Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 3. Übung

Größe: px
Ab Seite anzeigen:

Download "Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 3. Übung"

Transkript

1 TU Bergakademie Freiberg Vorl. Frau Prof. Dr. Swanhild Bernstein Übung Dipl.-Math. Daniel Lorenz Freiberg, 25. Oktober 2016 Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 3. Übung Aufgabe 1 Berechnen Sie möglichst geschickt: a z 1 = 1 + i 4, b z 2 = 1 + i 8, c z 3 = 1 + i 16, 32. d z 4 = 2cos 3 2 π + i sin 3 2 π Lösung a z 1 = 1 + i 4. Prinzipiell haben wir beim Berechnen der Potenzen immer zwei Möglichkeiten: wir können den binomischen Satz oder den Satz/die Formel von Moivre nutzen. In der Regel bei Potenzen größer 2 empfiehlt sich der Weg über Moivre. Nach der Formel von Moivre gilt für die n-te Potenz einer komplexen Zahl z = re iϕ = rcosϕ + i sinϕ, dass z n = r n e in ϕ = r n cosn ϕ + i sinn ϕ. Einfach gesagt: wir potenzieren den Radius mit n und multiplizieren den Winkel mit n. In dieser Aufgabe, wenn z 1 = 1 + i 4, ist der erste Schritt also die Zahl 1 + i in exponentieller oder trigonometrischer Form zu schreiben. Wir erhalten r = 1 + i = 2, 1 ϕ = arg1 + i = arctan = 1 π 4, da 1 + i offenbar im ersten Quadranten liegt. Schließlich ist also z 1 = 1 + i 4 = 2 4 e i π 4 4 = 4e iπ = 4, wo wir genutzt haben, dass e iπ = 1. b z 2 = 1 + i 8. Für diese Aufgabe können wir die Ergebnisse aus Teilaufgabe a nutzen, um recht viel Arbeit zu sparen. Da z 2 = z1 2, reicht es also unser Ergebnis aus a zu quadrieren. Wir erhalten z 2 = 16. 1

2 Alternativ können wir auch ausführlich rechnen. z 2 = 1 + i 8 = 2 8 e i π 4 8 = 16e i2π = 16, da e i2π = 1. c z 3 = 1 + i 16. Auch hier gilt das selbe wie bei Teilaufgabe b. Da z 3 = z 2 2 = z4 1 z 3 = 16 2 = 256. erhalten wir Die ausführliche Rechnung führt auf da e i4π = d z 4 = 2cos 3 2 π + i sin 3 2 π z 3 = 1 + i 16 = 2 16 e i π 4 16 = 256e i4π = 256, Auch diese Aufgabe lässt sich auf zwei Wegen lösen. Der Standard-Weg führt sofort auf z 4 = cos 2 π 32 + i sin 2 π 32 = 2 32 cos48π + i sin48π = 2 32, da cos48π = 1 und sin48π = 0. Alternativ kann man hier auch vor dem Potenzieren die Werte für cos 3 2π und sin 3 2 π bestimmen und feststellen, dass cos 3 2 π = 0 und sin 3 2π = 1. Damit reduziert sich die Aufgabe zu z 4 = 2 32 i 32 = 2 32 i 2 16 = = Hier besteht die Schwierigkeit darin bei der Berechnung von i 32 nicht durcheinander zu kommen. Aufgabe 2 Bestimmen Sie alle Lösungen der folgenden Gleichungen. a w 3 = 27, b w 1 3 = 8, c w = 8 3i, d w i = 0, e w 2 4w + 13 = 0, f w 4 5w 2 36 = 0. Lösung a w 3 = 27. 2

3 Das Vorgehen beim Wurzelziehen ist bei komplexen Zahlen fast immer das Selbe. Zunächst wandeln wir die Zahl, aus der wir die Wurzel ziehen wollen in exponentielle oder trigonometrische Form um. In unserem Fall nutzen wir, dass 1 = e iπ ist und erhalten sofort 27 = 27e iπ. Alternativ kann man den Winkel auch aus einer Skizze ablesen. Nun ziehen wir die dritte Wurzel entsprechend der, aus der Vorlesung oder dem Internet,..., bekannten Formel: Damit erhalten wir drei Lösungen w k = 3 π+2kπ i 27e 3, k = 0, 1, 2. 1 w 0 = 3e i π 3, w1 = 3e iπ, w 2 = 3e i 5 3 π. 3. Im w 0 2. argw 1 = π 1. argw 0 = π 3 w argw 2 = 5 3 π Re w 2 Bemerkungen zum Verständnis Wenn wir die n-te Wurzel aus einer komplexen Zahl z ziehen, dann besteht die vollständige Lösung immer aus n Zahlen. Diese n Zahlen sind gleichmäßig auf einem Kreis mit Radius n z verteilt. In der Skizze zu unserer Aufgabe ist das einigermaßen gut zu erkennen. Wenn Sie beim Ziehen der 5 Wurzel also nur 3 Zahlen als Lösung gefunden haben, dann haben Sie in Ihrer Rechnung irgendwo mindestens einen Fehler. Einzige Ausnahme: wenn Sie aus 0 die Wurzel ziehen, dann ist die einzige Lösung offenbar 0. 3

4 Um bei der Rechnung alle Lösungen zu finden, ist es wichtig, dass Sie beim Winkel im Exponenten den Term 2kπ nicht vergessen vgl. Gleichung 1. Vielleicht hilft es Ihrem Verständnis, wenn Sie sich nochmal bewusst machen, dass der Winkel komplexe Zahlen in trigonometrischer oder exponentieller Form nicht eindeutig bestimmt ist. Die Winkel ϕ 0 = π, ϕ 1 = π+2π, ϕ 2 = π+4π und ϕ 4 = π+6π beschreiben ein und die selbe Zahl - Sie können also zum Winkel ganzzahlige Vielfache von 2π addieren und subtrahieren ohne die komplexe Zahl zu ändern. Sie können sich das Wurzelziehen nun so vorstellen, dass sie den Winkel ϕ 0 von z bei uns π durch n in unserer Aufgabe 3 teilen, um auf die erste Lösung zu kommen. Anschließend gehen Sie einmal um den Kreis herum und teilen nun den neuen Winkel ϕ 1 = ϕ 0 + 2π bei uns π + 2π wieder durch n bei uns 3; anschließend vollziehen Sie noch eine Drehung um den Kreis.... Aufhören können/sollten Sie damit, wenn Sie n Lösungen ermittelt haben also n 1 mal um den Kreis gelaufen sind. Dieses um den Kreis gehen wird in der Formel durch das k kodiert. b w 1 3 = 8. Hier ist das Vorgehen ähnlich wie gerade eben. Wir schreiben zunächst 8 in exponentieller Form und ziehen anschließend die dritte Wurzel. Um die Notation zu vereinfachen, setzen wir z = w 1. Da 8 = 8e iπ erhalten wir Das liefert uns z k = 3 π+2kπ i 8e 3, k = 0, 1, 2. z 0 = 2e i π 1 3 = i = 1 + 3i, z 1 = 2e iπ = 2, 2 z 2 = 2e i π = i = 1 2 3i. Um nun auf die Ergebnisse für w zu kommen, nutzen wir, dass z = w 1 und erhalten die drei Lösungen w 0 = 2 + 3i, w 1 = 1, w 2 = 2 3i. c w = 8 3i. Diese Aufgabe funktioniert genau wie die vorhergehende Teilaufgabe. Wir setzen wieder z = w + 1 und lösen zunächst die Gleichung z 4 = i. Dazu schreiben wir i in exponentieller Form und erhalten r = i = = 16, 4

5 ϕ = arg i = arctan + π = π + π = 2 3 π, da i im zweiten Quadranten liegt. Mit Hilfe der Formel fürs komplexe Wurzelziehen lösen wir nun die Gleichung z 4 = 16e i 3 2 π und erhalten Damit ergeben sich die Lösungen z k = 4 16e i 2 3 π+2kπ 4, k = 0, 1, 2, 3. z 0 = 2e i π 1 = i = 3 + i, z 1 = 2e i 4 6 π = i = 1 + 3i, 2 z 2 = 2e i 7 6 π = i = 3 i, z 3 = 2e i π = i = 1 3i. Unsere Lösungen der ursprünglichen Aufgabe lauten damit w 0 = z 0 1 = i, w 1 = z 1 1 = 2 + 3i, w 2 = z 2 1 = 3 1 i, w 3 = z 3 1 = 3i. d w i = 0. Wir lösen diese Aufgabe genauso wie die vorhergehenden Aufgaben. Nach dem Umstellen auf w 8 = 1 3i schreiben wir zunächst 1 3i in exponentieller Form. Wir erhalten r = 1 3i = = 2, da 1 3i im dritten Quadranten liegt. ϕ = arg 1 3i = arctan 3 + π = π, Mittels der Formel fürs Wurzelziehen lösen wir nun die Gleichung w 8 = 2e 4 3 πi und erhalten Damit haben wir 8 Lösungen, nämlich w k = 8 2e i 4 3 π+2kπ 8, k = 0, 1,..., 7. w 0 = 8 2e i 1 6 π, w 1 = 8 2e i 5 12 π, w 2 = 8 2e i 2 3 π, w 3 = 8 2e i π, w 4 = 8 2e i 7 6 π, w 5 = 8 2e i π, w 6 = 8 2e i 5 3 π, w 7 = 8 2e i π. e w 2 4w + 13 = 0. 5

6 Wir nutzen zunächst die aus der Schule bekannte Lösungsformel für quadratische Gleichungen. Wir erhalten w 1, 2 = 2 ± 4 13 = 2 ± 9 = 2 ± Nun sollte man sich erinnern, dass i 2 = 1 aber auch i 2 = 1. Also liefert 1 zwei verschiedene Ergebnisse, nämlich i und i. In unsere Rechnung führt das zu den beiden Ergebnissen w 1 = 2 3i, und w 2 = 2 + 3i. Bei diesem Vorgehen entsteht womöglich etwas Verwirrung. Das Ziehen einer 2-ten Wurzel liefert immer zwei Lösungen, die sich symmetrisch gegenüber liegen so wie bspw. i und i. In der Schulmathematik wurde dem durch das ±-Zeichen Rechnung getragen - dadurch hat man immer die zweite Lösung erhalten, auch ohne daran zu denken, dass bspw. 4 auch die negative Lösung 2 besitzt. Wenn man die Wurzeln nun entsprechend der Formel für das Wurzelziehen im Komplexen berechnet, entsteht womöglich der Eindruck, dass unter Umständen 4 Lösungen heraus kommen. Rechnet man w = 2 ± 3 1 = 2 ± 3 e iπ π+2kπ i = 2 ± 3e 2, k = 0, 1, hat man zunächst vier Lösungen, nämlich w 0 = 2 + 3e i π 2, w1 = 2 3e i π 2, w3 = 2 + 3e i 3 2 π, w 4 = 2 3e i 3 2 π. Rechnet man diese vier Zahlen in die algebraische Form um, sieht man aber, dass es tatsächlich nur zwei verschiedene Lösungen sind. w 0 = 2 + 3i, w 1 = 2 3i, w 2 = i, w 3 = 2 3 i. Fazit: Viele Wege führen nach Rom. Entweder Sie lösen quadratische Gleichungen mit Hilfe der Formel aus der Schule inklusive ± und denken daran, dass Sie jetzt auch aus negativen Zahlen die Wurzel ziehen können; oder Sie lassen das ± in der Schulformel weg und ziehen die Wurzeln mit Hilfe der Formel fürs komplexe Wurzelziehen. Beide Wege führen bei korrekter Anwendung auf die selben, richtigen Ergebnisse. f w 4 5w 2 36 = 0. Bei Gleichungen dieser Art nur geradzahlige Potenzen substituieren wir z = w 2 und lösen zunächst die Gleichung z 2 5z 36 = 0. Wir erhalten z 1, 2 = 5 2 ± = 5 2 ± 13 2, 6

7 also z 1 = 9 und z 2 = 4. Wir substituieren zurück und müssen nun die beiden Gleichungen w 2 = 9, und w 2 = 4, lösen. Die erste Gleichung liefert offenbar die beiden Lösungen w 0 = 3 und w 1 = 3, wohingegen die zweite Gleichung die beiden Lösungen w 2 = 2i und w 3 = 2i einbringt. 7

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ): Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17

Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17 1/37 0. Organisatorisches 2/37 Übung Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17 Dr. Udo Lorz TU Bergakademie Freiberg Fakultät für Mathematik und Informatik Links zur Vorlesung Website

Mehr

Wurzelgleichungen. 1.1 Was ist eine Wurzelgleichung? 1.2 Lösen einer Wurzelgleichung. 1.3 Zuerst die Wurzel isolieren

Wurzelgleichungen. 1.1 Was ist eine Wurzelgleichung? 1.2 Lösen einer Wurzelgleichung. 1.3 Zuerst die Wurzel isolieren 1.1 Was ist eine Wurzelgleichung? Wurzelgleichungen Beispiel für eine Wurzelgleichung Eine Wurzelgleichung ist eine Gleichung bei der in mindestens einem Radikanten (Term unter der Wurzel) die Unbekannte

Mehr

Mathematik = x 2 + x 2 = x + x 2 25x = 146 x =

Mathematik = x 2 + x 2 = x + x 2 25x = 146 x = 1 Prof. Dr. Matthias Gerdts Dr. Sven-Joachim Kimmerle Wintertrimester 014 Mathematik 1 + Übung 1 Gleichungen mit Wurzeln Bestimmen Sie alle Lösungen der folgenden Gleichungen. Beachten Sie dabei, dass

Mehr

Technische Universität München. Lösung Montag WS 2013/14. (Einheitskreis, ohne Rechnung ersichtlich) (Einheitskreis, ohne Rechnung ersichtlich)

Technische Universität München. Lösung Montag WS 2013/14. (Einheitskreis, ohne Rechnung ersichtlich) (Einheitskreis, ohne Rechnung ersichtlich) Technische Universität München Andreas Wörfel Ferienkurs Analysis 1 für Physiker Lösung Montag WS 01/1 Aufgabe 1 Zum warm werden: Komplexe Zahlen - Lehrling Bestimmen Sie das komplex Konjugierte, den Betrag

Mehr

Multiplikation und Division in Polarform

Multiplikation und Division in Polarform Multiplikation und Division in Polarform 1-E1 1-E Multiplikation und Division in Polarform: Mathematisches Rüstzeug n m b b = b n+m bn bm = bn m ( b n )m = b n m Additionstheoreme: cos 1 = cos 1 cos sin

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 2. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 2. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN Bisher kennen wir bereits folgende Zahlenbereiche: N Natürliche Zahlen Z Ganze Zahlen Q Rationale Zahlen Bei

Mehr

Zahlen und Funktionen

Zahlen und Funktionen Kapitel Zahlen und Funktionen. Mengen und etwas Logik Aufgabe. : Kreuzen Sie an, ob die Aussagen wahr oder falsch sind:. Alle ganzen Zahlen sind auch rationale Zahlen.. R beschreibt die Menge aller natürlichen

Mehr

Wurzelgleichungen 150 thematisch geordnete Wurzelgleichungen mit ausführlichen Lösungen

Wurzelgleichungen 150 thematisch geordnete Wurzelgleichungen mit ausführlichen Lösungen Wurzelgleichungen 50 thematisch geordnete Wurzelgleichungen mit ausführlichen Lösungen 6. erweiterte Auflage vom 6.09.005 Copyright by Josef Raddy .Wurzelgleichungen mit einer Wurzel a) b) + + c) + 7 d)

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Aufgabensammlung Klasse 8

Aufgabensammlung Klasse 8 Aufgabensammlung Klasse 8 Inhaltsverzeichnis 1 Potenzen mit natürlichen Hochzahlen 3 1.1 Rechenregeln für das Rechnen mit Potenzen..................... 3 1.1.1 Addition und Subtraktion von Potenzen...................

Mehr

Quadratische Funktionen und Gleichungen Mathematik Jahrgangsstufe 9 (G8) Bergstadt-Gymnasium Lüdenscheid. Friedrich Hattendorf

Quadratische Funktionen und Gleichungen Mathematik Jahrgangsstufe 9 (G8) Bergstadt-Gymnasium Lüdenscheid. Friedrich Hattendorf Mathematik Jahrgangsstufe 9 (G8) Lüdenscheid Friedrich Hattendorf 4. September 2014 Vorbemerkung Die Datei entsteht noch; noch nicht alles ist optimal Hinweis zum Ausdruck: (Fast) Alles sollte noch gut

Mehr

1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an:

1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: Aufgaben zum Vorkurs B S. 1 1 Übungen zu Mengen Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: A = {x N 0 < x < 4, 8} B = {t N t ist Teiler von 4} C = {z Z z ist positiv, durch 3 teilbar

Mehr

Extrema gebrochen rationaler Funktionen

Extrema gebrochen rationaler Funktionen Übungen zum Thema: Extrema gebrochen rationaler Funktionen Hier angewandte Lösungsmethode: Grenzwertmethode Versionsnummer: Version in Arbeit vom 6.09.007 / 19.00 Uhr Finde lokale Extrema der gebrochen

Mehr

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg Komplexe Funktionen für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Universität Hamburg SS 2006 Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen

Mehr

erfanden zu den reellen Zahlen eine neue Zahl

erfanden zu den reellen Zahlen eine neue Zahl Vorlesung 9 Komplexe Zahlen Die Gleichung x 2 = 1 ist in R nicht lösbar, weil es keine Zahl gibt, deren Quadrat eine negative Zahl ist. Die Mathematiker erfanden zu den reellen Zahlen eine neue Zahl i,

Mehr

Potenzen mit ganzzahligen Exponenten: Rechenregeln

Potenzen mit ganzzahligen Exponenten: Rechenregeln Lüneburg, Fragment Potenzen mit ganzzahligen Exponenten: Rechenregeln 5-E1 5-E2 Potenzen: Rechenregeln Regel 1: Potenzen mit gleicher Basis können dadurch miteinander multipliziert werden, dass man die

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme. Kapitel 3 Gleichungen und Ungleichungen linke Seite = rechte Seite Grundmenge: Menge aller Zahlen, die wir als Lösung der Gleichung

Mehr

2.6 Der komplexe Logarithmus und allgemeine Potenzen

2.6 Der komplexe Logarithmus und allgemeine Potenzen 2.6 Der komplexe Logarithmus und allgemeine Potenzen Ziel: Umkehrung der komplexen Exponentialfunktion fz) = expz). Beachte: Die Exponentialfunktion expz) ist für alle z C erklärt, und es gilt Dexp) =

Mehr

Leitfaden a tx t

Leitfaden a tx t Leitfaden -0.7. Potenz-Reihen. Definition: Es sei (a 0, a, a 2,...) eine Folge reeller Zahlen (wir beginnen hier mit dem Index t 0). Ist x R, so kann man die Folge (a 0, a x, a 2 x 2, a 3 x 3,...) und

Mehr

Goniometrische Gleichungen

Goniometrische Gleichungen EL / GS - 3.8.5 - e_triggl.mcd Goniometrische Gleichungen Definition: Gleichungen, in denen die Variable als Argument von Winkelfunktionen vorkommen, nennt man "goniometrische Gleichungen". sweg: Mit Hilfe

Mehr

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a Komplexe Zahlen. Bedarfsfrage Menge der natürlichen Zahlen = {,, 3,...} Aber: a + x = b ist nur lösbar, falls b > a (Peano-Axiome). Erweiterung: Menge der ganen Zahlen = {..., -3, -, -, 0,,, 3,...} a +

Mehr

Komplexe Zahlen. Rainer Hauser. Januar 2015

Komplexe Zahlen. Rainer Hauser. Januar 2015 Komplexe Zahlen Rainer Hauser Januar 015 1 Einleitung 1.1 Zahlen und Operationen auf Zahlen Addiert man mit Eins als erster gegebener Zahl beginnend sukzessive Eins zu einer bereits gefundenen Zahl, so

Mehr

Quadratwurzeln. Reelle Zahlen

Quadratwurzeln. Reelle Zahlen M 9. Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: = Quadratwurzeln sind nur für positive Zahlen definiert: 0 25 = 5; 8 = 9; 0,25 = =

Mehr

Komplexe Zahlen. Lernziele dieses Abschnitts sind:

Komplexe Zahlen. Lernziele dieses Abschnitts sind: KAPITEL 1 Komplexe Zahlen Lernziele dieses Abschnitts sind: (1) Analytische und geometrische Darstellung komplexer Zahlen, () Grundrechenarten fur komplexe Zahlen, (3) Konjugation und Betrag komplexer

Mehr

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand:

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: 0 25 5; 81 9; 0,25 0,5; 0,0081

Mehr

Aufgaben zu Kapitel 5

Aufgaben zu Kapitel 5 Aufgaben zu Kapitel 5 Aufgaben zu Kapitel 5 Verständnisfragen Aufgabe 5. Geben Sie zu folgenden komplexen Zahlen die Polarkoordinatendarstellung an z i z + i z 3 + 3i). r 5 ϕ 5 4 3 π bzw. r 6 3 ϕ 6 4 5

Mehr

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk,

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk, Lo sungen zu den U bungsaufgaben, Blatt Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS/ Dipl.-Math. T. Pawlaschyk,.0. Themen: Wurzeln, Gleichungen, Ungleichungen

Mehr

Potenzgesetze und Logarithmengesetze im Komplexen

Potenzgesetze und Logarithmengesetze im Komplexen Potenzgesetze und Logarithmengesetze im Komplexen Man kennt die Potenzgesetze und die Logarithmengesetze gewöhnlich schon aus der Schule und ist es gewohnt, mit diesen leicht zu agieren und ohne große

Mehr

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand:

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand: M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: ; ; ; ; M 9.2 Reelle Zahlen

Mehr

Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Extremstellen-Bedingungen

Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Extremstellen-Bedingungen Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Etremstellen-Bedingungen Häufig sind Ableitungsfunktionsterme leichter zu handhaben als die Terme der Ausgangsfunktonen, weil sie niedrigere Eponenten

Mehr

Grundwissen 9. Klasse 9/1. Grundwissen 9. Klasse 9/2

Grundwissen 9. Klasse 9/1. Grundwissen 9. Klasse 9/2 Grundwissen 9. Klasse 9/. Quadratwurzel Definition: a ist diejenige positive Zahl, deren Quadrat a ergibt: a =a z.b. 5=5 Bezeichnung: Die Zahl a unter der Wurzel heißt Radikand. Radikandenbedingung: a

Mehr

Lösen quadratischer Gleichungen

Lösen quadratischer Gleichungen d Mathematik.0.009 Stefan Krissel Lösen quadratischer Gleichungen Was sind quadratische Gleichungen? Gleichungen Gleichungen sind grundsätzlich alle mathematischen Erscheinungen, bei denen ein Gleichheitszeichen

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Teil I.2 Lösen von Bestimmungsgleichungen

Teil I.2 Lösen von Bestimmungsgleichungen Brückenkurs Mathematik Teil I.2 Lösen von Bestimmungsgleichungen Staatliche Studienakademie Leipzig Studienrichtung Informatik Dr. Susanne Schneider 12. September 2011 Bestimmungsgleichungen 1 Reelle Zahlen

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

Wurzelgleichungen 150 thematisch geordnete Wurzelgleichungen mit ausführlichen Lösungen

Wurzelgleichungen 150 thematisch geordnete Wurzelgleichungen mit ausführlichen Lösungen Wurzelgleichungen 50 thematisch geordnete Wurzelgleichungen mit ausführlichen Lösungen 7. Auflage vom 0.09.007 Copyright by Josef Raddy .Wurzelgleichungen mit einer Wurzel a) b) + + c) + 7 d) + 6 e) f)

Mehr

Aufgabe 1: Geben Sie die Nullstellen der Funktion f(x) = sin (3x 2

Aufgabe 1: Geben Sie die Nullstellen der Funktion f(x) = sin (3x 2 Etra-Mathematik-Übung: 005--9 Aufgabe : Geben Sie die Nullstellen der Funktion f() sin ( * Pi) an! Skizze: Wertetabelle: X - ½ Pi ½ Pi sin ( ½ Pi) -,0-6,0 -,57-7,57-0,96 -,5 -,5 -,57-6,07 + 0, -,0 -,0

Mehr

Erzeugende Funktionen

Erzeugende Funktionen Hallo! Erzeugende Funktionen sind ein Mittel um lineare Rekursionen schneller ausrechnen zu können. Es soll die Funktion nicht mehr als Rekursion angeschrieben werden, sondern so, dass man nur n einsetzen

Mehr

Musterlösungen Lehrbrief 01 Technik (Mathematische Grundlagen) Seite 1 von 7

Musterlösungen Lehrbrief 01 Technik (Mathematische Grundlagen) Seite 1 von 7 Musterlösungen Lehrbrief 0 Technik (Mathematische Grundlagen) Seite von 7 Bei diesen, wie auch bei allen folgenden Musterlösungen, zeigen wir in der egel nur einen Weg zum Ziel. Alle anderen Wege, die

Mehr

4.4. Rang und Inversion einer Matrix

4.4. Rang und Inversion einer Matrix 44 Rang und Inversion einer Matrix Der Rang einer Matrix ist die Dimension ihres Zeilenraumes also die Maximalzahl linear unabhängiger Zeilen Daß der Rang sich bei elementaren Zeilenumformungen nicht ändert

Mehr

Trigonometrie. In der Abbildung: der Winkel 120 (Gradenmaß) ist 2π = 2π (Bogenmaß).

Trigonometrie. In der Abbildung: der Winkel 120 (Gradenmaß) ist 2π = 2π (Bogenmaß). Trigonometrie. Winkel: Gradmaß oder Bogenmaß In der Schule lernt man, dass Winkel im Gradmass, also als Zahlen zwischen 0 und 60 Grad angegeben werden. In der Mathematik arbeitet man lieber mit dem Bogenmaß,

Mehr

7. KOMPLEXE ZAHLEN. und die. KOMPLEXE e-funktion

7. KOMPLEXE ZAHLEN. und die. KOMPLEXE e-funktion 7. KOMPLEXE ZAHLEN und die KOMPLEXE e-funktion 1 Wir gehen aus von der Ebene, versehen mit einem Koordinatensystem und x, y-koordinaten. Dann entsprechen Punkte z in der Ebene Zahlenpaaren: z = (x, y)

Mehr

Komplexe Zahlen. Berechnung von n-ten Wurzeln. Als Beispiel behandeln wir die Bestimmung der 3-ten Wurzeln von z = i

Komplexe Zahlen. Berechnung von n-ten Wurzeln. Als Beispiel behandeln wir die Bestimmung der 3-ten Wurzeln von z = i Komplexe Zahlen Berechnung von n-ten Wurzeln Als Beispiel behandeln wir die Bestimmung der -ten Wurzeln von z = + i z:= + *I + i Nach diese Eingabe "weiss" das System, dass z die komplexe Zahl + i ist.

Mehr

Die allgemeine Sinusfunktion

Die allgemeine Sinusfunktion Die allgemeine Sinusfunktion 1. Die Tageslänge(Zeitdauer zwischen Sonnenaufgang und Sonnenuntergang) an einem festen Ort verändert sich im Lauf eines Jahres. Die Graphik zeigt diese Veränderung für München.

Mehr

Geraden und Ebenen. 1 Geraden. 2 Ebenen. Thérèse Tomiska 2. Oktober Parameterdarstellung (R 2 und R 3 )

Geraden und Ebenen. 1 Geraden. 2 Ebenen. Thérèse Tomiska 2. Oktober Parameterdarstellung (R 2 und R 3 ) Geraden und Ebenen Thérèse Tomiska 2. Oktober 2008 1 Geraden 1.1 Parameterdarstellung (R 2 und R 3 ) a... Richtungsvektor der Geraden g t... Parameter X = P + t P Q P Q... Richtungsvektor der Geraden g

Mehr

Die Menge der reellen Zahlen vereinigt die Menge der rationalen Zahlen mit der Menge der irrationalen

Die Menge der reellen Zahlen vereinigt die Menge der rationalen Zahlen mit der Menge der irrationalen 9 Menge der natürlichen Zahlen Axiome von Peano: 1. 1 ist eine natürliche Zahl. 2. Jede Zahl a hat einen bestimmten Nachfolger a + in der Menge der natürlichen Zahlen.. Stets ist a + 1, d.h. es gibt keine

Mehr

Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten

Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten Ausgewählte Aufgaben zur Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten Lehrplanabschnitt M 9.6 Fortführung der Raumgeometrie Ausführliche Hinweise zur Verwendung der folgenden

Mehr

J Quadratwurzeln Reelle Zahlen

J Quadratwurzeln Reelle Zahlen J Quadratwurzeln Reelle Zahlen J Quadratwurzeln Reelle Zahlen 1 Quadratwurzeln Ein Quadrat habe einen Flächeninhalt von 64 cm. Will man wissen, wie lang die Seiten des Quadrates sind, so muss man herausfinden,

Mehr

(x a) 3 + f (a) 4! x 4 4! Wir werden im Folgenden vor allem Maclaurin-Reihen betrachten, dies alles funktioniert aber auch. f (x) = sin x f (0) = 0

(x a) 3 + f (a) 4! x 4 4! Wir werden im Folgenden vor allem Maclaurin-Reihen betrachten, dies alles funktioniert aber auch. f (x) = sin x f (0) = 0 Taylor-Reihen Einführung Mathematik GLF / 6 Christian Neukirchen Oft können wir bestimmte mathematische Funktionen nicht genau ausrechnen, besonders die trigonometrischen Funktionen wie, cos x, oder die

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Genial! Mathematik - Kopiervorlagen 3: Mathe zum Ankreuzen 3

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Genial! Mathematik - Kopiervorlagen 3: Mathe zum Ankreuzen 3 Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Genial! Mathematik - Kopiervorlagen : Mathe zum Ankreuzen Das komplette Material finden Sie hier: School-Scout.de Klammerheftung,

Mehr

Zahlen und elementares Rechnen

Zahlen und elementares Rechnen und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3

Mehr

2. Die Satzgruppe des Pythagoras

2. Die Satzgruppe des Pythagoras Grundwissen Mathematik 9. Klasse Seite von 17 1.4 Rechnen mit reellen Zahlen a) Multiplizieren und Dividieren von reellen Zahlen + Es gilt: a b = a b mit ab R, 0 Beispiele: 18 = 36 = 6 14 14 7 = = a a

Mehr

Wurzeln als Potenzen mit gebrochenen Exponenten. Vorkurs, Mathematik

Wurzeln als Potenzen mit gebrochenen Exponenten. Vorkurs, Mathematik Wurzeln als Potenzen mit gebrochenen Exponenten Zur Einstimmung Wir haben die Formel benutzt x m n = x m n nach der eine Exponentialzahl potenziert wird, indem man die Exponenten multipliziert. Dann sollte

Mehr

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE I. Reelle Zahlen 1. Die Menge der rationalen Zahlen und die Menge der irrationalen Zahlen bilden zusammen die Menge der reellen Zahlen. Nenne Beispiele für rationale und irrationale Zahlen.. Aus negativen

Mehr

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand:

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand: M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: ; ; ; ; M 9.2 Reelle Zahlen

Mehr

1.2 Rechnen mit Termen II

1.2 Rechnen mit Termen II 1.2 Rechnen mit Termen II Inhaltsverzeichnis 1 Ziele 2 2 Potenzen, bei denen der Exponent negativ oder 0 ist 2 3 Potenzregeln 3 4 Terme mit Wurzelausdrücken 4 5 Wurzelgesetze 4 6 Distributivgesetz 5 7

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Grundlagen der Integralrechnung: Übungsaufgaben zur Berechnung unbestimmter und bestimmter Integrale Das komplette Material finden

Mehr

1. Elementare Algebra

1. Elementare Algebra 1. Elementare Algebra Mit Ausnahme des Abschnitts 1.3 wiederholen wir in diesem Kapitel einige wichtige Regeln und Formeln aus der Schulmathematik, die erfahrungsgemäß bei den meisten Studenten nicht in

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13

Mathematischer Vorkurs für Physiker WS 2012/13 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Übungsblatt 2 Wichtige Formeln aus der Vorlesung: Basisaufgaben Beispiel 1: 1 () grad () = 2 (). () () = ( 0 ) + grad ( 0 ) ( 0 )+

Mehr

Quadratische Gleichungen

Quadratische Gleichungen Quadratische Gleichungen Grundlage für das Lösen von Quadratischen Gleichungen ist die Lösungsformel, auch als p-q-formel bekannt. Diese Formel bezieht sich auf die Quadratische Gleichung in Normalform:

Mehr

VORKURS MATHEMATIK FÜR INGENIEURE PD DR. SWANHILD BERNSTEIN, TU BERGAKADEMIE FREIBERG, WINTERSEMESTER 2007/08

VORKURS MATHEMATIK FÜR INGENIEURE PD DR. SWANHILD BERNSTEIN, TU BERGAKADEMIE FREIBERG, WINTERSEMESTER 2007/08 VORKURS MATHEMATIK FÜR INGENIEURE PD DR. SWANHILD BERNSTEIN, TU BERGAKADEMIE FREIBERG, WINTERSEMESTER 007/08 Inhaltsverzeichnis 1. Mengen 1.1. Mengenrelationen und -operationen 1.. Zahlenbereiche 4 1.3.

Mehr

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel:

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel: 1. Zahlenmengen Wissensgrundlage Aufgabenbeispiele Gib die jeweils kleinstmögliche Zahlenmenge an, welche die Zahl enthält? R Q Q oder All diejenigen Zahlen, die sich nicht mehr durch Brüche darstellen

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

Inhaltsverzeichnis 1 Rechnen 1.1 Die Zahlen 1.2 Zahlen darstellen 1.3 Addieren 1.4 Subtrahieren 1.5 Vereinfachen algebraischer Summen

Inhaltsverzeichnis 1 Rechnen 1.1 Die Zahlen 1.2 Zahlen darstellen 1.3 Addieren 1.4 Subtrahieren 1.5 Vereinfachen algebraischer Summen 6 Inhaltsverzeichnis 1 Rechnen... 11 1.1 Die Zahlen... 11 1.1.1 Zahlenmengen und ihre Darstellung... 11 1.1.2 Übersicht über weitere Zahlenmengen... 17 1.1.3 Zahlen vergleichen... 18 1.1.4 Größen, Variablen

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems

Mehr

Berufsmaturitätsprüfung 2013 Mathematik

Berufsmaturitätsprüfung 2013 Mathematik GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmaturitätsschule Berufsmaturitätsprüfung 2013 Mathematik Zeit: Hilfsmittel: Hinweise: Punkte: 180 Minuten Formel- und Tabellensammlung ohne gelöste

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Komplexe Zahlen (Seite 1)

Komplexe Zahlen (Seite 1) (Seite 1) (i) Motivation: + 5 = 3 hat in N keine Lösung Erweiterung zu Z = 2 3 = 2 hat in Z keine Lösung Erweiterung zu Q = 2 / 3 ² = 2 hat in Q keine Lösung Erweiterung zu R = ± 2 ² + 1 = 0 hat in R keine

Mehr

Termumformungen (ohne binomische Formeln)

Termumformungen (ohne binomische Formeln) ALGEBRA Terme Termumformungen (ohne binomische Formeln) Datei Nr. 0 Stand 6. Oktober 0 Friedrich W. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mathe-cd.schule 0 Term-Umformungen Inhalt DATEI 0 Zahlenterme

Mehr

Terme und Aussagen und

Terme und Aussagen und 1 Grundlagen Dieses einführende Kapitel besteht aus den beiden Abschnitten Terme und Aussagen und Bruchrechnung. Die Erfahrung zeigt, dass diese Dinge zwar in der Schule gelehrt und gelernt werden, dass

Mehr

Sermiversusformel und ABC-Tafel

Sermiversusformel und ABC-Tafel Sermiversusformel und ABC-Tafel Um die Höhe eines beobachteten Gestirns zu erhalten oder um eine Distanz zwischen zwei geographischen Orten auf einem Großkreis zu erhalten, wendet man den Seitenkosinussatz

Mehr

Demo-Text für Quadratwurzeln ALGEBRA. Teil 1. Einführung und Grundeigenschaften. (Klasse 8 / 9) Friedrich W.

Demo-Text für  Quadratwurzeln ALGEBRA. Teil 1. Einführung und Grundeigenschaften. (Klasse 8 / 9) Friedrich W. Teil 1 Einführung und Grundeigenschaften (Klasse 8 / 9) Datei Nr. 101 Friedrich W. Buckel Stand: 1. Mai 014 ALGEBRA Quadratwurzeln INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Vorwort Die Einführung des 1-jährigen

Mehr

Zusammenfassung Zahlbereiche

Zusammenfassung Zahlbereiche Zusammenfassung Zahlbereiche Ekkehard Batzies 7. Mai 2008 1 Die rationalen Zahlen 1.1 Zahlbereiche in der Schule Als Zahlbereiche kennt man aus der Schule die natürlichen Zahlen, N = {0, 1, 2, 3,...},

Mehr

Reelle Zahlen (R)

Reelle Zahlen (R) Reelle Zahlen (R) Bisher sind bekannt: Natürliche Zahlen (N): N {,,,,,6... } Ganze Zahlen (Z): Z {...,,,0,,,... } Man erkennt: Rationale Zahlen (Q):.) Zwischen den natürlichen Zahlen befinden sich große

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker II (Sommersemester 2004) Lösungen zu Aufgabenblatt

Mehr

MATHEMATIK Grundkurs 11m3 2010

MATHEMATIK Grundkurs 11m3 2010 MATHEMATIK Grundkurs 11m3 2010 Städtisches Gymnasium Leichlingen Zusammenfassende Informationen zum Unterricht ab 29. Oktober 2010 Für jede Doppelstunde ein Kapitel 2 Kapitel 1 Doppelstunde 29.10.2010

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Grundwissen Mathematik - Wurzeln und Potenzen

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Grundwissen Mathematik - Wurzeln und Potenzen Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Grundwissen Mathematik - Wurzeln und Potenzen Das komplette Material finden Sie hier: School-Scout.de Michael Körner Grundwissen Wurzeln

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13

Corinne Schenka Vorkurs Mathematik WiSe 2012/13 4. Lineare Gleichungssysteme Ein lineares Gleichungssystem ist ein System aus Gleichungen mit Unbekannten, die nur linear vorkommen. Dieses kann abkürzend auch in Matrizenschreibweise 1 notiert werden:

Mehr

Mathematische Grundlagen für die technische Oberstufe

Mathematische Grundlagen für die technische Oberstufe 1 Kopfrechnen Anforderung: Sie können die Zahlen zwischen -10 und 10 im Kopf addieren, subtrahieren, multiplizieren und dividieren. Sie kennen die Grundrechenregeln ( Punkt-vor-Strich ) und beherrschen

Mehr

1 Potenzen und Polynome

1 Potenzen und Polynome 1 Potenzen und Polynome Für eine reelle Zahl x R und eine natürliche Zahl n N definieren wir x n := x x x... x }{{} n-mal Einschub über die bisher aufgetretenen mathematischen Symbole: Definition mittels

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $ $Id: stetig.tex,v 1.11 2012/06/26 15:40:18 hk Exp $ 9 Stetigkeit 9.1 Eigenschaften stetiger Funktionen Am Ende der letzten Sitzung hatten wir eine der Grundeigenschaften stetiger Funktionen nachgewiesen,

Mehr

Überprüfung der 2.Ableitung

Überprüfung der 2.Ableitung Übungen zum Thema: Extrempunkte ganzrationaler Funktionen Lösungsmethode: Überprüfung der.ableitung Version: Ungeprüfte Testversion vom 8.9.7 / 1. h 1. Finde lokale Extrema der unten aufgeführten ganzrationalen

Mehr

Mathematik Quadratwurzel und reelle Zahlen

Mathematik Quadratwurzel und reelle Zahlen Mathematik Quadratwurzel und reelle Zahlen Grundwissen und Übungen a : a a Stefan Gärtner 1999 004 Gr Mathematik elementare Algebra Seite Inhalt Inhaltsverzeichnis Seite Grundwissen Definition Quadratwurzel

Mehr

42.Trigonometrie - Beziehungen

42.Trigonometrie - Beziehungen 4.Trigonometrie - Beziehungen Beziehungen zwischen den Winkelfunktionen tan = cot = sin cos cos sin Aus 3a erhält man durch einfaches Formelumstellen die Hilfssätze 3b und 3c: 3 a tan cot= 3 b tan = cot

Mehr

Repetitionsaufgaben: Quadratische Gleichungen

Repetitionsaufgaben: Quadratische Gleichungen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Quadratische Gleichungen Zusammengestellt von Feli Huber, KSR Lernziele: - Sie können die Lösungen von quadratischen Gleichungen mit der Lösungsformel

Mehr

2.3 Logarithmus. b). a n = b n = log a. b für a,b 0 ( : gesprochen genau dann bedeutet, dass beide Definitionen gleichwertig sind) Oder log a

2.3 Logarithmus. b). a n = b n = log a. b für a,b 0 ( : gesprochen genau dann bedeutet, dass beide Definitionen gleichwertig sind) Oder log a 2.3 Logarithmus Bsp. Seite 84 mitte: Wie lange muss man Fr. 10 000.- zu 5,1% anlegen, um Fr. 16 000.- zu erhalten? Lösen Sie die Zinseszinsformel nach q n auf Aus q n erfolgt die Berechnung von n mittels

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = = 360 360 Das Bogenmaß eines Winkels ist

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = 2 = 360 360 Das Bogenmaß eines Winkels ist

Mehr

Buch: Mathematik heute [Realschule Niedersachsen], Schroedel

Buch: Mathematik heute [Realschule Niedersachsen], Schroedel Klasse: 5 Buch: heute [Realschule Niedersachsen], Schroedel 1. Einheit: Zahlen und Größen S. 7 - S. 45 WH.: Grundrechenarten, Kopfrechenfertigkeiten 2. Einheit: Rechnen mit natürlichen Zahlen und Größen

Mehr

Aufgabenblatt 5 (Schnellübung)

Aufgabenblatt 5 (Schnellübung) Frühlingssemester 0, Aufgabenblatt (Schnellübung) Aufgabenblatt (Schnellübung) 30 Punkte Aufgabe (Kettenbrüche) a) Bestimme [b 0, b,..., b ] = [,... ], die Kettenbruchentwicklung von r = 3/9. b) Bestimme

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 2 Nichtlineare Gleichungssysteme Problem: Für vorgegebene Abbildung f : D R n R n finde R n mit oder ausführlicher f() = 0 (21) f 1 ( 1,, n ) = 0, f n ( 1,, n ) = 0 Einerseits führt die mathematische

Mehr

Einführungsphase Mathematik. Thema: Quadratische Funktionen. quadratische Gleichungen

Einführungsphase Mathematik. Thema: Quadratische Funktionen. quadratische Gleichungen Thema: Quadratische Funktionen quadratische Gleichungen Normalform einer linearen Funktion Normalform einer quadratischen Funktion Handelt es sich um quadratische Funktionen??? Ja, denn a = 3, b = 0, c

Mehr

6. Gleichungen und Ungleichungen

6. Gleichungen und Ungleichungen 6. Gleichungen und Ungleichungen 6.Z Zusammenfassung Eine Gleichung entsteht, wenn zwei Terme unter Verwendung des Gleichheitszeichens " = " gleichgesetzt werden: T 1 = T 2. Eine Gleichung ohne Variablen

Mehr

Wiederhole eigenständig: elementare Konstruktionen nach diesen Sätzen

Wiederhole eigenständig: elementare Konstruktionen nach diesen Sätzen 1/5 Erinnerung: Kongruenzsätze SSS, SWS, WSW, SsW Wiederhole eigenständig: elementare Konstruktionen nach diesen Sätzen Grundwissen: Elementare Sätze über Dreiecke: o Winkelsumme 180 0 o Dreiecksungleichung

Mehr

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w =

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w = 1 v Die Länge Def. Sei (V,, ) ein Euklidscher Vektorraum. Für jeden Vektor v V heißt die Zahl v,v die Länge von v und wird v bezeichnet. Bemerkung. Die Länge des Vektors ist wohldefiniert, da nach Definition

Mehr

Gruber I Neumann. Erfolg in VERA-8. Vergleichsarbeit Mathematik Klasse 8 Gymnasium

Gruber I Neumann. Erfolg in VERA-8. Vergleichsarbeit Mathematik Klasse 8 Gymnasium Gruber I Neumann Erfolg in VERA-8 Vergleichsarbeit Mathematik Klasse 8 Gymnasium . Zahlen Zahlen Tipps ab Seite, Lösungen ab Seite 0. Zahlen und Zahlenmengen Es gibt verschiedene Zahlenarten, z.b. ganze

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr