1 Mathe Formeln Statistik und Wahrscheinlichkeitsrechnung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "1 Mathe Formeln Statistik und Wahrscheinlichkeitsrechnung"

Transkript

1 1 Mathe Formel Statstk ud Wahrschelchketsrechug Jör Horstma, Alle Agabe ohe Gewähr. w017/ 1.1 Grudlage Ezelklasse [a ; b [ Klassewete Klassemtte Mttelwert b a = w x = a+b x = 1 x =1 }{{} = grupperte Werte x h =1 x h =1 }{{} klasserte Date Absolute Häufgket Relatve Häufgket Kumulerte Häufgket h = H = h j Meda, aalog für Q 1 (0, 5) ud Q 3 (0, 75) Modalklasse (klasserte Date) z = a + 0, 5 H 1 h h w = max Geometrsches Mttel (be Wachstumsrate) w x g = x 1 x x 3... x Hstogramm: Fläche des Rechtecks proportoal zu h h = h w 1. Streuugsmaße R = Spabrete = x max x m Q = Quartlsabstad = Q 3 Q 1 d m = 1 x m d z = 1 x z d x = 1 x x = Varaz = 1 (x x) = 1 x x = x h x = Stadardabwechug = V = Varatoskoeffzet = x Der G-Koeffzet D G = (Hk 1 + H k ) k x k 1 (grup. Date) x (H 1 + H ) x 1 (klass. Date) x 1

2 D G = 0 absolute Glechvertelug 0 < D G < 0, 4 gerge Kozetrato 0, 4 D G < 0, 6 mttlere Kozetrato 0, 6 D G < 1 hohe Kozetrato D G = 1 absolute Kozetrato De Lorez-Kurve c = x x x x C = j=1 c j Atele der Merkmalssumme 1.3 Korrelato ud Regresso Bedgte Häufgkete Kovaraz Cov(x, y) = xy Schutzkoeffzet S = max (S ) S = H C P (H ; C ) st e Pukt auf der Lorezkurve D G = Fläche zw. Wkelhalbereder ud Lorezkurve h (x y j fest) = h j = h j h j = j j xy = 1 (x x) (y ȳ) = 1 x y x ȳ x, y sd uabhägg Cov(x, y) = 0 Cov(x, y) 0 x, y sd abhägg x, y sd uahägg we für alle, j glt: j = j Korrelatoskoeffzet xy r = x y xy = r x y Regressosgerade Learer Zusammehag zw. x ud y, Suche eer Gerade ỹ = a + bx ach der Methode der kleste Quadrate f = (a + bx y ) f wrd am kleste we 1.4 Idzes Idex ach Laspeyres b = a = ȳ b x (y ȳ) (x x) (x x) = xy x Presdex I L 0,t(p) = Megedex I L 0,t(q) = t q0 p 0 q qt p 0 q0 100

3 Idex ach Paasche Presdex I P 0,t(p) = t qt p 0 qt 100 Megedex I P 0,t(q) = t qt p t q0 100 Idex ach Fscher Presdex I F 0,t(p) = Megedex I F 0,t(q) = I0,t L (p) IP 0,t (p) I0,t L (q) IP 0,t (q) 1.5 Wahrschelchkete Klasssche Defto der Wahrschelchket (Laplace) ur be Zufallsexpermete, dere Ergebsse gleche Wahrschelchket habe P (A) = Azahl der zu A gehörede Eregsse Azahl aller Eregsse = A G Bedge Wahrschelchket (Wahrschelchket vo A we B egetrete st) Addtossatz Spezeller Addtossatz we A B = {} Multplkatossatz P (A B) = P (A B) P (A B) = P (A) + P (A B) = P (A \ B) + P (A B) + P (B \ A) P (A B) = P (A) + P (A B) = P (A B) P (A B) = P (A) P (B A) Satz der totale Wahrschelchket A 1, A, A 3,..., A see dsjukte Eregsse mt A 1 A A 3... A = G B = (B A 1 ) (B A ) (B A 3 )... (B A ) = P (A ) P (B A ) =1 Satz vo Bayes A 1, A, A 3,..., A see dsjukte Eregsse mt A 1 A A 3... A = G P (A B) = P (A B) = P (A ) P (B A ) 3

4 1.6 Kombatork ohe Wederholug Permutato verschedee Elemete P () =! mt Wederholug gruppewese detsche Elemete 1,, 3,... P ( 1,,...) = ( )! 1!!... Varato (Rehefolge wchtg) Kombato (Rehefolge uwchtg) m Elemete acheader aus Elemete zehe. V (m, ) =! ( m)! glechzetges Zehe (mt eem Grff) m aus ( )! C(m, ) = = m m!( m)! m ( ) + m 1 m 1.7 Zufallsverteluge Dskrete ZV Dskrete Glechvertelug (Laplace) x mmt verschedee Werte a E(X) = f(x ) x V ar(x) = f(x ) x µ f(x = x ) = 1 Bomalvertelug (Beroull - Expermet) E Zufallsexpermet mt zwe möglche Ausgäge wrd -mal wederholt, p st Wahrschelchket des güstge Ausgags ud k st de Azahl der güstge Ausgäge P (A) = p P (Ā) = ( 1 ) p = q P (X = k) = p k (1 p) k k E(X) = p V ar(x) = p (1 p) Posso-Vertelug Approxmato der Bomalvertelug B(, p) we > 50 ud p < 0, 05 P (X = k) = µk e µ k! = P (k 1) µ k Hypergeometrsche Vertelug Ee Ure ethält N Elemete, davo M güstge. Es werde Elemete ohe zurücklege (mt 4

5 eem Grff) gezoge. X = Azahl der dabe gezogee güstge Elemete. ( M )( N M ) k k P (X = k) = ( N ) 1.7. Stetge ZV E(X) = M N V ar(x) = M N N M N N N 1 E(X) = V ar(x) = f(x) x dx f(x) x dx µ Normalvertelug P (X = k) = 1 (x µ) π e Stadardormalvertelug, Vertelugsfukto Φ Z = X µ E(Z) = 0 V ar(z) = 1 ( P (X a) = P Z a µ ) ( ) a µ = Φ Φ( Z) = 1 Φ(Z) ( c ) P (µ c X µ + c) = Φ 1 Leare Trasformato Y = ax + b E(Y ) = a + E(X) V ar(y ) = b V ar(x) X, Y uabhägg E(X + Y ) = E(X) + E(Y ) V ar(x + Y ) = V ar(x) + V ar(y ) x st N(µ, ) für = 1... x = x 1 + x x E( x) = µ V ar( x) = st ebefalls ormalvertelt 1.8 Hypothesetest Fehler 1. Art: De rchtge Hypothese wrd abgeleht Fehler. Art: De falsche Hypothese wrd ageomme 5

Formelsammlung Statistik

Formelsammlung Statistik Gesudhets- ud Toursmusmaagemet Formelsammlug Statstk Dpl. Mathematker (FH) Rolad Geger Rosestr. 23 7263 Achtal cs.geger@t-ole.de www.cs-geger.de Grudlage Bezechuge x h N H Ω ezele Messergebsse eer Stchprobe

Mehr

FH D WS 2007/08 Prof. Dr. Horst Peters Dezember 2007

FH D WS 2007/08 Prof. Dr. Horst Peters Dezember 2007 FH D WS 007/08 Prof. Dr. Horst Peters Dezember 007 Formelsammlug Wahrschelchetsrechug ud dutve Statst m Bachelor-Studegag Busess Admstrato (Modul BWL B) Sete / 6 Formelsammlug Wahrschelchetsrechug ud Idutve

Mehr

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Aufgabe ud Lösuge vo Peter M Schulze, Verea Dexhemer. Auflage Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Schulze / Dexhemer schell ud portofre

Mehr

Asymptotische Normalverteilung nach dem zentralen Grenzwertsatz

Asymptotische Normalverteilung nach dem zentralen Grenzwertsatz Asymptotsche ormalvertelug ach dem zetrale Grezwertsatz Erwartugswert eer Summe vo Zufallsvarable mt jewels de Erwartugswert x (Y Y Asymptotsche ormalvertelug ach dem zetrale Grezwertsatz Varaz eer Summe

Mehr

Wahrscheinlichkeitsrechnung und Statistik - Zusamenfassung

Wahrscheinlichkeitsrechnung und Statistik - Zusamenfassung Wahrschelchketsrechug ud Statstk - Zusamefassug atrck letscher. September 3 Wahrschelchkete. Eregsraum Der Eregsraum Ω umfasst alle möglche Ausgäge ees Zufallsexpermmets. E Elemetareregs Ω st e Elemet

Mehr

Schiefe- und Konzentrationsmaße

Schiefe- und Konzentrationsmaße Statstk für SozologIe Schefe- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Merkmal wurde 3 Gruppe beobachtet ud Form der folgede Häufgketstabelle berchtet: Klasse m Gruppe

Mehr

Formelsammlung Statistik

Formelsammlung Statistik Deskrptve Statstk Formelsammlug Statstk. Edmesoale Häugketsverteluge Merkmal: X Datemege (Stchprobe) vom Umfag N: x, x 2,..., x geordete Stchprobe: x (), x (2),..., x () mt x () x (2)... x () Auspräguge

Mehr

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und:

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und: 1 L - Hausaufgabe Nr. 55 Sotag, 1. Ju 2003 Ee Müze werde dremal geworfe. Was st das Zufallsexpermet, das Elemetareregs, das zusammegesetzte Eregs, der Eregsraum ud de Wahrschelchket? Lösugs kte.: 1 De

Mehr

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung.

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung. Rudolf Brkma http://brkma-du.de Sete 06.0.008 Spawete, Meda Quartlsabstad, Varaz ud Stadardabwechug. Streuug um de Mttelwert. I de folgede Säuledagramme st de Notevertelug zweer Schülergruppe (Mädche,

Mehr

Schiefe-, Wölbungs- und Konzentrationsmaße

Schiefe-, Wölbungs- und Konzentrationsmaße Statstk für SozologIe Schefe-, Wölbugs- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Merkmal wurde 3 Gruppe beobachtet ud Form der folgede Häufgketstabelle berchtet: Klasse

Mehr

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste):

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste): Aufgabe. Gegebe see folgede Date eer statstsche Erhebug, berets ach Größe sortert (Raglste): 0 3 4 4 5 6 7 7 8 8 8 9 9 0 0 0 0 0 3 3 3 3 4 4 5 5 5 5 5 6 6 6 7 7 8 30 Erstelle Se ee Tabelle, der de Merkmalsauspräguge

Mehr

Schiefe-, Wölbungs- und Konzentrationsmaße

Schiefe-, Wölbungs- und Konzentrationsmaße Statstk für SozologIe Schefe-, Wölbugs- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Merkmal wurde 3 Gruppe beobachtet ud Form der folgede Häufgketstabelle berchtet: Klasse

Mehr

Verteilungen und Schätzungen

Verteilungen und Schätzungen Verteluge ud Schätzuge Zufallseperet Grudbegrffe Vorgag ach eer bestte Vorschrft ausgeführt ( Przp) belebg oft wederholbar se Ergebs st zufallsabhägg be ehralge Durchführug des Eperets beeflusse de Ergebsse

Mehr

Formelzusammenstellung

Formelzusammenstellung Hochschule Müche Faultät Wrtschaftsgeeurwese Formelzusammestellug zugelasse für de Prüfug Dateaalyse der Faultät 09 für Wrtschaftsgeeurwese Prof. Dr. Voler Abel Formelsammlug Dateaalyse / Ihaltsverzechs

Mehr

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...}

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...} 1 Allgeme Geometrsche Rehe: q t = 1 q1 t=0 1 q Mtterachtsformel: ax 2 bxc=0 x 1/ 2 = b±b2 4ac 2a Bomsche Formel: 1. ab 2 =a 2 2abb 2 2. a b 2 =a 2 2abb 2 3. ab a b=a 2 b 2 Wurzel: ugerade 1 Ergebs gerade

Mehr

STATISIK. LV Nr.: 0021 WS 2005/06 13.Oktober 2005

STATISIK. LV Nr.: 0021 WS 2005/06 13.Oktober 2005 STATISIK LV Nr.: 00 WS 005/06 3.Oktober 005 Streuugsmaße Varaz Stadardabwechug Varatoskoeffzet Mttlere absolute Abwechug Spawete Quartlsabstad Schefe Wölbug Varaz Beobachtugswerte a,...,a (metrsch skalert)

Mehr

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk ----------------------------------------------------------------------------------------------- Bedgte Wahrschelchket

Mehr

Teil IV Musterklausuren (Univ. Essen) mit Lösungen

Teil IV Musterklausuren (Univ. Essen) mit Lösungen Tel IV Musterklausure (Uv. Esse) mt Lösuge Hauptklausur WS 9/9 Aufgabe : a) Revolverheld R stzt m Saloo ud pokert. De Wahrschelchket, daß er dabe ee seer Mtspeler bem Falschspel erwscht (Eregs F), bezffert

Mehr

Stochastik. Ba-Studiengang Scientific Programming Wintersemester 2016/2017 FH AACHEN UNIVERSITY OF APPLIED SCIENCES

Stochastik. Ba-Studiengang Scientific Programming Wintersemester 2016/2017 FH AACHEN UNIVERSITY OF APPLIED SCIENCES Stochastk Ba-Studegag Scetfc rogrammg Wtersemester 06/07 FH CHN UNIVRSITY OF LID SCINCS Vorlesugshalte Stochastk I. Wahrschelchketsrechug I. führug de Kombatork I. Grudbegrffe I.3 Wahrschelchket I.4 Wahrschelchketsvertelug

Mehr

2.2 Rangkorrelation nach Spearman

2.2 Rangkorrelation nach Spearman . Ragkorrelato ach Spearma Wr wolle desem Kaptel de Ragkorrelatoskoeffzete ach Spearma bereche. De erste Daterehe besteht aus Realseruge x, x,..., x der uabhägg ud detsch stetg vertelte Zufallsvarable

Mehr

3. Das Messergebnis. Was ist ein Messergebnis?

3. Das Messergebnis. Was ist ein Messergebnis? . Das Messergebs Was st e Messergebs? Wederholug der Messug Wahrer Wert? Mehrere Eflussgröße Fehlerbetrachtug Messergebs Vorgeheswese für Messergebs. Bestmmug des bekate systematsche Fehlers 2. Aufahme

Mehr

Statistische Kennzahlen für die Streuung

Statistische Kennzahlen für die Streuung Statstsche Kezahle für de Streuug Ordale Date,..., W X,,..., WX {(j) j,..., J} () < () < < (J) {(),...,(J)} (3) () 3 () Geordete Lste k X (k) () () 3 () Smpso s D ud H() sd awedbar, allerdgs wrd Iformato

Mehr

Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik

Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Leuphaa Uverstät Lüeburg Statstk II Wahrschelchketsrechug ud duktve Statstk Fakultät Wrtschaft Professur 'Statstk ud Free Berufe' Uv.-Prof. Dr. Joachm Merz Skrptum zur Vorlesug Elfte verbesserte Auflage

Mehr

Schiefe-, Wölbungs- und Konzentrationsmaße

Schiefe-, Wölbungs- und Konzentrationsmaße Statstk für SozologIe Schefe-, Wölbugs- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Merkmal wurde 3 Gruppe beobachtet ud Form der folgede Häufgketstabelle berchtet: Klasse

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik Wahrschelchketsrechug ud Statstk ) Grudbegrffe der Statstk. Eletug Statstsche Methode dee zur Beurtelug vo Messuge oder Zähluge, kurz Beobachtuge geat, we se us m täglche Lebe velfach begege. Aufgabe der

Mehr

Erzeugen und Testen von Zufallszahlen

Erzeugen und Testen von Zufallszahlen Erzeuge ud Teste vo Zufallszahle Jürge Zumdck Eletug Ee Lergruppe wrd aufgefordert 00 Zufallszahle (0 oder ) ach folgede Methode zu erzeuge: De Hälfte der Gruppe beutzt a) ee Müze oder b) de Zufallszahlefukto

Mehr

Prinzip "Proportional Reduction of Error" (PRE)

Prinzip Proportional Reduction of Error (PRE) Dr. Reate Prust: Eführug quattatve Forschugsmethode Bvarate Maße: Przp "Proportoal Reducto of Error" (PRE) E 1 - E Fehler be Regel 1 - Fehler be Regel = E 1 Fehler be Regel 1 Regel 1: Vorhersageregel ur

Mehr

Einen Spieler interessiert nicht, wie er gewinnt, sondern ob und wie viel er gewinnt.

Einen Spieler interessiert nicht, wie er gewinnt, sondern ob und wie viel er gewinnt. III Zufallsgröße Bespel ud Defto Bespel: Dremal Müzwurf Spel: Esatz, we cht zwe gleche htereader 3 Auszahlug. Ω = {(x x x3) x,x,x3 {Z,K}} Retert sch deses Spel? Dabe geht es ur um de Gew! Also: Defto Gew:

Mehr

Deskriptive Statistik2 Durchschnittswert (der arithmetische Mittelwert)

Deskriptive Statistik2 Durchschnittswert (der arithmetische Mittelwert) Lagemasse, Lokatosmasse Lageparameter. Charakterserug das Zetrum der Date Deskrptve Statstk Durchschttswert (der arthmetsche Mttelwert) average(...) Mttelwert(...) K (Modalwert, Dchtemttel): der Wert mt

Mehr

Statistik mit Excel und SPSS

Statistik mit Excel und SPSS Stattk mt Excel ud SPSS G. Kargl Grudbegrffe Grudgeamthet Erhebugehet Merkmale Werteberech Stchprobe Telbereche der Stattk: Dekrtpve Stattk Iduktve Stattk Exploratve Stattk U- / B- / Multvarate Stattk

Mehr

Konzentrationsanalyse

Konzentrationsanalyse Kaptel V Kozetratosaalyse B. 5.. Im Allgemee wrd aus statstscher Scht zwsche - absoluter ud - relatver Kozetrato uterschede Der absolute ud relatve Aspekt wrd och emal utertelt - statscher ud - dyamscher

Mehr

Verdichtete Informationen

Verdichtete Informationen Verdchtete Iormatoe Maßzahle Statstke be Stchprobe Parameter be Grudgesamthete Maßzahle zur Beschrebug uvarater Verteluge Maßzahle der zetrale Tedez (Mttelwerte) Maßzahle der Varabltät (Streuugswerte)

Mehr

Maße zur Kennzeichnung der Form einer Verteilung (1)

Maße zur Kennzeichnung der Form einer Verteilung (1) Maße zur Kezechug der Form eer Vertelug (1) - Schefe (skewess): Defto I - Ee Vertelug vo Messwerte wrd als schef bezechet, we se der Wese asymmetrsch st, dass lks oder rechts des Durchschtts ee Häufug

Mehr

Ordnungsstatistiken und Quantile

Ordnungsstatistiken und Quantile KAPITEL Ordugsstatste ud Quatle Um robuste Lage- ud Streuugsparameter eführe zu öe, beötge wr Ordugsstatste ud Quatle... Ordugsstatste ud Quatle Defto... Se (x,..., x R ee Stchprobe. Wr öe de Elemete der

Mehr

Was ist Statistik? Wozu Statistik? Wie Statistik? Statistische Daten. Statistische Merkmale. Page 1

Was ist Statistik? Wozu Statistik? Wie Statistik? Statistische Daten. Statistische Merkmale. Page 1 Vorlesugsuterlage Statstk ud Wahrschelchketstheore für Iformatker (Tel: Deskrptve Statstk) (WS 6/7) vorläufge Fassug Was st Statstk? Deskrptve Statstk (beschrebed, zusammefassed) Iduktve Statstk (vo Stchprobe

Mehr

Schiefe- und Konzentrationsmaße

Schiefe- und Konzentrationsmaße Statst für SozologIe Schefe- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Mermal wurde 3 Gruppe beobachtet ud Form der folgede Häufgetstabelle berchtet: Klasse m Gruppe

Mehr

Methoden der computergestützten Produktion und Logistik

Methoden der computergestützten Produktion und Logistik Methode der comutergestützte Produkto ud Logstk 9. Bedesysteme ud Warteschlage Prof. Dr.-Ig. habl. Wlhelm Dagelmaer Modul W 336 SS 06 Bedesysteme ud Warteschlage Besel: Fahrradfabrk Presse Puffer Lackerere

Mehr

Ergebnis- und Ereignisräume

Ergebnis- und Ereignisräume I Ergebs- ud Eregsräume Zufallsexpermete Defto: E Expermet, welches belebg oft uter gleche Bedguge wederholbar st ud desse Ergebs cht mt Bestmmthet vorhergesagt werde ka (d.h. es gbt md. 2 Mgk.), heßt

Mehr

Standardnormalverteilung. Normalverteilung. Verteilungsfunktion. Intervallwahrscheinlichkeiten

Standardnormalverteilung. Normalverteilung. Verteilungsfunktion. Intervallwahrscheinlichkeiten Normalvertelug Stadardormalvertelug Normalvertelug N(μ, ) mt chte : Gaußche Glockekurve μ μ μ+ μ >, f ( ) = ( μ) WS 7/8 Prof. r. J. Schütze, FB GW NV π Egechafte der chte: - Mamum μ - mmetrch zu μ - Wedepukte

Mehr

Universitätslehrgang Sports Physiotherapy Einführung in die Statistik

Universitätslehrgang Sports Physiotherapy Einführung in die Statistik Departmet of Sport Scece ad Kesolog Uverstätslehrgag Sports Phsotherap Eführug de Statstk Gerda Strutzeberger Block I Block Mttwoch 5..0 3:00 bs 4:50 Grudlage, Skaleveau 5:05 bs 7:00 Gütekrtere, Hpothese,

Mehr

Statistik II. Unterlagen zur Vorlesung. Wahrscheinlichkeitsrechnung und Schließende Statistik. Formeln, Tabellen, Beispiele

Statistik II. Unterlagen zur Vorlesung. Wahrscheinlichkeitsrechnung und Schließende Statistik. Formeln, Tabellen, Beispiele Johaes Guteberg-Uverstät Fachberech Rechts- ud Wrtschaftswsseschafte Isttut für Statstk ud Ökoometre Uv.-Prof. Dr. Peter M. Schulze Uterlage zur Vorlesug Statstk II Wahrschelchketsrechug ud Schleßede Statstk

Mehr

Alternative Darstellung des 2-Stichprobentests für Anteile. Beobachtete Response No Response Total absolut DCF CF

Alternative Darstellung des 2-Stichprobentests für Anteile. Beobachtete Response No Response Total absolut DCF CF Alteratve Darstellug des -Stchprobetests für Atele DCF CF Total 111 11 3 Respose 43 6 69 Resp. Rate 0,387 0,3 0,309 Beobachtete Respose No Respose Total absolut DCF 43 68 111 CF 6 86 11 69 154 3 Be Gültgket

Mehr

Einführung Fehlerrechnung

Einführung Fehlerrechnung IV Eführug Fehlerrechug Fehlerrechuge werde durchgeführt, um de Vertraueswürdgket vo Meßergebsse beurtele zu köe. Uter dem Fehler eer Messug versteht ma de Abwechug ees Meßergebsses vom (grudsätzlch ubekate

Mehr

Deskriptive Statistik behaftet.

Deskriptive Statistik behaftet. De Statstk beschäftgt sch mt Masseerscheuge, be dee de dahterstehede Ezeleregsse mest zufällg sd. Statstk beutzt de Methode der Wahrschelchketsrechug. Fudametalregel: Statstsche Aussage bezehe sch e auf

Mehr

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk ----------------------------------------------------------------------------------------------- Satz vo Bayes ud totale

Mehr

II. Wahrscheinlichkeitsrechnung

II. Wahrscheinlichkeitsrechnung II. Wahrschelchketsrechug Vorlesugsmtschrft - Kurzfassug Prof. Dr. rer. at. B. Grabowsk HTW des Saarlades 005 Ihalt II. Wahrschelchketsrechug INHALTSVERZEICHNIS GRUNDLAGEN / DEFINITION DER WAHRSCHEINLICHKEIT...3.

Mehr

Aufgabe 4 Welche der folgenden Merkmale sind diskret oder stetig, quantitativ oder qualitativ, nominal-, ordninal- oder kardinalskaliert:

Aufgabe 4 Welche der folgenden Merkmale sind diskret oder stetig, quantitativ oder qualitativ, nominal-, ordninal- oder kardinalskaliert: Aufgabe Sd de folgede Merkmale dskret oder stetg? ) Geschwdgket stetg ) Hörerzahl eer Vorlesug dskret 3) Azahl der Mtarbeter dskret 4) Ekomme appromatv stetg 5) Zet für de Beschleugug stetg 6) Bücherbestad

Mehr

Grundlagen der Entscheidungstheorie

Grundlagen der Entscheidungstheorie Kaptel 0 Grudlage der Etschedugstheore B. 0 (Gegestad) De Etschedugstheore befasst sch mt dem Etschedugsverhalte vo Idvdue ud Gruppe. Se besteht aus we Telgebete. Deskrptve Etschedugstheore De deskrptve

Mehr

Physikalische Messungen sind immer fehlerbehaftet! Der wahre Wert ist nicht ermittelbar. Der wahre Wert x ist nicht identisch mit dem Mittelwert

Physikalische Messungen sind immer fehlerbehaftet! Der wahre Wert ist nicht ermittelbar. Der wahre Wert x ist nicht identisch mit dem Mittelwert Physkalsche Messuge sd mmer fehlerbehaftet! Der wahre Wert st cht ermttelbar. Der wahre Wert st cht detsch mt dem Mttelwert Der Wert legt mt eer gewsse Wahrschelchket (Kofdezahl bzw. Vertrauesveau %) m

Mehr

Multiple Regression (1) - Einführung I -

Multiple Regression (1) - Einführung I - Multple Regreo Eführug I Mt eem Korrelatokoeffzete ud der efache leare Regreo köe ur varate Zuammehäge zwche zwe Varale uterucht werde. Beutzt ma tatt dee mehrere Varale zur Vorherage, egt ma ch auf da

Mehr

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n).

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n). Aufgabe Wr betrachte ee Reteverscherug der Retebezugszet mt jährlch vorschüssger Retezahlug solage der Verscherte lebt. a) Bezeche V bzw. V de rechugsmäßge Deckugsrückstellug am Afag bzw. am Ede des Verscherugsjahres.

Mehr

Ingrid A. Uhlemann (2015): Einführung in die Statistik für Kommunikationswissenschaftler. Online Anhang: Lösung der Übungsaufgaben Kapitel 5-8,

Ingrid A. Uhlemann (2015): Einführung in die Statistik für Kommunikationswissenschaftler. Online Anhang: Lösung der Übungsaufgaben Kapitel 5-8, Igrd A. Uhlema (015): Eführug de Statstk für Kommukatoswsseschaftler. Ole Ahag: Lösug der Übugsaufgabe Kaptel 5-8, Lösug der Übugsaufgabe Kaptel 5: Aufgabe 1: Geg.: Persoalserug ordal skalert, dskret Dauer

Mehr

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik Formelsammlug rtschaftsmathemat / Statst Formelsammlug für de Lehrverastaltug rtschaftsmathemat / Statst zugelasse für de Klausure zur rtschaftsmathemat ud Statst de Studegäge der Techsche Betrebswrtschaft

Mehr

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen.

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen. Rudolf Brkma http://brkma-du.de Sete 0.0.008 Lagemaße der beschrebede Statstk. Zur Iterpretato eer Beobachtugsrehe ka ma ebe der grafsche Darstellug wetere charakterstsche Größe herazehe. Mttelwert ud

Mehr

Lageparameter (Mittelwerte) und Streuungsparameter

Lageparameter (Mittelwerte) und Streuungsparameter Statstk Grudlage Charakterserug vo Verteluge Eführug Wahrschelchketsrechug Wahrschelchketsverteluge Schätze ud Teste Korrelato Regresso Lageparameter (Mttelwerte) ud Streuugsparameter Mttelwerte: Gebe

Mehr

II. Beschreibende Statistik II.1 Merkmale und wichtige Begriffe. Aufgabe der beschreibenden Statistik:

II. Beschreibende Statistik II.1 Merkmale und wichtige Begriffe. Aufgabe der beschreibenden Statistik: II. Beschrebede Statstk II. Merkmale ud wchtge Begrffe Aufgabe der beschrebede Statstk: Große ud uüberschtlche Datemege so aufberete, dass wege aussagekräftge Kegröße ud/oder Graphke etstehe, dee de gesamte

Mehr

Peter von der Lippe. Induktive Statistik. Formeln, Aufgaben, Klausurtraining

Peter von der Lippe. Induktive Statistik. Formeln, Aufgaben, Klausurtraining Peter vo der Lppe Iduktve Statstk Formel, Aufgabe, Klausurtrag Ursprüglch verlegt be Oldebourg, her überarbeteter Form als dowload zur Verfügug gestellt Oldebourg Tel I Formelsammlug mt Tabelleahag 3 vo

Mehr

Z Z, kurz. Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden.

Z Z, kurz. Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden. Kombator Problemstellug Ausgagsput be ombatorsche Fragestelluge st mmer ee edlche Mege M, aus dere Elemete ma edlche Zusammestelluge vo Elemete aus M bldet Formal gesproche bedeutet das: Ist M a,, a ee

Mehr

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes Quellecoderug I: Redudazredukto, redudazsparede Codes. Redudaz. Eführug. Defto der Redudaz. allgemee Redudazredukto. redudazsparede Codes. Coderug ach Shao. Coderug ach Fao. Coderug ach Huffma.4 Coderug

Mehr

Einführung in die Stochastik 3. Übungsblatt

Einführung in die Stochastik 3. Übungsblatt Eführug de Stochastk 3. Übugsblatt Fachberech Mathematk SS 0 M. Kohler 06.05.0 A. Fromkorth D. Furer Gruppe ud Hausübug Aufgabe 9 (4 Pukte) Der Mkrozesus st ee statstsche Erhebug. Herbe werde ach bestmmte

Mehr

Regressionsrechnung und Korrelationsrechnung

Regressionsrechnung und Korrelationsrechnung Regressosrechug ud Korrelatosrechug Beschrebede Statstk Modul : Probleme be der Abhäggketsaalyse Problem : Es gbt mest cht ur ee Eflussfaktor (Probleme sd selte mookausal ) A Ursache() Wrkug B C - efache

Mehr

II. Wahrscheinlichkeitsrechnung

II. Wahrscheinlichkeitsrechnung II. Wahrschelchketsrechug Vorlesugsmtschrft - Kurzfassug Prof. Dr. rer. at. B. Grabowsk HTW des Saarlades 00 II. Wahrschelchketsrechug INHALTSVERZEICHNIS GRUNDLAGEN / DEFINITION DER WAHRSCHEINLICHKEIT...3.

Mehr

Sitzplatzreservierungsproblem

Sitzplatzreservierungsproblem tzplatzreserverugsproblem Be vele Zugsysteme Europa müsse Passagere mt hrem Zugtcet ee tzplatzreserverug aufe. Da das Tcetsystem Kude ee ezele Platz zuwese muss, we dese e Tcet aufe, ohe zu wsse, welche

Mehr

Mehrdimensionale Häufigkeitsverteilungen (1)

Mehrdimensionale Häufigkeitsverteilungen (1) Mehrdmesoale Häufgketsverteluge () - De Begrffe uvarat ud bvarat - Vo uvarate (edmesoale) statstsche Aalyse sprcht ma, we pro Perso ur e Merkmal tabellarsche oder grafsche Häufgketsverteluge oder be der

Mehr

Lösungen zu Übungs-Blatt 7 Klassische Wahrscheinlichkeit in Glücksspielen, Bedingte Wkt, Unabhängigkeit, Satz von Bayes

Lösungen zu Übungs-Blatt 7 Klassische Wahrscheinlichkeit in Glücksspielen, Bedingte Wkt, Unabhängigkeit, Satz von Bayes Lösuge zu Übugs-latt 7 Klasssche Wahrschelchet Glücsspele, edgte Wt, Uabhägget, Satz vo ayes Master M Höhere ud gewadte Mathemat rof. Dr.. Grabows De folgede ufgabe löse wr uter Verwedug der bede ombatorsche

Mehr

Deskriptive Statistik und Explorative Datenanalyse

Deskriptive Statistik und Explorative Datenanalyse rger Gabler PLU Zusatzformatoe zu Mede vo rger Gabler Thomas Cleff Desrtve tatst ud Eloratve Dateaalse Ee comutergestützte Eführug mt Ecel, P ud TATA 05 3., überarbetete ud erweterte Auflage rger Gabler

Mehr

Das virtuelle Bildungsnetzwerk für Textilberufe

Das virtuelle Bildungsnetzwerk für Textilberufe Das vrtuelle Bldugsetzwerk für Textlberufe Grudlage der Statstk 003 Hochschule Nederrhe Autor: Prof. Dr. Rud Voller Stad: 0.0.0033 Sete / 9 Grudlage der Statstk Uter eer Statstk versteht ma ee Aufglederug

Mehr

Regressionsgerade, lineares Modell:

Regressionsgerade, lineares Modell: Statstk Grudlage Charakterserug vo Verteluge Eführug Wahrschelchketsrechug Wahrschelchketsverteluge Schätze ud Teste Korrelato Regresso Eführug Durch de Regressosaalyse wrd versucht, de Art des Zusammehags

Mehr

Kommentierte Formelsammlung der deskriptiven und induktiven Statistik für Wirtschaftswissenschaftler

Kommentierte Formelsammlung der deskriptiven und induktiven Statistik für Wirtschaftswissenschaftler Kommeterte Formelsammlug der deskrptve ud duktve Statstk für Wrtschaftswsseschaftler Prof. Dr. Iree Rößler Prof. Dr. Albrecht Ugerer Wetere Bespele ud ausführlche Erläuteruge sowe detallerte Lösuge der

Mehr

Histogramm / Säulendiagramm

Histogramm / Säulendiagramm Hstogramm / Säuledagramm Häugkete 10 9 8 7 6 5 4 3 2 1 0 3,45 3,75 4,05 4,35 4,65 Flüge lläge [mm] Be Hstogramme st soort deutlch, daß es sch um Häugketsauszähluge hadelt. De Postoe der Klasse sowe hre

Mehr

i P(A H i) P(H i ) (x i ˆx i ) 2 n n i=1 (x i x i ) 2 = 1 i=1 (ˆx i x i ) 2 (x + y) n = x j y n j f(x)dx = 1 f(x 1,..., x n)dx 1 dx n = 1

i P(A H i) P(H i ) (x i ˆx i ) 2 n n i=1 (x i x i ) 2 = 1 i=1 (ˆx i x i ) 2 (x + y) n = x j y n j f(x)dx = 1 f(x 1,..., x n)dx 1 dx n = 1 ZUSAMMENFASSUNG DES SKRIPTUMS ZU EINFÜHRUNG IN DIE WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK VON PROF. FELSENSTEIN PHILIPP DÖRSEK Der Autor übermmt keerle Garate für de Rchtgket. De meste Beträge wurde

Mehr

Mehrdimensionale Zufallsvariablen

Mehrdimensionale Zufallsvariablen Mehrdmesoale Zufallsvarable Vertelug eer mehrdmesoale Zufallsvarable Stochastsche Uabhäggket vo Varable Erwartugswerte zwedmesoaler Zufallsvarable Eführug de Statstk mt R Bblografe Bleymüller / Gehlert

Mehr

Höhere Mathematik 4 Kapitel 17 Wahrscheinlichkeitsrechnung

Höhere Mathematik 4 Kapitel 17 Wahrscheinlichkeitsrechnung Höhere Mathemat 4 Katel 7 Wahrschelchetsrechug Prof. Dr.-Ig. Deter Kraus Höhere Mathemat 4 Katel 7 Ihaltsverzechs 7 Wahrschelchetsrechug...7-7. Deftoe, Besele...7-7. Bedgte Wahrschelchete, uabhägge regsse...7-7.

Mehr

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt.

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt. Webull & Wöhler 0 CRGRAPH Wöhlerdagramm Im Wöhlerdagramm wrd de Lebesdauer ( oder Laufzet) ees Bautels Abhägget vo der Belastug dargestellt. Kurzetfestget Beaspruchug Zetfestget auerfestget 0 5 3 4 6 0

Mehr

Test für Varianz. Test für Varianz. Test für Varianz. Die Kontingenztabelle. Statistik 2 4. Vorlesung. Wiederholung: zweidimensionales Datenmaterial

Test für Varianz. Test für Varianz. Test für Varianz. Die Kontingenztabelle. Statistik 2 4. Vorlesung. Wiederholung: zweidimensionales Datenmaterial Statstk 4. Vorlesug Test für Varaz Estchprobetest für de Varaz: Hat de Varaz ee bestmmte Wert, bzw. legt er eem bestmmte Berech? Etschedug basert auf dem Ergebs eer ezge Stchprobe. Zwestchprobetest für

Mehr

Skalentypen Skala Eigenschaften Zulässige Transformation Nominal. =, keine Ordnungen, keine Alle bijektiven Abbildungen

Skalentypen Skala Eigenschaften Zulässige Transformation Nominal. =, keine Ordnungen, keine Alle bijektiven Abbildungen I. Derptve tatt Formelammlug 005 Formelammlug I. Derptve tatt Grudgeamthet (Gg tchprobe (P Mege vo Objete, de hchtlch ee Uteruchugzele al glechartg ageehe werde. Mege vo beobachtete Mermalwerte a eer (zufällge

Mehr

(Markowitz-Portfoliotheorie)

(Markowitz-Portfoliotheorie) Thema : ortfolo-selekto ud m-s-rzp (Markowtz-ortfolotheore) Beurtelugskrtere be quadratscher Nutzefukto: Beroull-rzp + quadratsche Nutzefukto Thema Höhekompoete: Erwartugswert µ Rskokompoete: Stadardabwechug

Mehr

Ein Maß für die Ungleichheit bzw. Heterogenität kategorialer Daten ist Simpsons normiertes D:

Ein Maß für die Ungleichheit bzw. Heterogenität kategorialer Daten ist Simpsons normiertes D: Streuug omalkalerter Varable Streuug omalkalerter Varable: Smpo D Gültg WHITE BLACK OTHER Geamt RACE OF RESPODET Gültge Kumulerte Häufgket Prozet Prozete Prozete 483 83, 83, 83, 388 13, 13, 96, 11 4, 4,

Mehr

Gliederung des Kurses:

Gliederung des Kurses: Lageparameter Sete Glederug des Kurses: I II Allgemee Grudlage Statstsche Aalyse ees ezele Merkmals Aalyse/Beschrebug ees ezele Merkmals Zel: Verdchtug (Komprmerug) eer uüberschaubare Datemege Komprmerede

Mehr

2. Zusammenhangsanalysen: Korrelation und Regression

2. Zusammenhangsanalysen: Korrelation und Regression 2. Zusammehagsaalse: Korrelato ud Regresso Dowloads zur Vorlesug 2. Zusammehagsaalse: Korrelato ud Regresso 2 Grudbegrffe zwedmesoale Stchprobe De Gewug vo mehrere Merkmale vo eer Beobachtugsehet führt

Mehr

Lage- und Streuungsmaße

Lage- und Streuungsmaße Statstk für SozologIe Lage- ud Streuugsmaße Uv.Prof. Dr. Marcus Hudec Beschrebug quattatver Date Um de emprsche Vertelug ees quattatve Merkmals zu beschrebe, betrachte wr Parameter, de ee Verdchtug der

Mehr

Wahrscheinlichkeitsrechnung und mathematische Statistik für Informatiker

Wahrscheinlichkeitsrechnung und mathematische Statistik für Informatiker Wahrschelchetsrechug ud mathematsche Statst für Iformater Prof. Dr. M. Vot (WS /3) Vorlesugsmtschrft vo Thorste Kerhof, Chrste Zarges ud Dael Malga Ihalt: Eletug Sete Wahrschelchetsräume Sete Uabhägget

Mehr

II. Beschreibende Statistik

II. Beschreibende Statistik II. Beschrebede Statstk II. Merkmale ud wchtge Begrffe Aufgabe der beschrebede Statstk: Große ud uüberschtlche Datemege so aufberete, dass wege aussagekräftge Kegröße ud/oder Graphke etstehe, dee de gesamte

Mehr

Lorenz' sche Konzentrationskurve und Disparitätsindex nach Gini

Lorenz' sche Konzentrationskurve und Disparitätsindex nach Gini Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Lorez' sche Kozetratoskurve ud Dspartätsdex ach G Übuge Aufgabe Lösuge www.f-lere.de Begrff Lorez'

Mehr

Der Korrelationskoeffizient ist ein Maß für den linearen Zusammenhang zwischen zwei Variablen X und Y. Er ist durch folgende Formel charakterisiert:

Der Korrelationskoeffizient ist ein Maß für den linearen Zusammenhang zwischen zwei Variablen X und Y. Er ist durch folgende Formel charakterisiert: Korrelatoskoeffzet Der Korrelatoskoeffzet st e Maß für de leare Zusammehag zwsche zwe Varable X ud Y. Er st durch folgede Formel charaktersert: r y corr XY Statstk für SozologIe y y y y y y y y Kozept

Mehr

Diskrete Zufallsvariablen. Wahrscheinlichkeitsräume Zufallsvariablen Erwartungswert Varianz. Quiz

Diskrete Zufallsvariablen. Wahrscheinlichkeitsräume Zufallsvariablen Erwartungswert Varianz. Quiz Dskrete Zufallsvarable Wahrschelchketsräume Zufallsvarable rwartugswert Varaz Quz Im Fall eer Glechvertelug sd glech große Telmege vo Ω glech wahrschelch. Z.B. glt für Ω{0,,}: {0}{}{} 3 {0,}{0,}{,} 3 Aalog

Mehr

2. Mittelwerte (Lageparameter)

2. Mittelwerte (Lageparameter) 2. Mttelwerte (Lageparameter) Bespele aus dem täglche Lebe Pro Hemspel hatte Borussa Dortmud der letzte Saso durchschttlch 7.2 Zuschauer. De deutsche Akte sd m Durchschtt um 0 Zähler gefalle. I Ide wurde

Mehr

Korrelations- und Assoziationsmaße

Korrelations- und Assoziationsmaße k m χ : j l r +. Zusammehagsmaße ( o e ) jl jl e jl Korrelatos- ud Assozatosmaße e jl 5 Merkmal Y Summe X b b m a H (a,b) H (a,b). a H (a,b) H (a,b). Summe.. Zusammehagsmaße Eführug Sche- ud Noses-Korrelato

Mehr

Als Einstieg. Als Einstieg. Verteilungstests. Verteilungstests. Testverfahren. Grafische Verfahren

Als Einstieg. Als Einstieg. Verteilungstests. Verteilungstests. Testverfahren. Grafische Verfahren Als Esteg Als Esteg Populato Ω Grudgesamthet, cht beobachtbar mt ubekate Parameter, z.b. Erwartugswert μ, Stadardabwechug σ² Kegröße vo Stchprobe ud etsprechede Vertelugsparameter Stchprobeschätzug Dskrete

Mehr

Einführung in Statistik

Einführung in Statistik Eführug Statstk 4. Semester Begletedes Skrptum zur Vorlesug m Fachhochschul-Studegag Iformatostechologe ud Telekommukato vo Güther Kargl FH Campus We 2009 Ihaltsverzechs Eführug Statstk Eletug. Deskrptve

Mehr

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 4. Marshallsche Nachfragefuktoe Frage:

Mehr

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten Festverzslche Wertaere Kurse ud Redte be gazzahlge Restlaufzete Glederug. Rückblck: Grudlage der Kursrechug ud Redteermttlug 2. Ausgagsstuato 3. Herletug der Formel 4. Abhäggket vom Marktzsveau 5. Übugsaufgabe

Mehr

Hochschule München Fakultät Wirtschaftsingenieurwesen Datenanalyse

Hochschule München Fakultät Wirtschaftsingenieurwesen Datenanalyse Hochschule Müche Fakultät Wrtschaftsgeeurwese Dateaalyse Prof. Dr. Volker Abel Verso. Ihaltsverzechs Ihaltsverzechs. Auswertug ud Modellerug vo Zähldate.... Auswertug vo prozetuale Häufgkete.... Auswertug

Mehr

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik Prof. Dr. Ig. Post Grudlage der Eergetechk Eergewrtschaft Kosterechug EEG. Vorlesug EEG Grudlage der Eergetechk De elektrsche Eergetechk st e sogeates klasssches Fach. Folglch st deses Fach vele detallert

Mehr

Sozialwissenschaftliche Methoden und Statistik I

Sozialwissenschaftliche Methoden und Statistik I Sozalwsseschaftlche Methode ud Statstk I Uverstät Dusburg Esse Stadort Dusburg Itegrerter Dplomstudegag Sozalwsseschafte Skrpt zum SMS I Tutorum Vo Mark Lutter Stad: Aprl 004 Tel I Deskrptve Statstk Mark

Mehr

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) Problemstellug: Bsher: Gesucht: 6. Zusammehagsmaße (Kovaraz ud Korrelato) Ee Varable pro Merkmalsträger, Stchprobe x1,, x Maße für Durchschtt, Streuug, usw. Bespel: Kurse zweer Akte ud a 9 aufeader folgede

Mehr

Maßzahlen zur Beschreibung von Verteilungen

Maßzahlen zur Beschreibung von Verteilungen Programmcode: Lagemaße Maßzahle zur Beschrebug vo Verteluge > c(0,,5,6,3,0,-) > mea() [] > meda() [] > table() - 0 3 5 6 kee drekte Modusfukto 0 zwemal Uvarate Deskrpto ud Eplorato vo Date - Maßzahle zur

Mehr

Formelsammlung zum Methodenseminar Statistik für Diplom Geographen Institut für Geographie Friedrich-Schiller-Universität Jena. P. Krause & M.

Formelsammlung zum Methodenseminar Statistik für Diplom Geographen Institut für Geographie Friedrich-Schiller-Universität Jena. P. Krause & M. Formelsmmlug zum Methodesemr Sttstk für Dplom Geogrphe Isttut für Geogrphe Fredrch-Schller-Uverstät Je Formelsmmlug zum Methodesemr Sttstk für Dplom Geogrphe Isttut für Geogrphe Fredrch-Schller-Uverstät

Mehr

Eigenwerteinschließungen I

Eigenwerteinschließungen I auptsemar: Numersche Lösuge für Egewertaufgabe Egewerteschleßuge I Referet: Wolfgag Wesselsky Glederug Eletug Kodto vo Egewerte 3 Eschleßugssätze Bauer-Fke, Gershgor, Wlkso, Bedxo 4 Zusatz: Courat / Weyl

Mehr

Geometrisches Mittel und durchschnittliche Wachstumsraten

Geometrisches Mittel und durchschnittliche Wachstumsraten Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Geometrsches Mttel ud durchschttlche Wachstumsrate Modellaufgabe Übuge Lösuge www.f-lere.de Geometrsches

Mehr