1 Mathe Formeln Statistik und Wahrscheinlichkeitsrechnung

Save this PDF as:
Größe: px
Ab Seite anzeigen:

Download "1 Mathe Formeln Statistik und Wahrscheinlichkeitsrechnung"

Transkript

1 1 Mathe Formel Statstk ud Wahrschelchketsrechug Jör Horstma, Alle Agabe ohe Gewähr. w017/ 1.1 Grudlage Ezelklasse [a ; b [ Klassewete Klassemtte Mttelwert b a = w x = a+b x = 1 x =1 }{{} = grupperte Werte x h =1 x h =1 }{{} klasserte Date Absolute Häufgket Relatve Häufgket Kumulerte Häufgket h = H = h j Meda, aalog für Q 1 (0, 5) ud Q 3 (0, 75) Modalklasse (klasserte Date) z = a + 0, 5 H 1 h h w = max Geometrsches Mttel (be Wachstumsrate) w x g = x 1 x x 3... x Hstogramm: Fläche des Rechtecks proportoal zu h h = h w 1. Streuugsmaße R = Spabrete = x max x m Q = Quartlsabstad = Q 3 Q 1 d m = 1 x m d z = 1 x z d x = 1 x x = Varaz = 1 (x x) = 1 x x = x h x = Stadardabwechug = V = Varatoskoeffzet = x Der G-Koeffzet D G = (Hk 1 + H k ) k x k 1 (grup. Date) x (H 1 + H ) x 1 (klass. Date) x 1

2 D G = 0 absolute Glechvertelug 0 < D G < 0, 4 gerge Kozetrato 0, 4 D G < 0, 6 mttlere Kozetrato 0, 6 D G < 1 hohe Kozetrato D G = 1 absolute Kozetrato De Lorez-Kurve c = x x x x C = j=1 c j Atele der Merkmalssumme 1.3 Korrelato ud Regresso Bedgte Häufgkete Kovaraz Cov(x, y) = xy Schutzkoeffzet S = max (S ) S = H C P (H ; C ) st e Pukt auf der Lorezkurve D G = Fläche zw. Wkelhalbereder ud Lorezkurve h (x y j fest) = h j = h j h j = j j xy = 1 (x x) (y ȳ) = 1 x y x ȳ x, y sd uabhägg Cov(x, y) = 0 Cov(x, y) 0 x, y sd abhägg x, y sd uahägg we für alle, j glt: j = j Korrelatoskoeffzet xy r = x y xy = r x y Regressosgerade Learer Zusammehag zw. x ud y, Suche eer Gerade ỹ = a + bx ach der Methode der kleste Quadrate f = (a + bx y ) f wrd am kleste we 1.4 Idzes Idex ach Laspeyres b = a = ȳ b x (y ȳ) (x x) (x x) = xy x Presdex I L 0,t(p) = Megedex I L 0,t(q) = t q0 p 0 q qt p 0 q0 100

3 Idex ach Paasche Presdex I P 0,t(p) = t qt p 0 qt 100 Megedex I P 0,t(q) = t qt p t q0 100 Idex ach Fscher Presdex I F 0,t(p) = Megedex I F 0,t(q) = I0,t L (p) IP 0,t (p) I0,t L (q) IP 0,t (q) 1.5 Wahrschelchkete Klasssche Defto der Wahrschelchket (Laplace) ur be Zufallsexpermete, dere Ergebsse gleche Wahrschelchket habe P (A) = Azahl der zu A gehörede Eregsse Azahl aller Eregsse = A G Bedge Wahrschelchket (Wahrschelchket vo A we B egetrete st) Addtossatz Spezeller Addtossatz we A B = {} Multplkatossatz P (A B) = P (A B) P (A B) = P (A) + P (A B) = P (A \ B) + P (A B) + P (B \ A) P (A B) = P (A) + P (A B) = P (A B) P (A B) = P (A) P (B A) Satz der totale Wahrschelchket A 1, A, A 3,..., A see dsjukte Eregsse mt A 1 A A 3... A = G B = (B A 1 ) (B A ) (B A 3 )... (B A ) = P (A ) P (B A ) =1 Satz vo Bayes A 1, A, A 3,..., A see dsjukte Eregsse mt A 1 A A 3... A = G P (A B) = P (A B) = P (A ) P (B A ) 3

4 1.6 Kombatork ohe Wederholug Permutato verschedee Elemete P () =! mt Wederholug gruppewese detsche Elemete 1,, 3,... P ( 1,,...) = ( )! 1!!... Varato (Rehefolge wchtg) Kombato (Rehefolge uwchtg) m Elemete acheader aus Elemete zehe. V (m, ) =! ( m)! glechzetges Zehe (mt eem Grff) m aus ( )! C(m, ) = = m m!( m)! m ( ) + m 1 m 1.7 Zufallsverteluge Dskrete ZV Dskrete Glechvertelug (Laplace) x mmt verschedee Werte a E(X) = f(x ) x V ar(x) = f(x ) x µ f(x = x ) = 1 Bomalvertelug (Beroull - Expermet) E Zufallsexpermet mt zwe möglche Ausgäge wrd -mal wederholt, p st Wahrschelchket des güstge Ausgags ud k st de Azahl der güstge Ausgäge P (A) = p P (Ā) = ( 1 ) p = q P (X = k) = p k (1 p) k k E(X) = p V ar(x) = p (1 p) Posso-Vertelug Approxmato der Bomalvertelug B(, p) we > 50 ud p < 0, 05 P (X = k) = µk e µ k! = P (k 1) µ k Hypergeometrsche Vertelug Ee Ure ethält N Elemete, davo M güstge. Es werde Elemete ohe zurücklege (mt 4

5 eem Grff) gezoge. X = Azahl der dabe gezogee güstge Elemete. ( M )( N M ) k k P (X = k) = ( N ) 1.7. Stetge ZV E(X) = M N V ar(x) = M N N M N N N 1 E(X) = V ar(x) = f(x) x dx f(x) x dx µ Normalvertelug P (X = k) = 1 (x µ) π e Stadardormalvertelug, Vertelugsfukto Φ Z = X µ E(Z) = 0 V ar(z) = 1 ( P (X a) = P Z a µ ) ( ) a µ = Φ Φ( Z) = 1 Φ(Z) ( c ) P (µ c X µ + c) = Φ 1 Leare Trasformato Y = ax + b E(Y ) = a + E(X) V ar(y ) = b V ar(x) X, Y uabhägg E(X + Y ) = E(X) + E(Y ) V ar(x + Y ) = V ar(x) + V ar(y ) x st N(µ, ) für = 1... x = x 1 + x x E( x) = µ V ar( x) = st ebefalls ormalvertelt 1.8 Hypothesetest Fehler 1. Art: De rchtge Hypothese wrd abgeleht Fehler. Art: De falsche Hypothese wrd ageomme 5

( ) ( ) ( ) ( ) è ø. P A Wahrscheinlichkeitsmaß. lim n. Dr. Christian Schwarz 4. KOMBINATORIK Permutationen

( ) ( ) ( ) ( ) è ø. P A Wahrscheinlichkeitsmaß. lim n. Dr. Christian Schwarz 4. KOMBINATORIK Permutationen BBA Projektsemar Thess Dr. Chrsta Schwarz Formelsammlug Aalytsche Statstk 4. KOMBINATORIK 4.. Permutatoe Azahl der Permutatoe vo N Elemete ohe Wederholug: Multomalkoeffzet: N! = N N- N -... 3 N! N! N!...

Mehr

Formelsammlung Statistik

Formelsammlung Statistik Gesudhets- ud Toursmusmaagemet Formelsammlug Statstk Dpl. Mathematker (FH) Rolad Geger Rosestr. 23 7263 Achtal cs.geger@t-ole.de www.cs-geger.de Grudlage Bezechuge x h N H Ω ezele Messergebsse eer Stchprobe

Mehr

Textil & Design Formelsammlung Statistik

Textil & Design Formelsammlung Statistik Textl & Desg Formelsammlug Statstk Dpl. Mathematker (FH) Rolad Geger Rosestr. 23 7263 Achtal cs.geger@t-ole.de www.cs-geger.de Grudlage Bezechuge x h N H Ω ezele Messergebsse eer Stchprobe absolute Häufgket

Mehr

FH D WS 2007/08 Prof. Dr. Horst Peters Dezember 2007

FH D WS 2007/08 Prof. Dr. Horst Peters Dezember 2007 FH D WS 007/08 Prof. Dr. Horst Peters Dezember 007 Formelsammlug Wahrschelchetsrechug ud dutve Statst m Bachelor-Studegag Busess Admstrato (Modul BWL B) Sete / 6 Formelsammlug Wahrschelchetsrechug ud Idutve

Mehr

Lösungen. Häufigkeitsverteilung (Stabdiagramm) Aufgabe 1. Häufigkeit (h) Merkmal (x)

Lösungen. Häufigkeitsverteilung (Stabdiagramm) Aufgabe 1. Häufigkeit (h) Merkmal (x) Lösuge Aufgabe Merkmal (x) Häufgket (h) h x,, 3, 3,, 8, 5, 5, 6, 6, 7, 3, 8, 3 5, 9, 38,, 5,, 8 68,, 6 3, 3, 9,, 8, 5, 5 5, 6, 3 78, 7, 5, 8, 8, 3, 3, Summe 5.63, Aufgabe Häufgketsvertelug (Stabdagramm)

Mehr

Lohnkosten pro Arbeitsstunde. Wie hoch sind die Lohnkosten pro Arbeitsstunde im Jahresdurchschnitt?

Lohnkosten pro Arbeitsstunde. Wie hoch sind die Lohnkosten pro Arbeitsstunde im Jahresdurchschnitt? Klausur Wrtschaftsstatstk. [ Pukte] E Uterehme hat folgede Date ermttelt: Moat Gelestete Arbetsstude Lohkoste pro Arbetsstude Jauar 86.400 0,06 Februar 75.000 3,0 März 756.000 4,47 Aprl 768.000,53 Ma 638.400

Mehr

1 1 1 x0,25 x200 0,25 x200 0,25 1 x50 x51 1 1

1 1 1 x0,25 x200 0,25 x200 0,25 1 x50 x51 1 1 Klausur: Statstk 2.06.2018 Jürge Mesel Hlfsmttel: Ncht progr. Tascherecher Bearbetugszet: 60 Mute Aufgabe 1 E Koskbestzer otert 200 Tage lag de Zahl der verkaufte Exemplare eer seer Tageszetuge. Verkaufte

Mehr

Formeln für Statistik und Wahrscheinlichkeitstheorie (Dutter)

Formeln für Statistik und Wahrscheinlichkeitstheorie (Dutter) Formel für tatstk ud Wahrschelchketstheore (Dutter) Fehler a: fpalmater@gmal.com Cotets Beschrebede tatstk... Kegröße vo Verteluge... Verteluge... 3 Wahrschelchketstheore... 3 Grudlage... 4 Erwartug &

Mehr

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Aufgabe ud Lösuge vo Peter M Schulze, Verea Dexhemer. Auflage Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Schulze / Dexhemer schell ud portofre

Mehr

Asymptotische Normalverteilung nach dem zentralen Grenzwertsatz

Asymptotische Normalverteilung nach dem zentralen Grenzwertsatz Asymptotsche ormalvertelug ach dem zetrale Grezwertsatz Erwartugswert eer Summe vo Zufallsvarable mt jewels de Erwartugswert x (Y Y Asymptotsche ormalvertelug ach dem zetrale Grezwertsatz Varaz eer Summe

Mehr

Wahrscheinlichkeitsrechnung und Statistik - Zusamenfassung

Wahrscheinlichkeitsrechnung und Statistik - Zusamenfassung Wahrschelchketsrechug ud Statstk - Zusamefassug atrck letscher. September 3 Wahrschelchkete. Eregsraum Der Eregsraum Ω umfasst alle möglche Ausgäge ees Zufallsexpermmets. E Elemetareregs Ω st e Elemet

Mehr

Statistische Grundlagen Ein kurzer Überblick (diskret)

Statistische Grundlagen Ein kurzer Überblick (diskret) Prof. J.C. Jackwerth 1 Statstsche Grudlage E kurzer Überblck (dskret De wchtgste Begrffe ud Deftoe: 1 Erwartugswert Varaz / Stadardabwechug 3 Stchprobevaraz 4 Kovaraz 5 Korrelatoskoeffzet 6 Uabhäggket

Mehr

5 Reproduktions- und Grenzwertsätze

5 Reproduktions- und Grenzwertsätze Reproduktos- ud Grezwertsätze Reproduktos- ud Grezwertsätze. Reproduktossätze Bespel 0: Der Aufzug eer Frma st zugelasse für Persoe bzw. 000 kg. Das Durchschttsgewcht der Agestellte der Frma st µ = 80

Mehr

Varianzfortpflanzung

Varianzfortpflanzung 5.0 / SES.5 Parameterschätzug Varazortplazug Torste Maer-Gürr Torste Maer-Gürr Dskrete Zuallsvarable Ee dskrete Zuallsvarable mmt edlch vele oder abzählbar uedlch vele Werte a. - Werte: - Wahrschelchket:,,,,,,,,

Mehr

Schiefe- und Konzentrationsmaße

Schiefe- und Konzentrationsmaße Statstk für SozologIe Schefe- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Merkmal wurde 3 Gruppe beobachtet ud Form der folgede Häufgketstabelle berchtet: Klasse m Gruppe

Mehr

Statistik. ist die Kunst, Daten zu gewinnen, darzustellen, zu analysieren und zu interpretieren um zu neuem Wissen zu gelangen.

Statistik. ist die Kunst, Daten zu gewinnen, darzustellen, zu analysieren und zu interpretieren um zu neuem Wissen zu gelangen. Statstk st de Kust, Date zu gewe, darzustelle, zu aalysere ud zu terpretere um zu euem Wsse zu gelage. Sachs (984) Aufgabe De Statstk hat also folgede Aufgabe: Zusammefassug vo Date Darstellug vo Date

Mehr

Übersicht Statistik für Bioinformatiker. I) Wahrscheinlichkeitsrechnung

Übersicht Statistik für Bioinformatiker. I) Wahrscheinlichkeitsrechnung Überscht Statst für Boformater I Wahrschelchetsrechug I. Kombator I. Bedgte Wahrschelchete ud Uabhägget I.. Defto bedgte Wahrschelchet I.. Formel vo der totale Wahrschelchet I..3 Bayes sche Formel I..4

Mehr

Formelsammlung Statistik

Formelsammlung Statistik Deskrptve Statstk Formelsammlug Statstk. Edmesoale Häugketsverteluge Merkmal: X Datemege (Stchprobe) vom Umfag N: x, x 2,..., x geordete Stchprobe: x (), x (2),..., x () mt x () x (2)... x () Auspräguge

Mehr

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und:

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und: 1 L - Hausaufgabe Nr. 55 Sotag, 1. Ju 2003 Ee Müze werde dremal geworfe. Was st das Zufallsexpermet, das Elemetareregs, das zusammegesetzte Eregs, der Eregsraum ud de Wahrschelchket? Lösugs kte.: 1 De

Mehr

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung.

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung. Rudolf Brkma http://brkma-du.de Sete 06.0.008 Spawete, Meda Quartlsabstad, Varaz ud Stadardabwechug. Streuug um de Mttelwert. I de folgede Säuledagramme st de Notevertelug zweer Schülergruppe (Mädche,

Mehr

Schiefe-, Wölbungs- und Konzentrationsmaße

Schiefe-, Wölbungs- und Konzentrationsmaße Statstk für SozologIe Schefe-, Wölbugs- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Merkmal wurde 3 Gruppe beobachtet ud Form der folgede Häufgketstabelle berchtet: Klasse

Mehr

Verteilungen und Schätzungen

Verteilungen und Schätzungen Verteluge ud Schätzuge Zufallseperet Grudbegrffe Vorgag ach eer bestte Vorschrft ausgeführt ( Przp) belebg oft wederholbar se Ergebs st zufallsabhägg be ehralge Durchführug des Eperets beeflusse de Ergebsse

Mehr

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste):

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste): Aufgabe. Gegebe see folgede Date eer statstsche Erhebug, berets ach Größe sortert (Raglste): 0 3 4 4 5 6 7 7 8 8 8 9 9 0 0 0 0 0 3 3 3 3 4 4 5 5 5 5 5 6 6 6 7 7 8 30 Erstelle Se ee Tabelle, der de Merkmalsauspräguge

Mehr

Der Korrelationskoeffizient ist ein Maß für den linearen Zusammenhang zwischen zwei Variablen X und Y. Er ist durch folgende Formel charakterisiert:

Der Korrelationskoeffizient ist ein Maß für den linearen Zusammenhang zwischen zwei Variablen X und Y. Er ist durch folgende Formel charakterisiert: Korrelatoskoeffzet Der Korrelatoskoeffzet st e Maß für de leare Zusammehag zwsche zwe Varable X ud Y. Er st durch folgede Formel charaktersert: r xy corr XY ( x x)( y y) ( ) x x ( y y) x x y x ( ) ( )

Mehr

Formelzusammenstellung

Formelzusammenstellung Hochschule Müche Faultät Wrtschaftsgeeurwese Formelzusammestellug zugelasse für de Prüfug Dateaalyse der Faultät 09 für Wrtschaftsgeeurwese Prof. Dr. Voler Abel Formelsammlug Dateaalyse / Ihaltsverzechs

Mehr

Spezielle diskrete Verteilungen

Spezielle diskrete Verteilungen Spezelle dskrete Vertelugsfamle Dskrete Glechvertelug Beroull- oder Zwe-Pukt-Vertelug Bomalvertelug Hypergeometrsche Vertelug Possovertelug Geometrsche Vertelug Appromatoe Bblografe Bleymüller / Gehlert

Mehr

Formelsammlung für die Lehrveranstaltung Statistik

Formelsammlung für die Lehrveranstaltung Statistik Formelsammlug Statst Formelsammlug für de Lehrverastaltug Statst ugelasse für de Klausure ur Statst de Studegäge der Techsche Betrebswrtschaft Verso vom 5..9 Korreturhwese a: Rose@FH-Muester.de Formelsammlug

Mehr

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...}

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...} 1 Allgeme Geometrsche Rehe: q t = 1 q1 t=0 1 q Mtterachtsformel: ax 2 bxc=0 x 1/ 2 = b±b2 4ac 2a Bomsche Formel: 1. ab 2 =a 2 2abb 2 2. a b 2 =a 2 2abb 2 3. ab a b=a 2 b 2 Wurzel: ugerade 1 Ergebs gerade

Mehr

STATISIK. LV Nr.: 0021 WS 2005/06 13.Oktober 2005

STATISIK. LV Nr.: 0021 WS 2005/06 13.Oktober 2005 STATISIK LV Nr.: 00 WS 005/06 3.Oktober 005 Streuugsmaße Varaz Stadardabwechug Varatoskoeffzet Mttlere absolute Abwechug Spawete Quartlsabstad Schefe Wölbug Varaz Beobachtugswerte a,...,a (metrsch skalert)

Mehr

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk ----------------------------------------------------------------------------------------------- Bedgte Wahrschelchket

Mehr

Vl. Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 3: Diskrete Verteilungen

Vl. Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 3: Diskrete Verteilungen Vl. Statstsche Prozess- ud Qualtätsotrolle ud Versuchsplaug Übug 3: Dsrete Verteluge Prof. Dr. B. Grabows Zur Lösug der folgede Aufgabe öe Se auch de begefügte Tabelle der dsrete Verteluge m Ahag verwede.

Mehr

2.2 Rangkorrelation nach Spearman

2.2 Rangkorrelation nach Spearman . Ragkorrelato ach Spearma Wr wolle desem Kaptel de Ragkorrelatoskoeffzete ach Spearma bereche. De erste Daterehe besteht aus Realseruge x, x,..., x der uabhägg ud detsch stetg vertelte Zufallsvarable

Mehr

Intervallschätzungen geben unter Berücksichtigung des Verteilungstyps von X einen Bereich an, der den Parameter mit vorgegebener Sicherheit enthält.

Intervallschätzungen geben unter Berücksichtigung des Verteilungstyps von X einen Bereich an, der den Parameter mit vorgegebener Sicherheit enthält. Parameterschätzuge Fachhochschule Jea Uversty of Appled Sceces Jea Oft st der Vertelugstyp eer Zufallsgröße X bekat, ur de Parameter sd ubekat. Da erfolgt hre Schätzug aus eer Stchprobe. Ma uterschedet

Mehr

Teil IV Musterklausuren (Univ. Essen) mit Lösungen

Teil IV Musterklausuren (Univ. Essen) mit Lösungen Tel IV Musterklausure (Uv. Esse) mt Lösuge Hauptklausur WS 9/9 Aufgabe : a) Revolverheld R stzt m Saloo ud pokert. De Wahrschelchket, daß er dabe ee seer Mtspeler bem Falschspel erwscht (Eregs F), bezffert

Mehr

Stochastik Formeln von Gerald Meier

Stochastik Formeln von Gerald Meier Stochast Formel vo Gerald Meer Grudbegrffe ud Operatoe umöglches Eregs scheres Eregs Ω A mplzert B Glechhet A B AB cht A A A ud B A B A oder B A B A ohe B A \ B A B dsjut A B de Morga A B A B Elemetareregs

Mehr

Stochastik. Ba-Studiengang Scientific Programming Wintersemester 2016/2017 FH AACHEN UNIVERSITY OF APPLIED SCIENCES

Stochastik. Ba-Studiengang Scientific Programming Wintersemester 2016/2017 FH AACHEN UNIVERSITY OF APPLIED SCIENCES Stochastk Ba-Studegag Scetfc rogrammg Wtersemester 06/07 FH CHN UNIVRSITY OF LID SCINCS Vorlesugshalte Stochastk I. Wahrschelchketsrechug I. führug de Kombatork I. Grudbegrffe I.3 Wahrschelchket I.4 Wahrschelchketsvertelug

Mehr

3. Das Messergebnis. Was ist ein Messergebnis?

3. Das Messergebnis. Was ist ein Messergebnis? . Das Messergebs Was st e Messergebs? Wederholug der Messug Wahrer Wert? Mehrere Eflussgröße Fehlerbetrachtug Messergebs Vorgeheswese für Messergebs. Bestmmug des bekate systematsche Fehlers 2. Aufahme

Mehr

Statistische Kennzahlen für die Streuung

Statistische Kennzahlen für die Streuung Statstsche Kezahle für de Streuug Ordale Date,..., W X,,..., WX {(j) j,..., J} () < () < < (J) {(),...,(J)} (3) () 3 () Geordete Lste k X (k) () () 3 () Smpso s D ud H() sd awedbar, allerdgs wrd Iformato

Mehr

Dr. H. Grunert Einführung in die Wahrscheinlichkeitsrechnung Vorlesungscharts. Vorlesung 5.2. Eigenschaften von Zufallsvariablen

Dr. H. Grunert Einführung in die Wahrscheinlichkeitsrechnung Vorlesungscharts. Vorlesung 5.2. Eigenschaften von Zufallsvariablen Vorlesugscharts Vorlesug 5. Egeschafte vo Zufallsvarable Reproduktvtät Approxmatoe Zetraler Grezwertsatz Sete vo Chart : Uabhäggket vo Zufallsvarable Zwe Zufallsvarable X ud Y mt hre Realsatoe { x, x,...,

Mehr

Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik

Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Leuphaa Uverstät Lüeburg Statstk II Wahrschelchketsrechug ud duktve Statstk Fakultät Wrtschaft Professur 'Statstk ud Free Berufe' Uv.-Prof. Dr. Joachm Merz Skrptum zur Vorlesug Elfte verbesserte Auflage

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik Wahrschelchketsrechug ud Statstk ) Grudbegrffe der Statstk. Eletug Statstsche Methode dee zur Beurtelug vo Messuge oder Zähluge, kurz Beobachtuge geat, we se us m täglche Lebe velfach begege. Aufgabe der

Mehr

Prinzip "Proportional Reduction of Error" (PRE)

Prinzip Proportional Reduction of Error (PRE) Dr. Reate Prust: Eführug quattatve Forschugsmethode Bvarate Maße: Przp "Proportoal Reducto of Error" (PRE) E 1 - E Fehler be Regel 1 - Fehler be Regel = E 1 Fehler be Regel 1 Regel 1: Vorhersageregel ur

Mehr

Erzeugen und Testen von Zufallszahlen

Erzeugen und Testen von Zufallszahlen Erzeuge ud Teste vo Zufallszahle Jürge Zumdck Eletug Ee Lergruppe wrd aufgefordert 00 Zufallszahle (0 oder ) ach folgede Methode zu erzeuge: De Hälfte der Gruppe beutzt a) ee Müze oder b) de Zufallszahlefukto

Mehr

Einen Spieler interessiert nicht, wie er gewinnt, sondern ob und wie viel er gewinnt.

Einen Spieler interessiert nicht, wie er gewinnt, sondern ob und wie viel er gewinnt. III Zufallsgröße Bespel ud Defto Bespel: Dremal Müzwurf Spel: Esatz, we cht zwe gleche htereader 3 Auszahlug. Ω = {(x x x3) x,x,x3 {Z,K}} Retert sch deses Spel? Dabe geht es ur um de Gew! Also: Defto Gew:

Mehr

Schiefe-, Wölbungs- und Konzentrationsmaße

Schiefe-, Wölbungs- und Konzentrationsmaße Statstk für SozologIe Schefe-, Wölbugs- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Merkmal wurde 3 Gruppe beobachtet ud Form der folgede Häufgketstabelle berchtet: Klasse

Mehr

Verdichtete Informationen

Verdichtete Informationen Verdchtete Iormatoe Maßzahle Statstke be Stchprobe Parameter be Grudgesamthete Maßzahle zur Beschrebug uvarater Verteluge Maßzahle der zetrale Tedez (Mttelwerte) Maßzahle der Varabltät (Streuugswerte)

Mehr

Statistik mit Excel und SPSS

Statistik mit Excel und SPSS Stattk mt Excel ud SPSS G. Kargl Grudbegrffe Grudgeamthet Erhebugehet Merkmale Werteberech Stchprobe Telbereche der Stattk: Dekrtpve Stattk Iduktve Stattk Exploratve Stattk U- / B- / Multvarate Stattk

Mehr

Ordnungsstatistiken und Quantile

Ordnungsstatistiken und Quantile KAPITEL Ordugsstatste ud Quatle Um robuste Lage- ud Streuugsparameter eführe zu öe, beötge wr Ordugsstatste ud Quatle... Ordugsstatste ud Quatle Defto... Se (x,..., x R ee Stchprobe. Wr öe de Elemete der

Mehr

Deskriptive Statistik2 Durchschnittswert (der arithmetische Mittelwert)

Deskriptive Statistik2 Durchschnittswert (der arithmetische Mittelwert) Lagemasse, Lokatosmasse Lageparameter. Charakterserug das Zetrum der Date Deskrptve Statstk Durchschttswert (der arthmetsche Mttelwert) average(...) Mttelwert(...) K (Modalwert, Dchtemttel): der Wert mt

Mehr

Was ist Statistik? Wozu Statistik? Wie Statistik? Statistische Daten. Statistische Merkmale. Page 1

Was ist Statistik? Wozu Statistik? Wie Statistik? Statistische Daten. Statistische Merkmale. Page 1 Vorlesugsuterlage Statstk ud Wahrschelchketstheore für Iformatker (Tel: Deskrptve Statstk) (WS 6/7) vorläufge Fassug Was st Statstk? Deskrptve Statstk (beschrebed, zusammefassed) Iduktve Statstk (vo Stchprobe

Mehr

Konzentrationsanalyse

Konzentrationsanalyse Kaptel V Kozetratosaalyse B. 5.. Im Allgemee wrd aus statstscher Scht zwsche - absoluter ud - relatver Kozetrato uterschede Der absolute ud relatve Aspekt wrd och emal utertelt - statscher ud - dyamscher

Mehr

Statistik II. Unterlagen zur Vorlesung. Wahrscheinlichkeitsrechnung und Schließende Statistik. Formeln, Tabellen, Beispiele

Statistik II. Unterlagen zur Vorlesung. Wahrscheinlichkeitsrechnung und Schließende Statistik. Formeln, Tabellen, Beispiele Johaes Guteberg-Uverstät Fachberech Rechts- ud Wrtschaftswsseschafte Isttut für Statstk ud Ökoometre Uv.-Prof. Dr. Peter M. Schulze Uterlage zur Vorlesug Statstk II Wahrschelchketsrechug ud Schleßede Statstk

Mehr

II. Wahrscheinlichkeitsrechnung

II. Wahrscheinlichkeitsrechnung II. Wahrschelchketsrechug Vorlesugsmtschrft - Kurzfassug Prof. Dr. rer. at. B. Grabowsk HTW des Saarlades 005 Ihalt II. Wahrschelchketsrechug INHALTSVERZEICHNIS GRUNDLAGEN / DEFINITION DER WAHRSCHEINLICHKEIT...3.

Mehr

Deskriptive Statistik

Deskriptive Statistik Elemet Deskrptve Statstk KAD 0.09. Grudgesamthet (Populato): Gesamthet der Idvdue (Elemete), dere Egeschafte be der Stude utersucht werde solle. De gesamte Mege der teresserede Date. N = uedlch Stchprobe:

Mehr

Maße zur Kennzeichnung der Form einer Verteilung (1)

Maße zur Kennzeichnung der Form einer Verteilung (1) Maße zur Kezechug der Form eer Vertelug (1) - Schefe (skewess): Defto I - Ee Vertelug vo Messwerte wrd als schef bezechet, we se der Wese asymmetrsch st, dass lks oder rechts des Durchschtts ee Häufug

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statstk ud Wahrschelchketsrechug Mathas Graf 8.04.009 Ihalt der heutge Vorlesug Auswahl eer Vertelugsfukto: Wahrschelchketspaper Schätzug ud Modelletwcklug: Methode der Momete Methode der Maxmum Lkelhood

Mehr

Schiefe- und Konzentrationsmaße

Schiefe- und Konzentrationsmaße Statst für SozologIe Schefe- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Mermal wurde 3 Gruppe beobachtet ud Form der folgede Häufgetstabelle berchtet: Klasse m Gruppe

Mehr

Standardnormalverteilung. Normalverteilung. Verteilungsfunktion. Intervallwahrscheinlichkeiten

Standardnormalverteilung. Normalverteilung. Verteilungsfunktion. Intervallwahrscheinlichkeiten Normalvertelug Stadardormalvertelug Normalvertelug N(μ, ) mt chte : Gaußche Glockekurve μ μ μ+ μ >, f ( ) = ( μ) WS 7/8 Prof. r. J. Schütze, FB GW NV π Egechafte der chte: - Mamum μ - mmetrch zu μ - Wedepukte

Mehr

Alternative Darstellung des 2-Stichprobentests für Anteile. Beobachtete Response No Response Total absolut DCF CF

Alternative Darstellung des 2-Stichprobentests für Anteile. Beobachtete Response No Response Total absolut DCF CF Alteratve Darstellug des -Stchprobetests für Atele DCF CF Total 111 11 3 Respose 43 6 69 Resp. Rate 0,387 0,3 0,309 Beobachtete Respose No Respose Total absolut DCF 43 68 111 CF 6 86 11 69 154 3 Be Gültgket

Mehr

Universitätslehrgang Sports Physiotherapy Einführung in die Statistik

Universitätslehrgang Sports Physiotherapy Einführung in die Statistik Departmet of Sport Scece ad Kesolog Uverstätslehrgag Sports Phsotherap Eführug de Statstk Gerda Strutzeberger Block I Block Mttwoch 5..0 3:00 bs 4:50 Grudlage, Skaleveau 5:05 bs 7:00 Gütekrtere, Hpothese,

Mehr

Deskriptive Statistik behaftet.

Deskriptive Statistik behaftet. De Statstk beschäftgt sch mt Masseerscheuge, be dee de dahterstehede Ezeleregsse mest zufällg sd. Statstk beutzt de Methode der Wahrschelchketsrechug. Fudametalregel: Statstsche Aussage bezehe sch e auf

Mehr

Klausur Statistik IV Sommersemester 2009

Klausur Statistik IV Sommersemester 2009 Klausur Statstk IV (Lösug) Name, Vorame 013456 Klausur Statstk IV Sommersemester 009 Prof. Dr. Torste Hothor Isttut für Statstk Name: Name, Vorame Matrkelummer: 013456 Wchtg: ˆ Überprüfe Se, ob Ihr Klausurexemplar

Mehr

Ergebnis- und Ereignisräume

Ergebnis- und Ereignisräume I Ergebs- ud Eregsräume Zufallsexpermete Defto: E Expermet, welches belebg oft uter gleche Bedguge wederholbar st ud desse Ergebs cht mt Bestmmthet vorhergesagt werde ka (d.h. es gbt md. 2 Mgk.), heßt

Mehr

Methoden der computergestützten Produktion und Logistik

Methoden der computergestützten Produktion und Logistik Methode der comutergestützte Produkto ud Logstk 9. Bedesysteme ud Warteschlage Prof. Dr.-Ig. habl. Wlhelm Dagelmaer Modul W 336 SS 06 Bedesysteme ud Warteschlage Besel: Fahrradfabrk Presse Puffer Lackerere

Mehr

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk ----------------------------------------------------------------------------------------------- Satz vo Bayes ud totale

Mehr

Seminar: Stochastische Geometrie und ihre Anwendungen - Unbegrenzt teilbare und stabile Verteilungen.

Seminar: Stochastische Geometrie und ihre Anwendungen - Unbegrenzt teilbare und stabile Verteilungen. Uverstät Ulm, Isttut Stochastk 5. Jul 200 Semar: Stochastsche Geometre ud hre Aweduge - Ubegrezt telbare ud stable Verteluge. Ausarbetug: Stefa Fuke Betreuer: Ju.-Prof. Dr. Zakhar Kabluchko Ubegrezt telbare

Mehr

Einführung Fehlerrechnung

Einführung Fehlerrechnung IV Eführug Fehlerrechug Fehlerrechuge werde durchgeführt, um de Vertraueswürdgket vo Meßergebsse beurtele zu köe. Uter dem Fehler eer Messug versteht ma de Abwechug ees Meßergebsses vom (grudsätzlch ubekate

Mehr

Aufgabe 4 Welche der folgenden Merkmale sind diskret oder stetig, quantitativ oder qualitativ, nominal-, ordninal- oder kardinalskaliert:

Aufgabe 4 Welche der folgenden Merkmale sind diskret oder stetig, quantitativ oder qualitativ, nominal-, ordninal- oder kardinalskaliert: Aufgabe Sd de folgede Merkmale dskret oder stetg? ) Geschwdgket stetg ) Hörerzahl eer Vorlesug dskret 3) Azahl der Mtarbeter dskret 4) Ekomme appromatv stetg 5) Zet für de Beschleugug stetg 6) Bücherbestad

Mehr

FORMELSAMMLUNG NEUE STATISTIK

FORMELSAMMLUNG NEUE STATISTIK DESKRIPTIVE STATISTIK Leare Trasformato Ee Trasformato st ee Überführug jedes beobachtete Wertes x v ee eue Wert y v. Trasformatoe lege.d.r. Fuktoe y= g( x) zugrude. Ee Trasformato st lear, we de zugrudelegede

Mehr

Scatterplots. Scatterplot Zweidimensionale Stichproben können als Punkte in der Ebene dargestellt werden. Länge und Breite von Venusmuscheln

Scatterplots. Scatterplot Zweidimensionale Stichproben können als Punkte in der Ebene dargestellt werden. Länge und Breite von Venusmuscheln Scatterplots emprsche Eletug Trasformatoe Exteres Fle Iput-Awesug SAS-Fles Output-Awesug DO-Schlefe Populato Wahrschelchket Zufallsvarable Dskrete Zufallsvarable Stetge Zufallsvarable Normalvertelug (1)

Mehr

Grundlagen der Entscheidungstheorie

Grundlagen der Entscheidungstheorie Kaptel 0 Grudlage der Etschedugstheore B. 0 (Gegestad) De Etschedugstheore befasst sch mt dem Etschedugsverhalte vo Idvdue ud Gruppe. Se besteht aus we Telgebete. Deskrptve Etschedugstheore De deskrptve

Mehr

Physikalische Messungen sind immer fehlerbehaftet! Der wahre Wert ist nicht ermittelbar. Der wahre Wert x ist nicht identisch mit dem Mittelwert

Physikalische Messungen sind immer fehlerbehaftet! Der wahre Wert ist nicht ermittelbar. Der wahre Wert x ist nicht identisch mit dem Mittelwert Physkalsche Messuge sd mmer fehlerbehaftet! Der wahre Wert st cht ermttelbar. Der wahre Wert st cht detsch mt dem Mttelwert Der Wert legt mt eer gewsse Wahrschelchket (Kofdezahl bzw. Vertrauesveau %) m

Mehr

ALLES ZUFALL - ODER WAS?

ALLES ZUFALL - ODER WAS? Pädagogche Ittut der Uvertät Freburg 996 ALLES ZUFALL - ODER WAS? Eführug de Stattk für Pädagoge ud Pädagoge III Formelammlug Ha-Peter Hotz, Iwa Schrackma Ihaltverzech. Stattche Kewerte. Verglech eer Stchprobe

Mehr

Einführung 2. Teil: Fehleranalyse

Einführung 2. Teil: Fehleranalyse Phscal Chemstr Phskalsch-chemsches Praktkum I Modul Eführug. Tel: Fehleraalse Ja Helbg, 9.09.06 Uterlage: htt://www.chem.uzh.ch/stud/old/documets/ear/che3.html Fehlerrechug Phscal Chemstr Gesucht: wahrer

Mehr

Einführung 2. Teil: Fehleranalyse

Einführung 2. Teil: Fehleranalyse Phskalsch-chesches Praktku I Modul Eführug. Tel: Fehleraalse Ja Helbg, 7.09.08 Uterlage: htt://www.che.uzh.ch/stud/old/docuets/ear/che3.htl Fehlerrechug Gesucht: wahrer Wert eer Grösse Aber: Sere vo Messuge

Mehr

annehmen, so heißt die Funktion, die jedem atomaren Ereignis { x i } mit i { 1; 2; ;

annehmen, so heißt die Funktion, die jedem atomaren Ereignis { x i } mit i { 1; 2; ; Wahrschelchet Ee Futo X : Ω R, de edem Ergebs ees zufällge Vorgages ee reelle Zahl zuordet, heßt Zufallsgröße (oder auch Zufallsvarable Ee Zufallsgröße X heßt edlch, we X ur edlch vele Werte x aehme a

Mehr

Ingrid A. Uhlemann (2015): Einführung in die Statistik für Kommunikationswissenschaftler. Online Anhang: Lösung der Übungsaufgaben Kapitel 5-8,

Ingrid A. Uhlemann (2015): Einführung in die Statistik für Kommunikationswissenschaftler. Online Anhang: Lösung der Übungsaufgaben Kapitel 5-8, Igrd A. Uhlema (015): Eführug de Statstk für Kommukatoswsseschaftler. Ole Ahag: Lösug der Übugsaufgabe Kaptel 5-8, Lösug der Übugsaufgabe Kaptel 5: Aufgabe 1: Geg.: Persoalserug ordal skalert, dskret Dauer

Mehr

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen.

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen. Rudolf Brkma http://brkma-du.de Sete 0.0.008 Lagemaße der beschrebede Statstk. Zur Iterpretato eer Beobachtugsrehe ka ma ebe der grafsche Darstellug wetere charakterstsche Größe herazehe. Mttelwert ud

Mehr

Multiple Regression (1) - Einführung I -

Multiple Regression (1) - Einführung I - Multple Regreo Eführug I Mt eem Korrelatokoeffzete ud der efache leare Regreo köe ur varate Zuammehäge zwche zwe Varale uterucht werde. Beutzt ma tatt dee mehrere Varale zur Vorherage, egt ma ch auf da

Mehr

Lageparameter (Mittelwerte) und Streuungsparameter

Lageparameter (Mittelwerte) und Streuungsparameter Statstk Grudlage Charakterserug vo Verteluge Eführug Wahrschelchketsrechug Wahrschelchketsverteluge Schätze ud Teste Korrelato Regresso Lageparameter (Mttelwerte) ud Streuugsparameter Mttelwerte: Gebe

Mehr

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n).

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n). Aufgabe Wr betrachte ee Reteverscherug der Retebezugszet mt jährlch vorschüssger Retezahlug solage der Verscherte lebt. a) Bezeche V bzw. V de rechugsmäßge Deckugsrückstellug am Afag bzw. am Ede des Verscherugsjahres.

Mehr

Peter von der Lippe. Induktive Statistik. Formeln, Aufgaben, Klausurtraining

Peter von der Lippe. Induktive Statistik. Formeln, Aufgaben, Klausurtraining Peter vo der Lppe Iduktve Statstk Formel, Aufgabe, Klausurtrag Ursprüglch verlegt be Oldebourg, her überarbeteter Form als dowload zur Verfügug gestellt Oldebourg Tel I Formelsammlug mt Tabelleahag 3 vo

Mehr

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes Quellecoderug I: Redudazredukto, redudazsparede Codes. Redudaz. Eführug. Defto der Redudaz. allgemee Redudazredukto. redudazsparede Codes. Coderug ach Shao. Coderug ach Fao. Coderug ach Huffma.4 Coderug

Mehr

Z Z, kurz. Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden.

Z Z, kurz. Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden. Kombator Problemstellug Ausgagsput be ombatorsche Fragestelluge st mmer ee edlche Mege M, aus dere Elemete ma edlche Zusammestelluge vo Elemete aus M bldet Formal gesproche bedeutet das: Ist M a,, a ee

Mehr

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik Formelsammlug rtschaftsmathemat / Statst Formelsammlug für de Lehrverastaltug rtschaftsmathemat / Statst zugelasse für de Klausure zur rtschaftsmathemat ud Statst de Studegäge der Techsche Betrebswrtschaft

Mehr

Konzentrationsmessung

Konzentrationsmessung Kozetrtosmessug We telt sch de gesmte Merkmlssumme uf de ezele uf? Auftelug der Gesmtbevölkerug Gemede verschedeer Größeklsse Auftelug des gesmte Steuerufkommes uf de ezele Steuersubekte Auftelug der gesmte

Mehr

Regressionsrechnung und Korrelationsrechnung

Regressionsrechnung und Korrelationsrechnung Regressosrechug ud Korrelatosrechug Beschrebede Statstk Modul : Probleme be der Abhäggketsaalyse Problem : Es gbt mest cht ur ee Eflussfaktor (Probleme sd selte mookausal ) A Ursache() Wrkug B C - efache

Mehr

Fehlerrechnung im Praktikum

Fehlerrechnung im Praktikum Fehlerrechug m Pratum Pratum Phsalsche Cheme (A. Dael Boese) I chts zegt sch der Magel a mathematscher Bldug mehr, als eer überbertrebe geaue Rechug. Carl Fredrch Gauß, 777-855 Themegebete Utertelug vo

Mehr

II. Beschreibende Statistik II.1 Merkmale und wichtige Begriffe. Aufgabe der beschreibenden Statistik:

II. Beschreibende Statistik II.1 Merkmale und wichtige Begriffe. Aufgabe der beschreibenden Statistik: II. Beschrebede Statstk II. Merkmale ud wchtge Begrffe Aufgabe der beschrebede Statstk: Große ud uüberschtlche Datemege so aufberete, dass wege aussagekräftge Kegröße ud/oder Graphke etstehe, dee de gesamte

Mehr

II. Wahrscheinlichkeitsrechnung

II. Wahrscheinlichkeitsrechnung II. Wahrschelchketsrechug Vorlesugsmtschrft - Kurzfassug Prof. Dr. rer. at. B. Grabowsk HTW des Saarlades 00 II. Wahrschelchketsrechug INHALTSVERZEICHNIS GRUNDLAGEN / DEFINITION DER WAHRSCHEINLICHKEIT...3.

Mehr

Die Methode des 2.Moments

Die Methode des 2.Moments De Methode des 2.Momets Chrstoph Schmdt July 13, 2004 1 Eletug De Varaz eer Zufallsvarable st hre mttlere quadratsche Abwechug vo hrem Erwartugswert. V ar[x] = E[(X EX) 2 ] = E[X 2 ] E[X] 2 Der Term E[X

Mehr

Einführung in die Stochastik 3. Übungsblatt

Einführung in die Stochastik 3. Übungsblatt Eführug de Stochastk 3. Übugsblatt Fachberech Mathematk SS 0 M. Kohler 06.05.0 A. Fromkorth D. Furer Gruppe ud Hausübug Aufgabe 9 (4 Pukte) Der Mkrozesus st ee statstsche Erhebug. Herbe werde ach bestmmte

Mehr

( x) eine Funktion definiert, in der nur die i-te Komponente variabel ist. Folgende Schreibweisen werden aufgrund dieser Anmerkungen auch verwendet:

( x) eine Funktion definiert, in der nur die i-te Komponente variabel ist. Folgende Schreibweisen werden aufgrund dieser Anmerkungen auch verwendet: Pro. Dr. Fredel Bolle LS ür Volkswrtschatslehre sb. Wrtschatstheore (Mkroökoome) Vorlesug Mathematk - WS 008/009 4. Deretalrechug reeller Fuktoe IR IR (Karma, S. 00 06, dort glech ür IR IR m ) 4. Partelle

Mehr

Höhere Mathematik 4 Kapitel 17 Wahrscheinlichkeitsrechnung

Höhere Mathematik 4 Kapitel 17 Wahrscheinlichkeitsrechnung Höhere Mathemat 4 Katel 7 Wahrschelchetsrechug Prof. Dr.-Ig. Deter Kraus Höhere Mathemat 4 Katel 7 Ihaltsverzechs 7 Wahrschelchetsrechug...7-7. Deftoe, Besele...7-7. Bedgte Wahrschelchete, uabhägge regsse...7-7.

Mehr

Deskriptive Statistik und Explorative Datenanalyse

Deskriptive Statistik und Explorative Datenanalyse rger Gabler PLU Zusatzformatoe zu Mede vo rger Gabler Thomas Cleff Desrtve tatst ud Eloratve Dateaalse Ee comutergestützte Eführug mt Ecel, P ud TATA 05 3., überarbetete ud erweterte Auflage rger Gabler

Mehr