Trigonometrie. In der Abbildung: der Winkel 120 (Gradenmaß) ist 2π = 2π (Bogenmaß).

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Trigonometrie. In der Abbildung: der Winkel 120 (Gradenmaß) ist 2π = 2π (Bogenmaß)."

Transkript

1 Trigonometrie. Winkel: Gradmaß oder Bogenmaß In der Schule lernt man, dass Winkel im Gradmass, also als Zahlen zwischen 0 und 60 Grad angegeben werden. In der Mathematik arbeitet man lieber mit dem Bogenmaß, das eine reelle Zahl ist. Betrachtet man einen Kreis mit Radius, so ist sein Umfang gleich. Wenn wir einen Winkel betrachten, dessen Scheitelpunkt der Mittelpunkt des Kreises ist, dann ist der Winkel zur Länge des entsprechenden Bogens direkt proportional. Wenn G das Gradmaß ist und L die Länge des Bogens, dann ist: G 60 = B Diese Proportionalität erlaubt die Umrechnung von Gradmass in Bogenmass (besser diese Proportionalität verstehen als auswendig lernen). Beispiele: Der Vollwinkel ist 60, der gestreckte Winkel ist 80 π, der rechte winkel 90 π, die Winkel eines gleichseitgen Dreiecks sind 60 π. In der Abbildung: der Winkel 0 (Gradenmaß) ist = (Bogenmaß). R R. Trigonometrie In einem rechtwinkligen Dreieck mit Katheten a, b und Hypothenuse c gilt der Satz von Pythagoras: a + b = c.

2 B a β c C γ b Seien α, β, γ die Winkel, welche sich gegenüber der Strecken a, c, b befinden. Man definiert Sinus und Kosinus als Gegenkathete des Winkels Sinus eines Winkels = Hypotenuse Ankathete des Winkels Kosinus eines Winkels = Hypotenuse Tangens eines Winkels = Sinus Gegenkathete des Winkels = Kosinus Ankathete des Winkels Und dann: a b = sin(α) = cos(β) = sin(β) = cos(α) c c a b = tan(α) b a = tan(β) Zusätzliche Anmerkung: aus dem Satz von Pythagoras (a +b = c ) folgt sin (α)+ cos (α) = : einfach algebraisch umformen. Wenn man mit rechtwinkligen Dreiecken umgehen kann, kann man auch allgemeine Dreiecke betrachten (die Höhe erlaubt ein Dreieck durch zwei rechtwinklige Dreiecke zu beschreiben). Und wenn man mit Dreiecken umgehen kann, kann man auch Quadrate, Rechtecke, Rauten, Parallelogramme und allgemeiner Polygone betrachten. Am besten ein Problem in einfachere Probleme zerlegen.. Winkel in R Die Konvention ist: Drehungen im Gegenuhrzeigersinn entsprechen positiven Winkeln und Drehungen im Uhrzeigersinn entsprechen negativen Winkeln. Ein Winkel in R beschreibt die Drehung eines Rads: Drehung, 8π 4 Drehungen, π eineinhalb Drehungen, Drehung in Uhrzeigersinn. Vielfache von entsprechen vollen Drehungen (d.h. derselben Ausrichtung des Rads). Man identifiziert oft 0 8π, π π 7π α A

3 Beispiele: π π, π π. Beispiel mit der Uhr: Sagen wir z.b., dass jetzt es :00 Uhr ist. Wieviel Uhr wird es in Minuten sein? /60 = 5, also = also wir müssen 5 Stunden addieren (7 Uhr) und dann noch Minuten addieren, d.h. es wird 7 : Uhr sein. Die Lage des Minutenzeigers wird sich um Minuten ändern, d.h. wird im Uhrzeigersinn mit Winkel G B gedreht, wobei 60 = G 60 = B d.h. G = 7, B = π (mit negativem Vorzeichen, da die Drehung im Uhrzeigersinn 5 ist). Trotzdem wird sich der Minutenzeiger mehr bewegt haben, und zwar hat die Drehung den Winkel 0π + = 5 π (mit negativem Vorzeichen, da die Drehung im 5 5 Uhrzeigersinn ist). 4. Die geometrische Definition der Sinusfunktion und der Kosinusfunktion y P = (cos α, sin α) α cos α sin α x Nehmen wir den Einheitskreis in der Ebene, mit Basispunkt (, 0). Dann können wir einen Winkel α in [0, ) durch einen zweiten Punkt P = (x P, y P ) auf dem Einheitskreis beschreiben: die Winkel ist der mit Bogenlänge α, also mit dem Bogen zwischen (, 0) und P im Gegenuhrzeigersinn. Der Punkt P liegt auf der Einheitskreis x + y = also gilt x P + y P =. Ausserdem gelten x P y P (diese folgen aus der Gleichung, aber sind auch graphisch klar).

4 4 Eine Definition für Sinus und Kosinus ist dann: sin : [0, ) [, ] sin(α) = y P cos : [0, ) [, ] cos(α) = x P Also ist für einen Winkel α der entsprechende Punkt auf dem Einheitskreis P = (cos(α), sin(α)). Wir haben (, 4 = 6, 8): y = sin(x) y = cos(x) Man betrachtet die Fortsetzung der obigen Funktionen auf R: der Graph wiederholt sich periodisch sin : R [, ] cos : R [, ] Diese Definition mittels eines Punktes auf dem Einheitskreis, bzw. in dem man obige Graphen anschaut, erlaubt leicht, die folgenden Gleichungen zu verstehen: cos( x) = cos(x) sin( x) = sin(x) cos(x + π) = cos(x)

5 5 sin(x + π) = sin(x) cos(π x) = cos(x) sin(π x) = sin(x) Insbesondere ist die Sinusfunktion ungerade und die Kosinusfunktion gerade. Es gibt viele weitere trigonometrische Formeln (siehe Formelsammlungen). Wichtig ist vor allem die schon erwähnte Formel: cos (x) + sin (x) = die ermöglicht, die eine Funktion aus der anderen (bis auf das Vorzeichen) zu berechnen und cos(x) = sin(x + π ) d.h. der eine Graph ist einfach eine Translation des anderen. Die Funktionen Sinus und Kosinus sind periodisch mit minimaler Periode. Zwei Winkel in [0, ) sind genau dann gleich, wenn sie denselben Sinus und denselben Kosinus haben. Zwei Winkel in R mit demselben Sinus und demselben Kosinus unterscheiden sich um ein Vielfaches von. 5. Tangens Die Tangensfunktion wird definiert als tan(x) = sin(x). Diese ist ausserhalb der cos(x) Nullstellen des Kosinus wohldefiniert. Die Tangensfunktion ist periodisch mit minimaler Periode π lim x π + tan(x) = lim x π tan(x) = + die Tangensfunktion ist auf ( π, π ) streng monoton wachsend.

6 6 y y π x x

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Trigonometrie Mag. DI Rainer Sickinger HTL v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Verschiedene Winkel DEFINITION v 1 Mag. DI Rainer Sickinger Trigonometrie 2 / 1 Verschiedene Winkel Vermessungsaufgaben

Mehr

KOMPETENZHEFT ZUR TRIGONOMETRIE, II

KOMPETENZHEFT ZUR TRIGONOMETRIE, II KOMPETENZHEFT ZUR TRIGONOMETRIE, II 1. Aufgabenstellungen Aufgabe 1.1. Bestimme alle Winkel in [0 ; 360 ], die Lösungen der gegebenen Gleichung sind, und zeichne sie am Einheitskreis ein. 1) sin(α) = 0,4

Mehr

Definition von Sinus und Cosinus

Definition von Sinus und Cosinus Definition von Sinus und Cosinus Definition 3.16 Es sei P(x y) der Punkt auf dem Einheitskreis, für den der Winkel von der positiven reellen Halbachse aus (im Bogenmaß) gerade ϕ beträgt (Winkel math. positiv,

Mehr

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759.

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759. (4) Exponential- und Logarithmusfunktionen Satz Für jedes b > 1 gibt es eine eindeutig bestimmte Funktion exp b : R R + mit folgenden Eigenschaften. exp b (r) = b r für alle r Q Die Funktion exp b ist

Mehr

3.1 Rationale Funktionen

3.1 Rationale Funktionen 3.1 Rationale Funktionen EineFunktionf : R R der Formx P(x) Q(x) mit Polynomen P(x), Q(x) heißt rationale Funktion. Der maximale Definitionsbereich von f = P(x) Q(x) Sei x 0 R mit Q(x 0 ) = 0. Ferner sei

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Trigonometrische Funktionen Rainer Hauser September 013 1 Einleitung 1.1 Der Begriff Funktion Eine Funktion ordnet jedem Element m 1 einer Menge M 1 ein Element m einer Menge M zu. Man schreibt dafür f:

Mehr

3. Erweiterung der trigonometrischen Funktionen

3. Erweiterung der trigonometrischen Funktionen 3. Erweiterung der trigonometrischen Funktionen 3.1. Polarkoordinaten 1) Rechtwinklige und Polarkoordinaten Üblicherweise gibt man die Koordinaten eines Punktes in der Ebene durch ein Zahlenpaar vor: P(x

Mehr

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b.

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b. Proposition.13 Sei f : D R stetig und D = [a, b] R. Dann ist f(d) beschränkt. Außerdem nimmt f sein Maximum und Minimum auf D an, d.h. es gibt x max D und ein x min D, so dass f(x max ) = sup f(d) und

Mehr

Grundwissen 10. Überblick: Gradmaß rπ Länge eines Bogens zum Mittelpunktswinkels α: b = α

Grundwissen 10. Überblick: Gradmaß rπ Länge eines Bogens zum Mittelpunktswinkels α: b = α Grundwissen 0. Berechnungen an Kreis und Kugel a) Bogenmaß Beispiel: Gegeben ist ein Winkel α=50 ; dann gilt: b = b = π 50 0,8766 r r 360 Die (reelle) Zahl ist geeignet, die Größe eines Winkels anzugeben.

Mehr

2.3 Elementare Funktionen

2.3 Elementare Funktionen .3 Elementare Funktionen Trigonometrische Funktionen (Winkelfunktionen) Vorbemerkung. Wir definieren die Winkelfunktionen bezogen auf die Bogenlänge x auf dem Einheitskreis, d.h. für x [0,π]. Alternativ

Mehr

Trignonometrische Funktionen 6a

Trignonometrische Funktionen 6a Schuljahr 2015/16 andreas.kucher@uni-graz.at Institute for Mathematics and Scientific Computing Karl-Franzens-Universität Graz Graz, November 23, 2015 Winkelmaße Winkelmaß bis 6. Klasse: Grad (0 360 )

Mehr

KREISFUNKTIONEN. Allgemeines

KREISFUNKTIONEN. Allgemeines KREISFUNKTIONEN Allgemeines Um die Graphen der Winkelfunktionen zeichnen und verstehen zu können, ist es wichtig, den Einheitskreis zu kennen. Zunächst stellt man sich einen Kreis mit dem Radius 1 vor.

Mehr

Trigonometrische Funktionen: Sinus und Cosinus. Dieter Harig (Dipl. Math.) HD MINT-Projekt 5. Dezember 2013

Trigonometrische Funktionen: Sinus und Cosinus. Dieter Harig (Dipl. Math.) HD MINT-Projekt 5. Dezember 2013 Trigonometrische Funktionen: Sinus und Cosinus Dieter Harig (Dipl. Math.) HD MINT-Projekt 5. Dezember 0 4 5 4 4 Grad- und Bogenmaß Wir betrachten den Einheitskreis (Radius r = ) und einen beliebigen Winkel

Mehr

1. Definition der trigonometrischen Funktionen für beliebige Winkel

1. Definition der trigonometrischen Funktionen für beliebige Winkel 1 Trigonometrie 2 1. Definition der trigonometrischen Funktionen für beliebige Winkel In einem Kreis mit Mittelpunkt M(0,0) und Radius r ist der zunächst spitze Winkel α gezeichnet. α legt auf dem Kreis

Mehr

Schwingungen und Wellen

Schwingungen und Wellen Schwingungen Wellen Jochen Trommer jtrommer@uni-leipzig.de Universität Leipzig Institut für Linguistik Phonologie/Morphologie SS 2007 Schwingungen beim Federpendel Schwingungen beim Federpendel Wichtige

Mehr

Zusammenfassung: Sinus- und Kosinusfunktion

Zusammenfassung: Sinus- und Kosinusfunktion LGÖ Ks h -stündig 96 Zusammenfassung: Sinus- und Kosinusfunktion Sinus und Kosinus am rechtwinkligen Dreieck Für einen Winkel mit 9 gilt: Hpotenuse Gegenkathete Gegenkathete sin = Hpotenuse Ankathete cos

Mehr

Übung 2 vom

Übung 2 vom Übung vom.0.04 Aufgabe 5 Gegeben ist die Gleichung sin(α) + sin(α + β) + sin(α + β) = 0 Für welches Argument β ist diese Gleichung für jedes α erfüllt? Wo findet diese Gleichung Anwendung in der Technik?

Mehr

21 Winkelfunktionen

21 Winkelfunktionen Winkelfunktionen. Berechnungen am rechtwinkligen Dreieck Ein Dreieck, in dem ein Winkel genau 90 hat nennt man ein rechtwinkliges Dreieck. Für die Dreiecksseiten hat man hier verschiedene Bezeichnungen

Mehr

Verlauf Material LEK Glossar Lösungen. Schritt für Schritt erklärt Sinus und Kosinus. Florian Borges, Traunstein VORANSICHT

Verlauf Material LEK Glossar Lösungen. Schritt für Schritt erklärt Sinus und Kosinus. Florian Borges, Traunstein VORANSICHT Reihe 9 S Verlauf Material Schritt für Schritt erklärt Sinus und Kosinus Florian Borges, Traunstein y 5 6 R ϕ( t ) 7 0 Die Sinusfunktion entsteht durch Projektion eines rotierenden Zeigers auf die y-achse.

Mehr

Aufgaben mit Lösungen zum Themengebiet: Geometrie bei rechtwinkligen Dreiecken

Aufgaben mit Lösungen zum Themengebiet: Geometrie bei rechtwinkligen Dreiecken Übungsaufgaben zur Satzgruppe des Pythagoras: 1) Seiten eines rechtwinkligen Dreiecks Sind folgende Aussagen richtig oder falsch? Verbessere, wenn notwendig! Die Katheten grenzen an den rechten Winkel.

Mehr

Funktionen einer reellen Veränderlichen

Funktionen einer reellen Veränderlichen KAPITEL Funktionen einer reellen Veränderlichen.1 Eigenschaften von Funktionen........................... 39. Potenz- und Wurzelfunktionen............................ 1.3 Trigonometrische Funktionen.............................

Mehr

O A B. Ableitung der Winkelfunktionen

O A B. Ableitung der Winkelfunktionen Ableitung der Winkelfunktionen Das Verständnis der Herleitung der Ableitung der Winkelfunktionen sett einiges an Mittelstufenkenntnissen voraus; das meiste davon wird häufig im Unterricht geschlabbert

Mehr

2.8 Trigonometrische Funktionen (Thema aus dem Bereich Analysis/Geometrie)

2.8 Trigonometrische Funktionen (Thema aus dem Bereich Analysis/Geometrie) .8 Trigonometrische Funktionen (Thema aus dem Bereich Analysis/Geometrie) Inhaltsverzeichnis Repetition und Einleitung Verhältnisse beim Kreis mit Radius r 3 3 Die Graphen der Sinus- und der Cosinusfunktion

Mehr

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE I. Reelle Zahlen 1. Die Menge der rationalen Zahlen und die Menge der irrationalen Zahlen bilden zusammen die Menge der reellen Zahlen. Nenne Beispiele für rationale und irrationale Zahlen.. Aus negativen

Mehr

Trigonometrie aus geometrischer und funktionaler Sicht

Trigonometrie aus geometrischer und funktionaler Sicht Trigonometrie aus geometrischer und funktionaler Sicht Der Kosinussatz und der Sinussatz: Wenn in einem Dreieck nur zwei Seiten und der eingeschlossene Winkel gegeben sind, oder nur die drei Seiten bekannt

Mehr

Trigonometrische Kurven / Funktionen

Trigonometrische Kurven / Funktionen Trigonometrische Kurven / Funktionen Teil Eigenschaften der Funktionen sin, cos und tan Verschiebung und Streckung von Sinuskurven Kurvendiskussion ohne Verwendung der Differenzialrechnung Geeignet ab

Mehr

Dr. O. Wittich Aachen, 12. September 2017 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2017, RWTH Aachen University

Dr. O. Wittich Aachen, 12. September 2017 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2017, RWTH Aachen University Dr. O. Wittich Aachen,. September 7 S. Bleß, M. Sc. Analysis Übungsaufgaben im Vorkurs Mathematik 7, RWTH Aachen University Intervalle, Beschränktheit, Maxima, Minima Aufgabe Bestimmen Sie jeweils, ob

Mehr

Mathematische Einführung

Mathematische Einführung und euklidische Geometrie 13.04.2011 Motivation Warum braucht man eine mathematische Einführung? Die Physik ist in der Sprache der Mathematik formuliert. Mathematische Methoden essentiell zur Lösung von

Mehr

1. Unterteilung von allgemeinen Dreiecken in rechtwinklige

1. Unterteilung von allgemeinen Dreiecken in rechtwinklige Trigonometrie am allgemeinen Dreieck Wir können auch die Seiten und Winkel von allgemeinen Dreiecken mit Hilfe der Trigonometrie berechnen. Die einfachste Variante besteht darin, ein beliebiges Dreieck

Mehr

erfanden zu den reellen Zahlen eine neue Zahl

erfanden zu den reellen Zahlen eine neue Zahl Vorlesung 9 Komplexe Zahlen Die Gleichung x 2 = 1 ist in R nicht lösbar, weil es keine Zahl gibt, deren Quadrat eine negative Zahl ist. Die Mathematiker erfanden zu den reellen Zahlen eine neue Zahl i,

Mehr

Lösung zur Übung 1. In einem Würfel der Kantenlänge a wird ein Methanmolekül so platziert, dass das Kohlenstoffatom. r = a 2. d = 2 a (3) 2 = 2 a (4)

Lösung zur Übung 1. In einem Würfel der Kantenlänge a wird ein Methanmolekül so platziert, dass das Kohlenstoffatom. r = a 2. d = 2 a (3) 2 = 2 a (4) Lösung zur Übung 1 Aufgabe 1 In einem Würfel der Kantenlänge a wird ein Methanmolekül so platziert, dass das Kohlenstoffatom im Zentrum des Würfels liegt. Wie groß ist der Tangens des halben H-C-H Bindungswinkels?

Mehr

Trigonometrische Gleichungen/Ungleichungen

Trigonometrische Gleichungen/Ungleichungen Trigonometrische Gleichungen/Ungleichungen Arkusfunktionen Arkussinus Der Arkussinus ist die Umkehrfunktion der Einschränkung der Sinusfunktion auf [, ]. Die Sinusfunktion sin : [, ] [, ] ist bijektiv

Mehr

Aufgaben zu den Themen: Rechtwinkliges Dreieck und Sinus, Cosinus und Tangens im Einheitskreis

Aufgaben zu den Themen: Rechtwinkliges Dreieck und Sinus, Cosinus und Tangens im Einheitskreis Aufgaben zu den Themen: Rechtwinkliges Dreieck und Sinus, Cosinus und Tangens im Einheitskreis 1. Eine Rampe hat eine Steigung von 5%. Wie groß ist der Steigungswinkel? 2. Gegeben ist ein rechtwinkliges

Mehr

Grundwissen. 10. Jahrgangsstufe. Mathematik

Grundwissen. 10. Jahrgangsstufe. Mathematik Grundwissen 10. Jahrgangsstufe Mathematik 1 Kreis und Kugel 1.1 Kreissektor und Bogenmaß Kreis Umfang U = π r=π d Flächeninhalt A=π r Kreissektor mit Mittelpunktswinkel α Bogenlänge b= α π r 360 Flächeninhalt

Mehr

Serie 1: Repetition von elementaren Funktionen

Serie 1: Repetition von elementaren Funktionen D-ERDW, D-HEST, D-USYS Mathematik I HS 15 Dr. Ana Cannas Serie 1: Repetition von elementaren Funktionen Bemerkung: Die Aufgaben der Serie 1 bilden den Fokus der Übungsgruppen in der zweiten Semesterwoche

Mehr

1.4 Trigonometrie I. 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2. 2 Die trigonometrischen Funktionen 4

1.4 Trigonometrie I. 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2. 2 Die trigonometrischen Funktionen 4 1.4 Trigonometrie I Inhaltsverzeichnis 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2 2 Die trigonometrischen Funktionen 4 2.1 Was sind trigonometrischen Funktionen?........................... 4 2.2

Mehr

mathphys-online TRIGONOMETRISCHE FUNKTIONEN y-achse x-achse Graph von sin(x) Graph von cos(x) Graph von tan(x)

mathphys-online TRIGONOMETRISCHE FUNKTIONEN y-achse x-achse Graph von sin(x) Graph von cos(x) Graph von tan(x) TRIGONOMETRISCHE FUNKTIONEN 5 4 8 7 6 5 4 0 4 5 6 7 8 4 5 Graph von sin(x) Graph von cos(x) Graph von tan(x) x-achse Trigonometrische Funktionen Inhaltsverzeichnis Kapitel Inhalt Seite Winkelfunktionen

Mehr

HTBLA VÖCKLABRUCK STET

HTBLA VÖCKLABRUCK STET HTBLA VÖCKLABRUCK STET Trigonometrie INHALTSVERZEICHNIS 1. WINKELFUNKTIONEN IM RECHTWINKELIGEN DREIECK... 3. BOGENMASS... 3 3. TRIGONOMETRISCHE FUNKTIONEN BELIEBIGER WINKEL... 4 3.1. Einheitskreis (r =

Mehr

Trigonometrie. Winkelfunktionen und Einheitskreis

Trigonometrie. Winkelfunktionen und Einheitskreis Trigonometrie Die Trigonometrie ist die Lehre der Winkel- oder Kreisfunktionen. Die auffälligste Eigenschaften der Funktionen der Trigonometrie ist die Periodizität: Trigonometrische Funktionen zeigen

Mehr

Bundesgymnasium für Berufstätige Salzburg. Mathematik 4 Arbeitsblatt A 4-4 Winkelfunktionen. LehrerInnenteam m/ Mag. Wolfgang Schmid.

Bundesgymnasium für Berufstätige Salzburg. Mathematik 4 Arbeitsblatt A 4-4 Winkelfunktionen. LehrerInnenteam m/ Mag. Wolfgang Schmid. Schule Bundesgymnasium für Berufstätige Salzburg Thema Mathematik 4 Arbeitsblatt A 4-4 Winkelfunktionen LehrerInnenteam m/ Mag. Wolfgang Schmid Unterlagen Um die Größe eines Winkels anzugeben gibt es verschiedenee

Mehr

befasst sich mit den Beziehungen zwischen den Seiten und Winkeln in einem Dreieck.

befasst sich mit den Beziehungen zwischen den Seiten und Winkeln in einem Dreieck. Trigonometrie Lernziele befasst sich mit den Beziehungen zwischen den Seiten und Winkeln in einem Dreieck. Selbständiges Erarbeiten der Kurztheorie Kenntnis der wichtigsten Begriffe, Definitionen und Formeln

Mehr

Lösung zur Übung 2. Lösung durch Ausrechnen Die Funktion lässt sich durch die Doppelwinkelfunktion des Sinus ausdrücken.

Lösung zur Übung 2. Lösung durch Ausrechnen Die Funktion lässt sich durch die Doppelwinkelfunktion des Sinus ausdrücken. Lösung zur Übung Aufgabe 5 Berechnen Sie die kleinste Periode folgender Funktionen a) y(x) = sin(x) cos(x) Lösung durch Ausrechnen Die Funktion lässt sich durch die Doppelwinkelfunktion des Sinus ausdrücken.

Mehr

(k +2)(k +3) x 2 (k +3)!

(k +2)(k +3) x 2 (k +3)! 5.3. SINUS UND KOSINUS 9 5.35. Lemma. Es gilt (i) (ii) (iii) cos() < 0, sin(x) > 0 für alle x (0, ], x cos(x) ist streng monoton fallend in [0, ]. Beweis. (i) Es ist cos() = 1! + 4 6 4! 6! 8 10 8! 10!

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Abbildungsverzeichnis Inhaltsverzeichnis Trigonometrische Funktionen Die hier behandelten trigonometrischen Funktionen sind sin, cos, tan, cot. Es zeigt sich, dass die Umkehrfunktionen der trigonometrischen

Mehr

Wiederhole eigenständig: elementare Konstruktionen nach diesen Sätzen

Wiederhole eigenständig: elementare Konstruktionen nach diesen Sätzen 1/5 Erinnerung: Kongruenzsätze SSS, SWS, WSW, SsW Wiederhole eigenständig: elementare Konstruktionen nach diesen Sätzen Grundwissen: Elementare Sätze über Dreiecke: o Winkelsumme 180 0 o Dreiecksungleichung

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Trigonometrische Funktionen Wir beginnen mit der Sinusfunktion: f(x) = sin(x) Wir schränken den Definitionsbereich auf eine Periode ein, d.h. xœ 0,2 bzw. 0 x 2p. Hier ist der Graph: Folgendes sollte beachtet

Mehr

ϕ (im Bogenmaß) = ϕ (in ) π

ϕ (im Bogenmaß) = ϕ (in ) π 1 Kurze Einführung in die trigonometrischen Funktionen: Die trigonometrischen Funktionen gehören zum Standardstoff im Mathematik Unterricht der Gmnasien. Deshalb werde ich mich auf eine knappe Einführung

Mehr

TRIGONOMETRISCHE FUNKTIONEN

TRIGONOMETRISCHE FUNKTIONEN TRIGONOMETRISCHE FUNKTIONEN FRANZ LEMMERMEYER Trigonometrie ist die Lehre von der Dreiecksmessung. Bereits in der Antike waren Kenntnisse der elementaren Trigonometrie Grundlage der Vermessungskunst. Im

Mehr

F u n k t i o n e n Trigonometrische Funktionen

F u n k t i o n e n Trigonometrische Funktionen F u n k t i o n e n Trigonometrische Funktionen Jules Antoine Lissajous (*1822 in Versailles, 1880 in Plombières-les-Bains) wurde durch die nach ihm benannten Figuren bekannt, die bei der Überlagerung

Mehr

9.5 Graphen der trigonometrischen Funktionen

9.5 Graphen der trigonometrischen Funktionen 9.5 Graphen der trigonometrischen Funktionen 9.5 Graphen der trigonometrischen Funktionen. Unter dem Bogenmass eines Winkels versteht man die Länge des Winkelbogens von auf dem Kreis mit Radius (Einheitskreis).

Mehr

1.4 Trigonometrie. 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2. 2 Die trigonometrischen Funktionen 3

1.4 Trigonometrie. 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2. 2 Die trigonometrischen Funktionen 3 1.4 Trigonometrie Inhaltsverzeichnis 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2 2 Die trigonometrischen Funktionen 3 2.1 Was sind trigonometrischen Funktionen?.......................... 3 2.2 Die

Mehr

Grundwissen. 10. Jahrgangsstufe. Mathematik

Grundwissen. 10. Jahrgangsstufe. Mathematik Grundwissen 0. Jahrgangsstufe Mathematik Kreis und Kugel. Kreissektor und Bogenmaß Kreis Umfang U π rπ d Flächeninhalt Aπ r Kreissektor mit Mittelpunktswinkel α Bogenlänge α π r 60 Flächeninhalt A α π

Mehr

2.3 Exponential- und Logarithmusfunktionen

2.3 Exponential- und Logarithmusfunktionen 26 2.3 Exponential- und Logarithmusfunktionen Die natürliche Exponentialfunktion f(x) = e x ist definiert durch die Potenzreihe e x = + x! + x2 2! + x3 3! + = für alle x in R. Insbesondere ist die Eulersche

Mehr

α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel

α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel Achtung: Das Grundwissen steht im Lehrplan! Tipps zum Grundwissen Mathematik Jahrgangsstufe 10 Folgende Begriffe und Aufgaben solltest Du nach der 10. Klasse kennen und können: (Falls Du Lücken entdeckst,

Mehr

Definitions- und Formelübersicht Mathematik

Definitions- und Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Mengen Intervalle Eine Menge ist eine Zusammenfassung von wohlunterschiedenen Elementen zu einem Ganzen. Dabei muss entscheidbar

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Trigonometrische Funktionen Was mag das sein? Wir haben auch hier wieder eine Grundform, in die sich alle trigonometrischen Funktionen pressen lassen, mit denen wir zu tun haben werden: f(x) = a sin(bx

Mehr

Priv. Doz. Dr. A. Wagner Aachen, 19. September 2016 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2016, RWTH Aachen University

Priv. Doz. Dr. A. Wagner Aachen, 19. September 2016 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2016, RWTH Aachen University Priv. Doz. Dr. A. Wagner Aachen, 9. September 6 S. Bleß, M. Sc. Analysis Übungsaufgaben im Vorkurs Mathematik 6, RWTH Aachen University Intervalle, Supremum und Infimum Für a, b R, a < b nennen wir eine

Mehr

Trigonometrie. Schülerzirkel Mathematik Schülerseminar

Trigonometrie. Schülerzirkel Mathematik Schülerseminar Schülerzirkel Mathematik Schülerseminar Trigonometrie Im Schülerseminar für Schülerinnen und Schüler der Klassenstufen 8 10 wurde die Trigonometrie innerhalb der Einheit über komplexe Zahlen behandelt,

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Schritt für Schritt erklärt - Sinus und Kosinus

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Schritt für Schritt erklärt - Sinus und Kosinus Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Schritt für Schritt erklärt - Sinus und Kosinus Das komplette Material finden Sie hier: School-Scout.de S 1 Schritt für Schritt erklärt

Mehr

Exkurs: Klassifikation orthogonaler 2 2-Matrizen.

Exkurs: Klassifikation orthogonaler 2 2-Matrizen. Exkurs: Klassifikation orthogonaler 2 2-Matrizen. Aussage: Es gilt: (a) Jede orthogonale 2 2 Matrix A mit det(a) = 1 hat das Aussehen cos(α) sin(α) D(α) = sin(α) cos(α), wobei α [0,2π[. Ist sin(α) 0, so

Mehr

Repetition Begriffe Geometrie. 14. Juni 2012

Repetition Begriffe Geometrie. 14. Juni 2012 Repetition Begriffe Geometrie 14. Juni 2012 Planimetrie 1. Strahlensatz Planimetrie 1. Strahlensatz Werden zwei sich schneidende Geraden von zwei Parallelen geschnitten, so verhalten sich die Abschnitte

Mehr

Didaktik der Geometrie

Didaktik der Geometrie Didaktik der Geometrie 7.1 Didaktik der Geometrie Didaktik der Geometrie 7.2 Inhalte Didaktik der Geometrie 1 Ziele und Inhalte 2 Begriffsbildung 3 Konstruieren 4 Argumentieren und Beweisen 5 Problemlösen

Mehr

Trigonometrie. bekannte Zusammenhänge. 4-Streckensatz: groß/klein = groß/klein. Zusammenhänge im allgemeinen Dreieck:

Trigonometrie. bekannte Zusammenhänge. 4-Streckensatz: groß/klein = groß/klein. Zusammenhänge im allgemeinen Dreieck: Trigonometrie bekannte Zusammenhänge 4-Streckensatz: groß/klein = groß/klein Zusammenhänge im allgemeinen Dreieck: Summe zweier Seiten größer als dritte Seitenlänge: a + b > c Innenwinkelsumme: Summe der

Mehr

mentor Lernhilfe: Mathematik 10. Klasse Baumann

mentor Lernhilfe: Mathematik 10. Klasse Baumann mentor Lernhilfe: Mathematik 10. Klasse Geometrie: Winkelfunktionen, Trigonometrie, Additionstheoreme, Vektorrechnung von Rolf Baumann 1. Auflage mentor Lernhilfe: Mathematik 10. Klasse Baumann schnell

Mehr

r Oberflächeninhalt 1 Berechnungen am Kreis O 4r 1.1 Bogenmaß Das Bogenmaß x ist das zu gehörende Verhältnis Bogenlänge, also die 1.

r Oberflächeninhalt 1 Berechnungen am Kreis O 4r 1.1 Bogenmaß Das Bogenmaß x ist das zu gehörende Verhältnis Bogenlänge, also die 1. Grundwissen Mathematik 0 Berechnungen am Kreis. Bogenmaß Das Bogenmaß ist das zu gehörende Verhältnis Bogenlänge, also die Radius Zahl / r Umrechnungen: r r 0 30 45 60 90 360 0. Kreisteile Sektorfläche:.3

Mehr

Trigonometrie - die Grundlagen in einem Tag

Trigonometrie - die Grundlagen in einem Tag Trigonometrie - die Grundlagen in einem Tag Fachtage Dezember 2012 an der Kantonsschule Zürich Nord Klasse W3n R. Balestra Name: Vorname: 6. Dezember 2012 Inhaltsverzeichnis 1 Zielsetzung & Ablauf 1 2

Mehr

Selbsteinschätzungstest Auswertung und Lösung

Selbsteinschätzungstest Auswertung und Lösung Selbsteinschätzungstest Auswertung und Lösung Abgaben: 46 / 587 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: Durchschnitt: 7 Frage (Diese Frage haben ca. 0% nicht beantwortet.) Welcher Vektor

Mehr

56 Kapitel 6 Reelle Funktionen. B) Quadratische Funktionen: Eine Funktion der Gestalt. f(x) := ax 2 + bx + c (mit a 0)

56 Kapitel 6 Reelle Funktionen. B) Quadratische Funktionen: Eine Funktion der Gestalt. f(x) := ax 2 + bx + c (mit a 0) 55 6 Reelle Funktionen 6.1 Beispiele von Funktionen A) Lineare Funktionen: Seien a, b R, a 0. Dann heißt die Funktion f : R R, die durch definiert wird, eine lineare Funktion. 1 f(x) := ax + b Lineare

Mehr

1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an:

1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: Aufgaben zum Vorkurs B S. 1 1 Übungen zu Mengen Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: A = {x N 0 < x < 4, 8} B = {t N t ist Teiler von 4} C = {z Z z ist positiv, durch 3 teilbar

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Eigenschaften von Winkelfunktionen

Eigenschaften von Winkelfunktionen Eigenschaften von Winkelfunktionen Satz.7.: Für x,y R und n Z gelten stets: i. cosx = j=0 ( j xj x = (j!! + x4 4!, ii. sinx = j=0 ( j x j+ x = x (j +!! + x5 5!, iii. cos( x = cosx, iv. sin( x = sinx, v.

Mehr

Analysis: Trigonometr. Funktionen Analysis Trigonometrische Funktionen Gymnasium ab Klasse 10 Alexander Schwarz

Analysis: Trigonometr. Funktionen Analysis Trigonometrische Funktionen Gymnasium ab Klasse 10 Alexander Schwarz Analysis Trigonometrische Funktionen Gymnasium ab Klasse 0 Alexander Schwarz www.mathe-aufgaben.com Dezember 0 Hinweis: Außer bei Aufgabe darf der GTR benutzt werden. Aufgabe : Bestimme ohne GTR: a) sin(405

Mehr

Grundwissen 9. Klasse

Grundwissen 9. Klasse Grundwissen 9. Klasse ) Rationale und irrationale Zahlen Quadratwurzel b ist diejenige nichtnegative Zahl, die quadriert b ergibt: b b ( 5 ) 5 Die Zahl b heißt Radikand; b 0 : es gibt keine Quadratwurzel

Mehr

Grundlagen der Physik 2 Lösung zu Übungsblatt 12

Grundlagen der Physik 2 Lösung zu Übungsblatt 12 Grundlagen der Physik Lösung zu Übungsblatt Daniel Weiss 3. Juni 00 Inhaltsverzeichnis Aufgabe - Fresnel-Formeln a Reexionsvermögen bei senkrechtem Einfall.................. b Transmissionsvermögen..............................

Mehr

Trigonometrische Funktionen und inverse trigonometrische Funktionen Skript für den Brückenkurs zum Studiengang Holztechnik

Trigonometrische Funktionen und inverse trigonometrische Funktionen Skript für den Brückenkurs zum Studiengang Holztechnik Trigonometrische Funktionen und inverse trigonometrische Funktionen Skript für den Brückenkurs zum Studiengang Holztechnik Johannes Creutziger Hochschule für nachhaltige Entwicklung Eberswalde (FH) Fachbereich

Mehr

Sinus, Cosinus und Tangens. Sinus, Cosinus und Tangens. Gruppenmitglieder: Gruppenmitglieder: Station Aufgabenstellung Kontrolle

Sinus, Cosinus und Tangens. Sinus, Cosinus und Tangens. Gruppenmitglieder: Gruppenmitglieder: Station Aufgabenstellung Kontrolle Sinus, Cosinus und Tangens Sinus, Cosinus und Tangens Gruppenmitglieder: Gruppenmitglieder: Bearbeitet gemeinsam die Aufgabenstellungen, die bei den einzelnen Stationen bereitliegen (in beliebiger Reihenfolge!

Mehr

V4. VORKURSWISSEN: Funktionen

V4. VORKURSWISSEN: Funktionen Prof. Dr. Wolfgang Konen Mathematik, WS06 30.09.06 V4. VORKURSWISSEN: Funktionen INHALT: V4. VORKURSWISSEN: Funktionen... V4.. Allgemeine Funktionseigenschaften... V4.. Funktionsübersicht... 5 4... Polynome

Mehr

Trigonometrie am rechtwinkligen Dreieck

Trigonometrie am rechtwinkligen Dreieck 1. Geschichtliches Trigonometrie am rechtwinkligen Dreieck Die Trigonometrie ein Teilgebiet der Geometrie, welches sich mit Dreiecken beschäftigt. Sie entstand vor allem aus der frühen stronomie 1, hat

Mehr

Rechnen mit Quadratwurzeln

Rechnen mit Quadratwurzeln 9. Grundwissen Mathematik Algebra Klasse 9 Rechnen mit Quadratwurzeln Die Quadratwurzel aus a ist diejenige nichtnegative Zahl aus R, deren Quadrat wieder a ergibt. a nennt man Radikand. Man schreibt dafür

Mehr

Bogenmaß und trigonometrische Funktionen

Bogenmaß und trigonometrische Funktionen Bogenmaß und trigonometrische Funktionen Was ist ein "Winkel"? Wir suchen eine tragfähige Definition. N Der "Winkel (zwischen von einem Punkt ausgehenden Halbgeraden)" beschreibt deren relative Lage zueinander

Mehr

befasst sich mit der ebenen Geometrie, Winkel, Dreieck, Viereck, Satzgruppe Pythagoras, Kreisberechnungen, Strahlensätze, Ähnlichkeit

befasst sich mit der ebenen Geometrie, Winkel, Dreieck, Viereck, Satzgruppe Pythagoras, Kreisberechnungen, Strahlensätze, Ähnlichkeit Planimetrie Lernziele befasst sich mit der ebenen Geometrie, Winkel, Dreieck, Viereck, Satzgruppe Pythagoras, Kreisberechnungen, Strahlensätze, Ähnlichkeit Selbständiges Erarbeiten der Kurztheorie Kenntnis

Mehr

Mittels gleichseitigem Dreieck und gleichschenklig. rechtwinkligem Dreieck kann man die folgenden Werte berechnen. 1 =

Mittels gleichseitigem Dreieck und gleichschenklig. rechtwinkligem Dreieck kann man die folgenden Werte berechnen. 1 = Trriigonomettrriische Funkttiionen Bezeichnungen Das Wort Trigonometrie stammt aus dem Griechischen: τρι (tri) bedeutet drei und γονυ (gony) Winkel, insgesamt also Dreiwinkligkeit oder Dreiecksberechnung.

Mehr

Vorkurs Mathematik 2014

Vorkurs Mathematik 2014 Dr. Mario Helm et al. Institut für Numerische Mathematik und Optimierung Fakultät für Mathematik und Informatik Vorkurs Mathematik 4 Winkelmessung und trigonometrische Funktionen 6.-..4 Winkel und Winkelmessung

Mehr

Mengen, Relationen, Abbildungen A B = A B. Schreiben Sie die unten dargestellte Relation als Teilmenge von A B.

Mengen, Relationen, Abbildungen A B = A B. Schreiben Sie die unten dargestellte Relation als Teilmenge von A B. Aufgabensammlung zum Vorkurs in Mathematik Thomas Püttmann Mengen, Relationen, Abbildungen Aufgabe : Verdeutlichen Sie das Distributivgesetz und das Gesetz von De Morgan durch Mengendiagramme. A (B C)

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 9

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 9 Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 9 Wissen und Können. Zahlenmengen Aufgaen, Beispiele, Erläuterungen N Z Q R natürliche ganze rationale reelle Zahlen Zahlen Zahlen

Mehr

2.4 Grenzwerte bei Funktionen

2.4 Grenzwerte bei Funktionen 28 Beispiel Im Beispiel am Ende von Abschnitt 2.1 (Seiten 22 und 24) haben wir gesehen, dass für die Anzahl a n von Bakterien nach n Tagen gilt a n = 2500 (1,04 n +1). Nach wieviel Tagen sind es eine Million

Mehr

1 Dreiecke. 1.1 Rechtwinklige Dreiecke. Mathematische Probleme, SS 2016 Freitag $Id: dreieck.tex,v /04/15 14:02:10 hk Exp $

1 Dreiecke. 1.1 Rechtwinklige Dreiecke. Mathematische Probleme, SS 2016 Freitag $Id: dreieck.tex,v /04/15 14:02:10 hk Exp $ $Id: dreieck.tex,v 1.21 20/04/15 14:02:10 hk Exp $ 1 Dreiecke 1.1 Rechtwinklige Dreiecke Am Ende der letzten Sitzung hatten wir begonnen die primitiven pythagoräischen Tripel zu bestimmen, und in einem

Mehr

2 Geometrie und Vektoren

2 Geometrie und Vektoren Geometrie und Vektoren Vorbemerkung: Begriffe wie die folgenden werden hier als bekannt vorausgesetzt: Punkt, Strecke, Strahl, Gerade, Ebene, Kreis, Winkel, rechter Winkel, etc..1 Grundlegende Sätze Satz

Mehr

Demo: Mathe-CD KOMPLEXE ZAHLEN

Demo: Mathe-CD KOMPLEXE ZAHLEN KMPLEXE ZAHLEN Diese Datei gibt einige Seiten Einblick in die Serie Komplexe Zahlen, und, die gegen Zusatbestellung auf der CD u haben ist. Abonnenten erhalten sie automatisch. Datei Nr. 50000 Januar 00

Mehr

Fit in Mathe. Juni Klassenstufe 10. Trigonometrie mit Sinus- und Kosinussatz

Fit in Mathe. Juni Klassenstufe 10. Trigonometrie mit Sinus- und Kosinussatz Thema Musterlösungen 1 Trigonometrie mit Sinus- und Kosinussatz Vorbemerkungen Für Winkelangaben wird hier, wenn nicht anders angegeben, das Bogenmaß verwendet. Es gilt 1 rad = 360 π 57, bezeichnet das

Mehr

Einführung in die Trigonometrie

Einführung in die Trigonometrie Einführung in die Trigonometrie Sinus, Kosinus, Tangens am rechtwinkligen Dreieck und am Einheitskreis Monika Sellemond, Anton Proßliner, Martin Niederkofler Thema Stoffzusammenhang Klassenstufe Trigonometrie

Mehr

Trigonometrie und Planimetrie

Trigonometrie und Planimetrie Trigonometrie und Planimetrie Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert (G): Grundlagen, Basiswissen einfache Aufgaben (F): Fortgeschritten mittelschwere Aufgaben (E): Experten schwere Aufgaben

Mehr

Propädeutikum Mathematik

Propädeutikum Mathematik Propädeutikum Mathematik Wintersemester 2016 / 2017 Carsten Krupp BBA und IBS Vorkurs Mathematik - Wintersemester 2016 / 2017 Seite 1 Literaturhinweise Cramer, E., Neslehova, J.: Vorkurs Mathematik, Springer,

Mehr

Trigonometrie. 3. Kapitel aus meinem Lehrgang Geometrie. Ronald Balestra CH St. Peter

Trigonometrie. 3. Kapitel aus meinem Lehrgang Geometrie. Ronald Balestra CH St. Peter Trigonometrie 3. Kapitel aus meinem Lehrgang Geometrie Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch 17. August 2008 Inhaltsverzeichnis 3 Trigonometrie 46 3.1 Warum Trigonometrie........................

Mehr

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit WS 8/9 5 7 Elementarmathematik (LH) und Fehlerfreiheit 5. Trigonometrie 5.. Trigonometrische Terme am Einheitskreis 5... Das olarkoordinatensstem Man kann die Lage eines unktes im -dimensionalen Raum folgendermaßen

Mehr

Mathematik. Geometrie Trigonometrie Vektorgeometrie. Diese Zusammenfassung basiert mitunter auf den Skripts von Josef Schuler, ZS HSLU T&A.

Mathematik. Geometrie Trigonometrie Vektorgeometrie. Diese Zusammenfassung basiert mitunter auf den Skripts von Josef Schuler, ZS HSLU T&A. Geometrie Trigonometrie Vektorgeometrie Diese Zusammenfassung basiert mitunter auf den Skripts von Josef Schuler, ZS HSLU T&A. Felix Rohrer www.ximit.ch 2011-11-11 Geometrie, Trigonometrie & Vektorgeometrie

Mehr

Überblick über die Winkelfunktionen Sinusfunktion

Überblick über die Winkelfunktionen Sinusfunktion Überblick über die Winkelfunktionen Sinusfunktion -x2 -x1 x1 x2 Die Funktion x sin x ; x ℝ heißt Sinusfunktion und ihr Graph Sinuskurve. Die Sinusfunktion ist punktsymmetrisch (blau in der Zeichnung) zum

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr