1 Mathe Formeln Statistik und Wahrscheinlichkeitsrechnung

Größe: px
Ab Seite anzeigen:

Download "1 Mathe Formeln Statistik und Wahrscheinlichkeitsrechnung"

Transkript

1 1 Mathe Formel Statstk ud Wahrschelchketsrechug Jör Horstma, Alle Agabe ohe Gewähr. w017/ 1.1 Grudlage Ezelklasse [a ; b [ Klassewete Klassemtte Mttelwert b a = w x = a+b x = 1 x =1 }{{} = grupperte Werte x h =1 x h =1 }{{} klasserte Date Absolute Häufgket Relatve Häufgket Kumulerte Häufgket h = H = h j Meda, aalog für Q 1 (0, 5) ud Q 3 (0, 75) Modalklasse (klasserte Date) z = a + 0, 5 H 1 h h w = max Geometrsches Mttel (be Wachstumsrate) w x g = x 1 x x 3... x Hstogramm: Fläche des Rechtecks proportoal zu h h = h w 1. Streuugsmaße R = Spabrete = x max x m Q = Quartlsabstad = Q 3 Q 1 d m = 1 x m d z = 1 x z d x = 1 x x = Varaz = 1 (x x) = 1 x x = x h x = Stadardabwechug = V = Varatoskoeffzet = x Der G-Koeffzet D G = (Hk 1 + H k ) k x k 1 (grup. Date) x (H 1 + H ) x 1 (klass. Date) x 1

2 D G = 0 absolute Glechvertelug 0 < D G < 0, 4 gerge Kozetrato 0, 4 D G < 0, 6 mttlere Kozetrato 0, 6 D G < 1 hohe Kozetrato D G = 1 absolute Kozetrato De Lorez-Kurve c = x x x x C = j=1 c j Atele der Merkmalssumme 1.3 Korrelato ud Regresso Bedgte Häufgkete Kovaraz Cov(x, y) = xy Schutzkoeffzet S = max (S ) S = H C P (H ; C ) st e Pukt auf der Lorezkurve D G = Fläche zw. Wkelhalbereder ud Lorezkurve h (x y j fest) = h j = h j h j = j j xy = 1 (x x) (y ȳ) = 1 x y x ȳ x, y sd uabhägg Cov(x, y) = 0 Cov(x, y) 0 x, y sd abhägg x, y sd uahägg we für alle, j glt: j = j Korrelatoskoeffzet xy r = x y xy = r x y Regressosgerade Learer Zusammehag zw. x ud y, Suche eer Gerade ỹ = a + bx ach der Methode der kleste Quadrate f = (a + bx y ) f wrd am kleste we 1.4 Idzes Idex ach Laspeyres b = a = ȳ b x (y ȳ) (x x) (x x) = xy x Presdex I L 0,t(p) = Megedex I L 0,t(q) = t q0 p 0 q qt p 0 q0 100

3 Idex ach Paasche Presdex I P 0,t(p) = t qt p 0 qt 100 Megedex I P 0,t(q) = t qt p t q0 100 Idex ach Fscher Presdex I F 0,t(p) = Megedex I F 0,t(q) = I0,t L (p) IP 0,t (p) I0,t L (q) IP 0,t (q) 1.5 Wahrschelchkete Klasssche Defto der Wahrschelchket (Laplace) ur be Zufallsexpermete, dere Ergebsse gleche Wahrschelchket habe P (A) = Azahl der zu A gehörede Eregsse Azahl aller Eregsse = A G Bedge Wahrschelchket (Wahrschelchket vo A we B egetrete st) Addtossatz Spezeller Addtossatz we A B = {} Multplkatossatz P (A B) = P (A B) P (A B) = P (A) + P (A B) = P (A \ B) + P (A B) + P (B \ A) P (A B) = P (A) + P (A B) = P (A B) P (A B) = P (A) P (B A) Satz der totale Wahrschelchket A 1, A, A 3,..., A see dsjukte Eregsse mt A 1 A A 3... A = G B = (B A 1 ) (B A ) (B A 3 )... (B A ) = P (A ) P (B A ) =1 Satz vo Bayes A 1, A, A 3,..., A see dsjukte Eregsse mt A 1 A A 3... A = G P (A B) = P (A B) = P (A ) P (B A ) 3

4 1.6 Kombatork ohe Wederholug Permutato verschedee Elemete P () =! mt Wederholug gruppewese detsche Elemete 1,, 3,... P ( 1,,...) = ( )! 1!!... Varato (Rehefolge wchtg) Kombato (Rehefolge uwchtg) m Elemete acheader aus Elemete zehe. V (m, ) =! ( m)! glechzetges Zehe (mt eem Grff) m aus ( )! C(m, ) = = m m!( m)! m ( ) + m 1 m 1.7 Zufallsverteluge Dskrete ZV Dskrete Glechvertelug (Laplace) x mmt verschedee Werte a E(X) = f(x ) x V ar(x) = f(x ) x µ f(x = x ) = 1 Bomalvertelug (Beroull - Expermet) E Zufallsexpermet mt zwe möglche Ausgäge wrd -mal wederholt, p st Wahrschelchket des güstge Ausgags ud k st de Azahl der güstge Ausgäge P (A) = p P (Ā) = ( 1 ) p = q P (X = k) = p k (1 p) k k E(X) = p V ar(x) = p (1 p) Posso-Vertelug Approxmato der Bomalvertelug B(, p) we > 50 ud p < 0, 05 P (X = k) = µk e µ k! = P (k 1) µ k Hypergeometrsche Vertelug Ee Ure ethält N Elemete, davo M güstge. Es werde Elemete ohe zurücklege (mt 4

5 eem Grff) gezoge. X = Azahl der dabe gezogee güstge Elemete. ( M )( N M ) k k P (X = k) = ( N ) 1.7. Stetge ZV E(X) = M N V ar(x) = M N N M N N N 1 E(X) = V ar(x) = f(x) x dx f(x) x dx µ Normalvertelug P (X = k) = 1 (x µ) π e Stadardormalvertelug, Vertelugsfukto Φ Z = X µ E(Z) = 0 V ar(z) = 1 ( P (X a) = P Z a µ ) ( ) a µ = Φ Φ( Z) = 1 Φ(Z) ( c ) P (µ c X µ + c) = Φ 1 Leare Trasformato Y = ax + b E(Y ) = a + E(X) V ar(y ) = b V ar(x) X, Y uabhägg E(X + Y ) = E(X) + E(Y ) V ar(x + Y ) = V ar(x) + V ar(y ) x st N(µ, ) für = 1... x = x 1 + x x E( x) = µ V ar( x) = st ebefalls ormalvertelt 1.8 Hypothesetest Fehler 1. Art: De rchtge Hypothese wrd abgeleht Fehler. Art: De falsche Hypothese wrd ageomme 5

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Aufgabe ud Lösuge vo Peter M Schulze, Verea Dexhemer. Auflage Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Schulze / Dexhemer schell ud portofre

Mehr

Asymptotische Normalverteilung nach dem zentralen Grenzwertsatz

Asymptotische Normalverteilung nach dem zentralen Grenzwertsatz Asymptotsche ormalvertelug ach dem zetrale Grezwertsatz Erwartugswert eer Summe vo Zufallsvarable mt jewels de Erwartugswert x (Y Y Asymptotsche ormalvertelug ach dem zetrale Grezwertsatz Varaz eer Summe

Mehr

Formelsammlung Statistik

Formelsammlung Statistik Deskrptve Statstk Formelsammlug Statstk. Edmesoale Häugketsverteluge Merkmal: X Datemege (Stchprobe) vom Umfag N: x, x 2,..., x geordete Stchprobe: x (), x (2),..., x () mt x () x (2)... x () Auspräguge

Mehr

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und:

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und: 1 L - Hausaufgabe Nr. 55 Sotag, 1. Ju 2003 Ee Müze werde dremal geworfe. Was st das Zufallsexpermet, das Elemetareregs, das zusammegesetzte Eregs, der Eregsraum ud de Wahrschelchket? Lösugs kte.: 1 De

Mehr

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung.

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung. Rudolf Brkma http://brkma-du.de Sete 06.0.008 Spawete, Meda Quartlsabstad, Varaz ud Stadardabwechug. Streuug um de Mttelwert. I de folgede Säuledagramme st de Notevertelug zweer Schülergruppe (Mädche,

Mehr

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste):

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste): Aufgabe. Gegebe see folgede Date eer statstsche Erhebug, berets ach Größe sortert (Raglste): 0 3 4 4 5 6 7 7 8 8 8 9 9 0 0 0 0 0 3 3 3 3 4 4 5 5 5 5 5 6 6 6 7 7 8 30 Erstelle Se ee Tabelle, der de Merkmalsauspräguge

Mehr

Verteilungen und Schätzungen

Verteilungen und Schätzungen Verteluge ud Schätzuge Zufallseperet Grudbegrffe Vorgag ach eer bestte Vorschrft ausgeführt ( Przp) belebg oft wederholbar se Ergebs st zufallsabhägg be ehralge Durchführug des Eperets beeflusse de Ergebsse

Mehr

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...}

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...} 1 Allgeme Geometrsche Rehe: q t = 1 q1 t=0 1 q Mtterachtsformel: ax 2 bxc=0 x 1/ 2 = b±b2 4ac 2a Bomsche Formel: 1. ab 2 =a 2 2abb 2 2. a b 2 =a 2 2abb 2 3. ab a b=a 2 b 2 Wurzel: ugerade 1 Ergebs gerade

Mehr

Teil IV Musterklausuren (Univ. Essen) mit Lösungen

Teil IV Musterklausuren (Univ. Essen) mit Lösungen Tel IV Musterklausure (Uv. Esse) mt Lösuge Hauptklausur WS 9/9 Aufgabe : a) Revolverheld R stzt m Saloo ud pokert. De Wahrschelchket, daß er dabe ee seer Mtspeler bem Falschspel erwscht (Eregs F), bezffert

Mehr

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk ----------------------------------------------------------------------------------------------- Bedgte Wahrschelchket

Mehr

Stochastik. Ba-Studiengang Scientific Programming Wintersemester 2016/2017 FH AACHEN UNIVERSITY OF APPLIED SCIENCES

Stochastik. Ba-Studiengang Scientific Programming Wintersemester 2016/2017 FH AACHEN UNIVERSITY OF APPLIED SCIENCES Stochastk Ba-Studegag Scetfc rogrammg Wtersemester 06/07 FH CHN UNIVRSITY OF LID SCINCS Vorlesugshalte Stochastk I. Wahrschelchketsrechug I. führug de Kombatork I. Grudbegrffe I.3 Wahrschelchket I.4 Wahrschelchketsvertelug

Mehr

Methoden der computergestützten Produktion und Logistik

Methoden der computergestützten Produktion und Logistik Methode der comutergestützte Produkto ud Logstk 9. Bedesysteme ud Warteschlage Prof. Dr.-Ig. habl. Wlhelm Dagelmaer Modul W 336 SS 06 Bedesysteme ud Warteschlage Besel: Fahrradfabrk Presse Puffer Lackerere

Mehr

Statistik mit Excel und SPSS

Statistik mit Excel und SPSS Stattk mt Excel ud SPSS G. Kargl Grudbegrffe Grudgeamthet Erhebugehet Merkmale Werteberech Stchprobe Telbereche der Stattk: Dekrtpve Stattk Iduktve Stattk Exploratve Stattk U- / B- / Multvarate Stattk

Mehr

Verdichtete Informationen

Verdichtete Informationen Verdchtete Iormatoe Maßzahle Statstke be Stchprobe Parameter be Grudgesamthete Maßzahle zur Beschrebug uvarater Verteluge Maßzahle der zetrale Tedez (Mttelwerte) Maßzahle der Varabltät (Streuugswerte)

Mehr

Ergebnis- und Ereignisräume

Ergebnis- und Ereignisräume I Ergebs- ud Eregsräume Zufallsexpermete Defto: E Expermet, welches belebg oft uter gleche Bedguge wederholbar st ud desse Ergebs cht mt Bestmmthet vorhergesagt werde ka (d.h. es gbt md. 2 Mgk.), heßt

Mehr

Maße zur Kennzeichnung der Form einer Verteilung (1)

Maße zur Kennzeichnung der Form einer Verteilung (1) Maße zur Kezechug der Form eer Vertelug (1) - Schefe (skewess): Defto I - Ee Vertelug vo Messwerte wrd als schef bezechet, we se der Wese asymmetrsch st, dass lks oder rechts des Durchschtts ee Häufug

Mehr

Statistik II. Unterlagen zur Vorlesung. Wahrscheinlichkeitsrechnung und Schließende Statistik. Formeln, Tabellen, Beispiele

Statistik II. Unterlagen zur Vorlesung. Wahrscheinlichkeitsrechnung und Schließende Statistik. Formeln, Tabellen, Beispiele Johaes Guteberg-Uverstät Fachberech Rechts- ud Wrtschaftswsseschafte Isttut für Statstk ud Ökoometre Uv.-Prof. Dr. Peter M. Schulze Uterlage zur Vorlesug Statstk II Wahrschelchketsrechug ud Schleßede Statstk

Mehr

Ordnungsstatistiken und Quantile

Ordnungsstatistiken und Quantile KAPITEL Ordugsstatste ud Quatle Um robuste Lage- ud Streuugsparameter eführe zu öe, beötge wr Ordugsstatste ud Quatle... Ordugsstatste ud Quatle Defto... Se (x,..., x R ee Stchprobe. Wr öe de Elemete der

Mehr

Was ist Statistik? Wozu Statistik? Wie Statistik? Statistische Daten. Statistische Merkmale. Page 1

Was ist Statistik? Wozu Statistik? Wie Statistik? Statistische Daten. Statistische Merkmale. Page 1 Vorlesugsuterlage Statstk ud Wahrschelchketstheore für Iformatker (Tel: Deskrptve Statstk) (WS 6/7) vorläufge Fassug Was st Statstk? Deskrptve Statstk (beschrebed, zusammefassed) Iduktve Statstk (vo Stchprobe

Mehr

Schiefe- und Konzentrationsmaße

Schiefe- und Konzentrationsmaße Statst für SozologIe Schefe- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Mermal wurde 3 Gruppe beobachtet ud Form der folgede Häufgetstabelle berchtet: Klasse m Gruppe

Mehr

Universitätslehrgang Sports Physiotherapy Einführung in die Statistik

Universitätslehrgang Sports Physiotherapy Einführung in die Statistik Departmet of Sport Scece ad Kesolog Uverstätslehrgag Sports Phsotherap Eführug de Statstk Gerda Strutzeberger Block I Block Mttwoch 5..0 3:00 bs 4:50 Grudlage, Skaleveau 5:05 bs 7:00 Gütekrtere, Hpothese,

Mehr

Einführung Fehlerrechnung

Einführung Fehlerrechnung IV Eführug Fehlerrechug Fehlerrechuge werde durchgeführt, um de Vertraueswürdgket vo Meßergebsse beurtele zu köe. Uter dem Fehler eer Messug versteht ma de Abwechug ees Meßergebsses vom (grudsätzlch ubekate

Mehr

II. Wahrscheinlichkeitsrechnung

II. Wahrscheinlichkeitsrechnung II. Wahrschelchketsrechug Vorlesugsmtschrft - Kurzfassug Prof. Dr. rer. at. B. Grabowsk HTW des Saarlades 005 Ihalt II. Wahrschelchketsrechug INHALTSVERZEICHNIS GRUNDLAGEN / DEFINITION DER WAHRSCHEINLICHKEIT...3.

Mehr

Ingrid A. Uhlemann (2015): Einführung in die Statistik für Kommunikationswissenschaftler. Online Anhang: Lösung der Übungsaufgaben Kapitel 5-8,

Ingrid A. Uhlemann (2015): Einführung in die Statistik für Kommunikationswissenschaftler. Online Anhang: Lösung der Übungsaufgaben Kapitel 5-8, Igrd A. Uhlema (015): Eführug de Statstk für Kommukatoswsseschaftler. Ole Ahag: Lösug der Übugsaufgabe Kaptel 5-8, Lösug der Übugsaufgabe Kaptel 5: Aufgabe 1: Geg.: Persoalserug ordal skalert, dskret Dauer

Mehr

Multiple Regression (1) - Einführung I -

Multiple Regression (1) - Einführung I - Multple Regreo Eführug I Mt eem Korrelatokoeffzete ud der efache leare Regreo köe ur varate Zuammehäge zwche zwe Varale uterucht werde. Beutzt ma tatt dee mehrere Varale zur Vorherage, egt ma ch auf da

Mehr

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n).

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n). Aufgabe Wr betrachte ee Reteverscherug der Retebezugszet mt jährlch vorschüssger Retezahlug solage der Verscherte lebt. a) Bezeche V bzw. V de rechugsmäßge Deckugsrückstellug am Afag bzw. am Ede des Verscherugsjahres.

Mehr

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik Formelsammlug rtschaftsmathemat / Statst Formelsammlug für de Lehrverastaltug rtschaftsmathemat / Statst zugelasse für de Klausure zur rtschaftsmathemat ud Statst de Studegäge der Techsche Betrebswrtschaft

Mehr

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen.

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen. Rudolf Brkma http://brkma-du.de Sete 0.0.008 Lagemaße der beschrebede Statstk. Zur Iterpretato eer Beobachtugsrehe ka ma ebe der grafsche Darstellug wetere charakterstsche Größe herazehe. Mttelwert ud

Mehr

Lageparameter (Mittelwerte) und Streuungsparameter

Lageparameter (Mittelwerte) und Streuungsparameter Statstk Grudlage Charakterserug vo Verteluge Eführug Wahrschelchketsrechug Wahrschelchketsverteluge Schätze ud Teste Korrelato Regresso Lageparameter (Mttelwerte) ud Streuugsparameter Mttelwerte: Gebe

Mehr

Peter von der Lippe. Induktive Statistik. Formeln, Aufgaben, Klausurtraining

Peter von der Lippe. Induktive Statistik. Formeln, Aufgaben, Klausurtraining Peter vo der Lppe Iduktve Statstk Formel, Aufgabe, Klausurtrag Ursprüglch verlegt be Oldebourg, her überarbeteter Form als dowload zur Verfügug gestellt Oldebourg Tel I Formelsammlug mt Tabelleahag 3 vo

Mehr

II. Wahrscheinlichkeitsrechnung

II. Wahrscheinlichkeitsrechnung II. Wahrschelchketsrechug Vorlesugsmtschrft - Kurzfassug Prof. Dr. rer. at. B. Grabowsk HTW des Saarlades 00 II. Wahrschelchketsrechug INHALTSVERZEICHNIS GRUNDLAGEN / DEFINITION DER WAHRSCHEINLICHKEIT...3.

Mehr

Sitzplatzreservierungsproblem

Sitzplatzreservierungsproblem tzplatzreserverugsproblem Be vele Zugsysteme Europa müsse Passagere mt hrem Zugtcet ee tzplatzreserverug aufe. Da das Tcetsystem Kude ee ezele Platz zuwese muss, we dese e Tcet aufe, ohe zu wsse, welche

Mehr

Das virtuelle Bildungsnetzwerk für Textilberufe

Das virtuelle Bildungsnetzwerk für Textilberufe Das vrtuelle Bldugsetzwerk für Textlberufe Grudlage der Statstk 003 Hochschule Nederrhe Autor: Prof. Dr. Rud Voller Stad: 0.0.0033 Sete / 9 Grudlage der Statstk Uter eer Statstk versteht ma ee Aufglederug

Mehr

Regressionsrechnung und Korrelationsrechnung

Regressionsrechnung und Korrelationsrechnung Regressosrechug ud Korrelatosrechug Beschrebede Statstk Modul : Probleme be der Abhäggketsaalyse Problem : Es gbt mest cht ur ee Eflussfaktor (Probleme sd selte mookausal ) A Ursache() Wrkug B C - efache

Mehr

Regressionsgerade, lineares Modell:

Regressionsgerade, lineares Modell: Statstk Grudlage Charakterserug vo Verteluge Eführug Wahrschelchketsrechug Wahrschelchketsverteluge Schätze ud Teste Korrelato Regresso Eführug Durch de Regressosaalyse wrd versucht, de Art des Zusammehags

Mehr

Kommentierte Formelsammlung der deskriptiven und induktiven Statistik für Wirtschaftswissenschaftler

Kommentierte Formelsammlung der deskriptiven und induktiven Statistik für Wirtschaftswissenschaftler Kommeterte Formelsammlug der deskrptve ud duktve Statstk für Wrtschaftswsseschaftler Prof. Dr. Iree Rößler Prof. Dr. Albrecht Ugerer Wetere Bespele ud ausführlche Erläuteruge sowe detallerte Lösuge der

Mehr

Höhere Mathematik 4 Kapitel 17 Wahrscheinlichkeitsrechnung

Höhere Mathematik 4 Kapitel 17 Wahrscheinlichkeitsrechnung Höhere Mathemat 4 Katel 7 Wahrschelchetsrechug Prof. Dr.-Ig. Deter Kraus Höhere Mathemat 4 Katel 7 Ihaltsverzechs 7 Wahrschelchetsrechug...7-7. Deftoe, Besele...7-7. Bedgte Wahrschelchete, uabhägge regsse...7-7.

Mehr

2. Zusammenhangsanalysen: Korrelation und Regression

2. Zusammenhangsanalysen: Korrelation und Regression 2. Zusammehagsaalse: Korrelato ud Regresso Dowloads zur Vorlesug 2. Zusammehagsaalse: Korrelato ud Regresso 2 Grudbegrffe zwedmesoale Stchprobe De Gewug vo mehrere Merkmale vo eer Beobachtugsehet führt

Mehr

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt.

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt. Webull & Wöhler 0 CRGRAPH Wöhlerdagramm Im Wöhlerdagramm wrd de Lebesdauer ( oder Laufzet) ees Bautels Abhägget vo der Belastug dargestellt. Kurzetfestget Beaspruchug Zetfestget auerfestget 0 5 3 4 6 0

Mehr

Mehrdimensionale Zufallsvariablen

Mehrdimensionale Zufallsvariablen Mehrdmesoale Zufallsvarable Vertelug eer mehrdmesoale Zufallsvarable Stochastsche Uabhäggket vo Varable Erwartugswerte zwedmesoaler Zufallsvarable Eführug de Statstk mt R Bblografe Bleymüller / Gehlert

Mehr

(Markowitz-Portfoliotheorie)

(Markowitz-Portfoliotheorie) Thema : ortfolo-selekto ud m-s-rzp (Markowtz-ortfolotheore) Beurtelugskrtere be quadratscher Nutzefukto: Beroull-rzp + quadratsche Nutzefukto Thema Höhekompoete: Erwartugswert µ Rskokompoete: Stadardabwechug

Mehr

Test für Varianz. Test für Varianz. Test für Varianz. Die Kontingenztabelle. Statistik 2 4. Vorlesung. Wiederholung: zweidimensionales Datenmaterial

Test für Varianz. Test für Varianz. Test für Varianz. Die Kontingenztabelle. Statistik 2 4. Vorlesung. Wiederholung: zweidimensionales Datenmaterial Statstk 4. Vorlesug Test für Varaz Estchprobetest für de Varaz: Hat de Varaz ee bestmmte Wert, bzw. legt er eem bestmmte Berech? Etschedug basert auf dem Ergebs eer ezge Stchprobe. Zwestchprobetest für

Mehr

i P(A H i) P(H i ) (x i ˆx i ) 2 n n i=1 (x i x i ) 2 = 1 i=1 (ˆx i x i ) 2 (x + y) n = x j y n j f(x)dx = 1 f(x 1,..., x n)dx 1 dx n = 1

i P(A H i) P(H i ) (x i ˆx i ) 2 n n i=1 (x i x i ) 2 = 1 i=1 (ˆx i x i ) 2 (x + y) n = x j y n j f(x)dx = 1 f(x 1,..., x n)dx 1 dx n = 1 ZUSAMMENFASSUNG DES SKRIPTUMS ZU EINFÜHRUNG IN DIE WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK VON PROF. FELSENSTEIN PHILIPP DÖRSEK Der Autor übermmt keerle Garate für de Rchtgket. De meste Beträge wurde

Mehr

Gliederung des Kurses:

Gliederung des Kurses: Lageparameter Sete Glederug des Kurses: I II Allgemee Grudlage Statstsche Aalyse ees ezele Merkmals Aalyse/Beschrebug ees ezele Merkmals Zel: Verdchtug (Komprmerug) eer uüberschaubare Datemege Komprmerede

Mehr

Lage- und Streuungsmaße

Lage- und Streuungsmaße Statstk für SozologIe Lage- ud Streuugsmaße Uv.Prof. Dr. Marcus Hudec Beschrebug quattatver Date Um de emprsche Vertelug ees quattatve Merkmals zu beschrebe, betrachte wr Parameter, de ee Verdchtug der

Mehr

Lorenz' sche Konzentrationskurve und Disparitätsindex nach Gini

Lorenz' sche Konzentrationskurve und Disparitätsindex nach Gini Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Lorez' sche Kozetratoskurve ud Dspartätsdex ach G Übuge Aufgabe Lösuge www.f-lere.de Begrff Lorez'

Mehr

II. Beschreibende Statistik

II. Beschreibende Statistik II. Beschrebede Statstk II. Merkmale ud wchtge Begrffe Aufgabe der beschrebede Statstk: Große ud uüberschtlche Datemege so aufberete, dass wege aussagekräftge Kegröße ud/oder Graphke etstehe, dee de gesamte

Mehr

2. Mittelwerte (Lageparameter)

2. Mittelwerte (Lageparameter) 2. Mttelwerte (Lageparameter) Bespele aus dem täglche Lebe Pro Hemspel hatte Borussa Dortmud der letzte Saso durchschttlch 7.2 Zuschauer. De deutsche Akte sd m Durchschtt um 0 Zähler gefalle. I Ide wurde

Mehr

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik Prof. Dr. Ig. Post Grudlage der Eergetechk Eergewrtschaft Kosterechug EEG. Vorlesug EEG Grudlage der Eergetechk De elektrsche Eergetechk st e sogeates klasssches Fach. Folglch st deses Fach vele detallert

Mehr

Die Kontingenztabelle. Randhäufigkeiten. Teststatistik (Chi-Quadrat Statistik) Unabhängigkeitshypothese. Wiederholung: zweidimensionales Datenmaterial

Die Kontingenztabelle. Randhäufigkeiten. Teststatistik (Chi-Quadrat Statistik) Unabhängigkeitshypothese. Wiederholung: zweidimensionales Datenmaterial Statstk 4. Vorlesug Wederholug: zwedmesoales Datemateral Beobachtuge, jeder hat Werte für m Merkmaler, also jeder besteht aus Merkmalauspräguge. z.b. wr otere de Grösse ud das Umsatz verschedee Flale (m).

Mehr

Korrelations- und Assoziationsmaße

Korrelations- und Assoziationsmaße k m χ : j l r +. Zusammehagsmaße ( o e ) jl jl e jl Korrelatos- ud Assozatosmaße e jl 5 Merkmal Y Summe X b b m a H (a,b) H (a,b). a H (a,b) H (a,b). Summe.. Zusammehagsmaße Eführug Sche- ud Noses-Korrelato

Mehr

Einführung in Statistik

Einführung in Statistik Eführug Statstk 4. Semester Begletedes Skrptum zur Vorlesug m Fachhochschul-Studegag Iformatostechologe ud Telekommukato vo Güther Kargl FH Campus We 2009 Ihaltsverzechs Eführug Statstk Eletug. Deskrptve

Mehr

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten Festverzslche Wertaere Kurse ud Redte be gazzahlge Restlaufzete Glederug. Rückblck: Grudlage der Kursrechug ud Redteermttlug 2. Ausgagsstuato 3. Herletug der Formel 4. Abhäggket vom Marktzsveau 5. Übugsaufgabe

Mehr

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 4. Marshallsche Nachfragefuktoe Frage:

Mehr

Hochschule München Fakultät Wirtschaftsingenieurwesen Datenanalyse

Hochschule München Fakultät Wirtschaftsingenieurwesen Datenanalyse Hochschule Müche Fakultät Wrtschaftsgeeurwese Dateaalyse Prof. Dr. Volker Abel Verso. Ihaltsverzechs Ihaltsverzechs. Auswertug ud Modellerug vo Zähldate.... Auswertug vo prozetuale Häufgkete.... Auswertug

Mehr

Sozialwissenschaftliche Methoden und Statistik I

Sozialwissenschaftliche Methoden und Statistik I Sozalwsseschaftlche Methode ud Statstk I Uverstät Dusburg Esse Stadort Dusburg Itegrerter Dplomstudegag Sozalwsseschafte Skrpt zum SMS I Tutorum Vo Mark Lutter Stad: Aprl 004 Tel I Deskrptve Statstk Mark

Mehr

Maßzahlen zur Beschreibung von Verteilungen

Maßzahlen zur Beschreibung von Verteilungen Programmcode: Lagemaße Maßzahle zur Beschrebug vo Verteluge > c(0,,5,6,3,0,-) > mea() [] > meda() [] > table() - 0 3 5 6 kee drekte Modusfukto 0 zwemal Uvarate Deskrpto ud Eplorato vo Date - Maßzahle zur

Mehr

Geometrisches Mittel und durchschnittliche Wachstumsraten

Geometrisches Mittel und durchschnittliche Wachstumsraten Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Geometrsches Mttel ud durchschttlche Wachstumsrate Modellaufgabe Übuge Lösuge www.f-lere.de Geometrsches

Mehr

Eigenwerteinschließungen I

Eigenwerteinschließungen I auptsemar: Numersche Lösuge für Egewertaufgabe Egewerteschleßuge I Referet: Wolfgag Wesselsky Glederug Eletug Kodto vo Egewerte 3 Eschleßugssätze Bauer-Fke, Gershgor, Wlkso, Bedxo 4 Zusatz: Courat / Weyl

Mehr

2 Regression, Korrelation und Kontingenz

2 Regression, Korrelation und Kontingenz Regresso, Korrelato ud Kotgez I desem Kaptel lerst du de Zusammehag zwsche verschedee Merkmale durch Grafke zu beschrebe, Maßzahle ür de Stärke des Zusammehags zu bereche ud dese zu terpretere, das Wsse

Mehr

1 Zufallsvorgänge und Wahrscheinlichkeiten

1 Zufallsvorgänge und Wahrscheinlichkeiten Zufallsvorgäge ud Wahrschelchkete MANFRED BOROVCNIK Ihaltsverzechs. Zufallsvorgäge. Wahrschelchkete.3 Bedgte Wahrschelchkete ud Uabhäggket. Zufallsvorgäge Zufallsvorgäge ud Ergebsmege Eregsse ud hre Verküpfug

Mehr

Thema 5: Reduzierte Datenanforderungen II: Naive Diversifikation

Thema 5: Reduzierte Datenanforderungen II: Naive Diversifikation Thea 5: Reduzerte Dateaforderuge II: Nave Dversfkato roble: Klealeger verfüge oft cht eal über hrechede Iforatoe zur Awedug des Sgle-Idex-Modells. I wetere: Herletug eer Hadlugsepfehlug für de Fall fehleder

Mehr

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) 6. Zuammehagmaße Kovaraz ud Korrelato Problemtellug: Bher: Ee Varable pro Merkmalträger, Stchprobe x,, x Geucht: Maße für Durchchtt, Streuug, uw. Jetzt: Zwe metrche! Varable pro Merkmalträger, Stchprobe

Mehr

Übung Statistik II SS 2006 Musterlösung Arbeitsblatt 6

Übung Statistik II SS 2006 Musterlösung Arbeitsblatt 6 Ihalt: Efaktorelle Varazaalyse Bortz: Bortz Kap. 7.0-7. Übug Statstk II SS 006 Musterlösug rbetsblatt 6 ufgabe 1: Nee Se de Verfahre für Mttelwertsvergleche, de Se bsher für tervallskalerte Date kee gelert

Mehr

Allgemeine Prinzipien

Allgemeine Prinzipien Allgemee Przpe Es estere sebe Grudehete der Physk; alle adere physkalsche Größe ka ma darauf zurückführe. Dese Grudehete sd: Läge [m] Masse [kg] Zet [s] Elektrsche Stromstärke [A] Temperatur [K], Stoffmege

Mehr

Einschlägige Begriffe zur Meßunsicherheit Dr. Wolfgang Kessel, Braunschweig

Einschlägige Begriffe zur Meßunsicherheit Dr. Wolfgang Kessel, Braunschweig Eschlägge Begrffe zur Meßuscherhet /7 Eschlägge Begrffe zur Meßuscherhet Dr. Wolfgag Kessel, Brauschweg De Aufstellug folgt cht der re lexografsch-alphabetsche Aordug. Verwadte Begrffe sd velmehr zu Gruppe

Mehr

= k. , mit k als Anzahl der Hypothesen A i und den Daten B. Bestimmtheitsmaß:!Determinationskoeffizient

= k. , mit k als Anzahl der Hypothesen A i und den Daten B. Bestimmtheitsmaß:!Determinationskoeffizient Ablehugsberech:!Sgfkazveau abhägge Gruppe: Gruppe vo Versuchspersoe, dee jede ezele Versuchsperso aus Gruppe A eer äquvalete Versuchsperso aus Gruppe B etsprcht (oder tatsächlch de gleche Versuchsperso

Mehr

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) Problemstellug: Bsher: Gesucht: 6. Zusammehagsmaße (Kovaraz ud Korrelato) Ee Varable pro Merkmalsträger, Stchprobe x1,, x Maße für Durchschtt, Streuug, usw. Bespel: Kurse zweer Akte ud a 9 aufeader folgede

Mehr

Formeln zur Statistik Statistik - Neff

Formeln zur Statistik Statistik - Neff Formel zur Statst Statst - Neff (.) Mttelwert, Varaz be Ezelwerte (.) Frehetsgrade (.3) Abwechugsquadrate (.4) Leare Efach-Regresso (.5) Multple leare Regresso, DW-Tabelle (.6) A'-Regresso (.7) V T Regresso

Mehr

wahlberechtigte Personen der BRD zur Bundestagswahl zugelassene Parteien (SPD, CDU, Grüne, FDP)

wahlberechtigte Personen der BRD zur Bundestagswahl zugelassene Parteien (SPD, CDU, Grüne, FDP) Zu Aufgabe 1) Sd folgede Merkmale dskret oder stetg? a) De durch ee wahlberechtgte Perso der BRD gewählte Parte be der Budestagswahl. b) Kraftstoffverbrauch ees Persoekraftwages auf 100 km. c) Zahl der

Mehr

Nagl, Einführung in die Statistik Seite 1

Nagl, Einführung in die Statistik Seite 1 Nagl, Eführug de Statstk Sete Eletug Damt der Wert des Faches Statstk für wsseschaftlche Utersuchuge besser gesehe werde ka, wrd zuerst e kurzer Abrß über de Ablauf eer wsseschaftlche Utersuchug voragestellt.

Mehr

( x) Thema 5 Verteilungen Statistik - Neff 5.1 ÜBERBLICK TEST-VERTEILUNGEN. Stetige Zufallsvariable Dichtefunktion f(x) Verteilungsfunktion F(x)

( x) Thema 5 Verteilungen Statistik - Neff 5.1 ÜBERBLICK TEST-VERTEILUNGEN. Stetige Zufallsvariable Dichtefunktion f(x) Verteilungsfunktion F(x) 5. ÜBERBLICK TEST-VERTEILUNGEN Dskrete Zufallsvarable Wahrschlk.-Fukto f( ) mt a W ( X = ) Vertelugsfukto F( ) mt a W ( X ) F( ) = W( X = ) å Stetge Zufallsvarable Dchtefukto f() Vertelugsfukto F() W(

Mehr

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK Mathematk: Mag. Schmd Wolfgag & LehrerIeteam Arbetsblatt 7-7 7. Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK STATISTISCHE GRUNDBEGRIFFE Statstk gledert sch zwe Telbereche De Beschrebede

Mehr

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 54

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 54 Prof. Dr. H. Rommelfager: tschedugstheore, Katel 3 54 3.2.8 ARROW-PRATT-Maß für de Rskoestellug Rskoverhalte bsher grob kategorsert ach Rskoeutraltät, -symathe ud averso be Rskoaverso: (X) < SÄ Rskoräme

Mehr

Quantitative Methoden in der klinischen Epidemiologie

Quantitative Methoden in der klinischen Epidemiologie Quattatve Methode der klsche Epdemologe Korrelato ud leare Regresso Lerzele Besteht e fuktoeller Zusammehag zwsche zwe Messuge a eem Patete? Korrelato als Maßzahl für de Stärke ees leare Zusammehages Beschrebe

Mehr

Folien zur Vorlesung. Statistik für LM- Chemiker und Ernährungswissenschaftler. (Teil 1: Beschreibende Statistik) U. Römisch

Folien zur Vorlesung. Statistik für LM- Chemiker und Ernährungswissenschaftler. (Teil 1: Beschreibende Statistik) U. Römisch Fole zur Vorlesug Statstk für LM- Chemker ud Erährugswsseschaftler (Tel : Beschrebede Statstk) U. Römsch http://www.tu-berl.de/fak3/staff/roemsch/homepage.html Ihaltsverzechs EINLEITUNG. Was versteht ma

Mehr

Grundbegriffe. Verknüpfungen. Verknüpfungen. Rechenregeln für Mengenverknüpfungen

Grundbegriffe. Verknüpfungen. Verknüpfungen. Rechenregeln für Mengenverknüpfungen Grudbegrffe Verüpfuge Zufallsexpermet Grudraum/ Eregsraum Ω Elemetareregs ω Eregs uter gleche Bedguge zumdest gedalch belebg oft wederholbarer Vorgag Mege der möglche Versuchsausgäge st beat oreter Ausgag

Mehr

Statistik. (Inferenzstatistik)

Statistik. (Inferenzstatistik) Statstk Mathematsche Hlfswsseschaft mt der Aufgabe, Methode für de Sammlug, Aufberetug, Aalyse ud Iterpretato vo umersche Date beretzustelle, um de Struktur vo Masseerscheuge zu erkee. Deskrptve (beschrebede)

Mehr

Maßzahlen. 1. Arithmetisches Mittel. Das für quantitative Merkmale am häufigsten verwendete Lokalisationsmaß ist das arithmetische Mittel.

Maßzahlen. 1. Arithmetisches Mittel. Das für quantitative Merkmale am häufigsten verwendete Lokalisationsmaß ist das arithmetische Mittel. J SCHIRA, C MÜLLER / Statstk I / SS 005 Maßzahle 6 Maßzahle Arthmetsches Mttel Das für quattatve Merkmale am häufgste verwedete Lokalsatosmaß st das arthmetsche Mttel Defto: De Größe := = heßt arthmetsches

Mehr

STOCHASTIK. Wahrscheinlichkeitstheorie und mathematische Statistik. Prof. Dr. Barbara Grabowski. Hochschule für Technik und Wirtschaft des Saarlandes

STOCHASTIK. Wahrscheinlichkeitstheorie und mathematische Statistik. Prof. Dr. Barbara Grabowski. Hochschule für Technik und Wirtschaft des Saarlandes STOCHASTIK Wahrschelchketstheore ud mathematsche Statstk Prof. Dr. Barbara Grabowsk Hochschule für Techk ud Wrtschaft des Saarlades Lehrehet zur Kursehet Mathematk für Iformatker m Ferstudegag Allgemee

Mehr

4.3 Statistik des radioaktiven Zerfalls

4.3 Statistik des radioaktiven Zerfalls 4.3 Statstk des radoaktve Zerfalls Stchworte: Radoaktvtät, -, -, -Strahlug, Geger-Müller-Zählrohr, Statstk, Posso- ud Gauß-Vertelug, Stadardabwechug, Rehetszahl, statstsche Aalyse. Theoretsche Grudlage

Mehr

1 n xi. = å. 1 k. i i

1 n xi. = å. 1 k. i i Thema 4 Wahrschelchet Statst - Neff INHALT 4.3 Kotgez => Ch -Uabhäggetstest (= Ch -Kotgeztest) wr beutze h = / als Näherug für de Wahrschelchete ab 4.6 De Asätze für de Maßzahle "Mttelwert" ud "Varaz"

Mehr

Preisindex. und. Mengenindex

Preisindex. und. Mengenindex Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk resdex ud Megedex Übuge Aufgabe ösuge www.f-lere.de resdex 1 De Etwcklug der rese wrd der Öffetlchket

Mehr

Leitfaden zu den Indexkennzahlen der Deutschen Börse

Leitfaden zu den Indexkennzahlen der Deutschen Börse Letfade zu de Idexkezahle der Deutsche Börse Verso.5 Deutsche Börse AG Verso.5 Letfade zu de Idexkezahle der Deutsche Börse Page Allgemee Iformato Um de hohe Qualtät der vo der Deutsche Börse AG berechete

Mehr

1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen

1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen .. Jährlche Retezahluge... Vorschüssge Retezahluge Ausgagspukt: Über ee edlche Zetraum wrd aus eem Kaptal (Retebarwert v, ), das zseszslch agelegt st, jewels zu Beg ees Jahres ee bestmmte Reterate ř gezahlt

Mehr

Formelsammlung gültig ab Einstellungstermin 1. April 2011 (Stand: 1. April 2011)

Formelsammlung gültig ab Einstellungstermin 1. April 2011 (Stand: 1. April 2011) Formelsammlug gülg ab Esellugserm. Aprl (Sad:. Aprl ) FACHHOCHSCHULE DER DEUTSCHEN BUNDESBANK - UNIVERSITY OF APPLIED SCIENCES - Schloss Hacheburg Fachsude für de gehobee Bades m Bachelorsudegag Fachhochschule

Mehr

STOCHASTIK. Wahrscheinlichkeitstheorie und mathematische Statistik. Prof. Dr. Barbara Grabowski. Hochschule für Technik und Wirtschaft des Saarlandes

STOCHASTIK. Wahrscheinlichkeitstheorie und mathematische Statistik. Prof. Dr. Barbara Grabowski. Hochschule für Technik und Wirtschaft des Saarlandes STOCHASTIK Wahrschelchketstheore ud mathematsche Statstk Prof. Dr. Barbara Grabowsk Hochschule für Techk ud Wrtschaft des Saarlades Eletug - I - Eletug Dese Kursehet det der Vermttlug vo Grudketsse auf

Mehr

Deskriptive Statistik - Aufgabe 2

Deskriptive Statistik - Aufgabe 2 Derptve Statt - Augabe Budelad Mäer Fraue Bade-Württemberg 7,5 7,5 Bayer 6,8 7,5 Berl-Wet 4,4 Berl-Ot,8 4, Bradeburg 0, 0,8 Breme 4,6,6 Hamburg, 8, Hee 8, 8, Mecleburg-Vorpommer,3, Nederache 0,3, Nordrhe-Wetale

Mehr

Problemsupermarkt. Regale Wahrscheinlichkeitstheorie und Statistik JULIAN WERGIELUK

Problemsupermarkt. Regale Wahrscheinlichkeitstheorie und Statistik JULIAN WERGIELUK Problemsupermarkt Regale Wahrschelchketstheore ud Statstk JULIAN WERGIELUK Chemtz, 014 Ihaltsverzechs Ihaltsverzechs Detalertes Ihaltsverzechs 1 Wahrschelchketsrechug 3 1.1 Megesysteme....................................

Mehr

Folien zur Vorlesung. Statistik für Prozesswissenschaften. (Teil 1: Beschreibende Statistik) U. Römisch

Folien zur Vorlesung. Statistik für Prozesswissenschaften. (Teil 1: Beschreibende Statistik) U. Römisch Fole zur Vorlesug Statstk für Prozesswsseschafte (Tel : Beschrebede Statstk) U. Römsch http://www.lmtc.tu-berl.de/agewadte_statstk_ud_cosultg Ihaltsverzechs EINLEITUNG. Was versteht ma uter Statstk, Bometre,

Mehr

Statistik und Wahrscheinlichkeitsrechnung. Formelsammlung

Statistik und Wahrscheinlichkeitsrechnung. Formelsammlung Statstk ud Wahrschelchketsrechug Forelsalug Prof Dr Rolad Schuhr Isttut für Eprsche Wrtschaftsforschug Berech Statstk Wrtschaftswsseschaftlche Fakultät der Uverstät Lepzg Stad: 3 Ihalt Deskrpto uvarater

Mehr

Grundbegriffe. Verknüpfungen. Verknüpfungen. Rechenregeln für Mengenverknüpfungen

Grundbegriffe. Verknüpfungen. Verknüpfungen. Rechenregeln für Mengenverknüpfungen Grudbegrffe Verüpfuge Zufallsexpermet Grudraum/ Eregsraum Ω Elemetareregs ω Eregs uter gleche Bedguge (zumdest gedalch) belebg oft wederholbarer Vorgag Mege der möglche Versuchsausgäge st beat oreter Ausgag

Mehr

Deskriptive Statistik - Aufgabe 3

Deskriptive Statistik - Aufgabe 3 Desrptve Statst - Aufgabe 3 De Überachtugszahle der Fremdeverehrsgemede "Bachstadt" für de Moate ud zege auf de erste Blc scho deutlche Uterschede de ezele Ortschafte. We seht e etsprecheder Verglech der

Mehr

F Fehlerrechnung 1. Systematische und statistische Fehler

F Fehlerrechnung 1. Systematische und statistische Fehler -F.- F Fehlerrechug. Systematsche ud statstsche Fehler Jede Messug eer physkalsche Größe st mt eem Fehler verbude. Es st daher otwedg be der Agabe des Messwertes ee Fehlerabschätzug azugebe. Ma uterschedet

Mehr

Einführung in die Statistik

Einführung in die Statistik Eführug de Statstk Grudlage der Mathematk II Leare Algebra ud Statstk FS 014 Dr. Marcel Dettlg Isttute for Data Aalyss ad Process Desg Zurch Uversty of Appled Sceces CH-8401 Wterthur 1 Was st Statstk?

Mehr

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit Bespelklausur BWLB TelMarketg 45MuteBearbetugszet BWLBBespelklausurTelMarketg Sete WchtgeHwese:. VOLLSTÄNDIGKEIT: PrüfeSeuverzüglch,obIhreKlausurvollstädgst(Aufgabe).. ABGABE: EsstdegesamteKlausurabzugebe.

Mehr

Modul 10: Konzentrationsmesssung. Prof. Dr. W. Laufner Beschreibende Statistik. Konzentrationskurve. Visualisierung. statistische Kennzahlen

Modul 10: Konzentrationsmesssung. Prof. Dr. W. Laufner Beschreibende Statistik. Konzentrationskurve. Visualisierung. statistische Kennzahlen Modul 0: Kozetratosmesssug Modul 0: Kozetratosmessug Kozetrato absolute Kozetrato (Kozetrato. e. S.) Kozetratoskurve - Kozetratosrate - Herfdahl sches Kozetratosmaß Vsualserug statstsche Kezahle relatve

Mehr

Messfehler, Fehlerberechnung und Fehlerabschätzung

Messfehler, Fehlerberechnung und Fehlerabschätzung Apparatves Praktkum Physkalsche Cheme der TU Brauschweg SS1, Dr. C. Maul, T.Dammeyer Messfehler, Fehlerberechug ud Fehlerabschätug 1. Systematsche Fehler Systematsche Fehler et ma solche Fehleratele, welche

Mehr

Lage- und Streuungsmaße

Lage- und Streuungsmaße Statstk 1 für SozologIe Lage- ud Streuugsmaße Uv.Prof. Dr. Marcus Hudec Beschrebug quattatver Date Um de emprsche Vertelug ees quattatve Merkmals zu beschrebe, betrachte wr Parameter, de ee Verdchtug der

Mehr

Maximum-Likelihood-Schätzungen für Verteilungsparameter eines ausgewählten stochastischen Prozesses

Maximum-Likelihood-Schätzungen für Verteilungsparameter eines ausgewählten stochastischen Prozesses Maxmm-kelhood-Schätzge ür Vertelgsarameter ees asgewählte stochastsche Prozesses Maxmm kelhood stmato M Uwe Mezel.3.7 Maxmm - kelhood - Methode st aktell! R. A. Fsher 89-96 C. F. Ga Methode der kleste

Mehr