Elektrotechnik Formeln 3. und 4. Semester von Gerald Meier

Größe: px
Ab Seite anzeigen:

Download "Elektrotechnik Formeln 3. und 4. Semester von Gerald Meier"

Transkript

1 Elekoechk Fomel Semese vo Gel Mee lyse vo Eschwgvogäge. Nezwekelemee.. Wes ( ( ( (.. Ikvä..3 Kzä..4 Übege ( ( ( mß seg se ( + τ τ ( + τ τ ( mß seg se..4. lose gekoele Übege ( ( ( M ( ( + ( M + müsse seg se..4. fesgekoele Übege ( ( ( M ( ( + ( M + M w + w mß seg se..4.3 ele Übege w w ü w w ü kee Segkesbegge ü w w - See -

2 - Gel Mee: Elekoechk Fomel -..5 Gyo g ( g ( ( ( g ( g ( ( ( g kee Segkesbegge. Schwgkese Q fü m eheschwgkes m Pllelschwgkes.3 Sbläsess.3. symosche Sblä - e ν < (6.7 - D( HUWITZ-Polyom - lle Koeffzee vo D( hbe gleches Vozeche flls e G vo D( klee 3 s.3. HUWITZ-Deeme Sysemeeme: µ s s D c s + cs + K+ c + c m c s > cs cs cs 3 cs cs cs : cs 5 cs 4 cs 3 cs cs M M M M M O M c c c c c c s µ + s µ + s µ + 3 s µ + 4 s µ + 5 s µ NW s symosch sbl (e ν < lle ν >.4 lyse vo Eschwgvogäge z z+ b x.4. homogee ösg z z ( K + K + K + e z hµ K.4. homogee ösg z F F x F z z z τ τ τ λ µ h h h - See -

3 - Gel Mee: Elekoechk Fomel -.5 lyse ch PE-Tsfomo.5. PE-Tsfomo ( F f e σ+ j f ( Fe πj σ j f ( F.5. Egeschfe.5.. eä f ( F, ( c f( c g( σ+ j g G + c F( + c G(.5.. Zeveschebg f ( F f F e (.5..3 Feqezveschebg f ( F f ( e F.5..4 Dffeeo m Zebeech s ( f( F [ s ( f( ] F( s ( f( F( f s ( f( F( f f 3 3 s ( f( F f f f Ählchkessz s ( f( F s ( f( F.5.3 wchge Bezehge f( F( δ ( s ( s( s( 3 - See 3 -

4 - Gel Mee: Elekoechk Fomel - ( s ( s e e ( s ( s( ( + s ( cos( ( + s ( e s( ( + ( s( ( ( + s e [ ] ( e µ! ( s µ µ Nezweke m chlee zeve Elemee ( Φ Φ ( ( τ τ ( q q ( ( τ τ. Elemee.. Wes F (, f ( g somgesee Som s Zssvble sgsgesee Sg s Zssvble.. Ikvä ( Φ F ( Φ, ( Φf g ( Φ flßgesee Flß s Zsvble Φ lee Fll..3 Kzä ( q F ( q, f( q somgesee Som s Zssvble lgsgesee g s Zssvble sgsgesee Sg s Zssvble lee Fll q g q - See 4 -

5 - Gel Mee: Elekoechk Fomel -..4 Übege ( Φ Φ Φ Φ F ( Φ, Φf ( g somgesee Φ flßgesee Φ lee Fll. Glechgewchske! z& f( z, K, z M Glechgewchske z, K, g z ( K z& f z,, z! g Sbläseschg übe JOBI-Mx f f z z J M O M f f z z.3 eosches Vehle flls D (.3. ohe Vblesfomo z fz z ζ z f( ζ 3 Fz (.3. m Vblesfomo y f( z z g( y z z y g ( y y y y g y y g ( η y η η.4 esg Eege ( ( ( E ( ( ( e E J HUWITZ-Polyom sbl vgl. UNBEHUEN: Glge e Elekoechk See 6 - See 5 -

6 - Gel Mee: Elekoechk Fomel -.4. Wes ssv: ( ( seg ssv ( ( > ssv bzgl. û, î ( û ( î lokl ssv bzgl. û, î ( û ( î Umgebg vo û, î.4. Kzä.4.. lgsgesee E g γ γ q q q q zeve, lee Fll: E ( (.4.. sgsgesee E f fxx.4..3 ch lgs- oe sgsgesee E ( (.4.3 Ikvä.4.3. somgesee E f( f( x x.4.3. flßgesee Φ E g ψ ψ Φ zeve, lee Fll: E ( Φ Φ ( ch som- oe flßgesee E ( ( - See 6 -

7 - Gel Mee: Elekoechk Fomel -.5 Wessezweke.5. Wesszweole.5.. ehe- Pllelschlg eheschlg Pllelschlg f ( f ( f ( f ( f ( + f ( g g g g ( g ( + g (.5.. beskbesmmg F (-, F (, ( F, F(, U.5..3 Klesgllyse ( I ( + ( U ( + F, : F b: (, (, F(, : ( ( F c: b c + b c Wesszweoe F(,,, F(,,, Dsellge vgl. UNBEHUEN: Glge e Elekoechk S beskbesmmg F (-, F (-, U (, (, F,,,,,, F F F - See 7 -

8 - Gel Mee: Elekoechk Fomel Klesgllyse ( I ( + ( U ( + ( I + ( ( U + ( (,,, Fν ν: (,,, Fν cν: (, ( (, ( F : 3 4 F : 3 b 3 (,,, Fν bν: (,,, Fν ν: (, ( (, F b3: 4 b F : 4 4 b + + c+ b + + c + + b b b Nomeg 3. Nomeg vo Nezweke U I U I U I N N N N N 3. Nomeg e Ze τ T T τ 4 Mhemsche hg 4. Mze N N 4.. Mx-Iveeg fü gl b c e c b fü > gl e j [ j] j m j ( + D+ T D +j : Deeme ohe -e Zele j-e Sle - See 8 -

9 - Gel Mee: Elekoechk Fomel Sle-o z z z -αz z kz K + kz + kz αkz + αkz + kz + K k z z + k + k z + K ( α ( α +αz 4..3 Dgolseg v : Egevekoe vo v v v v D D: Dgolmx 4..4 Emlg vo Hvekoe Egevekoe: ( λe k Hvekoe: ( λe k k ( λe k k ( λe k 4. Sosges 4.. EUEsche Fomel UNBEHUEN: Glge e Elekoechk See 53 jϕ jϕ jϕ e ϕ ϕ ϕ ( e e Im( e jϕ e cosϕ+ jsϕ cosϕ e + e e jϕ e cosϕ jsϕ sϕ j * j Xcos + ϕ X e + X e X X e j ϕ [ ] 4.. Umfomge cos c b b + b s c b + b 4..3 efches Iegl f x fx x l x j j j j - See 9 -

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

- Gerald Meier: Mathematik Formeln -

- Gerald Meier: Mathematik Formeln - - Geld Mee: Mhemk omel - 7 Vekolss 7. Opeoe 7.. ese Ableug / Gde ϕ ϕ gdϕ M ϕ v v gdv v v v 7.. bl-opeo ( A+ ) A+ M ( Ao) Ao+ Ao ( ) c ( c) 7.. Rchugsbleug 7..4 wee Ableug ϕ ϕ L ϕ ϕ ϕ L M M O 7..5 Dvege

Mehr

= (1 τ ) + ()( ) τ = (1 τ) + 1 τ := 1 = (1 τ ) ()/ + ()( )/ := (1 τ) = () ()( ) { (1 τ ) + ( ) = α()( ) (1 τ ) + ( ) α()( ) < lifetime wealth 24 26 28 30 32 34 V (1 t)w ERA NRA SRA 55 56 57 58 59 60 61

Mehr

Die Fouriertransformation und ihre Eigenschaften

Die Fouriertransformation und ihre Eigenschaften De Fourerransormaon und hre Egenschaen Klene Formelsammlung zusammengesell von Pro. Dr. ajana Lange Fachberech Elekroechnk Fachhochschule Merseburg Inhal: Fourerrehe und Fourernegral ransormaon enger wchger

Mehr

T 1 Th T 1. 1 T 1 h Th

T 1 Th T 1. 1 T 1 h Th T H c c > 0 Tx c x x H H K T : H K T T K T h H T 1 > 0 h = T 1 Th T 1 Th 1 T 1 h Th h H T : T h H,h 0 Th = 0 T c > 0 c h Th = 0. c h > 0 T : (Th n ) n T (h n ) n H T h n h m 1 c Th n Th m c > 0 (h n )

Mehr

2. Dirichlet-Reihen. Arithmetische Funktionen

2. Dirichlet-Reihen. Arithmetische Funktionen 2. Dirichlet-Reihen. Arithmetische Funktionen 2.. Eine Dirichlet-Reihe ist eine Reihe der Gestalt a n f(s = n, s wobei (a n n eine Folge komplexer Zahlen und s eine komplexe Variable ist. 2.2. σ a (f :=

Mehr

Inhalt. Lineare Algebra 1. Dr. Donat Adams. Fachhochschule Nordwest-Schweiz Technik, Brugg. 10. Oktober 2017

Inhalt. Lineare Algebra 1. Dr. Donat Adams. Fachhochschule Nordwest-Schweiz Technik, Brugg. 10. Oktober 2017 Inhalt Lineare Algebra 1 Dr. Donat Adams Fachhochschule Nordwest-Schweiz Technik, Brugg 10. Oktober 2017 1 / 20 Inhalt Teil 2 / 20 Inhalt Inhaltsverzeichnis I 3 / 20 Inhalt Bibliographie I F. Bachmann,

Mehr

Mathematik für VIW - Prof. Dr. M. Ludwig Lineare Systeme in Jordanscher Normalform - Lineare Dgl'n höherer Ordnung.

Mathematik für VIW - Prof. Dr. M. Ludwig Lineare Systeme in Jordanscher Normalform - Lineare Dgl'n höherer Ordnung. Maeak für VIW - Prof. Dr. M. Ludwg 7.3.3 Leare Sysee Jordascer Noralfor - Leare Dgl' öerer Ordug Geg.: x Ax; A Jordascer Noralfor, d.. x x x x x x a a a a x x A x x Durc Ausullzere Ax eräl a x x x3 x x

Mehr

2.5 Messbare Mengen und Funktionen

2.5 Messbare Mengen und Funktionen 1 2.5 Messbre Mengen und Funktionen Definition Eine beschränkte Menge M R n heißt messbr, flls die chrkteristische Funktion χ M integrierbr ist. Die Zhl vol n (M) := χ M dµ n nennt mn ds Volumen von M.

Mehr

7. Ströme auf differenzierbaren Mannigfaltigkeiten

7. Ströme auf differenzierbaren Mannigfaltigkeiten 7 Söme auf ffeezebae agfalgee Defo 7 Es se Ξ ( e -Fome aus Ω (, e ee ompae Täge besze E -Som s e Eleme es Dualaumes vo Ξ ( W seze ( Ξ ( = : ( Ξ ( Bemeug Wll ma Ξ ( opologsee, so s es we folg möglch: Ee

Mehr

2017 Hans Gsottbauer

2017 Hans Gsottbauer Gruppe 1 Groß Klein Name Schreibschrift Α α Alfa Β β Vita Γ γ Gama Δ δ Delta Ε ε Epsilon Ζ ζ Zita Wir üben schriftlich sowohl Groß- als auch Kleinbuchstaben der Schreibschrift. Die Großbuchstaben zu schreiben,

Mehr

Mathematik Formeln 3. und 4. Semester von Gerald Meier

Mathematik Formeln 3. und 4. Semester von Gerald Meier Mahea Foel 3. d 4. Seese o Geald Mee Ke. Veoe.. ageeeo = ( s = & ( &(.. Kügseo & = = & κ κ= : Küg ρ = : Kügsads ( κ ( & && && & Paaeedasellg: = κ= 3 ( ( & + & f eplze asellg: = f( κ= 3 + f Poladasellg:

Mehr

Kapitel 8: Unendlich teilbare Verteilungen

Kapitel 8: Unendlich teilbare Verteilungen - 8 (Kapitel 8: Uelich teilbare Verteilge Kapitel 8: Uelich teilbare Verteilge I iesem Kapitel were wir elich teilbare Verteilge af ( I R, B stiere, ie afs Egste mit e reellwertige Prozesse (X t t mit

Mehr

Decoupling in der Sozialpolitik

Decoupling in der Sozialpolitik Research Programme SocialWorld World Society, Global Social Policy and New Welfare States University of Bielefeld, Germany Institute for World Society Studies Julia Hansmeyer Decoupling in der Sozialpolitik

Mehr

Korrespondenzen der FOURIER - Transformation I

Korrespondenzen der FOURIER - Transformation I Korresodee der FOURIER - rsormio I A: HEOREME s() S() F-rsormio s () jπ S( ) = s e d Iverse F- jπ rsormio s () = S e d S( ) 3 Zerlegug reeller Zeiukioe mi s () = s() + s() S( ) = Re{ S( )} + jim{ S( )}

Mehr

0 + #! % ( ) % )1, !,

0 + #! % ( ) % )1, !, ! #! % ( ) % +!,../ 0 + #! % ( ) % )1,233 3 4!, 5 2 6 7 2 6 ( (% 6 2 58.9../ : 2../ ! # % & # ( ) + +, % ( ( + +., / (! & 0 + 1 2 3 4! 5! 6! ( 7 ) + 8 9! + : +, 5 & ; + 9 0 < 5 3 & 9 ; + 9 0 < 5 3 %!

Mehr

Baustatik & Festigkeitslehre Vorlesung & Übung

Baustatik & Festigkeitslehre Vorlesung & Übung Baustatik & Festigkeitslehre Vorlesung & Übung Vortragender: O.Univ.Prof. DI Dr. Dr. Konrad Bergmeister Spannungen A F p p lim A 0 F A F p F A F p* F A* A A* a b Spannungen Normal und Schubspannungen z

Mehr

Lösungsformel für quadratische Gleichungen. = ± q + Lösungsformel für. Potenzen. negative Exponenten: gebrochene Exponenten: a a.

Lösungsformel für quadratische Gleichungen. = ± q + Lösungsformel für. Potenzen. negative Exponenten: gebrochene Exponenten: a a. HUNKLOIHDWKHPDWLN Dies ist keie Fomelsmmlug im klssische Si - die vewedete Bezeichuge wede icht eklät ud Voussetzuge fü die ültigkeit de Fomel wede i de Regel icht gegee. 7HLO,6WRIIJHELHWHHULWWHOVWXIH

Mehr

Übungen zur Linearen Algebra I

Übungen zur Linearen Algebra I Blatt 1 Aufgabe 1. Wie lautet die Definition der Diskriminante für quadratische Polynome? Aufgabe 2. Sei X 2 + bx + c ein quadratisches Polynom, dessen Diskriminante ein Quadrat ist, und seien λ = ( b

Mehr

9 Der Residuensatz mit Anwendungen

9 Der Residuensatz mit Anwendungen 36 9 Der Residuenstz mit Anwendungen 9. Definition: f : O C besitze für ε > in U ε ) O die Lurentreihe fz) = c n z ) n. Dnn heißt n= Res f := c S.?? = z = ε 2 ) fz)dz ds Residuum von f in. Andere Schreibweisen:

Mehr

3 Der Körper der komplexen Zahlen

3 Der Körper der komplexen Zahlen 3 Der Körper der kompleen Zahlen Nicht jede quadratische Gleichung hat eine reelle Lösung + p + q = (p, q R) Beispiel: Für alle R ist und daher + 1 Abhilfe: Man erweitert R zu einem größerem Körper C,

Mehr

Signale und Systeme I

Signale und Systeme I TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Signale und Systeme I Formelsammlung v.5 Inhaltsverzeichnis Mathematische Formeln. Trigonometrische

Mehr

Katalog. September 2012

Katalog. September 2012 WINZERWEINE AUS FRANKREICH Katalog September 2012 Winzerweine aus Frankreich c/o B-Konzept Beratung GmbH Stieglitzweg 10/1 D - 72793 Pfullingen Tel : 07121 / 311 592 Fax : 07121 / 33 94 60 Email : mail@tour-du-vin.de

Mehr

Taylor Formel: f(x)p(x)dx = f(c)

Taylor Formel: f(x)p(x)dx = f(c) Tylor Formel Die Tylorsche Formel liefert eie Approximtio eier Fuktio durch ei Polyom, gemeism mit eier Abschätzug des Fehlerterms. Zwischewertstz: Eie stetige Fuktio f : [, b] R immt jede Wert γ zwische

Mehr

Formelsammlung Elektrotechnik von Sascha Spors V1.3 /

Formelsammlung Elektrotechnik von Sascha Spors V1.3 / Formelsammlung Elektrotechnik von Sascha Spors V.3 /..96 Mathematische Formeln : arctan( b a Z a + jb Y arg(z ; arctan( b a arctan( b < a für a >, b +π für a π für a

Mehr

fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt 1 für beliebiges k N und x 0. a 2 x 1 x 3 y 2 ) 2

fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt 1 für beliebiges k N und x 0. a 2 x 1 x 3 y 2 ) 2 fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt Aufgabe Induktion). a) Beweisen Sie, dass + 3 + 5 +... + n )) ein perfektes Quadrat genauer n ) ist. b) Zeigen Sie: + + +...

Mehr

MDY-Formelsammlung Seite 1

MDY-Formelsammlung Seite 1 MY-Fosg S g hosh Shwgg s B os s α, B pd pd > α Nphsw π π f T sfqz Uhg zwsh bd sg: B B α osα B sα 'bsh sdü äf Tso oo Shwp S ϕ oo P bsd vo Shwp S d oo Shwp ϕ ϕ S g fü Moghgwh Fü Shwpsäz g S ϕ ϕ ϕ oo, Tgf

Mehr

Infoblatt für den Kometen C/2007 N3 Lulin

Infoblatt für den Kometen C/2007 N3 Lulin Infoblatt für den Kometen C/200 3 Lulin Komet C/200 3 Lulin erscheint zum Jahreswechsel am Morgenhimmel und wird Anfang Februar 200, als mag helles Fernglasobjekt, immer größere Deklinationen erreichen.

Mehr

Übungsaufgaben zur Finanzmathematik - Lösungen

Übungsaufgaben zur Finanzmathematik - Lösungen Wshfsmhemk II Übugsufgbe zu Fzmhemk - Lösuge. Ee Bk lok m dem Agebo " W vedoppel h pl Jhe!! ". ) Welhe Vezsug bee Ihe de Bk? ( ) Edkpl od. Ede : Lufze od. Läge des Algezeumes Zse " Zseszsehug" z. B.: (

Mehr

B Tastatur, Schriftzeichen, Beschleuniger

B Tastatur, Schriftzeichen, Beschleuniger 1 Copyright 1994, 1996 by Axel T. Schreiner. All Rights Reserved. B Tastatur, Schriftzeichen, Beschleuniger Je nach Plattform verwendet OPENSTEP verschiedene Tastaturen. Trotzdem sind überall alle Zeichen

Mehr

5. Übungsblatt zur Mathematik II für BI, MaWi, WI(BI), AngGeo und UI

5. Übungsblatt zur Mathematik II für BI, MaWi, WI(BI), AngGeo und UI Fachbereich Mathematik Prof Dr K Ritter Dr M Slassi M Fuchssteiner SS 9 9 Mai 9 5 Übungsblatt zur Mathematik II für BI, MaWi, WI(BI, AngGeo und UI Gruppenübung Aufgabe G (a Betrachten Sie die Vektoren

Mehr

Mathematik Formeln 1. und 2. Semester von Gerald Meier

Mathematik Formeln 1. und 2. Semester von Gerald Meier Mthemti Fomel. ud. Semeste vo Geld Meie Gudlge. Ailduge.. Sujetive Ailduge f( X) y Y X: y f.. Ijetive Ailduge Y, X ud f f Jedes Bild y f( X) ht geu ei Uild X..3 Bijetive Ailduge Die Aildug ist sujetiv

Mehr

1. Zeta-Funktion und Euler-Produkt

1. Zeta-Funktion und Euler-Produkt . Zeta-Funktion und Euler-Produkt. Zeta-Funktion und Euler-Produkt.. Die Riemannsche Zeta-Funktion ist für s C mit Re s > definiert durch ζ(s) := n= n s. Traditionell schreibt man s = σ + it mit σ, t R.

Mehr

m d2 x dt 2 = K( x), d 2 x j dt 2 = K i.

m d2 x dt 2 = K( x), d 2 x j dt 2 = K i. P m d2 x dt 2 = K( x), m δ ij d 2 x j dt 2 = K i. C W C = C K i dx i δ ij δ ij λδ ij, m m λ d v dt K BA = K AB R 4 E 3 R Σ Σ x = R x a, R T R = I, R... E 3 T 1, 3 + 3 + 1 = 7 E 3 = O 3 T 3,... E 3 O 3

Mehr

a) A, B sein Aussagen, betrachtet werde die Aussageverbindungen A B B und A B. Beweisen Sie deren Äquivalenz durch eine Wahrheitstabelle

a) A, B sein Aussagen, betrachtet werde die Aussageverbindungen A B B und A B. Beweisen Sie deren Äquivalenz durch eine Wahrheitstabelle . Auge ud ege A B e Auge berche werde de Augeerbduge A B B ud A B. Bewee Se dere Äqulez durch ee Whrhebelle b Selle Se de ege C der Gußche Zhleebee dr! } { z z C z } Im z > } 6 Puke. Komplee Zhle Bereche

Mehr

Gegenseitige Lage von Geraden und Ebenen

Gegenseitige Lage von Geraden und Ebenen Gegenseitige Lage von Geraden und Ebenen. Gegeben sind die Ebene E : x + = und die Gerade g : x = +λ Lösung: (a) E : (a) Berechne die Koordinaten der Achsenpunkte A, A und A von E sowie der Durchstoßpunkte

Mehr

Institut für Produktion und Industrielles Informationsmanagement. Vorgehensmodell zur Auswahl einer Variante der Data Envelopment Analysis

Institut für Produktion und Industrielles Informationsmanagement. Vorgehensmodell zur Auswahl einer Variante der Data Envelopment Analysis Institut für Produktion und Industrielles Informationsmanagement Universität Duisburg-Essen / Campus Essen Fachbereich 5: Wirtschaftswissenschaften Universitätsstraße 9, 45141 Essen Tel.: ++ 49 (0) 201

Mehr

6. f : Abb(R, R) R mit ϕ f(ϕ) := ϕ(1) Hinweis:f :V W über K bedeutet Abbildung f zwischen den Vektorräumen V und W über demselben

6. f : Abb(R, R) R mit ϕ f(ϕ) := ϕ(1) Hinweis:f :V W über K bedeutet Abbildung f zwischen den Vektorräumen V und W über demselben Aufgabe 74. Untersuchen Sie die folgenden Abbildungen auf Linearität. 1. f : R 2 R 2 mit (x, y) f(x, y) := (3x + 2y, x) 2. f : R R mit x f(x) := ϑx + ζ für feste ϑ, ζ R 3. f : Q 2 R mit (x, y) f(x, y)

Mehr

Klassische Extremwerttheorie Seien (X k ), k IN, nicht degenerierte i.i.d. ZV mit Verteilungsfunktion. Für n 1 definiere S n := n

Klassische Extremwerttheorie Seien (X k ), k IN, nicht degenerierte i.i.d. ZV mit Verteilungsfunktion. Für n 1 definiere S n := n Klassische Extremwerttheorie Seien (X k ), k IN, nicht degenerierte i.i.d. ZV mit Verteilungsfunktion F. Für n 1 definiere S n := n i=1 X i, M n := max{x i :1 i n} Frage: Welche sind die möglichen (nicht

Mehr

Zehnerpotenz Bezeichnung Vorsilbe Symbol Zehnerpotenz Bezeichnung Vorsilbe Symbol = Billion tera T

Zehnerpotenz Bezeichnung Vorsilbe Symbol Zehnerpotenz Bezeichnung Vorsilbe Symbol = Billion tera T Fomelsmmlung Fomelsmmlung ieise Busten α Α Alp η Η Et ν Ν Ny τ Τ Tu β Β Bet ϑ Θ Tet ξ Ξ Xi υ Υ Ypsilon γ Γ mm ι Ι Iot ο Ο Omikon φ Φ Pi δ Δ Delt κ Κ Kpp π Π Pi χ Χ Ci ε Ε Epsilon λ Λ Lm ϱ Ρ Ro ψ Ψ Psi

Mehr

Infoblatt für den Kometen C/2011 L4 PANSTARRS

Infoblatt für den Kometen C/2011 L4 PANSTARRS Infoblatt für den Kometen C/2011 L4 PASTARRS Der Komet C/2011 L4 PASTARRS wurde in der acht vom 5. auf den 6. Juni 2011 mit Hilfe des 1,8 Meter großen Panoramic Survey Telescope And Rapid Response System

Mehr

Einführende Übersicht zu den erzeugenden Funktionen

Einführende Übersicht zu den erzeugenden Funktionen Pof. D. Pee vo de Lppe vesä Dusbug-Esse, Campus Esse Efühede Übesch zu de ezeugede Fuoe (pobably, mome ec. geeag fucos. Fuoe vo ufallsvaable Is ee V, da s auch ee Fuo g (, ( - μ, e ode ee V ud ha dam ee

Mehr

22 Charakteristische Funktionen und Verteilungskonvergenz

22 Charakteristische Funktionen und Verteilungskonvergenz 22 Charakteristische Funktionen und Verteilungskonvergenz Charakteristische Funktionen (Fourier-Transformierte liefern ein starkes analytisches Hilfsmittel zur Untersuchung von W-Verteilungen und deren

Mehr

Bogenlängen. Beispiele: Die Länge eines Grafen (Bogenlänge) einer Funktion f über [ a ; b ] läßt sich berechnen mit der Formel :

Bogenlängen. Beispiele: Die Länge eines Grafen (Bogenlänge) einer Funktion f über [ a ; b ] läßt sich berechnen mit der Formel : Bogeläge De Läge ees Gre Bogeläge eer Fuko üer [ ; ] läß sch ereche m der Formel : l ' d Des ühr de mese Fälle u komplzere Iegrde, de sch häug ur äherugswese ereche lsse. Bespele: De Keele m h, e e - h

Mehr

Wärmeübertragung Formelsammlung

Wärmeübertragung Formelsammlung ämeübegung omemmung Zummenfung on Dd Henze (dd.henze@myum.de) Veon. om 8..8 (-Veöffenchung..8) Gundgen.... Gundenheen.... Koeffzenen und Kennzhen.... Rndbedngungen.... ämeduchgng..... ämeduchgng..... Péce-Gechungen

Mehr

Konvexe Mengen. Kanglin,Chen. Universität Bremen, Proseminar WS 04/05

Konvexe Mengen. Kanglin,Chen. Universität Bremen, Proseminar WS 04/05 Konvexe Mengen Kanglin,Chen Universität Bremen, Proseminar WS 04/05 Satz. (Satz von Kirchberger) Sei P, Q E n kompakt und nicht leer. Dann gilt: P, Q sind durch eine Hyperebene streng trennbar. Für jede

Mehr

Kerne 2, 2.Teil. Inhalt

Kerne 2, 2.Teil. Inhalt Il Volsg 6: K K,.Tl Slodll Nklo-Nklo Wslwkg Ksp gss Mo Kzfäll: α, β, γ Zfll F s Gold Rgl Mlpolslg WS 78 Sbük, os: Pysk V WS 78 Sbük, os: Pysk V 3 Volsg 6: K F s Gold Rgl Übggs zws Afgs- d dzsäd N-lvss

Mehr

Holomorphe Funktionen

Holomorphe Funktionen 1 Kapitel 1 Holomorphe Funktionen 1 Komplexe Differenzierbarkeit Ist z = (z 1,..., z n ) ein Element des C n und z ν = x ν + i y ν, so können wir auch schreiben: z = x + i y, mit x = (x 1,..., x n ) und

Mehr

6.3.1 Allgemeiner Bayes-Filter

6.3.1 Allgemeiner Bayes-Filter 6.3 Baes Fler 6.3. Allgemener Baes-Fler Sa von Baes ' ' ' η Sa über de oale Wahrschenlchke Besel oen oen oen Beobachung lecher u ermeln Besel oen.6 oen. 3 oen.5 oen. 5 oen oen oen oen oen oen oen.6.5 oen.6.5.3.5

Mehr

Formelsammlung zum Starterstudium Mathematik

Formelsammlung zum Starterstudium Mathematik Formelsammlung zum Starterstudium Mathematik Universität des Saarlandes ¼ Version.3 Inhaltsverzeichnis. Potenzgesetze. Vollständige Induktion 3. Betragsgleichungen, Betragsungleichungen 4 4. Folgen und

Mehr

Einführung in die Artinschen Zopfgruppen

Einführung in die Artinschen Zopfgruppen Universität Duisburg-Essen - Campus Duisburg - Fakultät für Mathematik W. Hümbs Einführung in die Artinschen Zopfgruppen In den Aufgaben 1-6 sollen Sie Erzeugendensysteme und das Rechnen mit Generatoren

Mehr

Vorkurs Physik Mathematische Grundlagen

Vorkurs Physik Mathematische Grundlagen Vorkurs Physik 2016 Mathematische Grundlagen Die im Vorkurs behandelten mathematischen Grundlagen sind in dieser kommentierten Formelsammlung zusammengefasst. Es wurden folgende Themen behandelt: 1. Trigonometrie

Mehr

Aufgabensammlung Technische Mechanik

Aufgabensammlung Technische Mechanik Aufgabensammlung Technische Mechanik Bearbeitet von Alfred Böge, Gert Böge, Wolfgang Böge 23., überarbeitete und erweiterte Auflage 2016. Buch. XIV, 243 S. Softcover ISBN 978 3 658 13717 5 Format (B x

Mehr

Korrekturen Stand: 16. Juni 2005 Martin Horn, Nicolaos Dourdoumas: Regelungstechnik, Pearson-Studium, 2004

Korrekturen Stand: 16. Juni 2005 Martin Horn, Nicolaos Dourdoumas: Regelungstechnik, Pearson-Studium, 2004 Korrekturen Stand: 16. Juni 2005 Martin Horn, Nicolaos Dourdoumas: Regelungstechnik, Pearson-Studium, 2004 Abschnitt 2.2.1 Seite 34: Gleichung (2.4) muss lauten dφ(t) dt Abschnitt 2.2.5 = 0 + A +2A (At)1

Mehr

Mathe-Umgebungen Symbole Formatierungen Referenzen Abschluss. Fachschaft Elektro- und Informationstechnik. Formelsatz in L A TEX.

Mathe-Umgebungen Symbole Formatierungen Referenzen Abschluss. Fachschaft Elektro- und Informationstechnik. Formelsatz in L A TEX. Fachschaft Elektro- und Informationstechnik Formelsatz in L A TEX L A TEX Iris Conradi 13. November 2012 2. Flussqubits 6. Quartisches Potential Die Phasen sind über den Fluss Φe festgelegt. Mit der Definition

Mehr

MatheBasics Teil 1 Grundlagen der Mathematik Version vom

MatheBasics Teil 1 Grundlagen der Mathematik Version vom MatheBasics Teil 1 Grundlagen der Mathematik Version vom 01.09.2016 Dieses Werk ist urheberrechtlich geschützt. Alle Rechte vorbehalten. FSGU AKADEMIE 2008-2016 1 Was haben wir vor? Mathe-Basics Teil 1

Mehr

Re Ñ Ñ p T T 1 ( 1 ) T 2 ( 2 ) T = T( ) T = T(, t) t p(, t)v(, t) = k B T(, t) p(, t) V(, t) (, t) (, t) = ρ(, t) (, t) Ñ V (, t) p(, t) ρ(, t) S = ρ V 0 m = ş ρ V V 0 BV 0 Φ = ρ, Φ ą 0 V Φ ă 0 V

Mehr

Tests/Regression/ANOVA. Lösungen Blatt Test auf den unbekannten Erwartungswert bei unbekannter Streuung:

Tests/Regression/ANOVA. Lösungen Blatt Test auf den unbekannten Erwartungswert bei unbekannter Streuung: Löuge latt 7. Tet auf de ubekate Erwartugwert be ubekater Streuug: () H 0 : µ 0, 5 H : µ < 0, 5 (lketger Tet) X µ () Tetfukto: Ψ (t-vertelt mt (-)99 G) 0,497 0,5 Realerug: ψ 00 5, 57 0,0075 (3) krtcher

Mehr

PROTOKOLLE ZU DEN ÜBUNGEN DER FUNKTIONALANALYSIS II

PROTOKOLLE ZU DEN ÜBUNGEN DER FUNKTIONALANALYSIS II Fachbereich Mathematik und Informatik Philipps-Universität Marburg PROTOKOLLE U DEN ÜBUNGEN DER FUNKTIONALANALYSIS II Claude Portenier Marburg Sommersemester 004 Fassung vom 4. August 004 Fachbereich Mathematik

Mehr

Lösungen zu Übungsblatt 1

Lösungen zu Übungsblatt 1 Maike Tormählen Übung 1, 11.4.213 Lösungen zu Übungsblatt 1 Aufgabe 1: Large Extra Dimensions & lanck-länge Die Newtonsche Gravitation ist hinreichend, um fundamentale Größen wie die lanck- Länge in diversen

Mehr

Beulnachweis nach DIN Teil 4 für Außendruck. Geometrie. 10m. Radius mm. Wanddicke. Länge. L := 10.00m. Werkstoff. E-Modul E 2.

Beulnachweis nach DIN Teil 4 für Außendruck. Geometrie. 10m. Radius mm. Wanddicke. Länge. L := 10.00m. Werkstoff. E-Modul E 2. Seite /5 Beulnachweis nach DIN 8800 Teil 4 für Außendruck (Formular ) Geometrie adius Wanddicke : 0m 2 5000 mm T : 5mm Länge L : 0.00m Werkstoff E-Modul E 2. 0 5 N : Streckgrenze f y.k : 240 N Lasten Gleichmäßiger

Mehr

Übungsaufgaben zu Kapitel 1 und 2

Übungsaufgaben zu Kapitel 1 und 2 Hochschule für Technik und Wirtschaft Dresden Wintersemester 8/9 Fakultät Informatik/Mathematik Prof. Dr. B. Jung Übungsaufgaben zu Kapitel und Aufgabe : Vereinfachen Sie die folgenden komplexen Ausdrücke

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2 BIOL-B HST PHARM Prüfung zur Vorlesung Mathematik I/II. (8 Punkte) a) Mit Kürzen des Bruchs folgt ( ) x + sin(x) sin(x) cos(x) lim x sin(x) ( ) x = lim x sin(x) + cos(x)

Mehr

( ) Parameters α. Links: α < 1. Mitte: α = 1 (Exponentialverteilung). Rechts: α > 1.

( ) Parameters α. Links: α < 1. Mitte: α = 1 (Exponentialverteilung). Rechts: α > 1. KAPITEL 8 Wichtige statistische Veteilungen In diesem Kapitel weden wi die wichtigsten statistischen Veteilungsfamilien einfühen Zu diesen zählen neben de Nomalveteilung die folgenden Veteilungsfamilien:

Mehr

3. Die Methode der Finiten Elemente

3. Die Methode der Finiten Elemente 3 De Meode der Fe Elemee M Bespele für: Raumdmesoe (,y Feldfreesgrad u Leare Bassfuoe Allgemee Form eer parelle Dffereal-Glecug Feld: u, u u Gebe: 3. De Meode der Fe Elemee D + Γ= 0 = R auf Drcle Radbed.

Mehr

( ) ( ) ( ) E ( ) ( ) ( ) ( ) ( ) Def Erwartungswert. 1. Diskreter Fall X sei diskrete Zufallsgröße mit = { 1, x2,

( ) ( ) ( ) E ( ) ( ) ( ) ( ) ( ) Def Erwartungswert. 1. Diskreter Fall X sei diskrete Zufallsgröße mit = { 1, x2, Def.. Erwarugswer. Dsreer Fall se dsree Zufallsgröße m = {, x, } p = P( = x ),( =,, ), so e ma µ = E = xp = de Erwarugswer vo, falls W x ud de Ezelwahrschelchee = x p

Mehr

Funktionalanalysis I Blatt 14 Lösungen bitte zur Übung am 1. Februar 2019 mitbringen

Funktionalanalysis I Blatt 14 Lösungen bitte zur Übung am 1. Februar 2019 mitbringen Universität Leipzig Mthemtisches Institut Prof. Dr. Bernd Kirchheim Dr. Stefno Moden WS218/19 Funktionlnlysis I Bltt 14 Lösungen itte zur Üung m 1. Ferur 219 mitringen Lösung (Aufge 1). Jeder trigonometrische

Mehr

Kapitel IV Euklidische Vektorräume. γ b

Kapitel IV Euklidische Vektorräume. γ b Kpitel IV Euklidische Vektorräume 1 Elementrgeometrie in der Eene Sei E die Zeicheneene In der Schule lernt mn: (11) Stz des Pythgors: Sei E ein Dreieck mit den Seiten, und c, und sei γ der c gegenüerliegende

Mehr

5 Die Picardschen Sätze

5 Die Picardschen Sätze 03 5 Die Picardschen Sätze Für eine zweimal stetig differenzierbare reell- oder komplexwertige Funktion f auf einem Gebiet G C ist der Laplace-Operator definiert durch Behauptung: = 4 Beweis: Daraus folgt:

Mehr

Geometrie Herbstsemester 2013

Geometrie Herbstsemester 2013 Geometrie Herbstsemester 203 D-MATH Prof. Felder Lösungen 3 ) (a) Wir verwenden die Zykelschreibweise für die Elemente von S n, so dass S 3 = {(), (2), (3), (23), (23), (32)} Die Gruppe besteht also aus

Mehr

6.4 Uneigentliche Integrale

6.4 Uneigentliche Integrale 6.4 Uneigentliche Integrle 3 Beispiele : d + + d ( + ) t + d t t d t ( t + t + t ) + t + t t ln ( + t) + c + ln ( + + ) + c + t rctn + c 6.4 Uneigentliche Integrle bisher : beschränkte Funktionen uf endlichen

Mehr

Formeln, Abkürzungen, Indizes

Formeln, Abkürzungen, Indizes 130 Q ββ 2νββ 130 0νββ 2 + 1 gs 0νββ 0νββ 2νββ 2νββ 2 + 1 e e + p n ν e ν e ν µ ν µ ν τ ν τ ν M γ νββ νββ Q ββ gs 2 + 1 2νββ β α γ β α γ β β 1 2 β β n p + e + ν ν + p n + e + ν e ν µ τ ν τ e ν e e + ν

Mehr

Seminar: Stochastische Geometrie und ihre Anwendungen - Unbegrenzt teilbare und stabile Verteilungen.

Seminar: Stochastische Geometrie und ihre Anwendungen - Unbegrenzt teilbare und stabile Verteilungen. Uverstät Ulm, Isttut Stochastk 5. Jul 200 Semar: Stochastsche Geometre ud hre Aweduge - Ubegrezt telbare ud stable Verteluge. Ausarbetug: Stefa Fuke Betreuer: Ju.-Prof. Dr. Zakhar Kabluchko Ubegrezt telbare

Mehr

1. Grundlegendes in der Geometrie

1. Grundlegendes in der Geometrie 1. Grundlegendes Geometrie 1. Grundlegendes in der Geometrie 1. 1 Übliche ezeichnungen Punkte bezeichnen wir mit Grossbuchstaben:,,,D,... P 1,P 2,P 3,...,,,... Strecken und deren Masszahl, sowie Geraden

Mehr

12 Lineare Differentialgleichungen mit periodischen Koeffizienten

12 Lineare Differentialgleichungen mit periodischen Koeffizienten 56 Gewöhnliche Differentialgleichungen / Sommersemester 28 12 Lineare Differentialgleichungen mit eriodischen Koeffizienten 12.1 Homogene lineare Systeme mit eriodischen Koeffizienten haben für > die Form

Mehr

Chern-Simons Theorie. Thomas Unden, Sabrina Kröner 01. Feb Theorie der kondensierten Materie. Fraktionaler Quanten-Hall-Effekt

Chern-Simons Theorie. Thomas Unden, Sabrina Kröner 01. Feb Theorie der kondensierten Materie. Fraktionaler Quanten-Hall-Effekt Chern-Simons Theorie Thomas Unden, Sabrina Kröner 01. Feb. 2012 Theorie der kondensierten Materie Fraktionaler Quanten-Hall-Effekt Seite 2 Chern-Simons Theorie Thomas Unden, Sabrina Kröner 01. Feb. 2012

Mehr

p und n können bezüglich der starken WW als die beiden Isospin-Zustände eines Teilchens (Nukleon) mit Isospin I=1/2 aufgefasst werden:

p und n können bezüglich der starken WW als die beiden Isospin-Zustände eines Teilchens (Nukleon) mit Isospin I=1/2 aufgefasst werden: 4. sospin 4. Histoisch: sospin-konzept fü Haonen Fü Nukleonen p un n finet man: () Masse nahe beieinane m p 98. MeV m n 99.6 MeV () Kenkaft (stake WW) invaiant unte p n p un n können bezüglich e staken

Mehr

Infoblatt für den Kometen. 103P/Hartley

Infoblatt für den Kometen. 103P/Hartley Infoblatt für den Kometen /Hartley Der mit einer Umlaufzeit von 6,46 Jahren kurzperiodische Komet /Hartley wurde am 15. März 1986 von Malcom Hartley am Siding-Spring-bservatorium in Australien entdeckt.

Mehr

A1: Diplomvorprüfung HM II/III SS

A1: Diplomvorprüfung HM II/III SS A: Diplomvorprüfung HM II/III SS 8 378 Aufgabe 5 + 7 + 6 8 Punkte a Führen Sie für den Bruch x+x x+3 b Berechnen Sie den Wert der Reihe k3 eine Partialbruchzerlegung durch k+k k+3 c Untersuchen Sie die

Mehr

w k = r e n i ( ϕ n +k 2 π Rechenregeln (Determinanten): A T = A, A B = A B, A 1 A = E =1 A 1 = 1 A gx 1+hy 1+iz 1 ax 2 dx 1+ey 1+ fz dx 2 +by 2

w k = r e n i ( ϕ n +k 2 π Rechenregeln (Determinanten): A T = A, A B = A B, A 1 A = E =1 A 1 = 1 A gx 1+hy 1+iz 1 ax 2 dx 1+ey 1+ fz dx 2 +by 2 Zsmmefssg: Mthe Formel z komplee Zhle Schreiweise: z = + yi = r e i ϕ =r (cos(ϕ )+i si(ϕ)) Polrform r =z= + y = z z ; ϕ =rccos ( r ) für y ; ϕ = rccos ( r ) Kojgtio: z =z +iy z = iy Ist z die komplee Lösg

Mehr

3 Produktmaße und Unabhängigkeit

3 Produktmaße und Unabhängigkeit 3 Produktmaße und Unabhängigkeit 3.1 Der allgemeine Fall Im Folgenden sei I eine beliebige Indexmenge. i I sei (Ω i, A i ein messbarer Raum. Weiter sei Ω : i I Ω i ein neuer Ergebnisraum. Wir definieren

Mehr

DEPARTMENT INFORMATION. Bachelorarbeit

DEPARTMENT INFORMATION. Bachelorarbeit DEPARTMENT INFORMATION Bachelorarbeit Pulp Sources filmanalytische Identifizierung, Dokumentation und Bewertung von Bild- und Textzitaten und bezügen in Quentin Tarantinos INGLOURIOUS BASTERDS vorgelegt

Mehr

10.2 Kurven und Bogenlänge

10.2 Kurven und Bogenlänge 10.2 Kurven und Bogenlänge Definition: Sei c = (c 1,..., c n ) : [, b] R n eine stetige Funktion. Dnn wird c ls Kurve im R n bezeichnet; c() heißt Anfngspunkt, c(b) heißt Endpunkt von c. c heißt geschlossene

Mehr

Stochastische Prozesse Stoffzusammenfassung

Stochastische Prozesse Stoffzusammenfassung Stochastische Prozesse Stoffzusammenfassung Joachim Breitner 7. August 2018 Diese Zusammefassung ist natürlich alles andere als vollständig und zu knapp, um immer alle Aussagen mit Voraussetzungen korrekt

Mehr

Mathematik für die Physik II, Sommersemester 2018 Lösungen zu Serie 6

Mathematik für die Physik II, Sommersemester 2018 Lösungen zu Serie 6 Mthemtik für die Physik II, Sommersemester 2018 Lösuge zu Serie 6 26 Utersuche die folgede Fuktioefolge uf puktweise beziehugsweise gleichmäßige Kovergez, d.h. bestimme jeweils ob diese vorliegt ud gebe

Mehr

Vorlesung. Mathematik für Physiker III. Kapitel 3 Differentialformen. 10. Differentialformen 1. Ordnung

Vorlesung. Mathematik für Physiker III. Kapitel 3 Differentialformen. 10. Differentialformen 1. Ordnung Vorlesung Mathematik für Physiker III Kapitel 3 Differentialformen 10. Differentialformen 1. Ordnung Sei V ein Vektorraum über R, V sein Dualraum. Zu einer k-dimensionalen Untermannigfaltigkeit M des R

Mehr

Infoblatt für den Kometen. C/2009 R1 McNaught

Infoblatt für den Kometen. C/2009 R1 McNaught Infoblatt für den Kometen Mcaught Der am 9. September 2009 von R. H. Mcaught am Siding Spring Observatorium in Australien entdeckte Komet (Mcaught) erreicht am 2. Juli 2010 sein Perihel und wird wahrscheinlich

Mehr

Polynomprodukt und Fast Fourier Transformation

Polynomprodukt und Fast Fourier Transformation Polomrodut ud Fst Fourer Trsformto Polome Reelles Polom eer Vrble...... R : oeffzete vo Grd vo : höchste Potez Besel: 3 3 5 8 Mege ller reelle Polome: R[] 3 Oertoe uf Polome. Addto b b b q b b b b b q

Mehr

10m 2. R = 5000 mm Wanddicke T := 5mm

10m 2. R = 5000 mm Wanddicke T := 5mm Seite 1/6 Beulnachweis nach DIN 18800 Teil 4 für Außendruck (Formular Z-Beul-aussen_08-04-10.mcd) Geometrie Radius 10m R := 2 R = 5000 mm Wanddicke T := 5mm Länge L := 10.00m Werkstoff E-Modul E 2.1 10

Mehr

Klausur Strömungsmechanik II u x + v. y = 0. ρ u u x + v u ) ρ c p. x + v T ) v ; ρ = ρ ; x = x u ρ L ; ȳ = y L ; u ; v = λ λ Konti:

Klausur Strömungsmechanik II u x + v. y = 0. ρ u u x + v u ) ρ c p. x + v T ) v ; ρ = ρ ; x = x u ρ L ; ȳ = y L ; u ; v = λ λ Konti: ...... Name, Matr.-Nr, Unterschrift Klausur Strömungsmechanik II 05. 08. 011 1. Aufgabe a Konti: Impuls: Energie: u x + v = 0 ρ u u x + v u ρ c p u T x + v T = η u = λ T dimensionslose Größen: ū = u u

Mehr

Normierte Vektorräume und lineare Abbildungen 71. kanonische Einbettung (von E in E ).

Normierte Vektorräume und lineare Abbildungen 71. kanonische Einbettung (von E in E ). Normierte Vektorräume und lineare Abbildungen 71 Zunächst ist κx: E K linear. κxx = x x x x zeigt κx x. Mit 20.5 b dann κx = x. Damit : 21.1 Bemerkung κ : E E ist linear mit κx = x für x E. Somit ist κ

Mehr

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Stefan Etschberger für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2017 Normalverteilung Eine Zufallsvariable X mit einer Dichtefunktion f(x) =

Mehr

Formelsammlung Elektrische Maschinen V EMA 1 245K. Der Motor hat durch seine Isolierklasse F eine Bezugstemperatur von ϑ B =115 C

Formelsammlung Elektrische Maschinen V EMA 1 245K. Der Motor hat durch seine Isolierklasse F eine Bezugstemperatur von ϑ B =115 C Foellu lee e V.8 9..3 ) We Leeweoe. S See.9 ue: luu: 3 3,9 55 De oo u ee olele F ee ezueeu vo ϑ 5 uϑ uϑ u 5,94Ω [ ( ϑ ) ] 4,36Ω,39 ( 5 ) 3 4, 45 ϑ ϑ Gezeeu be le: Gezeeu: eu vo u ϑ Luze e ooe: Y 9 F H

Mehr

1./2. Klausur der Diplomvorprüfung

1./2. Klausur der Diplomvorprüfung ./. Klausu de Diplomvopüfung fü ae, autip, vef, wewi Aufgabe ( Punkte) (a) Fü das zugehöige chaakteistische Polynom ehält man λ + 5λ + = (λ + )(λ + ) mit den Nullstellen λ = / und λ =. Damit egibt sich

Mehr