Lösung zur Übung 1. In einem Würfel der Kantenlänge a wird ein Methanmolekül so platziert, dass das Kohlenstoffatom. r = a 2. d = 2 a (3) 2 = 2 a (4)

Größe: px
Ab Seite anzeigen:

Download "Lösung zur Übung 1. In einem Würfel der Kantenlänge a wird ein Methanmolekül so platziert, dass das Kohlenstoffatom. r = a 2. d = 2 a (3) 2 = 2 a (4)"

Transkript

1 Lösung zur Übung 1 Aufgabe 1 In einem Würfel der Kantenlänge a wird ein Methanmolekül so platziert, dass das Kohlenstoffatom im Zentrum des Würfels liegt. Wie groß ist der Tangens des halben H-C-H Bindungswinkels? Abbildung 1: Zeichnung von Methan (CH ) im Würfel mit Kantenlänge a. Wir definieren: r a (1) Der Satz des Pythagoras liefert die Länge von d d a () d a (3) Wir benötigen aber laut Zeichnung nur d d a () 1 a a (5) 1

2 Damit können wir nun den halben Bindungswinkel α berechnen. Der Tangens von α ist gegeben durch das Verhältnis der Länge der Gegenkathete d zur Länge der Ankathete r a. tan(α) d r (6) a a (7) arctan (8) α 5.7 (9)

3 Aufgabe Zeigen sie a) sin(3α) 3 sin(α) sin 3 (α) Lösung mittels Additionstheoreme Diese Aufgabe betrachten wir am besten von der linken Seite aus. Hierfür schreiben wir den Sinus zunächst etwas um. sin(3α) sin(α + α) (10) Nun verwenden wir zum ersten mal das Additionstheorem. sin(α) cos( α) + sin( α) cos(α) (11) sin(α) cos(α + α) + sin(α + α) cos(α) (1) Auch hier können wir wieder die Additionstheoreme für den Kosinus und den Sinus verwenden. Jetzt lösen wir die Klammern auf. sin(α)[cos(α) cos(α) sin(α) sin(α)] + [sin(α) cos(α) + sin(α) cos(α)] cos(α) (13) sin(α) [ cos (α) sin (α) ] + [ sin(α) cos(α)] cos(α) (1) sin(α) cos (α) sin 3 (α) + sin(α) cos (α) (15) Nun benutzen wir den Ausdruck sin (α) + cos (α) 1 in der Form cos (α) 1 sin (α). sin(α) [1 sin (α) ] sin 3 (α) + sin(α) [1 sin (α) ] (16) sin(α) sin 3 (α) sin 3 (α) + sin(α) sin 3 (α) (17) 3 sin(α) sin 3 (α) (18) Wir mussten also nur ein wenig umformen und die Additionstheoremen für den Sinus und Kosinus verwenden um zum gesuchten Ergebniss zu kommen.:) 3

4 b) cos(α) 1 tan (α) 1 + tan (α) Lösung Da auf der rechten Seite ein Bruch steht, ist es zweckmäßig, den Bruch als Ausgangssituation zu betrachten. Diese Aufgabe wird daher von der rechten Seite gelöst. Im ersten Schritt schreiben wir den Tangens als Quotient von Sinus und Kosinus. 1 tan (α) 1 + tan (α) 1 sin (α) cos (α) 1 + sin (α) cos (α) (19) Der Bruch ist dadurch zwar etwas voluminöser, aber wir sind dem Ziel schon sehr nahe. Im folgenden Schritt schreiben wir die 1 in einer etwas anderen Form. 1 cos (α) cos (α) cos (α) cos (α) sin (α) cos (α) cos (α) cos (α) + sin (α) cos (α) cos (α) sin (α) cos (α) cos (α)+sin (α)) cos (α) cos (α) sin (α) cos (α) + sin (α)) (0) (1) () Der Nenner entspricht Eins und kann daher weggelassen werden. cos (α) sin (α) (3) Wenden wir das Additionstheoreme mal andersherum an, erhalten wir den gesuchten Ausdruck. cos( α) () Es ist also nicht bei jeder Aufgabe sinnvoll auf der linken Seite zu beginnen.

5 Aufgabe 3 Berechnen Sie die Werte von sin(15 ) und sin(135 ) über passende Additionstheoreme. Was man grundsätzlich Wissen sollte Im Grund muss man wissen, dass der Sinus das Verhältnis aus Gegenkathete und Hypotenuse darstellt und der Kosinus den Quotienten aus Ankathete und Hypotenuse. Alleine aus dieser Kenntnis wissen wir, dass wir sowohl den Sinus als auch den Kosinus für 90 und 0 wissen. Ein paar weitere Winkel können wir uns mittels einer kleinen Tabelle zusätzlich merken. Tabelle 1: Ein paar Winkel. Damit ihr euch zumindest diese Winkel einfach merken könnt haben wir immer nur den Zähler geändert. Winkel Sinus Kosinus Lösung für sin(15 ) Jetzt kennen wir ein paar Winkel und können mit diesen und den Additionstheoremen auch weitere bestimmen. In der ersten Aufgaben soll der sin(15 ) bestimmt werden. Diesen stellen wir folgendermaßen dar. sin(15 ) sin(5 30 ) (5) Wie angekündigt benutzen wir nun eines der Additionstheoreme. sin(5 30 ) sin(5 ) cos(30 ) sin(30 ) cos(5 ) (6) Diese Winkel kennen wir (siehe Tab.1) [ ] 6 (7) (8) (9) Dieser Ausdruck muss nicht weiter vereinfacht werden!!! 5

6 Lösung für sin(135 ) Das gleiche Spielchen wie oben. sin(135 ) sin( ) (30) Gleiche Vorgehensweise sin( ) sin(5 ) cos(90 ) + sin(90 ) cos(5 ) (31) Diese Winkel kennen wir (siehe Tab.1) Auch diesen Ausdruck müssen wir nicht weiter vereinfachen!! (3) (33) (3) (35) 6

7 Aufgabe Zeigen Sie unter Verwendung der Additionstheoreme: Zunächst substituieren wir: cos(α) + cos(β) cos( α + β ) cos( α β ) α x + y (36) β x y (37) (38) α + β x (39) α β y (0) Nun setzen wir die Ergebnisse aus Gl. 36 und Gl. 37 in die Ausgangsgleichung ein und erhalten: cos(x + y) + cos(x y) cos(x) cos(y) sin(x) sin(y) + cos(x) cos(y) + sin(x) sin(y) (1) cos(x) cos(y) () Nun substituieren wir mit Gl. 36 und Gl. 37 zurück und erhalten: cos( α + β ) cos( α β ) (3) CC-BY-SA 3.0 Mario Krieg / Martin Labus 7

Lösung zur Übung 2. Lösung durch Ausrechnen Die Funktion lässt sich durch die Doppelwinkelfunktion des Sinus ausdrücken.

Lösung zur Übung 2. Lösung durch Ausrechnen Die Funktion lässt sich durch die Doppelwinkelfunktion des Sinus ausdrücken. Lösung zur Übung Aufgabe 5 Berechnen Sie die kleinste Periode folgender Funktionen a) y(x) = sin(x) cos(x) Lösung durch Ausrechnen Die Funktion lässt sich durch die Doppelwinkelfunktion des Sinus ausdrücken.

Mehr

Übung 2 vom

Übung 2 vom Übung vom.0.04 Aufgabe 5 Gegeben ist die Gleichung sin(α) + sin(α + β) + sin(α + β) = 0 Für welches Argument β ist diese Gleichung für jedes α erfüllt? Wo findet diese Gleichung Anwendung in der Technik?

Mehr

Übung 13. Die Lösungen a) Wir schreiben den Tangens als das Verhältnis von Sinus und Cosinus. tan(x)dx =

Übung 13. Die Lösungen a) Wir schreiben den Tangens als das Verhältnis von Sinus und Cosinus. tan(x)dx = Übung 3 Aufgabe 48) Integrieren Sie die folgenden Funktionen a) tan(x)dx b) e x cos(x)dx c) +ax dx Die Lösungen a) Wir schreiben den Tangens als das Verhältnis von Sinus und Cosinus. tan(x)dx = sin(x)

Mehr

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Trigonometrie Mag. DI Rainer Sickinger HTL v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Definition von Sinus, Cosinus und Tangens am Einheitskreis Im rechtwinkligen Dreieck ist der Winkel zwischen

Mehr

Aufgaben mit Lösungen zum Themengebiet: Geometrie bei rechtwinkligen Dreiecken

Aufgaben mit Lösungen zum Themengebiet: Geometrie bei rechtwinkligen Dreiecken Übungsaufgaben zur Satzgruppe des Pythagoras: 1) Seiten eines rechtwinkligen Dreiecks Sind folgende Aussagen richtig oder falsch? Verbessere, wenn notwendig! Die Katheten grenzen an den rechten Winkel.

Mehr

Lösungen der Trainingsaufgaben aus. Toolbox Mathematik für MINT-Studiengänge

Lösungen der Trainingsaufgaben aus. Toolbox Mathematik für MINT-Studiengänge Lösungen der Trainingsaufgaben aus Toolbox Mathematik für MINT-Studiengänge 1 Geometrie mit Sinus, Cosinus und Tangens Version 22. Dezember 2016 Lösung zu Aufgabe 1.1 Gemäß Abbildung 1.1 und der Definition

Mehr

Trigonometrie. In der Abbildung: der Winkel 120 (Gradenmaß) ist 2π = 2π (Bogenmaß).

Trigonometrie. In der Abbildung: der Winkel 120 (Gradenmaß) ist 2π = 2π (Bogenmaß). Trigonometrie. Winkel: Gradmaß oder Bogenmaß In der Schule lernt man, dass Winkel im Gradmass, also als Zahlen zwischen 0 und 60 Grad angegeben werden. In der Mathematik arbeitet man lieber mit dem Bogenmaß,

Mehr

3.1 Rationale Funktionen

3.1 Rationale Funktionen 3.1 Rationale Funktionen EineFunktionf : R R der Formx P(x) Q(x) mit Polynomen P(x), Q(x) heißt rationale Funktion. Der maximale Definitionsbereich von f = P(x) Q(x) Sei x 0 R mit Q(x 0 ) = 0. Ferner sei

Mehr

Grundlagen der Physik 2 Lösung zu Übungsblatt 12

Grundlagen der Physik 2 Lösung zu Übungsblatt 12 Grundlagen der Physik Lösung zu Übungsblatt Daniel Weiss 3. Juni 00 Inhaltsverzeichnis Aufgabe - Fresnel-Formeln a Reexionsvermögen bei senkrechtem Einfall.................. b Transmissionsvermögen..............................

Mehr

Lösung zur Übung 7. Leiten Sie die Ableitung der Tangensfunktion aus dem Grenzwert des Differenzenquotienten unter Verwendung des Additionstheorems

Lösung zur Übung 7. Leiten Sie die Ableitung der Tangensfunktion aus dem Grenzwert des Differenzenquotienten unter Verwendung des Additionstheorems Lösung zur Übung 7 Aufgabe 25) Leiten Sie die Ableitung der Tangensfunktion aus dem Grenzwert des Differenzenquotienten unter Verwendung des Additionstheorems her. tan(α + β) tan(α) + tan(β) tan(α) tan(β)

Mehr

a) Wie hoch ist die Leiter? b) Wie weit stehen die beiden Fußpunkte auseinander? Abbildung 1: Eine Stehleiter

a) Wie hoch ist die Leiter? b) Wie weit stehen die beiden Fußpunkte auseinander? Abbildung 1: Eine Stehleiter 1. Berechnen Sie die jeweils fehlenden Größen (Winkel α, β und γ, Seiten a, b und c) in den folgenden Dreiecken: a) a = 5 cm, b = 9 cm, γ = 90 b) c = 9 cm, a = 6 cm, γ = 56, 3 (Überlegen Sie zuerst, wo

Mehr

Mathematik W18. Mag. Christina Sickinger. Berufsreifeprüfung. Trigonometrie am rechtwinkligen Dreieck

Mathematik W18. Mag. Christina Sickinger. Berufsreifeprüfung. Trigonometrie am rechtwinkligen Dreieck Mathematik W18 Mag. Christina Sickinger Berufsreifeprüfung v 0 Mag. Christina Sickinger Mathematik W18 1 / 41 Das Problem v 0 Mag. Christina Sickinger Mathematik W18 2 / 41 Wir wollen das Problem lösen!

Mehr

Inhalt. Lineare Algebra 1. Dr. Donat Adams. Fachhochschule Nordwest-Schweiz Technik, Brugg. 10. Oktober 2017

Inhalt. Lineare Algebra 1. Dr. Donat Adams. Fachhochschule Nordwest-Schweiz Technik, Brugg. 10. Oktober 2017 Inhalt Lineare Algebra 1 Dr. Donat Adams Fachhochschule Nordwest-Schweiz Technik, Brugg 10. Oktober 2017 1 / 20 Inhalt Teil 2 / 20 Inhalt Inhaltsverzeichnis I 3 / 20 Inhalt Bibliographie I F. Bachmann,

Mehr

KREISFUNKTIONEN. Allgemeines

KREISFUNKTIONEN. Allgemeines KREISFUNKTIONEN Allgemeines Um die Graphen der Winkelfunktionen zeichnen und verstehen zu können, ist es wichtig, den Einheitskreis zu kennen. Zunächst stellt man sich einen Kreis mit dem Radius 1 vor.

Mehr

Folgende Eigenschaft beschreibt eine gewisse Symmetrie des Funktionsgraphen:

Folgende Eigenschaft beschreibt eine gewisse Symmetrie des Funktionsgraphen: für alle x [0,2000]. Das Intervall [0,2000] könnte aus ökonomischer Sicht relevant sein, wenn etwa die Maximalauslastung bei 2000 produzierten Waschmaschinen liegt. Folgende Eigenschaft beschreibt eine

Mehr

Nullstellen. Häufig interessiert man sich für die Werte der unabhängigen Variable einer Funktion, für die der Funktionswert 0 ist:

Nullstellen. Häufig interessiert man sich für die Werte der unabhängigen Variable einer Funktion, für die der Funktionswert 0 ist: 15 y 10 5 5 x 10 15 Nullstellen Häufig interessiert man sich für die Werte der unabhängigen Variable einer Funktion, für die der Funktionswert 0 ist: 98 Sei f : R R eine Funktion. Ist x 0 D(f) eine reelle

Mehr

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b.

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b. Proposition.13 Sei f : D R stetig und D = [a, b] R. Dann ist f(d) beschränkt. Außerdem nimmt f sein Maximum und Minimum auf D an, d.h. es gibt x max D und ein x min D, so dass f(x max ) = sup f(d) und

Mehr

Rechtwinklige Dreiecke konstruieren

Rechtwinklige Dreiecke konstruieren 1 Vertiefen 1 Rechtwinklige Dreiecke konstruieren zu Aufgabe Schulbuch, Seite 106 Dreiecke konstruieren a) Konstruiere die Dreiecke mit den Angaben aus der Tabelle. Miss dann die übrigen Maße und vervollständige

Mehr

FH Gießen-Friedberg, FB 06 (MNI) Lösungen zu Übungsblatt 8 Einführung in die höhere Mathematik 6. Dezember 2006 Prof. Dr. H.-R.

FH Gießen-Friedberg, FB 06 (MNI) Lösungen zu Übungsblatt 8 Einführung in die höhere Mathematik 6. Dezember 2006 Prof. Dr. H.-R. FH Gießen-Friedberg, FB 06 (MNI) Lösungen zu Übungsblatt 8 Einführung in die höhere Mathematik 6. Dezember 006 Prof. Dr. H.-R. Metz Aufgabe 1 Skizzieren Sie die Funktionen e x, ln(x) = log e (x) und e

Mehr

2.3 Elementare Funktionen

2.3 Elementare Funktionen .3 Elementare Funktionen Trigonometrische Funktionen (Winkelfunktionen) Vorbemerkung. Wir definieren die Winkelfunktionen bezogen auf die Bogenlänge x auf dem Einheitskreis, d.h. für x [0,π]. Alternativ

Mehr

Definition von Sinus und Cosinus

Definition von Sinus und Cosinus Definition von Sinus und Cosinus Definition 3.16 Es sei P(x y) der Punkt auf dem Einheitskreis, für den der Winkel von der positiven reellen Halbachse aus (im Bogenmaß) gerade ϕ beträgt (Winkel math. positiv,

Mehr

3. Erweiterung der trigonometrischen Funktionen

3. Erweiterung der trigonometrischen Funktionen 3. Erweiterung der trigonometrischen Funktionen 3.1. Polarkoordinaten 1) Rechtwinklige und Polarkoordinaten Üblicherweise gibt man die Koordinaten eines Punktes in der Ebene durch ein Zahlenpaar vor: P(x

Mehr

Lösung zur Übung 6. Die Umkehrfunktion zur sinus hyperbolicus Funktion y = sinh(x) ist die area sinus hyperbolicus Funktion y = ar sinh(x).

Lösung zur Übung 6. Die Umkehrfunktion zur sinus hyperbolicus Funktion y = sinh(x) ist die area sinus hyperbolicus Funktion y = ar sinh(x). zur Übung 6 Aufgabe ) Die Umkehrfunktion zur sinus hyperbolicus Funktion y = sinh(x) ist die area sinus hyperbolicus Funktion y = ar sinh(x). a) Man zeige: y(x) = ar sinh(x) = ln(x + x + ) durch einsetzen

Mehr

Berechnungen am rechtwinkligen Dreieck Der Einheitskreis. VI Trigonometrie. Propädeutikum Holger Wuschke. 21. September 2018

Berechnungen am rechtwinkligen Dreieck Der Einheitskreis. VI Trigonometrie. Propädeutikum Holger Wuschke. 21. September 2018 Propädeutikum 018 1. September 018 Denition Trigonometrie Die Trigonometrie beschäftigt sich mit dem Messen (µɛτ ρoν) von dreiseitigen (τ ρίγωνo) Objekten. Zunächst gilt in Dreiecken: A = 1 g h Abbildung:

Mehr

11 Spezielle Funktionen und ihre Eigenschaften

11 Spezielle Funktionen und ihre Eigenschaften 78 II. ANALYSIS 11 Spezielle Funktionen und ihre Eigenschaften In diesem Abschnitt wollen wir wichtige Eigenschaften der allgemeinen Exponentialund Logarithmusfunktion sowie einiger trigonometrischer Funktionen

Mehr

KOMPETENZHEFT ZUR TRIGONOMETRIE, II

KOMPETENZHEFT ZUR TRIGONOMETRIE, II KOMPETENZHEFT ZUR TRIGONOMETRIE, II 1. Aufgabenstellungen Aufgabe 1.1. Bestimme alle Winkel in [0 ; 360 ], die Lösungen der gegebenen Gleichung sind, und zeichne sie am Einheitskreis ein. 1) sin(α) = 0,4

Mehr

4. Das (symmetrische) - im Querschnitt dreieckige - Dach eines Hauses ist 3,50 Meter

4. Das (symmetrische) - im Querschnitt dreieckige - Dach eines Hauses ist 3,50 Meter 1. Eine 7 Meter lange Leiter lehnt an einer Hauswand. Sie schließt mit dem Boden eine Winkel von 70 ein. a) In welcher Höhe lehnt die Leiter an der Wand? b) Wie weit ist der Fußpunkt der Leiter von der

Mehr

O A B. Ableitung der Winkelfunktionen

O A B. Ableitung der Winkelfunktionen Ableitung der Winkelfunktionen Das Verständnis der Herleitung der Ableitung der Winkelfunktionen sett einiges an Mittelstufenkenntnissen voraus; das meiste davon wird häufig im Unterricht geschlabbert

Mehr

1.4 Trigonometrie. 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2. 2 Die trigonometrischen Funktionen 3

1.4 Trigonometrie. 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2. 2 Die trigonometrischen Funktionen 3 1.4 Trigonometrie Inhaltsverzeichnis 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2 2 Die trigonometrischen Funktionen 3 2.1 Was sind trigonometrischen Funktionen?.......................... 3 2.2 Die

Mehr

1.4 Trigonometrie I. 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2. 2 Die trigonometrischen Funktionen 4

1.4 Trigonometrie I. 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2. 2 Die trigonometrischen Funktionen 4 1.4 Trigonometrie I Inhaltsverzeichnis 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2 2 Die trigonometrischen Funktionen 4 2.1 Was sind trigonometrischen Funktionen?........................... 4 2.2

Mehr

Aufgaben zu sin, cos und tan im rechtwinkligen Dreieck

Aufgaben zu sin, cos und tan im rechtwinkligen Dreieck Aufgaben zu sin, cos und tan im rechtwinkligen Dreieck 1) Eine Leiter ist 3m von einer Wand entfernt. Die Leiter ist 5m lang. In welcher Höhe ist die Leiter an die Wand gelehnt und welchen Neigungswinkel

Mehr

(3) Wurzelfunktionen. Definition Sei f : D R eine Funktion. Eine Funktion g : D R heißt Umkehrfunktion von f, wenn für alle (x, y) R 2 die Äquivalenz

(3) Wurzelfunktionen. Definition Sei f : D R eine Funktion. Eine Funktion g : D R heißt Umkehrfunktion von f, wenn für alle (x, y) R 2 die Äquivalenz (3) Wurzelfunktionen Definition Sei f : D R eine Funktion. Eine Funktion g : D R heißt Umkehrfunktion von f, wenn für alle (x, y) R 2 die Äquivalenz Definition y = f (x) g(y) = x gilt. Für jedes k N ist

Mehr

Vorkurs Mathematik für Ingenieure WS 2016/2017 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck: b h

Vorkurs Mathematik für Ingenieure WS 2016/2017 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck: b h Prof. Dr. J. Pnnek Dynmics in Logistics Vorkurs Mthemtik für Ingenieure WS 206/207 Übung 3 Aufgbe : Trigonometrie () Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck:

Mehr

Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck:

Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck: Prof. Dr. J. Pnnek Dynmics in Logistics Vorkurs Mthemtik für Ingenieur Innen WS 207/208 Übung 3 Aufgbe : Trigonometrie () Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck:

Mehr

Elementarmathematik II

Elementarmathematik II Goethe-Universität Frankfurt Institut für Mathematik Elementarmathematik II Sommersemester 08 Prof. Dr. Jakob Sti Martin Lüdtke Übungsblatt 9 5. Juni 08 ufgabe 33. (4 Punkte) Zeigen Sie anhand des Einheitskreises,

Mehr

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Trigonometrie Mag. DI Rainer Sickinger HTL v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Verschiedene Winkel DEFINITION v 1 Mag. DI Rainer Sickinger Trigonometrie 2 / 1 Verschiedene Winkel Vermessungsaufgaben

Mehr

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759.

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759. (4) Exponential- und Logarithmusfunktionen Satz Für jedes b > 1 gibt es eine eindeutig bestimmte Funktion exp b : R R + mit folgenden Eigenschaften. exp b (r) = b r für alle r Q Die Funktion exp b ist

Mehr

(k +2)(k +3) x 2 (k +3)!

(k +2)(k +3) x 2 (k +3)! 5.3. SINUS UND KOSINUS 9 5.35. Lemma. Es gilt (i) (ii) (iii) cos() < 0, sin(x) > 0 für alle x (0, ], x cos(x) ist streng monoton fallend in [0, ]. Beweis. (i) Es ist cos() = 1! + 4 6 4! 6! 8 10 8! 10!

Mehr

Bogenmaß, Trigonometrie und Vektoren

Bogenmaß, Trigonometrie und Vektoren 20 1 Einführung Bogenmaß: Bogenmaß, Trigonometrie und Vektoren Winkel können in Grad ( ) oder im Bogenmaß (Einheit: 1 Radiant, Abkürzung 1 rad) angegeben werden. Dabei gilt 2 rad 360. Die Einheit 1 rad

Mehr

42.Trigonometrie - Beziehungen

42.Trigonometrie - Beziehungen 4.Trigonometrie - Beziehungen Beziehungen zwischen den Winkelfunktionen tan = cot = sin cos cos sin Aus 3a erhält man durch einfaches Formelumstellen die Hilfssätze 3b und 3c: 3 a tan cot= 3 b tan = cot

Mehr

Mathematik = x 2 + x 2 = x + x 2 25x = 146 x =

Mathematik = x 2 + x 2 = x + x 2 25x = 146 x = 1 Prof. Dr. Matthias Gerdts Dr. Sven-Joachim Kimmerle Wintertrimester 014 Mathematik 1 + Übung 1 Gleichungen mit Wurzeln Bestimmen Sie alle Lösungen der folgenden Gleichungen. Beachten Sie dabei, dass

Mehr

Schulmathematik: Lineare Algebra & Analytische Geometrie. Kapitel 2: Trigonometrie. MAC.05043UB/MAC.05041PH, VU im SS 2017

Schulmathematik: Lineare Algebra & Analytische Geometrie. Kapitel 2: Trigonometrie. MAC.05043UB/MAC.05041PH, VU im SS 2017 Schulmathematik: Lineare Algebra & Analytische Geometrie Kapitel 2: Trigonometrie MAC.05043UB/MAC.05041PH, VU im SS 2017 http://imsc.uni-graz.at/pfeiffer/2017s/linalg.html Christoph GRUBER, Florian KRUSE,

Mehr

Bundesgymnasium für Berufstätige Salzburg. Mathematik 4 Arbeitsblatt A 4-4 Winkelfunktionen. LehrerInnenteam m/ Mag. Wolfgang Schmid.

Bundesgymnasium für Berufstätige Salzburg. Mathematik 4 Arbeitsblatt A 4-4 Winkelfunktionen. LehrerInnenteam m/ Mag. Wolfgang Schmid. Schule Bundesgymnasium für Berufstätige Salzburg Thema Mathematik 4 Arbeitsblatt A 4-4 Winkelfunktionen LehrerInnenteam m/ Mag. Wolfgang Schmid Unterlagen Um die Größe eines Winkels anzugeben gibt es verschiedenee

Mehr

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE I. Reelle Zahlen 1. Die Menge der rationalen Zahlen und die Menge der irrationalen Zahlen bilden zusammen die Menge der reellen Zahlen. Nenne Beispiele für rationale und irrationale Zahlen.. Aus negativen

Mehr

Was bedeutet Trigonometrie und mit was beschäftigt sich die Trigonometrie?

Was bedeutet Trigonometrie und mit was beschäftigt sich die Trigonometrie? Einführung Was bedeutet und mit was beschäftigt sich die? Wortkunde: tri bedeutet 'drei' Bsp. Triathlon,... gon bedeutet 'Winkel'/'Eck' Bsp. Pentagon das Fünfeck mit 5 Winkeln metrie bedeutet 'Messung'

Mehr

Lösung zur Übung 3 vom

Lösung zur Übung 3 vom Lösung zur Übung 3 vom 28.0.204 Aufgabe 8 Gegeben ist ein Dreieck mit den nachfolgenden Seiten- und Winkelbezeichnung. Der Cosinussatz ist eine Verallgemeinerung des Satzes des Pythagoras: a) c 2 = a 2

Mehr

befasst sich mit den Beziehungen zwischen den Seiten und Winkeln in einem Dreieck.

befasst sich mit den Beziehungen zwischen den Seiten und Winkeln in einem Dreieck. Trigonometrie Lernziele befasst sich mit den Beziehungen zwischen den Seiten und Winkeln in einem Dreieck. Selbständiges Erarbeiten der Kurztheorie Kenntnis der wichtigsten Begriffe, Definitionen und Formeln

Mehr

und der Kosinussatz cos(γ) = a2 + b 2 c 2 2 a b Sinussatz sin(β) = a b

und der Kosinussatz cos(γ) = a2 + b 2 c 2 2 a b Sinussatz sin(β) = a b Blatt Nr 1906 Mathematik Online - Übungen Blatt 19 Dreieck Geometrie Nummer: 41 0 2009010074 Kl: 9X Aufgabe 1911: (Mit GTR) In einem allgemeinen Dreieck ABC sind a = 18782, c = 1511 und β = 33229 gegeben

Mehr

osungen zu Blatt 12 Thema: Rationale und trigonometrische Funktionen

osungen zu Blatt 12 Thema: Rationale und trigonometrische Funktionen Musterl osungen zu Blatt Kleingruppen zur Service-Veranstaltung Mathematik I f ur Ingenieure bei Prof. Dr. G. Herbort im WS/3 Dipl.-Math. T. Pawlaschyk, 5.. Thema: Rationale und trigonometrische Funktionen

Mehr

1 Zahlen. 1.1 Die Quadratwurzel. 1.2 Rechnen mit Quadratwurzeln. Grundwissen Mathematik 9

1 Zahlen. 1.1 Die Quadratwurzel. 1.2 Rechnen mit Quadratwurzeln. Grundwissen Mathematik 9 Zahlen. Die Quadratwurzel Die Quadratwurzel a ist die nicht negative Lösung der Gleichung x a. a 0 0 0 a heißt Radikand Ein Teil der Quadratwurzeln sind rationale Zahlen (z.b. 9, 0,0 oder ), 9 andere dagegen

Mehr

Die elementaren trigonometrischen Funktionen und ihre Umkehrfunktionen sind: Funktion Kurzzeichen Umkehrfunktion Kurzzeichen Sinus

Die elementaren trigonometrischen Funktionen und ihre Umkehrfunktionen sind: Funktion Kurzzeichen Umkehrfunktion Kurzzeichen Sinus trigonometrische Funktionen Übersicht über die trigonometrischen Funktionen Die elementaren trigonometrischen Funktionen und ihre Umkehrfunktionen sind: Funktion Kurzzeichen Umkehrfunktion Kurzzeichen

Mehr

Grundwissen Jahrgangsstufe 9. Lösungen. Berechne ohne Taschenrechner: a) 2, a) = -1, b) = = = 4000

Grundwissen Jahrgangsstufe 9. Lösungen. Berechne ohne Taschenrechner: a) 2, a) = -1, b) = = = 4000 Grundwissen Jahrgangsstufe 9 Berechne ohne Taschenrechner: a),5 + 7 1 9 b) 16 000 000 4 c) 81a 8 Gib die Lösungsmenge der folgenden Gleichungen an: a) ( x)² = 9 b) -x² = -5 c) x² + 50 = 0 Sind folgende

Mehr

Exkurs: Klassifikation orthogonaler 2 2-Matrizen.

Exkurs: Klassifikation orthogonaler 2 2-Matrizen. Exkurs: Klassifikation orthogonaler 2 2-Matrizen. Aussage: Es gilt: (a) Jede orthogonale 2 2 Matrix A mit det(a) = 1 hat das Aussehen cos(α) sin(α) D(α) = sin(α) cos(α), wobei α [0,2π[. Ist sin(α) 0, so

Mehr

Konstruierbarkeit des Siebzehnecks

Konstruierbarkeit des Siebzehnecks Konstruierbarkeit des Siebzehnecks Der Kinofilm Die Vermessung der Welt war Anstoß, sich mit der Konstruktion des regelmäßigen Siebzehnecks und damit den Gedankengängen des berühmten Mathematikgenies Carl

Mehr

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Serie 6

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Serie 6 D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger Serie 6 Die ersten Aufgaben sind Multiple-Choice-Aufgaben (MC), die online gelöst werden. Bitte schicken Sie Ihre Lösungen zu den Online MC-Fragen bis

Mehr

6. Orbits und die Runge-Lenz Vektor

6. Orbits und die Runge-Lenz Vektor Übungen zur T: Theoretische Mechani, SoSe3 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physi.uni-muenchen.de 6. Orbits und die Runge-Lenz Vetor Übung 6.: Die Rücehr der Kanonenugel

Mehr

Grundwissen Jahrgangsstufe 9. Lösungen. 144c 6 + = ( d)² 144c6 + = ( d)². Berechne ohne Taschenrechner: a) 2,

Grundwissen Jahrgangsstufe 9. Lösungen. 144c 6 + = ( d)² 144c6 + = ( d)². Berechne ohne Taschenrechner: a) 2, Grundwissen Jahrgangsstufe 9 Lösungen Berechne ohne Taschenrechner: a) 2,25 + 7 1 9 b) 16 000 000 4 c) 81a 8 Gib die Lösungsmenge der folgenden Gleichungen an: a) ( x)² = 9 b) x² = 5 c) 2x² + 50 = 0 Sind

Mehr

1. Definition der trigonometrischen Funktionen für beliebige Winkel

1. Definition der trigonometrischen Funktionen für beliebige Winkel 1 Trigonometrie 2 1. Definition der trigonometrischen Funktionen für beliebige Winkel In einem Kreis mit Mittelpunkt M(0,0) und Radius r ist der zunächst spitze Winkel α gezeichnet. α legt auf dem Kreis

Mehr

Sinus, Cosinus und Tangens. Sinus, Cosinus und Tangens. Gruppenmitglieder: Gruppenmitglieder: Station Aufgabenstellung Kontrolle

Sinus, Cosinus und Tangens. Sinus, Cosinus und Tangens. Gruppenmitglieder: Gruppenmitglieder: Station Aufgabenstellung Kontrolle Sinus, Cosinus und Tangens Sinus, Cosinus und Tangens Gruppenmitglieder: Gruppenmitglieder: Bearbeitet gemeinsam die Aufgabenstellungen, die bei den einzelnen Stationen bereitliegen (in beliebiger Reihenfolge!

Mehr

Trigonometrie. Geometrie Kapitel 3 MnProfil - Mittelstufe KSOe. Ronald Balestra CH Zürich

Trigonometrie. Geometrie Kapitel 3 MnProfil - Mittelstufe KSOe. Ronald Balestra CH Zürich Trigonometrie Geometrie Kapitel 3 MnProfil - Mittelstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch 29. Januar 2012 Inhaltsverzeichnis 3 Trigonometrie 1 3.1 Warum Trigonometrie........................

Mehr

Mathematische Einführung

Mathematische Einführung und euklidische Geometrie 13.04.2011 Motivation Warum braucht man eine mathematische Einführung? Die Physik ist in der Sprache der Mathematik formuliert. Mathematische Methoden essentiell zur Lösung von

Mehr

3.2 Trigonometrische Funktionen

3.2 Trigonometrische Funktionen 3. Trigonometrische Funktionen Vorbemerkung. Wir definieren die Winkelfunktionen bezogen auf die Bogenlänge x auf dem Einheitskreis, d.h. für x [0,π]. Alternativ werden die Argumente der Winkelfunktionen

Mehr

Aufgaben zu den Themen: Rechtwinkliges Dreieck und Sinus, Cosinus und Tangens im Einheitskreis

Aufgaben zu den Themen: Rechtwinkliges Dreieck und Sinus, Cosinus und Tangens im Einheitskreis Aufgaben zu den Themen: Rechtwinkliges Dreieck und Sinus, Cosinus und Tangens im Einheitskreis 1. Eine Rampe hat eine Steigung von 5%. Wie groß ist der Steigungswinkel? 2. Gegeben ist ein rechtwinkliges

Mehr

Trigonometrie. bekannte Zusammenhänge. 4-Streckensatz: groß/klein = groß/klein. Zusammenhänge im allgemeinen Dreieck:

Trigonometrie. bekannte Zusammenhänge. 4-Streckensatz: groß/klein = groß/klein. Zusammenhänge im allgemeinen Dreieck: Trigonometrie bekannte Zusammenhänge 4-Streckensatz: groß/klein = groß/klein Zusammenhänge im allgemeinen Dreieck: Summe zweier Seiten größer als dritte Seitenlänge: a + b > c Innenwinkelsumme: Summe der

Mehr

Ankathete Hypothenuse

Ankathete Hypothenuse Arbeitsauftrag: Trigonometrische Funktionen Bearbeitet folgendes Blatt und macht Euch mit den Trigonometrischen Funktionen und ihren Eigenschaften vertraut. 1.) Grundlagen - Wiederholung: Trigonometrische

Mehr

Teleskopreihen und -produkte

Teleskopreihen und -produkte Schweizer Mathematik-Olympiade smo osm Teleskopreihen und -produkte Aktualisiert: 5 Juli 06 vers 00 Oft kann man Summen und Produkte geschickt umformen, sodass sie eine besonders einfache Struktur erhalten

Mehr

Die Funktionen. Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet.

Die Funktionen. Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. Die Funktionen Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000.de 1 Der Funktionsbegriff Seite 1 2 Die linearen Funktionen Seite 3

Mehr

Antworten Vorbereitungsmaterial Sum of Us 2013

Antworten Vorbereitungsmaterial Sum of Us 2013 Antworten Vorbereitungsmaterial Sum of Us 201 Grundbegriffe Rechnen mit Kongruenzen a) 100 00 =,7. Also ganze Runden. b) 0,7 00 = 00 Meter. a) 000 (mod 00) 200 Meter. b) 000 (mod 00) 200 Meter. Aufgabe

Mehr

1 Einleitung. 2 Sinus. Trigonometrie

1 Einleitung. 2 Sinus. Trigonometrie 1 Einleitung Die Trigonometrie (trigonon - griechisch für Dreieck) und die trigonometrischen Funktionen sind wichtige mathematische Werkzeuge zur Beschreibung der Natur. In der Physik werden trigonometrische

Mehr

Spezielle Klassen von Funktionen

Spezielle Klassen von Funktionen Spezielle Klassen von Funktionen 1. Ganzrationale Funktionen Eine Funktion f : R R mit f (x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, n N 0 und a 0, a 1,, a n R, (a n 0) heißt ganzrationale Funktion n

Mehr

2.8 Trigonometrische Funktionen (Thema aus dem Bereich Analysis/Geometrie)

2.8 Trigonometrische Funktionen (Thema aus dem Bereich Analysis/Geometrie) .8 Trigonometrische Funktionen (Thema aus dem Bereich Analysis/Geometrie) Inhaltsverzeichnis Repetition und Einleitung Verhältnisse beim Kreis mit Radius r 3 3 Die Graphen der Sinus- und der Cosinusfunktion

Mehr

0,6 m. 0,4m. Gegeben seien die obigen drei auf den Balken wirkenden Kräfte mit:

0,6 m. 0,4m. Gegeben seien die obigen drei auf den Balken wirkenden Kräfte mit: Kurs: Statik Thema: Resultierende bestimmen Aufgabe 1) Wo liegt bei der Berechnung der Resultierenden der Unterschied zwischen Kräften mit einem gemeinsamen Angriffspunkt und Kräften mit unterschiedlichen

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Trigonometrische Funktionen Rainer Hauser September 013 1 Einleitung 1.1 Der Begriff Funktion Eine Funktion ordnet jedem Element m 1 einer Menge M 1 ein Element m einer Menge M zu. Man schreibt dafür f:

Mehr

1 Die Strahlensätze 2. 2 Winkel 3. 3 Rechtwinklige Dreiecke 3. 4 Kreise 6. 5 Trigonometrische Funktionen 8. 6 Kurven in Parameterdarstellung 10

1 Die Strahlensätze 2. 2 Winkel 3. 3 Rechtwinklige Dreiecke 3. 4 Kreise 6. 5 Trigonometrische Funktionen 8. 6 Kurven in Parameterdarstellung 10 Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Geometrie Inhaltsverzeichnis 1 Die Strahlensätze 2 2 Winkel 3 3 Rechtwinklige

Mehr

Priv. Doz. Dr. A. Wagner Aachen, 19. September 2016 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2016, RWTH Aachen University

Priv. Doz. Dr. A. Wagner Aachen, 19. September 2016 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2016, RWTH Aachen University Priv. Doz. Dr. A. Wagner Aachen, 9. September 6 S. Bleß, M. Sc. Analysis Übungsaufgaben im Vorkurs Mathematik 6, RWTH Aachen University Intervalle, Supremum und Infimum Für a, b R, a < b nennen wir eine

Mehr

Brückenkurs Mathematik. Dienstag Freitag

Brückenkurs Mathematik. Dienstag Freitag Brückenkurs Mathematik Dienstag 2.0. - Freitag 2.0. Vorlesung 5 Elementare Funktionen Kai Rothe Technische Universität Hamburg Dienstag 9.0. 0 Brückenkurs Mathematik, c K.Rothe, Vorlesung 5 Umkehrfunktion........................

Mehr

Streckungen. Sei Z ein Punkt und P, Q Z. Die bijektive Abbildung ϕ: E 2 E 2 die jeden Strahl ab M invariant lässt und für jedes R Z

Streckungen. Sei Z ein Punkt und P, Q Z. Die bijektive Abbildung ϕ: E 2 E 2 die jeden Strahl ab M invariant lässt und für jedes R Z Streckungen Sei Z ein Punkt und P, Q Z. Die bijektive Abbildung ϕ: E 2 E 2 die jeden Strahl ab M invariant lässt und für jedes R Z Z ϕ(r) = ZQ ZR ZP erfüllt ist die Streckung mit Zentrum Z und Streckungsfaktor

Mehr

Dr. O. Wittich Aachen, 12. September 2017 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2017, RWTH Aachen University

Dr. O. Wittich Aachen, 12. September 2017 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2017, RWTH Aachen University Dr. O. Wittich Aachen,. September 7 S. Bleß, M. Sc. Analysis Übungsaufgaben im Vorkurs Mathematik 7, RWTH Aachen University Intervalle, Beschränktheit, Maxima, Minima Aufgabe Bestimmen Sie jeweils, ob

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz WS 04/05 0..04 Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum 7. Übungsblatt

Mehr

Trigonometrische Funktionen und Exponentialfunktion

Trigonometrische Funktionen und Exponentialfunktion Kapitel 6 Trigonometrische Funktionen und Exponentialfunktion 6.1 Es seien a>0, b>0 und c IR. Man definiere f : IR IR durch f(x) =a sin(bx + c). Zeigen Sie, daß f die folgenden Eigenschaften hat. (i) f(x)

Mehr

L.1 Aussagen, Mengen und Funktionen

L.1 Aussagen, Mengen und Funktionen L. Aussagen, Mengen und Funktionen L.. Aussagen Lösung.. a), c) A B C A B (A B) C A B (A B) C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A B C A B B C (B C) (A B) (B C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mehr

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16)

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) 1 Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) Kapitel 7: Konvergenz und Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

Wiederhole eigenständig: elementare Konstruktionen nach diesen Sätzen

Wiederhole eigenständig: elementare Konstruktionen nach diesen Sätzen 1/5 Erinnerung: Kongruenzsätze SSS, SWS, WSW, SsW Wiederhole eigenständig: elementare Konstruktionen nach diesen Sätzen Grundwissen: Elementare Sätze über Dreiecke: o Winkelsumme 180 0 o Dreiecksungleichung

Mehr

Trigonometrische Gleichungen/Ungleichungen

Trigonometrische Gleichungen/Ungleichungen Trigonometrische Gleichungen/Ungleichungen Arkusfunktionen Arkussinus Der Arkussinus ist die Umkehrfunktion der Einschränkung der Sinusfunktion auf [, ]. Die Sinusfunktion sin : [, ] [, ] ist bijektiv

Mehr

1. die ganzen Zahlen, denn 7= 1. a ist diejenige nicht negative Zahl, die quadriert a ergibt: 16 = 4; 0 = = 36 = 25 = e) Grundwissen 9.

1. die ganzen Zahlen, denn 7= 1. a ist diejenige nicht negative Zahl, die quadriert a ergibt: 16 = 4; 0 = = 36 = 25 = e) Grundwissen 9. Grundwissen 9. Klasse Quadratwurzel a ist diejenige nicht negative Zahl, die quadriert a ergibt: ( a ) a Die Zahl a unter der Wurzel heißt Radikand. Es gibt keine Quadratwurzel aus einer negativen Zahl.

Mehr

Themen: Strahlensätze, Trigonometrie, trigonometrische Funktionen

Themen: Strahlensätze, Trigonometrie, trigonometrische Funktionen Mathematik Klasse 10c Vorbereitung Klassenarbeit Nr. 3 am 1.3.019 Themen: Strahlensätze, Trigonometrie, trigonometrische Funktionen Checkliste Was ich alles können soll Ich erkennen die Strahlensatzfiguren

Mehr

Verlauf Material LEK Glossar Lösungen. Schritt für Schritt erklärt Sinus und Kosinus. Florian Borges, Traunstein VORANSICHT

Verlauf Material LEK Glossar Lösungen. Schritt für Schritt erklärt Sinus und Kosinus. Florian Borges, Traunstein VORANSICHT Reihe 9 S Verlauf Material Schritt für Schritt erklärt Sinus und Kosinus Florian Borges, Traunstein y 5 6 R ϕ( t ) 7 0 Die Sinusfunktion entsteht durch Projektion eines rotierenden Zeigers auf die y-achse.

Mehr

Name, Klasse, Jahr Schwierigkeit Mathematisches Thema Amelie martin, 9 x trigonometrie. 900m

Name, Klasse, Jahr Schwierigkeit Mathematisches Thema Amelie martin, 9 x trigonometrie. 900m Amelie martin, 9 x trigonometrie 600m 900m Welche Länge hat die Hypotenuse dieses Dreiecks und welchen Winkel (α) und welche Steigung haben wir gegeben? Ausrechnung Winkel und Steigung: Steigung: tan(α)

Mehr

Selbsteinschätzungstest Auswertung und Lösung

Selbsteinschätzungstest Auswertung und Lösung Selbsteinschätzungstest Auswertung und Lösung Abgaben: 46 / 587 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: Durchschnitt: 7 Frage (Diese Frage haben ca. 0% nicht beantwortet.) Welcher Vektor

Mehr

mentor Lernhilfe: Mathematik 10. Klasse Baumann

mentor Lernhilfe: Mathematik 10. Klasse Baumann mentor Lernhilfe: Mathematik 10. Klasse Geometrie: Winkelfunktionen, Trigonometrie, Additionstheoreme, Vektorrechnung von Rolf Baumann 1. Auflage mentor Lernhilfe: Mathematik 10. Klasse Baumann schnell

Mehr

Lösung - Serie 2. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger Welche der folgenden Funktionen ( 1, 1) R sind strikt monoton wachsend?

Lösung - Serie 2. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger Welche der folgenden Funktionen ( 1, 1) R sind strikt monoton wachsend? D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie.. Welche der folgenden Funktionen (, R sind strikt monoton wachsend? (a (b (c + 3 (d e (e (f arccos Keine. Auf (, 0] ist strikt monoton

Mehr

Trigonometrische Funktionen: Sinus und Cosinus. Dieter Harig (Dipl. Math.) HD MINT-Projekt 5. Dezember 2013

Trigonometrische Funktionen: Sinus und Cosinus. Dieter Harig (Dipl. Math.) HD MINT-Projekt 5. Dezember 2013 Trigonometrische Funktionen: Sinus und Cosinus Dieter Harig (Dipl. Math.) HD MINT-Projekt 5. Dezember 0 4 5 4 4 Grad- und Bogenmaß Wir betrachten den Einheitskreis (Radius r = ) und einen beliebigen Winkel

Mehr

Kapitel 3: Folgen und Reihen

Kapitel 3: Folgen und Reihen Kapitel 3: und Reihen Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) Kapitel 3: und Reihen 1 / 29 Gliederung 1 Grundbegriffe 2 Abbildungen und elementare

Mehr

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz.

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz. FH Gießen-Friedberg, Sommersemester 010 Skript 9 Diskrete Mathematik (Informatik) 30. April 010 Prof. Dr. Hans-Rudolf Metz Funktionen Einige elementare Funktionen und ihre Eigenschaften Eine Funktion f

Mehr

Drehung um einen Punkt um Winkel α.

Drehung um einen Punkt um Winkel α. Drehung um einen Punkt um Winkel α. Sei A R 2 und α R. Drehung um A um Winkel α ist eine Abbildung D A (α) : R 2 R 2 welche wie folgt definiert ist: D A (α) = T A D 0 (α) T ( A), wobei die Abbildung D

Mehr

Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher Umlaufsinn!

Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher Umlaufsinn! Berechnungen in Dreiecken Allgemeines zu Dreiecken Innenwinkelsatz α + β + γ = 180 Besondere Dreiecke Gleichschenkliges Dreieck Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher

Mehr

Wiederholungsaufgaben Klasse 10

Wiederholungsaufgaben Klasse 10 Wiederholungsaufgaben Klasse 10 (Lineare und quadratische Funktionen / Sinus, Kosinus, Tangens und Anwendungen) 1. In welchem Punkt schneiden sich zwei Geraden, wenn eine Gerade g durch die Punkte A(1

Mehr

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

Aufgabe 1 Vereinfachen Sie die folgenden Ausdrücke soweit wie möglich. Vorsicht: Einige Terme können nicht weiter vereinfacht werden!

Aufgabe 1 Vereinfachen Sie die folgenden Ausdrücke soweit wie möglich. Vorsicht: Einige Terme können nicht weiter vereinfacht werden! Bachelor Bauingenieurwesen Reto Spöhel Repetitionsblatt BMS-Stoff Mathematik Alle Aufgaben sind ohne Taschenrechner zu lösen! Aufgabe 1 Vereinfachen Sie die folgenden Ausdrücke soweit wie möglich. Vorsicht:

Mehr