( ) ( ) ( ) E ( ) ( ) ( ) ( ) ( ) Def Erwartungswert. 1. Diskreter Fall X sei diskrete Zufallsgröße mit = { 1, x2,

Größe: px
Ab Seite anzeigen:

Download "( ) ( ) ( ) E ( ) ( ) ( ) ( ) ( ) Def Erwartungswert. 1. Diskreter Fall X sei diskrete Zufallsgröße mit = { 1, x2,"

Transkript

1 Def.. Erwarugswer. Dsreer Fall se dsree Zufallsgröße m = {, x, } p = P( = x ),( =,, ), so e ma µ = E = xp = de Erwarugswer vo, falls W x ud de Ezelwahrschelchee = x p <. (overger). Seger Fall se sege Zufallsgröße m Dchefuo, µ = = xf x E de Erwarugswer vo, falls x f f x so e ma x < exser..7. Varaz (Dsperso) Def.. ( ) s Zufallsgröße, so heß D = E E Bezechug V Varaz vo. D ( ) - Sadardabwechug vo D ( ) ( ) = - Varaosoeffze vo ( E ( ) Dsreer Fall: σ = D = ( µ ) x p = Seger Fall: σ = D ( ) = ( x µ ) f ( x) E exser ud E ) Egeschafe des Erwarugsweres (dsre ud seg): E c = c E, c ( + ) = ( ) + ( ) E c + d = c E + d E d = d E E E E = = = E ( ) 4

2 .7.3 Ergäzede Bemeruge zu Erwarugswer ud Varaz. Erwarugswer vo Fuoe eer Zufallsgröße = = ( ) = ( p = P( = x) ) Es se Y g E Y E g g x p (dsre),. Momee eer Zufallsgröße Def.. = E( Y) = E( g ) = g( x) f ( x) se Zufallsgröße, da heß = E ( ),( =,, ) 'er Ordug; m = Berechug E dsre: m = x p = seg: m x f ( x) = (seg) m 'es Mome vo oder Mome s der Erwarugswer. Def..3 µ : E = m e ma zerales Mome 'er Ordug. (bezoge auf Zerum m =, =,, ) E Es gl:. = :D = E ( m ) = E m + m = E( ) m E. D ( + ) = D ( a b a 3. Seerscher Saz (Mecha) a, belebg ) +m = m E m + m = m m = E ( a) = ( ) + ( a) = + ( a ) E E E E D E.7.4 Ege dsree Wahrschelchesvereluge Zwepuverelug { } W = x, x, P = x = p, P = x = p;< p< für x F () = P( < ) = p für x < x für > x 5 Bld

3 Spezalfall: x =, x = ; "Null-Es-Verelug" P( = ) = p, P( = ) = p; Erwarugswer : µ = E = p + p= p Varaz: σ ( ) ( = D = E E = p p = p p ) Glechverelug (glechmäßge dsree Verelug) besze edlch vele Were {, x,, } W x, = p = P( = x) =, ( =,,, ) s ee Treppefuo, de a Selle x ee Sprug der Höhe p besz. F () Erwarugswer : µ Varaz: = x = x x σ = = = Bomalverelug (Beroull - Verelug) {,,, } W =, < p <, wobe für de Ezelwahrschelchee p gl: p = P( = ) = p ( p), =,,, d.h. s bomalverel. Spezalfall: = "Null-Es-Verelug" (s.o.) W{, }; P( = ) = p ( p) = p P( = ) = p( p) = p Movao für de Bomalverelug: "Beroullsches" Versuchsschema Durchführug vo ( =,, ) voeader uabhägge Versuche, ur zwe Ergebsse sd vo Ieresse: A - Eree des Eregsses A - omplemeäres Eregs P A = p < p< s jedem Versuche glech., Uersuchug der Zufallsgröße = {zufällge Azahl des Erees vo A be Wederholuge, also absolue Häufge des Erees vo A be Versuche} W =,,,, d.h. besz de Were,,,...,. { } Besmmug der Ezelwahrschelche P = ; A r - mal e; A r - mal e. x 6

4 Bespel. Produo vo Bauele m 4% Ausschuss P A = = p p= A... {E Bauel s Ausschuss};,4 ;,96 Problem: We groß s de Wahrschelche, dass uer ausgewähle Tele a. B {geau e Tel s Ausschuss} b. B {mdeses Tele sd Ausschuss} er. 9 zu a: = ; = ; p = P( = ) = (,4) (,4) =, zu b: PB PB Tel Ausschuss 9 Tele. O. P = p p =,44..., =,89...; m p =.96 =,44..., d.h. vo Gesamwahrschelche wrd Wahrschelche m -Ausschussele ud Wahrschelche m -Ausschussel abgezoge. Verelugsfuo F () = P( < ) = p ( p), < Erwarugswer E( ) = p ( p) = p, < = Varaz D = E E = p p p = p p = Posso - Verelug Bomalverelug, wobe = { zufällge Azahl der Versuche vo, be dee A er} Azahl der Versuche s sehr groß p p = P A des Eregsses A s für jede ezele Versuch sehr le p λ > Ezelwahrschelche λ λ p = P( = ) = e!, λ >, ( =,, ) Zusammehag m Bomalverelug: vgl.. Posso Grezwersaz [.8.3] Verelugsfuo λ λ F () = P( < ) = e!, λ >, = Erwarugswer λ λ E = e = λ! = 7

5 Varaz λ λ D = E E = e λ = λ! = Bespel Fersprechvermlug erhale währed Spzeze durchschlch 8 Arufe/Sude. maxmal öe Verbduge /Seude hergesell werde. Gesuch s de Wahrschelche dafür, dass de Azahl der Arufe de Kapazä überseg. 8 Zufallsgröße s possoverel m λ = E( ) = = P( > ) = P( ) = P( = ) = e! 5,4 Geomersche Verelug. = = Ezelwahrschelche: p = P = = p p, =,,, Verelugsfuo F = p p, < () Erwarugswer E ( ) = p Varaz p D ( ) = p.7.5 Ege sege Vereluge Glechmäßg sege Verelug für a b Dchefuo f () = b a sos für a Verelugsfuo () a F = für a< b b a für b< b a+ b Erwarugswer E = f ( ) d = d = b a a 8

6 b Varaz D E E ( b a) a+ b = = d = b a a Expoealverelug Dchefuo λe für () > f = für Verelugsfuo λ e für > F () = P( < ) = für λ > Erwarugswer E λ = λe d = λ Varaz λ = = λe d = λ λ D E E Bespel: Zufällge Ze (gemesse Sude) für de Reparaur ees Vdeorecorders uerlege eer Expoealverelug m λ =,5. Gesuch s de Wahrschelche dafür, dass zur Reparaur ees Geräes mdeses ee Sude aufgewede werde muss. We vel Sude werde m Durchsch zur Reparaur ees Geräes beög?,5,5 P = P < = F = e = e =,66 E( ) = =,5 Normalverelug Dchefuo ( µ ) f () = exp = ϕ ( ; µ, σ ); < < ; µ > ; σ > σ π σ Verelugsfuo ( x µ ) F () = exp ( ; µ, σ ) σ π =Φ σ = N µ ; σ Bezechug : 9 Bld

7 Erwarugswer E Varaz D Egeschafe vo f ( ) ( x µ ) = xexp µ σ π σ = x µ = x µ exp σ σ π σ = Maxmum leg be µ, σ π ϕ µσ s symmersch bzgl. der Gerade = µ ( ;, ) Wedepue lege be, = µ ± σ Äderug vo µ bewr ee Verschebug der Dche elag der -Achse Äderug vo σ bewr ee Srecug bzw. Sauchug der Dchefuo. Berechug vo Fuoswere der Dchefuo bzw. der Verelug s m spezelle Compuerprogramme ud/oder Tabelle möglch. Spezell für Tabelle s empfehleswer. Ausuzug vo Symmereegeschafe ϕ( ;, ) = ϕ( ;,) Φ( ;,) = Φ( ;,). Nuzug der Fehlerfuo erf ( x ) x erf x = e d π x () ( x) x derf erf erf x d = x x + e ; = e π π 3. Sadardsere Zufallsgröße Y se sadardsere Zufallsgröße, wobe µ Y = ormalverel m E( Y ) = ud D ( Y ) = σ x FY () = P( Y < ) =Φ ( ;,) = exp π Es gl x Φ ( ;,) = exp =Φ( ;,) π (wege Symmere) x ud erf ( x) = e d = Φ ( x ); lm erf ( x) = π x Dam Besmmug der gesuche Verelugsfuo F ( ) m µ, σ > µ µ µ µ FY P Y P P Y σ σ σ σ () = ( < ) = < = < =Φ ;, )*

8 4. Berechug der Wahrschelche dafür, dass de Zufallsgröße ee Wer aus [ ab, ] m a< b amm. a µ µ b µ P( a b) = P σ σ σ a µ b µ a µ b µ = P Y = P Y < σ σ σ σ wel PY= =. M )* erhäl ma b µ a µ b µ a µ P a b FY FY σ σ σ σ ( ) = =Φ ;, Φ ;, Bespel: µ = 6, σ = µ 3 6 = 3: F 3 = P < 3 = P Y < =Φ(,5;, ) = σ = Φ (,5;, ) =,93393 =, 6687 a. b. Tabelle P 6, 8 µ µ 6, , 6 = P Y =Φ ;, Φ ;, = σ σ =Φ( ;, ) Φ (,;, ) =,84345,53988 =,357 Tabelle Tabelle

Problem des Zufalls wird durch mathematische Modelle widergespiegelt.

Problem des Zufalls wird durch mathematische Modelle widergespiegelt. Mahemak für VIW - Prof. Dr. M. Ludwg.2 Zufällge Eregsse Problem des Zufalls wrd durch mahemasche Modelle wdergespegel. Zufällger Versuch: Versuch m fesgelege belebg wederholbare Bedguge ud ugewssem Ergebs

Mehr

Vl. Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 3: Diskrete Verteilungen

Vl. Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 3: Diskrete Verteilungen Vl. Statstsche Prozess- ud Qualtätsotrolle ud Versuchsplaug Übug 3: Dsrete Verteluge Prof. Dr. B. Grabows Zur Lösug der folgede Aufgabe öe Se auch de begefügte Tabelle der dsrete Verteluge m Ahag verwede.

Mehr

5 Reproduktions- und Grenzwertsätze

5 Reproduktions- und Grenzwertsätze Reproduktos- ud Grezwertsätze Reproduktos- ud Grezwertsätze. Reproduktossätze Bespel 0: Der Aufzug eer Frma st zugelasse für Persoe bzw. 000 kg. Das Durchschttsgewcht der Agestellte der Frma st µ = 80

Mehr

Erzeugen und Testen von Zufallszahlen

Erzeugen und Testen von Zufallszahlen Erzeuge ud Teste vo Zufallszahle Jürge Zumdck Eletug Ee Lergruppe wrd aufgefordert 00 Zufallszahle (0 oder ) ach folgede Methode zu erzeuge: De Hälfte der Gruppe beutzt a) ee Müze oder b) de Zufallszahlefukto

Mehr

Varianzfortpflanzung

Varianzfortpflanzung 5.0 / SES.5 Parameterschätzug Varazortplazug Torste Maer-Gürr Torste Maer-Gürr Dskrete Zuallsvarable Ee dskrete Zuallsvarable mmt edlch vele oder abzählbar uedlch vele Werte a. - Werte: - Wahrschelchket:,,,,,,,,

Mehr

annehmen, so heißt die Funktion, die jedem atomaren Ereignis { x i } mit i { 1; 2; ;

annehmen, so heißt die Funktion, die jedem atomaren Ereignis { x i } mit i { 1; 2; ; Wahrschelchet Ee Futo X : Ω R, de edem Ergebs ees zufällge Vorgages ee reelle Zahl zuordet, heßt Zufallsgröße (oder auch Zufallsvarable Ee Zufallsgröße X heßt edlch, we X ur edlch vele Werte x aehme a

Mehr

Klausur zu Stochastische Risikomodellierung und statistische Methoden (Mai 2008)

Klausur zu Stochastische Risikomodellierung und statistische Methoden (Mai 2008) Klausur zu Sochassche Rskomodellerug ud sassche Mehode (Ma 8) Aufgabe (3 Puke): E Lebesverscherugsuerehme ewckel ee Tarf für ee gemsche Verscherug (d. h. de Verscherugssumme wrd glecher Höhe m Todesud

Mehr

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...}

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...} 1 Allgeme Geometrsche Rehe: q t = 1 q1 t=0 1 q Mtterachtsformel: ax 2 bxc=0 x 1/ 2 = b±b2 4ac 2a Bomsche Formel: 1. ab 2 =a 2 2abb 2 2. a b 2 =a 2 2abb 2 3. ab a b=a 2 b 2 Wurzel: ugerade 1 Ergebs gerade

Mehr

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Aufgabe ud Lösuge vo Peter M Schulze, Verea Dexhemer. Auflage Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Schulze / Dexhemer schell ud portofre

Mehr

Dr. H. Grunert Einführung in die Wahrscheinlichkeitsrechnung Vorlesungscharts. Vorlesung 5.2. Eigenschaften von Zufallsvariablen

Dr. H. Grunert Einführung in die Wahrscheinlichkeitsrechnung Vorlesungscharts. Vorlesung 5.2. Eigenschaften von Zufallsvariablen Vorlesugscharts Vorlesug 5. Egeschafte vo Zufallsvarable Reproduktvtät Approxmatoe Zetraler Grezwertsatz Sete vo Chart : Uabhäggket vo Zufallsvarable Zwe Zufallsvarable X ud Y mt hre Realsatoe { x, x,...,

Mehr

Stochastik Formeln von Gerald Meier

Stochastik Formeln von Gerald Meier Stochast Formel vo Gerald Meer Grudbegrffe ud Operatoe umöglches Eregs scheres Eregs Ω A mplzert B Glechhet A B AB cht A A A ud B A B A oder B A B A ohe B A \ B A B dsjut A B de Morga A B A B Elemetareregs

Mehr

Verteilungen und Schätzungen

Verteilungen und Schätzungen Verteluge ud Schätzuge Zufallseperet Grudbegrffe Vorgag ach eer bestte Vorschrft ausgeführt ( Przp) belebg oft wederholbar se Ergebs st zufallsabhägg be ehralge Durchführug des Eperets beeflusse de Ergebsse

Mehr

Seminar: Stochastische Geometrie und ihre Anwendungen - Unbegrenzt teilbare und stabile Verteilungen.

Seminar: Stochastische Geometrie und ihre Anwendungen - Unbegrenzt teilbare und stabile Verteilungen. Uverstät Ulm, Isttut Stochastk 5. Jul 200 Semar: Stochastsche Geometre ud hre Aweduge - Ubegrezt telbare ud stable Verteluge. Ausarbetug: Stefa Fuke Betreuer: Ju.-Prof. Dr. Zakhar Kabluchko Ubegrezt telbare

Mehr

Lösungen zu Übungs-Blatt 7 Klassische Wahrscheinlichkeit in Glücksspielen, Bedingte Wkt, Unabhängigkeit, Satz von Bayes

Lösungen zu Übungs-Blatt 7 Klassische Wahrscheinlichkeit in Glücksspielen, Bedingte Wkt, Unabhängigkeit, Satz von Bayes Lösuge zu Übugs-latt 7 Klasssche Wahrschelchet Glücsspele, edgte Wt, Uabhägget, Satz vo ayes Master M Höhere ud gewadte Mathemat rof. Dr.. Grabows De folgede ufgabe löse wr uter Verwedug der bede ombatorsche

Mehr

Prinzip "Proportional Reduction of Error" (PRE)

Prinzip Proportional Reduction of Error (PRE) Dr. Reate Prust: Eführug quattatve Forschugsmethode Bvarate Maße: Przp "Proportoal Reducto of Error" (PRE) E 1 - E Fehler be Regel 1 - Fehler be Regel = E 1 Fehler be Regel 1 Regel 1: Vorhersageregel ur

Mehr

Analytische Statistik. Statistische Schätzungen ( Fortsetzung) Population N = unendlich. Stichprobe n = endlich

Analytische Statistik. Statistische Schätzungen ( Fortsetzung) Population N = unendlich. Stichprobe n = endlich Aalyche Sak Zur Ererug Sache Schäzuge ( Forezug) Populao N = uedlch Theoreche Verelug Erwarugwer Theoreche Sreuug Schprobe = edlch Häufgkeverelug Durchch Sadardabwechug Aufgabe der Schäzheore Zur Ererug

Mehr

Einführende Übersicht zu den erzeugenden Funktionen

Einführende Übersicht zu den erzeugenden Funktionen Pof. D. Pee vo de Lppe vesä Dusbug-Esse, Campus Esse Efühede Übesch zu de ezeugede Fuoe (pobably, mome ec. geeag fucos. Fuoe vo ufallsvaable Is ee V, da s auch ee Fuo g (, ( - μ, e ode ee V ud ha dam ee

Mehr

Lösungen (6. Blatt) 2 ny + dy b. = ö nein, aber asymptotische Erwartungstreue. } = ö ja. 4 4n ...

Lösungen (6. Blatt) 2 ny + dy b. = ö nein, aber asymptotische Erwartungstreue. } = ö ja. 4 4n ... Mahemak-Servce Dr. Frch uk- ud Kofdechäuge www.mah-ervce.de.a Für ee Wer y [ 0,] F gl: Löuge 6. Bla y Y y Y y y,..., y y... y ud dfy y y. fy y dy Erwarugreue der 3 Schäer: E{ Θ } E{ } ö ja y y E{ Θ } E{0,5

Mehr

Z Z, kurz. Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden.

Z Z, kurz. Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden. Kombator Problemstellug Ausgagsput be ombatorsche Fragestelluge st mmer ee edlche Mege M, aus dere Elemete ma edlche Zusammestelluge vo Elemete aus M bldet Formal gesproche bedeutet das: Ist M a,, a ee

Mehr

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes Quellecoderug I: Redudazredukto, redudazsparede Codes. Redudaz. Eführug. Defto der Redudaz. allgemee Redudazredukto. redudazsparede Codes. Coderug ach Shao. Coderug ach Fao. Coderug ach Huffma.4 Coderug

Mehr

Eigenwerteinschließungen I

Eigenwerteinschließungen I auptsemar: Numersche Lösuge für Egewertaufgabe Egewerteschleßuge I Referet: Wolfgag Wesselsky Glederug Eletug Kodto vo Egewerte 3 Eschleßugssätze Bauer-Fke, Gershgor, Wlkso, Bedxo 4 Zusatz: Courat / Weyl

Mehr

Lösungen. Häufigkeitsverteilung (Stabdiagramm) Aufgabe 1. Häufigkeit (h) Merkmal (x)

Lösungen. Häufigkeitsverteilung (Stabdiagramm) Aufgabe 1. Häufigkeit (h) Merkmal (x) Lösuge Aufgabe Merkmal (x) Häufgket (h) h x,, 3, 3,, 8, 5, 5, 6, 6, 7, 3, 8, 3 5, 9, 38,, 5,, 8 68,, 6 3, 3, 9,, 8, 5, 5 5, 6, 3 78, 7, 5, 8, 8, 3, 3, Summe 5.63, Aufgabe Häufgketsvertelug (Stabdagramm)

Mehr

1 Mathe Formeln Statistik und Wahrscheinlichkeitsrechnung

1 Mathe Formeln Statistik und Wahrscheinlichkeitsrechnung 1 Mathe Formel Statstk ud Wahrschelchketsrechug Jör Horstma, 6.10.003. Alle Agabe ohe Gewähr. http://www.ba-stuttgart.de/ w017/ 1.1 Grudlage Ezelklasse [a ; b [ Klassewete Klassemtte Mttelwert b a = w

Mehr

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk ----------------------------------------------------------------------------------------------- Bedgte Wahrschelchket

Mehr

Fehlerrechnung im Praktikum

Fehlerrechnung im Praktikum Fehlerrechug m Pratum Pratum Phsalsche Cheme (A. Dael Boese) I chts zegt sch der Magel a mathematscher Bldug mehr, als eer überbertrebe geaue Rechug. Carl Fredrch Gauß, 777-855 Themegebete Utertelug vo

Mehr

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und:

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und: 1 L - Hausaufgabe Nr. 55 Sotag, 1. Ju 2003 Ee Müze werde dremal geworfe. Was st das Zufallsexpermet, das Elemetareregs, das zusammegesetzte Eregs, der Eregsraum ud de Wahrschelchket? Lösugs kte.: 1 De

Mehr

Mathematik für VIW - Prof. Dr. M. Ludwig ( ) ( ) ( ) n f. bestimmt m Funktionen. durch die Festlegung f (,,

Mathematik für VIW - Prof. Dr. M. Ludwig ( ) ( ) ( ) n f. bestimmt m Funktionen. durch die Festlegung f (,, Matheatk ür VIW - Pro. Dr. M. Ludwg 8. Deretato reeller Fuktoe ehrerer Varabler 8. Skalare Felder Vektorelder Koordatesystee Bsher wurde reelle Fuktoe ür ee Varable utersucht: : D t der egeührte Schrebwese

Mehr

Physikalische Messungen sind immer fehlerbehaftet! Der wahre Wert ist nicht ermittelbar. Der wahre Wert x ist nicht identisch mit dem Mittelwert

Physikalische Messungen sind immer fehlerbehaftet! Der wahre Wert ist nicht ermittelbar. Der wahre Wert x ist nicht identisch mit dem Mittelwert Physkalsche Messuge sd mmer fehlerbehaftet! Der wahre Wert st cht ermttelbar. Der wahre Wert st cht detsch mt dem Mttelwert Der Wert legt mt eer gewsse Wahrschelchket (Kofdezahl bzw. Vertrauesveau %) m

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap.5: Kombinatorik. Referenzen zum Nacharbeiten:

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap.5: Kombinatorik. Referenzen zum Nacharbeiten: FH Wedel Prof. Dr. Sebasta Iwaows D5 Fole Dsrete athemat Sebasta Iwaows FH Wedel ap.5: ombator Refereze zum Nacharbete: Lag 5. 5. 7. (Bsp. 4) Beutelspacher 4 (außer Fxpute vo Permutatoe) eel 8 Hacheberger

Mehr

( ) ( ) ( ) ( ) è ø. P A Wahrscheinlichkeitsmaß. lim n. Dr. Christian Schwarz 4. KOMBINATORIK Permutationen

( ) ( ) ( ) ( ) è ø. P A Wahrscheinlichkeitsmaß. lim n. Dr. Christian Schwarz 4. KOMBINATORIK Permutationen BBA Projektsemar Thess Dr. Chrsta Schwarz Formelsammlug Aalytsche Statstk 4. KOMBINATORIK 4.. Permutatoe Azahl der Permutatoe vo N Elemete ohe Wederholug: Multomalkoeffzet: N! = N N- N -... 3 N! N! N!...

Mehr

Oesterreichische Kontrollbank AG. Pensionskassen. Performanceberechnung Asset Allocation. Berechnungsmethoden

Oesterreichische Kontrollbank AG. Pensionskassen. Performanceberechnung Asset Allocation. Berechnungsmethoden Oeserrechsche Korollbak AG esoskasse erformaceberechug Asse Allocao Berechugsmehode Jul 200 Ihal erformaceberechug der OeKB...3 2 erformace...3 2. Defo der erformace...3 2.2 Berechugsmehode...4 2.3 Formel...4

Mehr

Ordnungsstatistiken und Quantile

Ordnungsstatistiken und Quantile KAPITEL Ordugsstatste ud Quatle Um robuste Lage- ud Streuugsparameter eführe zu öe, beötge wr Ordugsstatste ud Quatle... Ordugsstatste ud Quatle Defto... Se (x,..., x R ee Stchprobe. Wr öe de Elemete der

Mehr

Prof. Dr. B.Grabowski. Die Behauptung I folgt aus der Multiplikationsformel: )

Prof. Dr. B.Grabowski. Die Behauptung I folgt aus der Multiplikationsformel: ) Höhere Mathemat KI Master rof. Dr..Grabows E-ost: grabows@htw-saarlad.de Satz vo ayes ud totale Wahrschelchet Zu ufgabe anachwes der Formel I ud II: eh.: I. Formel der totale Wahrschelchet: ewes: Es glt:...

Mehr

Änderungen in der Formelsammlung

Änderungen in der Formelsammlung Äderuge der Formelsammlug Äderugsdaum :. 0. 004 See 4 ur Schöheskorrekure See 6 Formel für de G-Koeffzee ergäz See 8 Idexäderug der Formel für de Forführug des ale Idex See /3 klee Äderuge bem Klumeeffek

Mehr

FH D WS 2007/08 Prof. Dr. Horst Peters Dezember 2007

FH D WS 2007/08 Prof. Dr. Horst Peters Dezember 2007 FH D WS 007/08 Prof. Dr. Horst Peters Dezember 007 Formelsammlug Wahrschelchetsrechug ud dutve Statst m Bachelor-Studegag Busess Admstrato (Modul BWL B) Sete / 6 Formelsammlug Wahrschelchetsrechug ud Idutve

Mehr

7. Ströme auf differenzierbaren Mannigfaltigkeiten

7. Ströme auf differenzierbaren Mannigfaltigkeiten 7 Söme auf ffeezebae agfalgee Defo 7 Es se Ξ ( e -Fome aus Ω (, e ee ompae Täge besze E -Som s e Eleme es Dualaumes vo Ξ ( W seze ( Ξ ( = : ( Ξ ( Bemeug Wll ma Ξ ( opologsee, so s es we folg möglch: Ee

Mehr

Statistische Grundlagen Ein kurzer Überblick (diskret)

Statistische Grundlagen Ein kurzer Überblick (diskret) Prof. J.C. Jackwerth 1 Statstsche Grudlage E kurzer Überblck (dskret De wchtgste Begrffe ud Deftoe: 1 Erwartugswert Varaz / Stadardabwechug 3 Stchprobevaraz 4 Kovaraz 5 Korrelatoskoeffzet 6 Uabhäggket

Mehr

Lohnkosten pro Arbeitsstunde. Wie hoch sind die Lohnkosten pro Arbeitsstunde im Jahresdurchschnitt?

Lohnkosten pro Arbeitsstunde. Wie hoch sind die Lohnkosten pro Arbeitsstunde im Jahresdurchschnitt? Klausur Wrtschaftsstatstk. [ Pukte] E Uterehme hat folgede Date ermttelt: Moat Gelestete Arbetsstude Lohkoste pro Arbetsstude Jauar 86.400 0,06 Februar 75.000 3,0 März 756.000 4,47 Aprl 768.000,53 Ma 638.400

Mehr

Asymptotische Normalverteilung nach dem zentralen Grenzwertsatz

Asymptotische Normalverteilung nach dem zentralen Grenzwertsatz Asymptotsche ormalvertelug ach dem zetrale Grezwertsatz Erwartugswert eer Summe vo Zufallsvarable mt jewels de Erwartugswert x (Y Y Asymptotsche ormalvertelug ach dem zetrale Grezwertsatz Varaz eer Summe

Mehr

Einführung 2. Teil: Fehleranalyse

Einführung 2. Teil: Fehleranalyse Phskalsch-chesches Praktku I Modul Eführug. Tel: Fehleraalse Ja Helbg, 7.09.08 Uterlage: htt://www.che.uzh.ch/stud/old/docuets/ear/che3.htl Fehlerrechug Gesucht: wahrer Wert eer Grösse Aber: Sere vo Messuge

Mehr

3. Das Messergebnis. Was ist ein Messergebnis?

3. Das Messergebnis. Was ist ein Messergebnis? . Das Messergebs Was st e Messergebs? Wederholug der Messug Wahrer Wert? Mehrere Eflussgröße Fehlerbetrachtug Messergebs Vorgeheswese für Messergebs. Bestmmug des bekate systematsche Fehlers 2. Aufahme

Mehr

Einführung Fehlerrechnung

Einführung Fehlerrechnung IV Eführug Fehlerrechug Fehlerrechuge werde durchgeführt, um de Vertraueswürdgket vo Meßergebsse beurtele zu köe. Uter dem Fehler eer Messug versteht ma de Abwechug ees Meßergebsses vom (grudsätzlch ubekate

Mehr

Reihen n. Man benutzt letztere Schreibweise aber häufig auch zur Bezeichnung der Partialsummenfolge. konvergiert, die geometrische Reihe.

Reihen n. Man benutzt letztere Schreibweise aber häufig auch zur Bezeichnung der Partialsummenfolge. konvergiert, die geometrische Reihe. Deftoe ud Aussge über Rehe Bchräume ud Hlberträume E vollstädger ormerter Vektorrum (sehe Bemerkuge zur Alyss) heßt Bchrum Stmmt de Norm vo eem Sklrprodukt v = , so sprcht m vo eem Hlbertrum ZB sd

Mehr

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk ----------------------------------------------------------------------------------------------- Satz vo Bayes ud totale

Mehr

Das Verfahren von Godunov. Seminar Numerik 25.11.2010 Anja Bettendorf

Das Verfahren von Godunov. Seminar Numerik 25.11.2010 Anja Bettendorf Das Verfahre vo Goduov Semar Numerk 5..00 Aja Beedorf Das Verfahre vo Goduov Übersch Goduov - Goduovs Verfahre für Leare Syseme Aweduge & Folgeruge aus Goduovs Verfahre - De Numersche Fluss-Fuko m Goduov

Mehr

Intervallschätzungen geben unter Berücksichtigung des Verteilungstyps von X einen Bereich an, der den Parameter mit vorgegebener Sicherheit enthält.

Intervallschätzungen geben unter Berücksichtigung des Verteilungstyps von X einen Bereich an, der den Parameter mit vorgegebener Sicherheit enthält. Parameterschätzuge Fachhochschule Jea Uversty of Appled Sceces Jea Oft st der Vertelugstyp eer Zufallsgröße X bekat, ur de Parameter sd ubekat. Da erfolgt hre Schätzug aus eer Stchprobe. Ma uterschedet

Mehr

Sitzplatzreservierungsproblem

Sitzplatzreservierungsproblem tzplatzreserverugsproblem Be vele Zugsysteme Europa müsse Passagere mt hrem Zugtcet ee tzplatzreserverug aufe. Da das Tcetsystem Kude ee ezele Platz zuwese muss, we dese e Tcet aufe, ohe zu wsse, welche

Mehr

Lineare Algebra Formelsammlung

Lineare Algebra Formelsammlung ee Algeb Fomelsmmlug vo Gábo Zogg Fomelsmmlug ee Algeb Gábo Zogg. ee Glechugsssteme. Ds Guss'sche Elmtosvefhe Defto: Σ Sstem vo m Glechuge ud Ubekte Opetoe: - Vetusche vo Glechuge - Addee/Subthee ees Velfche

Mehr

Normalverteilung (Gauss Verteilung) Gauss Kurve. ( x. (Deskriptive Statistik, Vortsetzung)

Normalverteilung (Gauss Verteilung) Gauss Kurve. ( x. (Deskriptive Statistik, Vortsetzung) (Dekrpve Sak, Vorezug) Achaulche Darellug der Fläche uer der heoreche Verelugkurve De heoreche Verelug ka Abhäggke vo der ueruche Varable uerchedlche Forme aehme, der Mehrzahl der Fälle e aber ee ymmerche

Mehr

Grundlagen zu Kommunikationsnetzen und Warteschlangentheorie

Grundlagen zu Kommunikationsnetzen und Warteschlangentheorie Lehrsuhl für Rechereze ud Iere Wlhelm-Schcard-Isu für Iforma Uversä Tübge Grudlage zu Kommuaoseze ud Wareschlageheore Heo Nedermayer h://e.forma.u-uebge.de/~edermayer edermayer@forma.u-uebge.de Überragugssrece

Mehr

Signalverarbeitung 3. Zufallssignale

Signalverarbeitung 3. Zufallssignale Sgalverarbeug 3 Zufallssgale Rchard Schor Sgalheore3.doc - -..3 Zufallssgale R.Schor INHALVRZICHNIS Ihalverechs... führug de Wahrschelchesrechug...4. Defoe...4.. Zufallseere...4.. regsfeld...4..3 rgebsege...4..4

Mehr

3 BE b) Wie kann man als Spieler eine Standardabweichung von annähernd null realisieren?

3 BE b) Wie kann man als Spieler eine Standardabweichung von annähernd null realisieren? Lk Mahemak /. Klauur. 0. 00 Bla (v ). Krakehauke 6 BE De Verwalug eer Spezalklk leg für de ufehaldauer X ee aee Tage flgede Wahrchelchkeverelug zugrude: x 5 (X x) 60 % 0 % 0 % Jeder ae zahl für de ufahme

Mehr

Schiefe- und Konzentrationsmaße

Schiefe- und Konzentrationsmaße Statst für SozologIe Schefe- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Mermal wurde 3 Gruppe beobachtet ud Form der folgede Häufgetstabelle berchtet: Klasse m Gruppe

Mehr

Ergebnis- und Ereignisräume

Ergebnis- und Ereignisräume I Ergebs- ud Eregsräume Zufallsexpermete Defto: E Expermet, welches belebg oft uter gleche Bedguge wederholbar st ud desse Ergebs cht mt Bestmmthet vorhergesagt werde ka (d.h. es gbt md. 2 Mgk.), heßt

Mehr

Kapitel XI. Funktionen mit mehreren Variablen

Kapitel XI. Funktionen mit mehreren Variablen Kaptel XI Fuktoe mt mehrere Varable D (Fuktoe vo uabhägge Varable Se R ud D( f R Ist jedem Vektor (Pukt (,,, D( f durch ee Vorschrft f ee reelle Zahl z = f (,,, zugeordet, so heßt f ee Fukto vo uabhägge

Mehr

Konzentrationsanalyse

Konzentrationsanalyse Kaptel V Kozetratosaalyse B. 5.. Im Allgemee wrd aus statstscher Scht zwsche - absoluter ud - relatver Kozetrato uterschede Der absolute ud relatve Aspekt wrd och emal utertelt - statscher ud - dyamscher

Mehr

Statistik. (Inferenzstatistik)

Statistik. (Inferenzstatistik) Statstk Mathematsche Hlfswsseschaft mt der Aufgabe, Methode für de Sammlug, Aufberetug, Aalyse ud Iterpretato vo umersche Date beretzustelle, um de Struktur vo Masseerscheuge zu erkee. Deskrptve (beschrebede)

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statstk ud Wahrschelchketsrechug Mathas Graf 8.04.009 Ihalt der heutge Vorlesug Auswahl eer Vertelugsfukto: Wahrschelchketspaper Schätzug ud Modelletwcklug: Methode der Momete Methode der Maxmum Lkelhood

Mehr

Maße zur Kennzeichnung der Form einer Verteilung (1)

Maße zur Kennzeichnung der Form einer Verteilung (1) Maße zur Kezechug der Form eer Vertelug (1) - Schefe (skewess): Defto I - Ee Vertelug vo Messwerte wrd als schef bezechet, we se der Wese asymmetrsch st, dass lks oder rechts des Durchschtts ee Häufug

Mehr

Formelsammlung zur Zuverlässigkeitsberechnung

Formelsammlung zur Zuverlässigkeitsberechnung Formelsmmlug zur Zuverlässgetsberechug zusmmegestellt vo Tt Lge Fchhochschule Merseburg Fchberech Eletrotech Ihlt:. Zuverlässget vo Betrchtugsehete.... Zuverlässget elemetrer, chtreprerbrer ysteme... 3.

Mehr

Klausur Einführung in die statistische Messdatenauswertung für Biotechnologen Kurzfragen

Klausur Einführung in die statistische Messdatenauswertung für Biotechnologen Kurzfragen Klauur Eführug de ache Medaeauwerug für Boechologe 3.7.9 Kurzfrage. We wrd przpell de relave Summehäugke S() au der relave Häugkedche h() bemm?. Welche Skaleveau müe zwe Merkmale habe um ee Regreogerade

Mehr

Statistik. ist die Kunst, Daten zu gewinnen, darzustellen, zu analysieren und zu interpretieren um zu neuem Wissen zu gelangen.

Statistik. ist die Kunst, Daten zu gewinnen, darzustellen, zu analysieren und zu interpretieren um zu neuem Wissen zu gelangen. Statstk st de Kust, Date zu gewe, darzustelle, zu aalysere ud zu terpretere um zu euem Wsse zu gelage. Sachs (984) Aufgabe De Statstk hat also folgede Aufgabe: Zusammefassug vo Date Darstellug vo Date

Mehr

Klausur. Einführung in die statistische Messdatenauswertung für Biotechnologen Aufgabe Kurzfragen Gesamt. Punkte. Name:...

Klausur. Einführung in die statistische Messdatenauswertung für Biotechnologen Aufgabe Kurzfragen Gesamt. Punkte. Name:... Isu für Produkosmessechk Techsche Uversä Brauschweg Klausur Eführug de sassche Messdaeauswerug für Boechologe 8.6.3 Name:................................ Markel-Nr.:................................ Lfd.

Mehr

Multiple Regression (1) - Einführung I -

Multiple Regression (1) - Einführung I - Multple Regreo Eführug I Mt eem Korrelatokoeffzete ud der efache leare Regreo köe ur varate Zuammehäge zwche zwe Varale uterucht werde. Beutzt ma tatt dee mehrere Varale zur Vorherage, egt ma ch auf da

Mehr

Bogenlängen. Beispiele: Die Länge eines Grafen (Bogenlänge) einer Funktion f über [ a ; b ] läßt sich berechnen mit der Formel :

Bogenlängen. Beispiele: Die Länge eines Grafen (Bogenlänge) einer Funktion f über [ a ; b ] läßt sich berechnen mit der Formel : Bogeläge De Läge ees Gre Bogeläge eer Fuko üer [ ; ] läß sch ereche m der Formel : l ' d Des ühr de mese Fälle u komplzere Iegrde, de sch häug ur äherugswese ereche lsse. Bespele: De Keele m h, e e - h

Mehr

Praktikumsbericht AUSFALLRATEN

Praktikumsbericht AUSFALLRATEN Praumsberch AUSALLATEN.7. Clauda Hallau Tel.: 5-95- E-Mal: verehrssysemech@dlr.de> Copyrgh ach DIN beache. Weergabe sowe Vervelfälgug deses Doumes, Verwerug ud Melug sees Ihales sd verboe, sowe ch ausdrüclch

Mehr

1.4 Wellenlängenbestimmung mit dem Prismenspektrometer

1.4 Wellenlängenbestimmung mit dem Prismenspektrometer F Lorbeer ud Ardt Quer 5.0.006 Physkalsches Praktkum für Afäger Tel Gruppe Optk.4 Wellelägebestmmug mt dem Prsmespektrometer I. Vorbemerkug E Prsmespektrometer st e optsches Spektrometer, welches das efallede

Mehr

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung.

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung. Rudolf Brkma http://brkma-du.de Sete 06.0.008 Spawete, Meda Quartlsabstad, Varaz ud Stadardabwechug. Streuug um de Mttelwert. I de folgede Säuledagramme st de Notevertelug zweer Schülergruppe (Mädche,

Mehr

Schiefe- und Konzentrationsmaße

Schiefe- und Konzentrationsmaße Statstk für SozologIe Schefe- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Merkmal wurde 3 Gruppe beobachtet ud Form der folgede Häufgketstabelle berchtet: Klasse m Gruppe

Mehr

( ) å ( ) z.b. p = 0,25 oder = 0,5. 1 n. = å. = = å. ; falls n ungerade. = í1 ï + ; falls n gerade. Dr. Christian Schwarz

( ) å ( ) z.b. p = 0,25 oder = 0,5. 1 n. = å. = = å. ; falls n ungerade. = í1 ï + ; falls n gerade. Dr. Christian Schwarz BBA roesemar Tess Dr. Crsa Scwarz Formelsammlug Desrpve Sas. EINDIMENSIONALES DATENMATERIAL ( MERKMAL).. Noao Zal der Mermalsräger (Beobacugswere oder Messwere) Zal der Mermalsauspräguge bzw. Klasse (Cave:

Mehr

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt.

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt. Webull & Wöhler 0 CRGRAPH Wöhlerdagramm Im Wöhlerdagramm wrd de Lebesdauer ( oder Laufzet) ees Bautels Abhägget vo der Belastug dargestellt. Kurzetfestget Beaspruchug Zetfestget auerfestget 0 5 3 4 6 0

Mehr

Formelsammlung. Unter diesen Annahmen kann der Korrelationskoeffizient nach folgenden Schritten getestet werden:

Formelsammlung. Unter diesen Annahmen kann der Korrelationskoeffizient nach folgenden Schritten getestet werden: Formelammlug. Korrelatoaalye Korrelatooeffzet (Brava-Pearo) ( )( y y) y y r, r + ( ) ( y y) y y Stattcher et Soll tattch getetet werde, ob e learer Zuammehag zwche de Varable ud y für de Grudgeamthet beteht,

Mehr

Die Methode des 2.Moments

Die Methode des 2.Moments De Methode des 2.Momets Chrstoph Schmdt July 13, 2004 1 Eletug De Varaz eer Zufallsvarable st hre mttlere quadratsche Abwechug vo hrem Erwartugswert. V ar[x] = E[(X EX) 2 ] = E[X 2 ] E[X] 2 Der Term E[X

Mehr

Methoden der computergestützten Produktion und Logistik

Methoden der computergestützten Produktion und Logistik Methode der comutergestützte Produkto ud Logstk 9. Bedesysteme ud Warteschlage Prof. Dr.-Ig. habl. Wlhelm Dagelmaer Modul W 336 SS 06 Bedesysteme ud Warteschlage Besel: Fahrradfabrk Presse Puffer Lackerere

Mehr

Grundlagen der Entscheidungstheorie

Grundlagen der Entscheidungstheorie Kaptel 0 Grudlage der Etschedugstheore B. 0 (Gegestad) De Etschedugstheore befasst sch mt dem Etschedugsverhalte vo Idvdue ud Gruppe. Se besteht aus we Telgebete. Deskrptve Etschedugstheore De deskrptve

Mehr

Klausur Statistik IV Sommersemester 2009

Klausur Statistik IV Sommersemester 2009 Klausur Statstk IV (Lösug) Name, Vorame 013456 Klausur Statstk IV Sommersemester 009 Prof. Dr. Torste Hothor Isttut für Statstk Name: Name, Vorame Matrkelummer: 013456 Wchtg: ˆ Überprüfe Se, ob Ihr Klausurexemplar

Mehr

Institut für Produktionsmesstechnik Technische Universität Braunschweig. Klausur

Institut für Produktionsmesstechnik Technische Universität Braunschweig. Klausur Isu für Produkosmessechk Techsche Uversä Brauschweg Klausur Eführug de sassche Messdaeauswerug für Boechologe.3. Name:............................... Markel-Nr.:............................... Aufgabe

Mehr

Diskrete Zufallsvariablen. Wahrscheinlichkeitsräume Zufallsvariablen Erwartungswert Varianz. Quiz

Diskrete Zufallsvariablen. Wahrscheinlichkeitsräume Zufallsvariablen Erwartungswert Varianz. Quiz Dskrete Zufallsvarable Wahrschelchketsräume Zufallsvarable rwartugswert Varaz Quz Im Fall eer Glechvertelug sd glech große Telmege vo Ω glech wahrschelch. Z.B. glt für Ω{0,,}: {0}{}{} 3 {0,}{0,}{,} 3 Aalog

Mehr

Spezielle diskrete Verteilungen

Spezielle diskrete Verteilungen Spezelle dskrete Vertelugsfamle Dskrete Glechvertelug Beroull- oder Zwe-Pukt-Vertelug Bomalvertelug Hypergeometrsche Vertelug Possovertelug Geometrsche Vertelug Appromatoe Bblografe Bleymüller / Gehlert

Mehr

Höhere Mathematik 4 Kapitel 17 Wahrscheinlichkeitsrechnung

Höhere Mathematik 4 Kapitel 17 Wahrscheinlichkeitsrechnung Höhere Mathemat 4 Katel 7 Wahrschelchetsrechug Prof. Dr.-Ig. Deter Kraus Höhere Mathemat 4 Katel 7 Ihaltsverzechs 7 Wahrschelchetsrechug...7-7. Deftoe, Besele...7-7. Bedgte Wahrschelchete, uabhägge regsse...7-7.

Mehr

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste):

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste): Aufgabe. Gegebe see folgede Date eer statstsche Erhebug, berets ach Größe sortert (Raglste): 0 3 4 4 5 6 7 7 8 8 8 9 9 0 0 0 0 0 3 3 3 3 4 4 5 5 5 5 5 6 6 6 7 7 8 30 Erstelle Se ee Tabelle, der de Merkmalsauspräguge

Mehr

Einführung 2. Teil: Fehleranalyse

Einführung 2. Teil: Fehleranalyse Phscal Chemstr Phskalsch-chemsches Praktkum I Modul Eführug. Tel: Fehleraalse Ja Helbg, 9.09.06 Uterlage: htt://www.chem.uzh.ch/stud/old/documets/ear/che3.html Fehlerrechug Phscal Chemstr Gesucht: wahrer

Mehr

Mathematik für VIW - Prof. Dr. M. Ludwig Lineare Systeme in Jordanscher Normalform - Lineare Dgl'n höherer Ordnung.

Mathematik für VIW - Prof. Dr. M. Ludwig Lineare Systeme in Jordanscher Normalform - Lineare Dgl'n höherer Ordnung. Maeak für VIW - Prof. Dr. M. Ludwg 7.3.3 Leare Sysee Jordascer Noralfor - Leare Dgl' öerer Ordug Geg.: x Ax; A Jordascer Noralfor, d.. x x x x x x a a a a x x A x x Durc Ausullzere Ax eräl a x x x3 x x

Mehr

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen.

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen. Rudolf Brkma http://brkma-du.de Sete 0.0.008 Lagemaße der beschrebede Statstk. Zur Iterpretato eer Beobachtugsrehe ka ma ebe der grafsche Darstellug wetere charakterstsche Größe herazehe. Mttelwert ud

Mehr

Institut für Produktionsmesstechnik Technische Universität Braunschweig. Klausur

Institut für Produktionsmesstechnik Technische Universität Braunschweig. Klausur Isu für Produkosmessechk Techsche Uversä Brauschweg Klausur Eführug de sassche Messdaeauswerug für Boechologe 7. 6. 4 Name:................................ Markel-Nr.:................................ Lfd.

Mehr

( x) eine Funktion definiert, in der nur die i-te Komponente variabel ist. Folgende Schreibweisen werden aufgrund dieser Anmerkungen auch verwendet:

( x) eine Funktion definiert, in der nur die i-te Komponente variabel ist. Folgende Schreibweisen werden aufgrund dieser Anmerkungen auch verwendet: Pro. Dr. Fredel Bolle LS ür Volkswrtschatslehre sb. Wrtschatstheore (Mkroökoome) Vorlesug Mathematk - WS 008/009 4. Deretalrechug reeller Fuktoe IR IR (Karma, S. 00 06, dort glech ür IR IR m ) 4. Partelle

Mehr

v. Weter st + r X + = ( X + ) = ( X + ) ( X + ) = P Deshalb fr 6 6 = + X = K, d. h. I desem Berech ( 6 6 ) glt also ( Idukto ach ) ( ) ( mod ), was fr

v. Weter st + r X + = ( X + ) = ( X + ) ( X + ) = P Deshalb fr 6 6 = + X = K, d. h. I desem Berech ( 6 6 ) glt also ( Idukto ach ) ( ) ( mod ), was fr 5. De Stze vo Sylow Im gaze Abschtt st G ee edlche Grue, 4 #( G). 5.. Problem: Gbt es zu jedem Teler t vo ( tj ) ee Utergrue H mt #( H) = t? We ja, wevele? Gegebesel: 9 Utergrue H vo G = A 5 mt #( H) =

Mehr

a) A, B sein Aussagen, betrachtet werde die Aussageverbindungen A B B und A B. Beweisen Sie deren Äquivalenz durch eine Wahrheitstabelle

a) A, B sein Aussagen, betrachtet werde die Aussageverbindungen A B B und A B. Beweisen Sie deren Äquivalenz durch eine Wahrheitstabelle . Auge ud ege A B e Auge berche werde de Augeerbduge A B B ud A B. Bewee Se dere Äqulez durch ee Whrhebelle b Selle Se de ege C der Gußche Zhleebee dr! } { z z C z } Im z > } 6 Puke. Komplee Zhle Bereche

Mehr

Standardnormalverteilung. Normalverteilung. Verteilungsfunktion. Intervallwahrscheinlichkeiten

Standardnormalverteilung. Normalverteilung. Verteilungsfunktion. Intervallwahrscheinlichkeiten Normalvertelug Stadardormalvertelug Normalvertelug N(μ, ) mt chte : Gaußche Glockekurve μ μ μ+ μ >, f ( ) = ( μ) WS 7/8 Prof. r. J. Schütze, FB GW NV π Egechafte der chte: - Mamum μ - mmetrch zu μ - Wedepukte

Mehr

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes Quellecoderug I: Redudazredukto, redudazsparede Codes Quellecoderug Durch de Quellecoderug werde de Date aus der Quelle codert, bevor se ee Übertragugskaal übertrage werde De Coderug det der Verkleerug

Mehr

Ein paar einfache q-analoga des binomischen Lehrsatzes

Ein paar einfache q-analoga des binomischen Lehrsatzes E paar efache -Aaloga des bosche Lehrsatzes Joha Cgler Sowet r beat st, gbt es ee allgeee Utersuchuge darüber, we sch das Reurrezverhalte vo Boalsue ädert, we a de Boaloeffzete durch ersetzt U ee erste

Mehr

Klausur SS 2005 Version 1

Klausur SS 2005 Version 1 BEMERKUG: für de Rchtgket der Lösuge wrd atürlch kee Garate überomme!! Klausur SS 005 Verso Aufgabe : e Gamma-Quat hat kee Ladug > el. Felder übe kee Kräfte aus > kee Kräfte, kee Äderug der Bewegug (ewto)

Mehr

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 54

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 54 Prof. Dr. H. Rommelfager: tschedugstheore, Katel 3 54 3.2.8 ARROW-PRATT-Maß für de Rskoestellug Rskoverhalte bsher grob kategorsert ach Rskoeutraltät, -symathe ud averso be Rskoaverso: (X) < SÄ Rskoräme

Mehr

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 4. Marshallsche Nachfragefuktoe Frage:

Mehr

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik Prof. Dr. Ig. Post Grudlage der Eergetechk Eergewrtschaft Kosterechug EEG. Vorlesug EEG Grudlage der Eergetechk De elektrsche Eergetechk st e sogeates klasssches Fach. Folglch st deses Fach vele detallert

Mehr

DOOH Audience Measurement 2015

DOOH Audience Measurement 2015 DOOH Audece Measuremet 2015 Berechug Kezahle GfK Swtzerlad Hergswl, 2. März 2016 1 Modul A Stadort-Stchrobe (vor Ort) Werbeträger- ud Werbemttel-Kotakt-Chace Stellschraube Modul B Reräsetatve Bevölkerugsstude

Mehr

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 7, Wintersemester vom 21. Januar 2006

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 7, Wintersemester vom 21. Januar 2006 Prof. E.-W. Zk Isttut für Matheatk Huboldt-Uverstät zu Berl Eleete der Algebra ud Zahletheore Musterlösug, Sere 7, Wterseester 2005-06 vo 21. Jauar 2006 1. Se = 2 p 1 Mersee-Zahl, d.h. p P 1. a) Zege:

Mehr