 25..-.2. Aufgabe G (Lineare Gleichungssysteme)

Mehr

Die Folien der vierten Vorlesung sind, weil großteils noch nicht behandelt,hier nochmal enthalten:

Die Folien der vierten Vorlesung sind, weil großteils noch nicht behandelt,hier nochmal enthalten: Fünfte Vorlesung, 18. März 2010, Inhalt Gleichungssysteme Die Folien der vierten Vorlesung sind, weil großteils noch nicht behandelt,hier nochmal enthalten: Matrizenrechnung Lineare Gleichungssysteme:

Mehr

Der Rang einer Matrix A. Beispiel

Der Rang einer Matrix A. Beispiel Der Rang einer Matrix A ist gleich Anzahl der Zeilen ungleich 0, nachdem die Matrix durch elementare Zeilenoperationen in Zeilenstufenform gebracht worden ist. Bezeichnung: ranga oder rga. Beispiel A =

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme KAPITEL 2 Lineare Gleichungssysteme Lernziele dieses Abschnitts sind: Begrie: Matrix, Vektor spezielle Matrix, transponierte Matrix, inverse Matrix nur fur quadratische Matrizen erklart, Determinante,

Mehr

Arithmetik und Algebra

Arithmetik und Algebra Willkommen Gliederung "Hallo Welt!" für Fortgeschrittene Friedrich-Alexander-Universität Erlangen-Nürnberg Institut für Informatik Lehrstuhl 2 7. Juni 2005 Willkommen Gliederung Gliederung 1 Repräsentation

Mehr

Zur Numerik linearer Gleichungssysteme. Werner Vogt Technische Universität Ilmenau Institut für Mathematik Postfach 100565 98684 Ilmenau

Zur Numerik linearer Gleichungssysteme. Werner Vogt Technische Universität Ilmenau Institut für Mathematik Postfach 100565 98684 Ilmenau Zur Numerik linearer Gleichungssysteme Werner Vogt Technische Universität Ilmenau Institut für Mathematik Postfach 100565 98684 Ilmenau Ilmenau, den 1.11.2004 1 Direkte Verfahren für lineare Gleichungssysteme

Mehr

Kapitel V. Determinanten

Kapitel V. Determinanten Kapitel V. Determinanten Inhalt: 16. Definition und Eigenschaften der Determinante 17. Anwendung auf lineare Gleichungssysteme 18. Determinante eines Endomorphismus Lineare Algebra, Teil I 28. Januar 2011

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Lineare Gleichungssysteme und Determinanten. Lineare Gleichungssysteme.2 Determinanten 3 iii 2 LINEARE GLEIHUNGSSYSTEME UND DETERMINANTEN KAPITEL

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG KLAUSUR ZUR LINEAREN ALGEBRA I Wiederholungsprüfung MUSTERLÖSUNG. April 2008 Name: Studiengang: Aufgabe 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter

Mehr

Kap 5: Rang, Koordinatentransformationen

Kap 5: Rang, Koordinatentransformationen Kap 5: Rang, Koordinatentransformationen Sei F : V W eine lineare Abbildung. Dann ist der Rang von F erklärt durch: rang F =dim ImF. Stets gilt rang F dimv, und ist dimv

Mehr

2. Spezielle anwendungsrelevante Funktionen

2. Spezielle anwendungsrelevante Funktionen 2. Spezielle anwendungsrelevante Funktionen (1) Affin-lineare Funktionen Eine Funktion f : R R heißt konstant, wenn ein c R mit f (x) = c für alle x R existiert linear, wenn es ein a R mit f (x) = ax für

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Matrizenrechnung 2 11 Matrixbegri 2 12 Spezielle Matrizen 3 13 Rechnen

Mehr

Lineare Algebra und Geometrie für LehramtskandidatInnen. Andreas Čap

Lineare Algebra und Geometrie für LehramtskandidatInnen. Andreas Čap Lineare Algebra und Geometrie für LehramtskandidatInnen (Kapitel 6 9) Wintersemester 2010/11 Andreas Čap Fakultät für Mathematik, Universität Wien, Nordbergstraße 15, A 1090 Wien E-mail address: Andreas.Cap@esi.ac.at

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 Roger Burkhardt roger.burkhardt@fhnw.ch

Mehr

PRÜFUNG AUS ALGEBRA UND DISKRETE MATHEMATIK F. INF. U. WINF.

PRÜFUNG AUS ALGEBRA UND DISKRETE MATHEMATIK F. INF. U. WINF. Zuname: Vorname: Matrikelnummer: PRÜFUNG AUS ALGEBRA UND DISKRETE MATHEMATIK F. INF. U. WINF. (GITTENBERGER) Wien, am 5. Februar 2013 (Ab hier freilassen!) Arbeitszeit: 100 Minuten 1) 2) 3) 4) 5) 1)(8

Mehr

Aufgaben zu Kapitel 14

Aufgaben zu Kapitel 14 Aufgaben zu Kapitel 14 1 Aufgaben zu Kapitel 14 Verständnisfragen Aufgabe 14.1 Haben (reelle) lineare Gleichungssysteme mit zwei verschiedenen Lösungen stets unendlich viele Lösungen? Aufgabe 14.2 Gibt

Mehr

2. Repräsentationen von Graphen in Computern

2. Repräsentationen von Graphen in Computern 2. Repräsentationen von Graphen in Computern Kapitelinhalt 2. Repräsentationen von Graphen in Computern Matrizen- und Listendarstellung von Graphen Berechnung der Anzahl der verschiedenen Kantenzüge zwischen

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung Kapitel 2: Matrizen 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung 2.1 Matrizen M = n = 3 m = 3 n = m quadratisch M ij : Eintrag von M in i-ter

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

Datenstrukturen. Sommersemester Kapitel 1: Motivation / Grundlagen. Steffen Lange

Datenstrukturen. Sommersemester Kapitel 1: Motivation / Grundlagen. Steffen Lange Datenstrukturen Sommersemester 2010 Steffen Lange 1/1, Folie 1 2010 Prof. Steffen Lange - HDa/FbI - Datenstrukturen Organisatorisches Vorlesung wöchentlich; zwei Blöcke Folien im Netz (/* bitte zur Vorlesung

Mehr