HF-Technik Prof. Dr. Ulrich Fischer-Hirchert

Größe: px
Ab Seite anzeigen:

Download "HF-Technik Prof. Dr. Ulrich Fischer-Hirchert"

Transkript

1 HF-Technik Prof. Dr. Ulrich Fischer-Hirchert Lehrstuhl für Telekommunikation Hochschule Harz, Wernigerode 1

2 Lecherleitung 2

3 Widerstandsbelag Koaxkabel 3

4 Ortskurven des Wellenwiderstandes 4

5 Fortpflanzungsparameter 5

6 Fortpflanzungsparameter II 6

7 Induktionsbelag 7

8 Zeigerdiagramme 8

9 Polardiagramm des Reflexionsfaktors 9

10 Reflexionsfaktor in Polarkoordinaten 10

11 Zeigerdiagramme II 11

12 Zeigerdiagramme III 12

13 Smith-Diagramm 13

14 Smith-Diagramm 14

15 TEM-Leiter t h ε r t h ε r w s w s a) b) c) d) a) Zweidrahtleitung, b) Koaxialleitung, c) Mikrostreifenleitung, d) Koplanarleitung 15

16 Feldverlauf im Rundholleiter a Schnitt a-b b 16

17 Leitungsgleichungen L` als den Induktivitätsbelag, die Selbstinduktion pro Längeneinheit, C` als Kapazitätsbelag, die Kapazität zwischen den beiden Leitern und R` als Widerstandsbelag den Ohmschen Leitungswiderstand pro Längeneinheit. Leitwertbelag G`, als den Leitwert der Querableitung zwischen den beiden Leitern (pro Längeneinheit) ein. Aus dem Ohmschen Gesetz U=RI ergeben sich dann die Leitungsgleichungen I + l U + U I + l z du di = ( R` + jωl `) I ( 48. ) = ( G` + jωc `) U ( 49. ) dz dz Um den Verlauf der Spannung entlang der Leitung zu bestimmen, differenziert man Gl. (4.9) und setzt die Größe aus Gl. (4.10) ein: 2 2 d U d U 2 = ( R`+ jωl`) ( G`+ jωc`) U = γ z U = dz dz mit γ = 2 z ( R`+ jωl`) ( G`+ jωc`) ( 410. ) ( 411. ) I U U 0 I z Die Größe g z wird als Fortpflanzungskonstante bezeichnet, da in dieser Formel alle elektrischen Eigenschaften der sich ausbreitenden Welle eingehen. Da der Ausdruck für g z komplex ist, setzt er sich aus einem Realteil und Imaginärteil zusammen: g z = +-(a + jb). Der Realteil ist ein Maß für die Dämpfung und heißt Dämpfungsbelag und der Imaginärteil berücksichtigt die phasendrehende Eigenschaft der Leitung und wird Phasenbelag genannt. 17

18 Skineffekt Eindringtiefe als Fkt. der Frequenz d = ρ π µ µ 0 ω (17) 18

19 Hochfrequenzstecker und deren Übertragungsbänder Koaxialkabel mit BNC-Stecker und RG58-Kabel Koaxialkabel mit SMA-Stecker und RG178-Kabel Koaxialkabel mit SMA-Stecker und RG-58 Kabel Steckertyp Bandbreite/GHz BNC 0-2 SMA 0-18 K 0-45 V 0-65 W

20 Koaxialkabel Kabel CA50020 CA50034 RG178 RG58 (Precision tube Co.) (Precision tube Co.) Innerer Leiter (mm) Äußerer Leiter (mm) 0,111 0,2 0,3 (7x0,1) 0,9(19x0,18) 0,5 0,86 1,8 4,95 Dielektr. Material Polytetrafluorethylen (PTFE) PTFE PTFE PTFE Leitermaterial, innen Leitermaterial, aussen Cutoff Frequenz (GHz) Dämpfung Dielektr.- Konstante StCuAg StCuAg StCu StCu Cu versilbert Cu versilbert Cu versilbert Cu versilbert ,

21 Geometrischer Aufbau einer Koplanarleitung Masseleitung Innenleiter Masseleitung L H S W S t ε r ER = relative Dielektrizitätskonstante RHO = spezifischer Widerstand auf Gold normiert RHG = Oberflächenrauhigkeit, auf die Länge bezogen W S L H t = Innenleiterbreite = Abstand (spacing) der Signalleitung von der Masseleitung = Länge der Leitung = Substrathöhe = Metallisierungsdicke 21

22 Feldlinienverlauf in der Koplanarleitung E - Feldlinien H - Feldlinien magn. Wand A) Gegentaktwelle a) elektr. Wand B) Gleichtaktwelle b) 22

23 Aufbau eines TMM-Substrats kohlenstoffvernetztes Harz mit Keramikfüllung beidseitige Kupferschicht 23

24 Dämpfungskurven von Koplanarleitungen auf HF- Substraten mit unterschiedlicher Dielelektrizitätskonstante ε 0 S 21 / db TMM10i TMM10 TMM6 TMM4 TMM f / GHz

25 Dämpfungskurven von Aluminiumnitrit-Keramiken und beschichteten Siliziumwafern 0-1 S 21 / db Al3 Al6 Si_Poly Si_SiNx Si_SiO f / GHz

26 HF-Parameter einiger HF-Substratmaterialien Eigenschaften Si Al 2 O 3 TMM3 TMM10 ε r 11,8 9,8 3,27 9,2 Spez. Widerst. (Ohm/cm) W asserabsorption (%) *10 9 2* ,12 0,2 W ärmeleitfähigkeit (W/m/K) 25 C Thermische Ausdehnung (10 6 / C) Oberflächenrauhigkeit (µm) ,68 0,73 2,44 4, < Spez. Gewicht 2,33 3,75 1,78 2,77 26

27 Schematischer Aufbau einer Photodiode mit optischer Faserankopplung und Hochfrequenz- Steckerverbindung HF-Substrat Bondung K - Steckeranschluß CPW Chip Glasfaser Gehäuse (Messing) 27

28 Schematische Darstellung der Anbindung einer Koplanarleitung an einen K-Stecker mit Glass Bead Installation HF-Wellenleiter auf HF-Substrat.025mm Lot Lot oder Bonddraht.3 mm 0.1 mm Anpassungsspalt Glas-Bead.030 mm Spalt zur Kompensation 28

29 Lasermodul mit HF-Anbindung über 50GHz HF-Technik 29

30 Maxwell`sche Gleichungen rote = divb = 0 d B dt (4.1) (4.3) roth divd = a) D b) B c) B = j ρ + d D dt D = ε ε0 E (4.5) B = µ µ 0 H (4.6) j = σ E (4.2) (4.4) (4.7) H D H B E E 30

31 Vektor-Analysis In the following formulas, U and V are scalar fields defined into R 3, A et B are vectorial fields of R 3. a x, a y, a z are vectors of a direct orthonormalized base of R 3. Gradient operator Divergence operator Rotational operator Laplacian operator 31

Wellen und Leitungen, Übersicht, S. Rupp 1

Wellen und Leitungen, Übersicht, S. Rupp 1 Wellen und Leitungen Übersicht Stephan Rupp Nachrichtentechnik www.dhbw-stuttgart.de 1 Inhaltsübersicht Wellen und Leitungen Schwingungen und Wellen Reflexionen Anpassung Wellenausbreitung in Zweileitersystemen

Mehr

Übersicht. Felder & Komponenten II. Copyright: Pascal Leuchtmann

Übersicht. Felder & Komponenten II. Copyright: Pascal Leuchtmann Übersicht Allgemeine Bemerkungen zu Wellenleitern TEM-Wellen Strom & Spannung Feld "Verteiltes" Netzwerk: Beläge Leitungs- und Telegraphengleichungen Lösungen (Zeit- und Frequenzbereich) Impedanztransformation

Mehr

Der Wellenwiderstand verlustarmer Zweidrahtleitungen

Der Wellenwiderstand verlustarmer Zweidrahtleitungen DL3LH Der Wellenwiderstand verlustarmer Zweidrahtleitungen Mitteilungen aus dem Institut für Umwelttechnik Nonnweiler-Saar Dr. Schau DL3LH Dr. Schau, DL3LH 1 Wellenwiderstand verlustarmer Zweidrahtleitungen

Mehr

HF Formelsammlung. Thomas Ruschival. 7. März 2006

HF Formelsammlung. Thomas Ruschival. 7. März 2006 HF Formelsammlung Thomas Ruschival 7. März 2006 1 1 ED-GRUNDLAGEN 2 1 ED-Grundlagen Felder: E(t, r) = E 0 e j(ωt k r) H(t, r) = H0 e j(ωt k r) Elektrostatischer Fluss: Allgemein: D = ɛ 0 E + P B = µ0 H

Mehr

Diplomprüfung WS 2006/2007

Diplomprüfung WS 2006/2007 Diplomprüfung WS 006/007 Prüfungsfach :Hochfrequenz- und Mikrowellentechnik Prüfungszeit: 90 Min. Hilfsmittel: alle Datum: 30.01.07 Prüfer: Prof. Dr. C. Clemen Für die Prüfung sind 3 Aufgaben zu lösen.

Mehr

Antennen Technik. Einfluss der Phase auf die Dimensionierung von Leitungen

Antennen Technik. Einfluss der Phase auf die Dimensionierung von Leitungen Einfluss der Phase bei der Dimensionierung von Leitungen Antennen Technik Einfluss der Phase auf die Dimensionierung von Leitungen Mitteilungen aus dem Institut für Umwelttechnik Nonnweiler-Saar Dr. rer.

Mehr

Höhere Experimentalphysik 1

Höhere Experimentalphysik 1 Höhere Experimentalphysik 1 Institut für Angewandte Physik Goethe-Universität Frankfurt am Main 6. Vorlesung 09.12.2016 Elektromagnetische Wellen Aus der Theorie des Hertzschen Dipols folgt: Nahfeld E-

Mehr

D Aufgabenlösungen zu Kapitel 4

D Aufgabenlösungen zu Kapitel 4 D Aufgabenlösungen zu Kapitel 4 D.1 Lösung der Übungsaufgabe 4.1 Um die Gleichungen (4.64) und (4.65) zum gleichzeitigen Leitungsabschluss von Gleichund Gegentaktwellen herzuleiten, betrachten wir Bild

Mehr

Kabel und Steckverbindungen. Kabel und Steckverbindungen

Kabel und Steckverbindungen. Kabel und Steckverbindungen Kabel und Steckverbindungen 1 Kabeleigenschaften 2 Aufbau einer Übertragungsstecke Z i Z L ~ Sender Leitung Empfänger d a Zweidrahtleitung d D Koaxialleitung 3 Leitungskenngrößen R, L, G und C R/2 L/2

Mehr

Rechenübung HFT I (WiSe 2013/2014)

Rechenübung HFT I (WiSe 2013/2014) Rechenübung HFT I (WiSe 2013/2014) Einführung Leitungsgleichungen Organisatorisches zur Rechenübung HFT I zweiwöchentlich (1 SWS) bestandene HA (Simulation) ist Voraussetzung für die Klausur UE HFT bestandene

Mehr

Rechenübung HFT I. Smithdiagramm Impedanztransformation

Rechenübung HFT I. Smithdiagramm Impedanztransformation Rechenübung HFT I Smithdiagramm Impedanztransformation Organisatorisches zur Rechenübung HFT I UPDATE! Anmeldung für die Klausur: Bis 01.02.2010 im Sekretariat HFT 4 - (Bachelor und Diplom) Klausur wird

Mehr

Diplomprüfungsklausur. Hochfrequenztechnik. 04. August 2003

Diplomprüfungsklausur. Hochfrequenztechnik. 04. August 2003 Diplomprüfungsklausur Hochfrequenztechnik 4. August 23 Erreichbare Punktzahl: 1 Name: Vorname: Matrikelnummer: Fachrichtung: Platznummer: Aufgabe Punkte 1 2 3 4 5 6 7 8 9 1 11 12 Aufgabe 1 Gegeben sei

Mehr

Diplomprüfungsklausur. Hochfrequenztechnik. 06. März 2003

Diplomprüfungsklausur. Hochfrequenztechnik. 06. März 2003 Diplomprüfungsklausur Hochfrequenztechnik 6. März 3 Erreichbare Punktzahl: Name: Vorname: Matrikelnummer: Fachrichtung: Platznummer: Aufgabe Punkte 3 4 5 6 7 8 9 Aufgabe (8 Punkte) Gegeben sei eine mit

Mehr

Amateurfunkkurs 2017

Amateurfunkkurs 2017 Antennen und Leitungen Florian Reher DH0FR Thomas Gatzweiler DL2IC 1 Antennen für Kurzwelle (f < 30 MHz) Dipol Beam (Multiband-Yagi) Groundplane Langdraht-Antennen Windom, W3DZZ, G5RV 2 Dipol 3 Dipol 4

Mehr

Diplomprüfungsklausur. Hochfrequenztechnik I/II. 19. Juli 1999

Diplomprüfungsklausur. Hochfrequenztechnik I/II. 19. Juli 1999 Diplomprüfungsklausur Hochfrequenztechnik I/II 19. Juli 1999 Erreichbare Punktzahl: 100 Name: Vorname: Matrikelnummer: Fachrichtung: Platznummer: Aufgabe Punkte 1 2 3 4 5 6 7 8 9 10 11 12 Aufgabe 1 (8

Mehr

Protokoll zum Anfängerpraktikum

Protokoll zum Anfängerpraktikum Protokoll zum Anfängerpraktikum Signalübertragung auf LC-Ketten und Koaxialkabeln Teil 2 Gruppe 2, Team 5 Sebastian Korff Frerich Max 2.6.6 Inhaltsverzeichnis. Einleitung -3-. Allgemeines -3-2. Versuchsdurchführung

Mehr

2x x 2 sin z x 2 y cos z. 3 (2x + x 2 sin z + x 2 y cos z)

2x x 2 sin z x 2 y cos z. 3 (2x + x 2 sin z + x 2 y cos z) Elektromagnetische Felder Lösung zur Klausur om 9. März 22. a) δ(r) = für r und f(r) δ(r) dr = f() b) Normalkomponenten on D für σ = sowie on B Tangentialkomponenten on H für K = sowie on E c) Richtungsableitung:

Mehr

/U Wie groß ist den beiden unter 6. genannten Fällen der von der Spannungsquelle U 1 gelieferte Strom? als Formel. 1 + jωc = R 2.

/U Wie groß ist den beiden unter 6. genannten Fällen der von der Spannungsquelle U 1 gelieferte Strom? als Formel. 1 + jωc = R 2. Aufgabe Ü6 Gegeben ist die angegebene Schaltung:. Berechnen Sie allgemein (als Formel) /. 2. Wie groß ist der Betrag von /? R 3. Um welchen Winkel ist gegenüber phasenverschoben? 4. Skizzieren Sie die

Mehr

Beispiel: Hochspannungskabel A2XK2Y 1x630 RM 76/132kV N Normtyp A Aluminiumleiter 2X Isolierung VPE, vernetztes Polyethylen K Schirm aus Blei 2Y

Beispiel: Hochspannungskabel A2XK2Y 1x630 RM 76/132kV N Normtyp A Aluminiumleiter 2X Isolierung VPE, vernetztes Polyethylen K Schirm aus Blei 2Y Seite 05.1 von 05.23 Seite 05.2 von 05.23 Seite 05.3 von 05.23 Seite 05.4 von 05.23 Beispiel: Hochspannungskabel A2XK2Y 1x630 RM 76/132kV N Normtyp A Aluminiumleiter 2X Isolierung VPE, vernetztes Polyethylen

Mehr

Wellenleiter und Resonatoren

Wellenleiter und Resonatoren Übung 1 Abgabe: 01.06. bzw. 05.06.018 Elektromagnetische Felder & Wellen Frühjahrssemester 018 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Wellenleiter und Resonatoren 1 Koaxialleitung (50 Pkt.)

Mehr

Einheit 3: Wellen auf Leitungen

Einheit 3: Wellen auf Leitungen & Einheit 3: Wellen auf Leitungen Lösungen a) Führe Strom-Analyse im rot markierten Punkt und Spannungsanalyse in der eingezeichneten Masche aus: L-03_1) Generell: Betrachte für Abschätzung (meist Vakuum-)

Mehr

Bandbreite und Dämpfung bei symmetrischen Datenkabeln I N H A L T

Bandbreite und Dämpfung bei symmetrischen Datenkabeln I N H A L T White Paper Bandbreite und Dämpfung bei symmetrischen Datenkabeln I N H A L T Die Datenübertragung über Kupferkabel erlebte in den letzten Jahren weitere erhebliche Steigerungen bezüglich den Übertragungsraten.

Mehr

Ferienkurs der Experimentalphysik II Musterlösung Übung 3

Ferienkurs der Experimentalphysik II Musterlösung Übung 3 Ferienkurs der Experimentalphysik II Musterlösung Übung 3 Michael Mittermair 29. August 213 1 Aufgabe 1 Wie groß ist die Leistung, die von einem geladenen Teilchen mit der Ladung q abgestrahlt wird, das

Mehr

Skizzieren Sie den Verlauf der spezifische Wärme als Funktion der Temperatur. Wie ist der Verlauf bei tiefer, wie bei hoher Temperatur?

Skizzieren Sie den Verlauf der spezifische Wärme als Funktion der Temperatur. Wie ist der Verlauf bei tiefer, wie bei hoher Temperatur? Skizzieren Sie den Verlauf der spezifische Wärme als Funktion der Temperatur. Wie ist der Verlauf bei tiefer, wie bei hoher Temperatur? Wie berechnet man die innere Energie, wie die spezifische Wärme?

Mehr

Felder und Wellen. Musterlösung zur 11. Übung

Felder und Wellen. Musterlösung zur 11. Übung Felder und Wellen WS 218/219 Musterlösung zur 11. Übung 26. Aufgabe a) Die Welle breitet sich im Vakuum aus, deshalb gilt ρ =,j =. Die zeitabhängigen Maxwellgleichungen im Vakuum (µ = µ, ε = ε ) lauten

Mehr

Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. Daten: U AB. der Induktivität L! und I 2. , wenn Z L. = j40 Ω ist? an!

Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. Daten: U AB. der Induktivität L! und I 2. , wenn Z L. = j40 Ω ist? an! Grundlagen der Elektrotechnik I Aufgabe K4 Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. R 1 A R 2 Daten R 1 30 Ω R 3 L R 2 20 Ω B R 3 30 Ω L 40 mh 1500 V f 159,15 Hz 1. Berechnen Sie

Mehr

Elektromagnetische Felder und Wellen

Elektromagnetische Felder und Wellen Elektromagnetische Felder und Wellen Name: Matrikelnummer: Klausurnummer: Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe

Mehr

1 Elektrostatik TUM EM-Tutorübung SS 10. Formelsammlung EM SS Fabian Steiner, Paskal Kiefer

1 Elektrostatik TUM EM-Tutorübung SS 10. Formelsammlung EM SS Fabian Steiner, Paskal Kiefer TUM EM-Tutorübung SS 1 1.5.21 Formelsammlung EM SS 21 Diese Formelsammlung dient nur zur Orientierung und stellt keinen nspruch auf ollständigkeit. Zudem darf sie während der Prüfung nicht benutzt werden,

Mehr

Nachrichtenmesstechnik

Nachrichtenmesstechnik Nachrichtenmesstechnik Prof. Dr. Ulrich Fischer-Hirchert Lehrstuhl für Telekommunikation Hochschule Harz, Wernigerode Inhalt. Einführung Elektrische & optische Messtechnik. Messfehler, Messmethoden. Elektrische

Mehr

Leitungen und Filter

Leitungen und Filter Leitungen und Filter Vorlesung 5. Semester D-ITET Fachnr. 227-0112-00 Vorlesung: Colombo Bolognesi Skript: Werner Bächtold Professur für Millimeterwellen Elektronik ETH Zürich 2010 - 3 - Vorwort In der

Mehr

Leitungen & Antennen

Leitungen & Antennen P&S Amateurfunkkurs HS 2016 Leitungen & Antennen Marco Zahner (mzahner@ethz.ch) Marco Zahner mzahner@ethz.ch 15.11.2016 1 Übersicht HF Leitungen: Wellenimpedanz Impedanz und Anpassung Was ist eine Antenne

Mehr

Koax-Kabel. BNC Koax-Kabel RG58 PKRG58BNCSS-X. BNC Koax-Kabel RG59. BNC Koax-Kabel RG174 PKRG174BNCSS-X.

Koax-Kabel. BNC Koax-Kabel RG58 PKRG58BNCSS-X. BNC Koax-Kabel RG59. BNC Koax-Kabel RG174 PKRG174BNCSS-X. BNC / Koax BNC Koax-Kabel 214 BNC Crimpstecker 216 DIN 1.6/5.6 218 BNC Adapter 219 BNC Abschluss-Widerstand 219 Koaxialkabel 220 Universal Crimpzange 223 BNC-Crimpzange 223 Abisolierwerkzeug 223 www.schreinermacher.de

Mehr

Bachelorprüfung zur Physik I und II

Bachelorprüfung zur Physik I und II Bachelorprüfung zur Physik I und II Datum: 09.03.2016 Dauer: 2.0 Stunden 1 Verständnisfragen benutzte Symbole müssen definiert werden alle Zahlenwerte verlangen Einheiten. 1 Punkt pro Aufgabe 1. Nennen

Mehr

Grundlagen der Elektrotechnik II Duale Hochschule Baden Württemberg Karlsruhe Dozent: Gerald Oberschmidt

Grundlagen der Elektrotechnik II Duale Hochschule Baden Württemberg Karlsruhe Dozent: Gerald Oberschmidt DHBW Karlsruhe Grundlagen der Elektrotechnik II Grundlagen der Elektrotechnik II Duale Hochschule Baden Württemberg Karlsruhe Dozent: Gerald Oberschmidt 5 Hoch und Tiefpässe 5. L--Hoch und Tiefpass Abbildung

Mehr

1 Maxwellgleichungen (S.2) 2 Kontinuitätsgleichung (S.29) 3 Poynting-Vektor (S.33) 4 Grenzbedingungen (S.38) 5 Potentiale statischer Felder (S.

1 Maxwellgleichungen (S.2) 2 Kontinuitätsgleichung (S.29) 3 Poynting-Vektor (S.33) 4 Grenzbedingungen (S.38) 5 Potentiale statischer Felder (S. Maxwellgleichungen (S.) Differentialform rot E = B rot H = J + D div D = η div B = 0 Integralform Ed r = Ḃdf F (F ) (F ) (V ) (V ) Hd r = ( J + D)df(= I) F Dd f = V Bd f = 0 ηdv(= Q) Kontinuitätsgleichung

Mehr

6.4 Wellen in einem leitenden Medium

6.4 Wellen in einem leitenden Medium 6.4. WELLEN IN EINEM LEITENDEN MEDIUM 227 6.4 Wellen in einem leitenden Medium Unter einem leitenden Medium verstehen wir ein System, in dem wir keine ruhenden Ladungen berücksichtigen, aber Ströme, die

Mehr

In über 50 Ländern weltweit vertreten.

In über 50 Ländern weltweit vertreten. In über 50 Ländern weltweit vertreten. PTR Messtechnik GmbH Gewerbehof 38 59368 Werne (Germany) Phone: +49 (0)2389/7988-0 Fax: +49 (0)2389/798888 info@ptr.eu www.ptr.eu PTR bietet ein breites Spektrum

Mehr

Fluorkunststoff-Koaxialkabel

Fluorkunststoff-Koaxialkabel Fluorkunststoff-Koaxialkabel - F - V Fluorkunststoff-Koaxialkabel Koaxialkabel einfach abgeschirmt MIL-C-7 und modifizierte Versionen Abschirmung: - mit versilberter Kupfer beschichteter Stahldraht ()

Mehr

Klausur WS04/05: HF 5471

Klausur WS04/05: HF 5471 Name: Matr.-Nr.: Unterschrift: Klausur WS04/05: HF 5471 Grundlagen der Hoch- und Höchstfrequenztechnik Tag der Prüfung: 01.02.2005 Zeit: 08:30-11:30 Prüfer: Prof. Dr.-Ing. H. Heuermann 1. Tragen Sie Ihren

Mehr

Experimentelle Bestimmung der Ersatzschaltbilder von SMD- Bauelementen

Experimentelle Bestimmung der Ersatzschaltbilder von SMD- Bauelementen Vortrag über die Bachelor Arbeit Experimentelle Bestimmung der Ersatzschaltbilder von SMD- Bauelementen von Ouajdi Ochi Fachgebiet Hochfrequenztechnik Prof. Dr-Ing. K.Solbach Freitag, 28. Mai 2010 Universität

Mehr

Übungsblatt 12 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik

Übungsblatt 12 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik Übungsblatt 2 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik.7.28 Aufgaben. Ein Transformator mit Primärwindungen und 3 Sekundärwindungen wird mit einem Wechselstrom

Mehr

Elektromagnetische Felder und Wellen: Lösung zur Klausur

Elektromagnetische Felder und Wellen: Lösung zur Klausur Elektromagnetische Felder und Wellen: zur Klausur 2014-2 1 Aufgabe 1 ( 7 Punkte) Eine ebene Welle der Form E = (E x, ie x, 0) exp{i(kz + ωt)} trifft aus dem Vakuum bei z = 0 auf ein Medium mit ε = 6 und

Mehr

Übungsaufgaben zu Kapitel 1 und 2

Übungsaufgaben zu Kapitel 1 und 2 Hochschule für Technik und Wirtschaft Dresden Wintersemester 8/9 Fakultät Informatik/Mathematik Prof. Dr. B. Jung Übungsaufgaben zu Kapitel und Aufgabe : Vereinfachen Sie die folgenden komplexen Ausdrücke

Mehr

Energietransport durch elektromagnetische Felder

Energietransport durch elektromagnetische Felder Übung 6 Abgabe: 22.04. bzw. 26.04.2016 Elektromagnetische Felder & Wellen Frühjahrssemester 2016 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Energietransport durch elektromagnetische Felder

Mehr

Aufgabe 1: Integrierte Hochfrequenzspule (20 Punkte)

Aufgabe 1: Integrierte Hochfrequenzspule (20 Punkte) Aufgabe : Integrierte Hochfrequenzspule (20 Punkte) Im Folgenden soll die Realisierung einer integrierten Spule zur Anwendung in einem Oszillator für ein 77 GHz KFZ-Radar betrachtet werden. Bei diesen

Mehr

Lösung zu Aufgabe 3.1

Lösung zu Aufgabe 3.1 Lösung zu Aufgabe 3.1 (a) Die an der Anordnung anliegende Spannung ist groß im Vergleich zur Schleusenspannung der Diode. Für eine Abschätzung des Diodenstroms wird zunächst die Näherung V = 0.7 V verwendet,

Mehr

Übungsblatt 8. = d(i 0 I) Nach Integration beider Seiten und beachtung der Anfangswerte t = 0, I = 0 erhält man:

Übungsblatt 8. = d(i 0 I) Nach Integration beider Seiten und beachtung der Anfangswerte t = 0, I = 0 erhält man: Aufgabe 29 Ein Stromkreis bestehe aus einer Spannungsquelle mit Spannung U 0 in Reihe mit einer Induktivität(Spule) L = 0.8H und einem Widerstand R = 10Ω. Zu dem Zeitpunkt t = 0 werde die Spannungsquelle

Mehr

Diplomprüfungsklausur. Hochfrequenztechnik I/II. 22. Juli 2002

Diplomprüfungsklausur. Hochfrequenztechnik I/II. 22. Juli 2002 Diplomprüfungsklausur Hochfrequenztechnik I/II 22. Juli 2002 Erreichbare Punktzahl: 100 Name: Vorname: Matrikelnummer: Fachrichtung: Platznummer: Aufgabe Punkte 1 2 3 4 5 6 7 8 9 10 11 12 Aufgabe 1 (8

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2011-1 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12: Aufgabe 13: Aufgabe

Mehr

Leitungen, Kabel, EMV

Leitungen, Kabel, EMV , Kabel, Fallstudien von BV-Anwendungen R. Neubecker, SoSe 2017 2 Felder Zwischen den Adern einer zweiadrigen Leitung: Elektrische und magnetische Felder Impedanzen Jede Ader hat (ohmschen) Längswiderstand

Mehr

Elektrotechnik I Formelsammlung

Elektrotechnik I Formelsammlung Elektrotechnik I Formelsammlung Andreas itter und Marco Weber. Dezember 009 Inhaltsverzeichnis Physikalische Gesetze Physikalische Konstanten...................................... Physikalische Zusammenhänge..................................

Mehr

Das Smith Diagramm und seine Anwendung bei der Anpassung von Impedanzen

Das Smith Diagramm und seine Anwendung bei der Anpassung von Impedanzen Das Smith Diagramm und seine Anwendung bei der Anpassung von Impedanzen Ein Ingenieur namens Smith fand ca. 940 eine Methode, um komplexe Widerstände und Leitwerte grafisch anschaulich darzustellen und

Mehr

6.2.6 Ohmsches Gesetz ******

6.2.6 Ohmsches Gesetz ****** 6..6 ****** Motivation Das Ohmsche Gesetz wird mithilfe von verschiedenen Anordnungen von leitenden Drähten untersucht. Experiment 6 7 8 9 0 Abbildung : Versuchsaufbau. Die Ziffern bezeichnen die zehn

Mehr

Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 4

Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 4 Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 4 KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Mehr

Leitungen, Kabel, EMV

Leitungen, Kabel, EMV Leitungen, Kabel, EMV Fallstudien von BV-Anwendungen R. Neubecker, SoSe 2016 Leitungen 2 Leitungen Felder Zwischen den Adern einer zweiadrigen Leitung: Elektrische und magnetische Felder Impedanzen Jede

Mehr

Untersuchung der Hautwirkung auf Koaxialkabel

Untersuchung der Hautwirkung auf Koaxialkabel Untersuchung der Hautwirkung auf Koaxialkabel Koaxialkabel beschreiben eine Art von Kabeln, die einen Innenleiter aufweist, der von einem Isolator umgeben ist, der von einer anderen Schicht aus Leiter-

Mehr

Klausur zu Naturwissenschaftliche und technische Grundlagen

Klausur zu Naturwissenschaftliche und technische Grundlagen Prof. Dr. K. Wüst Technische Hochschule Mittelhessen, FB MNI WS2013/14 Studiengang Informatik Klausur zu Naturwissenschaftliche und technische Grundlagen Nachname: Vorname: Matrikelnummer: 21.2.2014 Bitte

Mehr

NANO III. Operationen-Verstärker 1. Eigenschaften Schaltungen verstehen Anwendungen

NANO III. Operationen-Verstärker 1. Eigenschaften Schaltungen verstehen Anwendungen NANO III Operationen-Verstärker Eigenschaften Schaltungen verstehen Anwendungen Verwendete Gesetze Gesetz von Ohm = R I Knotenregel Σ ( I ) = 0 Maschenregel Σ ( ) = 0 Ersatzquellen Überlagerungsprinzip

Mehr

Grundlagen der Elektrotechnik I

Grundlagen der Elektrotechnik I Prof. Dr.-Ing. B. Schmülling Musterlösung zur Klausur Grundlagen der Elektrotechnik I im Wintersemester 27 / 28 Aufgabe : Die Lösungen zu Aufgabe folgen am Ende. Aufgabe 2:. U q = 3 V 2. R i = Ω 3. P =

Mehr

1 Allgemeine Grundlagen

1 Allgemeine Grundlagen Allgemeine Grundlagen. Gleichstromkreis.. Stromdichte Die Stromdichte in einem stromdurchflossenen Leiter mit der Querschnittsfläche A ist definiert als: j d d :Stromelement :Flächenelement.. Die Grundelemente

Mehr

Friedrich-Alexander-Universität Erlangen-Nürnberg. Lehrstuhl für Elektronische Bauelemente. Prof. Dr.-Ing. H. Ryssel. vhb-kurs Halbleiterbauelemente

Friedrich-Alexander-Universität Erlangen-Nürnberg. Lehrstuhl für Elektronische Bauelemente. Prof. Dr.-Ing. H. Ryssel. vhb-kurs Halbleiterbauelemente Friedrich-Alexander-Universität Prof. Dr.-Ing. H. Ryssel vhb-kurs Halbleiterbauelemente Übungsaufgaben Teil 3: Feldeffekttransistoren Übung zum vhb-kurs Halbleiterbauelemente Seite 15 Feldeffekttransistoren

Mehr

Elektronik I, Foliensatz Leitungen

Elektronik I, Foliensatz Leitungen G. Kemnitz Institut für Informatik, Technische Universität Clausthal 28. Januar 2015 1/45 Elektronik I, Foliensatz 9 3.2 Leitungen G. Kemnitz Institut für Informatik, Technische Universität Clausthal 28.

Mehr

Übungsblatt 11. Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik

Übungsblatt 11. Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik Übungsblatt Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik 3.7.8 Aufgaben. Ein magnetischer Dipol Stabmagnet mit Länge l =, m, magnetischer Fluss Φ = 4 V s

Mehr

AUFBAU AXON KABEL - KOAXIALKABEL

AUFBAU AXON KABEL - KOAXIALKABEL Koaxialkabel 1 K O A X I A L K A B E L Koaxialkabel werden für die störungsfreie dämpfungsarme Signalübertragung eingesetzt. Der Aufbau der Koaxialkabel aus Innenleiter, Dielektrikum und Abschirmung als

Mehr

- 1 - c Prof. Dr. Siegl

- 1 - c Prof. Dr. Siegl Aufgabe 0.: Notieren Sie die Streumatrix von a) einer idealen Stichleitung mit der Länge l; b) einer idealen Einwegleitung mit der Länge l; c) eines idealen TEM-Rückwärtskopplers; und geben Sie jeweils

Mehr

Simulation einer Mikrostreifenleitung mit Tiefpasscharakteristik. Khaoula Guennoun Torsten Finger Jan-Frederic Overbeck

Simulation einer Mikrostreifenleitung mit Tiefpasscharakteristik. Khaoula Guennoun Torsten Finger Jan-Frederic Overbeck Fachhochschule Aachen Master Telekommunikationstechnik Elektrotechnik und Informationstechnik Lehrgebiet: Hoch- und Höchstfrequenztechnik Prof. Dr. Ing. H. Heuermann Simulation einer Mikrostreifenleitung

Mehr

Elektromagnetische Wellen

Elektromagnetische Wellen Laufende Nr.: Matriel-Nr Seite: Ruhr-Uniersität Bochum Lehrstuhl für Hochfrequenztechni Σ 60 Prüfungslausur im Fach: Eletromagnetische Wellen am 06.0.997, 9:00 bis :00 Bitte die folgenden Hinweise beachten:.

Mehr

Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.)

Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.) Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.) 1 Grieskörner schwimmen in Rhizinusöl. Weil sie kleine Dipole werden, richten sie sich entlang der Feldlinien

Mehr

Das Smith-Diagramm (1) Messungen mit einem Netzwerkanalysator (2) Anpassungen etc. (3)

Das Smith-Diagramm (1) Messungen mit einem Netzwerkanalysator (2) Anpassungen etc. (3) Das Smith-Diagramm (1) Messungen mit einem Netzwerkanalysator (2) Anpassungen etc. (3) OV-Abend H46 Jörg Süßenbach, DF9LJ Juni 2011 Worüber sprechen wir? Erfinder Phillip Hagar Smith geb. 1905 Abschluß

Mehr

1 Spannungs- und Stromtransformation

1 Spannungs- und Stromtransformation Hochfrequenztechnik I Impedanztransformation, Smith-Diagramm SMI/1 1 Spannungs- und Stromtransformation Wir wollen die Leitung in Abb. 1 als Vierpol betrachten. Dann können wir Beziehungen zwischen den

Mehr

Prüfung. Prüfung: mündl min, Termin nach Absprache ( )

Prüfung. Prüfung: mündl min, Termin nach Absprache ( ) Prüfung Prüfung: mündl. 20-30 min, Termin nach Absprache (Email) (Ergänzte/Geordnete) Unterlagen zur Vorlesung werden ab dem 22.7. am LTI verkauft (3 ) XIV: Nichtlineare Optik - Maxwell-Gleichungen und

Mehr

Leitungstheorie. Version: Datum: Autor: Werner Dichler

Leitungstheorie. Version: Datum: Autor: Werner Dichler Leitungstheorie Version: 0.0.1 Datum: 15.10.2011 Autor: Werner Dichler Inhalt Inhalt... 2 Grundlagen... 3 Ersatzschaltbild... 3 Kenngrößen... 4 Transformationseigenschaft... 4 Impulsverhalten... 5 Praxis...

Mehr

Versuchsvorbereitung: P1-53,54,55: Vierpole und Leitungen

Versuchsvorbereitung: P1-53,54,55: Vierpole und Leitungen Praktikum Klassische Physik I Versuchsvorbereitung: P-53,54,55: Vierpole und Leitungen Christian Buntin Gruppe Mo- Karlsruhe, 6. November 2009 Inhaltsverzeichnis Hoch- und Tiefpass 2. Hochpass.................................

Mehr

Fakultät für Technik Bereich Informationstechnik Labor Bussysteme Versuch 1

Fakultät für Technik Bereich Informationstechnik Labor Bussysteme Versuch 1 Fakultät für Technik Bereich Informationstechnik Versuch 1 Impulsübertragung auf Leitungen Teilnehmer: Vorname Nachname Matrikel Nummer Datum: Inhalt 1 Allgemeines... 2 2 Ziele des Versuchs... 3 3 Ablauf

Mehr

6 FME FME. 140 Telegärtner Web: Tel: +49-(0) / Fax: +49-(0) /

6 FME FME. 140 Telegärtner Web:  Tel: +49-(0) / Fax: +49-(0) / 6 Contents 6.1 Straight Plug Crimp................ 143 6.2 Press-In Bulkhead Receptacle, male... 143 6.3 Straight Jack Crimp................ 143 6.4 Bulkhead Plug.................... 144 6.5 Adaptor........................

Mehr

6 Eindimensionale Wellenausbreitung

6 Eindimensionale Wellenausbreitung U: Latex-docs/Angewandte Physik/2004/VorlesungWS04-05, 7. Januar 2005 98 6 Eindimensionale Wellenausbreitung 6.1 Wellen auf Kabeln Ein elektrisches System bestehend aus einer beliebig verlaufenden Hin

Mehr

Lecherleitung. Technische Universität Dresden Fachrichtung Physik. Inhaltsverzeichnis. Physikalisches Praktikum. 1 Aufgabenstellung 2

Lecherleitung. Technische Universität Dresden Fachrichtung Physik. Inhaltsverzeichnis. Physikalisches Praktikum. 1 Aufgabenstellung 2 Technische Universität Dresden Fachrichtung Physik Physikalisches Praktikum Dr. L. Jahn 04/ 1994 Versuch: LL bearbeitet 05/ 2004 Lecherleitung Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Allgemeine Grundlagen

Mehr

Dein HF-Kabel, das unbekannte Wesen

Dein HF-Kabel, das unbekannte Wesen HAM RADIO 2018 Dein HF-Kabel, das unbekannte Wesen PROF. DR. THOMAS BAIER E-mail: baier@hs-ulm.de DG8SAQ Hochschule Ulm Prittwitzstrasse 10 89075 Ulm Dank an: Dan Maguire AC6LA Ferdinand Sigloch DB2SG

Mehr

Einleitung. 1.1 Definitionen. 1.2 Spannungs- und Stromverteilung. Leitungsverluste df4kv

Einleitung. 1.1 Definitionen. 1.2 Spannungs- und Stromverteilung. Leitungsverluste df4kv Leitungsverluste df4kv 08.011 Einleitung Dieser Text soll versuchen, die Frage nach einer exakten Berechnung der Verluste einer fehlangepaßten HF-Leitung bei gegebenen Parametern zu beantworten. In den

Mehr

Alte Physik III. 10. Februar 2011

Alte Physik III. 10. Februar 2011 D-MATH/D-PHYS Prof. R. Monnier Studienjahr HS11 ETH Zürich Alte Physik III 10. Februar 2011 Füllen Sie als erstes den untenstehenden Kopf mit Name und Legi-Nummer aus, und kreuzen Sie Ihre Studienrichtung

Mehr

Moderne Physik: Elemente der Festkörperphysik Wintersemester 2010/11 Übungsblatt 5 für den

Moderne Physik: Elemente der Festkörperphysik Wintersemester 2010/11 Übungsblatt 5 für den Moderne Physik: Elemente der Festkörperphysik Wintersemester 21/11 Übungsblatt 5 für den 14.1.211 14. Fermi-Energie von Elektronen in Metallen Bei T = K besitzt ein freies Elektronengas der Ladungsträgerdichte

Mehr

Koaxkabel Eigenschaften, Kennwerte und warum meist 50 Ω?

Koaxkabel Eigenschaften, Kennwerte und warum meist 50 Ω? Mi. 7.5. 2014-19.30 Uhr DL0WH Mittwochs Workshop Koaxkabel Eigenschaften, Kennwerte und warum meist 50 Ω? "Aha, heute krieje mer de Koaxkabel!. Also, wat is en Koaxkabel? Da stelle mehr uns janz dumm.

Mehr

Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Sandra Diefenbach Musterlösung zu Blatt 2

Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Sandra Diefenbach Musterlösung zu Blatt 2 Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Sandra Diefenbach Musterlösung zu Blatt 2 Aufgabe 3: Hagen- Rubens- Gesetz Das Hagen- Rubens Gesetz beschreibt das Reflektionsvermögen

Mehr

5.5 Ortskurven höherer Ordnung

5.5 Ortskurven höherer Ordnung 2 5 Ortskurven 5.5 Ortskurven höherer Ordnung Ortskurve Parabel Die Ortskurvengleichung für die Parabel lautet P A + p B + p 2 C. (5.) Sie kann entweder aus der Geraden A + p B und dem Anteil p 2 C oder

Mehr

Vorlesung 20: Roter Faden:

Vorlesung 20: Roter Faden: Vorlesung 20: Roter Faden: Heute: Maxwellsche Gleichungen Elektromagnetische Wellen Versuche: Hertz: em Wellen, Antennen Applets: http://www.walter-fendt.de/ph14d emwellen Ausgewählte Kapitel der Physik,

Mehr

Elektronik 1, Foliensatz 9: Leitungen

Elektronik 1, Foliensatz 9: Leitungen Elektronik, Foliensatz 9: Leitungen G. Kemnitz 29. September 26 Inhaltsverzeichnis Leitungen. Wellengleichung..................................... 2.2 Wellenwiderstand....................................

Mehr

Induktion, Polarisierung und Magnetisierung

Induktion, Polarisierung und Magnetisierung Übung 2 Abgabe: 11.03. bzw. 15.03.2016 Elektromagnetische Felder & Wellen Frühjahrssemester 2016 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Induktion, Polarisierung und Magnetisierung In dieser

Mehr

Vorlesung Elektromagnetisches Feld. Einführung

Vorlesung Elektromagnetisches Feld. Einführung Vorlesung Elektromagnetisches Feld Eine Einführung Lesender: Dr. Wolfgang G. Büntig Helmholtz-Bau Raum H 263 Telefon: (3677) 69 26 3 EMail: Wolfgang.Buentig@TU-Ilmenau.DE Technische Universität Ilmenau

Mehr

Bildgebende Verfahren in der Medizin Impedanz-Tomographie Olaf Dössel

Bildgebende Verfahren in der Medizin Impedanz-Tomographie Olaf Dössel Bildgebende Verfahren in der Medizin Impedanz-Tomographie INSTITUT FÜR BIOMEDIZINISCHE TECHNIK 2008 Google - Imagery 2008 Digital Globe, GeoContent, AeroWest, Stadt Karlsruhe VLW, Cnes/Spot Image, GeoEye

Mehr

Uebungsserie 1.4 Ersatzzweipole, Resonanz und Blindleistungskompensation

Uebungsserie 1.4 Ersatzzweipole, Resonanz und Blindleistungskompensation 1. Oktober 2015 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.4 Ersatzzweipole, Resonanz und Blindleistungskompensation Aufgabe 1. Ersatzzweipole a) Berechnen Sie die Bauteilwerte für R r und L

Mehr

Besprechung am

Besprechung am PN2 Einführung in die Physik für Chemiker 2 Prof. T. Weitz SS 207 Übungsblatt 4 Übungsblatt 4 Besprechung am 29.05.207 Aufgabe Ohmsches Gesetz. a) Ein Lautsprecherkabel aus Kupfer mit einer Länge von 5,0

Mehr

Uebungsserie 1.4 Ersatzzweipole, Resonanz und Blindleistungskompensation

Uebungsserie 1.4 Ersatzzweipole, Resonanz und Blindleistungskompensation 15. September 2017 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.4 Ersatzzweipole, Resonanz und Blindleistungskompensation Aufgabe 1. Ersatzzweipole a) Berechnen Sie die Bauteilwerte für R r und

Mehr

Übung Systemtheorie und Regelungstechnik I - WS08/09 Übungstermin 1 am Universität des Saarlandes

Übung Systemtheorie und Regelungstechnik I - WS08/09 Übungstermin 1 am Universität des Saarlandes Übung Systemtheorie und Regelungstechnik I - WS08/09 Übungstermin 1 am 22.11.2008 Universität des Saarlandes Aufgabe 1.1: Gegeben ist der schematische Aufbau eines Mischers: Auf den Antriebsstrang Antriebsstrang

Mehr

PROTOKOLL ZUM ANFÄNGERPRAKTIKUM PHYSIK. Messung von Kapazitäten Auf- und Entladung von Kondensatoren. Sebastian Finkel Sebastian Wilken

PROTOKOLL ZUM ANFÄNGERPRAKTIKUM PHYSIK. Messung von Kapazitäten Auf- und Entladung von Kondensatoren. Sebastian Finkel Sebastian Wilken PROTOKOLL ZUM ANFÄNGERPRAKTIKUM PHYSIK Messung von Kapazitäten Auf- und Entladung von Kondensatoren Sebastian Finkel Sebastian Wilken Versuchsdurchführung: 23. November 2005 0. Inhalt 1. Einleitung 2.

Mehr

Rechenübung HFT I (WiSe 2015/2016) Einführung, Leitungsgleichungen. Jürgen Bruns Hochfequenztechnik / Photonics RÜ HFT 1

Rechenübung HFT I (WiSe 2015/2016) Einführung, Leitungsgleichungen. Jürgen Bruns Hochfequenztechnik / Photonics RÜ HFT 1 Rechenübung HFT I (WiSe 2015/2016) Einführung, Leitungsgleichungen Jürgen Bruns Hochfequenztechnik / Photonics RÜ HFT 1 Organisatorisches zur Rechenübung HFT I o zweiwöchentlich (1 SWS) o bestandene HA

Mehr

Die überzeugende Budget-Lösung für flexible Mikrowellenkabel

Die überzeugende Budget-Lösung für flexible Mikrowellenkabel electronic specials cables and assemblies laser and light E - F l e x v o n e l s p e c Die überzeugende Budget-Lösung für flexible Mikrowellenkabel F l e x i b l e M i k r o w e l l e n K a b e l t h

Mehr

HANDOUT. Vorlesung: Glasanwendungen. Überblick optische Eigenschaften

HANDOUT. Vorlesung: Glasanwendungen. Überblick optische Eigenschaften Materialwissenschaft und Werkstofftechnik an der Universität des Saarlandes HANDOUT Vorlesung: Glasanwendungen Überblick optische Eigenschaften Leitsatz: 21.04.2016 Die Ausbreitung von Licht durch ein

Mehr

Aufgabe 1: Passive Bauelemente (20 Punkte)

Aufgabe 1: Passive Bauelemente (20 Punkte) 1 Aufgabe 1: Passive Bauelemente (20 Punkte) Gegeben ist eine Anordnung, bei dem ein Chip mittels eines dünnen Drahtes (Bonddraht) mit einer Leitung auf einer Platine verbunden ist. Der Bonddraht besteht

Mehr