Mathematik für VIW - Prof. Dr. M. Ludwig Lineare Systeme in Jordanscher Normalform - Lineare Dgl'n höherer Ordnung.

Größe: px
Ab Seite anzeigen:

Download "Mathematik für VIW - Prof. Dr. M. Ludwig Lineare Systeme in Jordanscher Normalform - Lineare Dgl'n höherer Ordnung."

Transkript

1 Maeak für VIW - Prof. Dr. M. Ludwg Leare Sysee Jordascer Noralfor - Leare Dgl' öerer Ordug Geg.: x Ax; A Jordascer Noralfor, d.. x x x x x x a a a a x x A x x Durc Ausullzere Ax eräl a x x x3 x x x ax ax ax a x x 3 Seze : x x x x ; x x x ; x x x ; x 3 ( ( ; ( ( x x x x x x x x x x folglc eräl a: ( x + a x + + a x + a x, d.. ee leare Dgl. 'er Ordug. Saz 7.7 Jede leare oogee Syse x Ax; A Jordascer Noralfor esrc edeug ee leare Dgl. 'er Ordug. Saz 7.8 Für ee Marx A PA λ λ + a λ + a λ + a Jordascer Noralfor gl:. Beerkug: PA ( λ λ + aλ + aλ + a läss sc uelbar aus der zugeörge Dgl. 'er Ordug ablee: Seze für x k : λ k! P A ( λ wrd daer auc als das carakerssce Polyo der leare Dgl. 'er Ordug bezece.

2 Maeak für VIW - Prof. Dr. M. Ludwg Deac: Aus ( x + ax + + a x + a x eräl a! PA ( λ λ + aλ + a λ + a Egevekore zu bese sd. Saz 7.9 Alle Egevekore eer Marx v λ λ, wobe λ der zugeörge Egewer s., woraus de Egewere ud de zugeörge A Jordascer Noralfor abe de For Folgerug: De geoersce Velface der Egewere eer Marx Jordascer Noralfor s ses. A λ Nac Saz 7. s x e v Egewer λ s. Lösug vo x Ax geau da, we v Egevekor vo A zu Saz 7. (Hausaz für leare Dgl' Geg. se ee leare Dgl. 'er Ordug kosae Koeffzee ( x + ax + + ax + ax.* Zerfäll das zugeörge carakerssce Polyo PA ( λ λ + aλ + aλ + a k ( ( k ( + +, ( + l +, l PA λ λ λ λ λ λ γ λ ω λ γ λ ω ud γ < ω, für j,, l, da besz * de k allgeee Lösug wobe k l l j j, λ γ j ( ( + ( cosω + ( x e e q q sω j j j j j Polyoe vo Grade ud j sd ud ω ω γ. j, j j q bzw. q j j Polyoe vo Grade So s de Gesalösug vo * ee Learkobao aller Fudaeallösuge x x + + x. λ λ k l

3 Maeak für VIW - Prof. Dr. M. Ludwg Zusaefassug der Fudaeallösuge für Dfferealglecuge ' er Ordug kosae Koeffzee A.V. xλ ( xλ ( > λ reell ce λ e c λ γ λ kolex e ( ccosω+ cs ω γ e ccos( ωϕ λ γ ± ω γ ( cosω + sω e c c Besele: ( 8 ( 7 ( 6 ( 4 ( 3. x x 3x 3x + x + 4x 4x x + 8x P( λ λ λ 3λ 3λ + λ + 4λ 4λ λ + 8 Nullselle: * λ 3-fac ; λ efac ; λ + ud λ jewels zwefac 3 3 allg. Lösug: x e ( c+ c + c 3 + e c4 + e ( c + c 6 cos+ ( c+ c 6 s. Scwgugskres Erregug: duc R du C d L d LC U + + C LC e Es gl: U C d du C d C d UC d C * d C d U R R U L d d L e U + U + U U + R + L d d C R L c d d R L L U C + L e ** * ud ** blde e oogees l. Dgl-syse Bld du C d C d d R L L U C + L e ** oder! +

4 Maeak für VIW - Prof. Dr. M. Ludwg d U C C U C e d R + L L L Durc Eseze vo * ud + ** eräl a de obe agegebee Scwgugsdgl. duc R du C d L d LC U + + C LC e. Hoogeer Fall: e a. R : free Scwgug, ω U C + ωuc LC! * P( λ λ + ω λ ω, λ ω UC ccosω+ csω c Uforug: Seze c cos ϕ c, c s ϕ c c c + c, aϕ c ( cos ϕ cos ω s ϕ s ω cos( ω ϕ x c + c R b. R : gedäfe Scwgug, ω ud δ folg aus LC L duc R du C + + d L d LC U C : U U C + δ C + ωuc. P!, λ λ + δλ+ ω λ δ ± δ ω b. sarke Däfug - Krecfall: δ > ω, γ δ ω : δ+ γ δ+ γ x c e c e δ γ γ + e c e + c e ( b.. scwace Däfug - Scwgugsfall: δ < ω, ω ω δ... Frequez des Abklgvorgages Uforug s.o. δ δ ( cosω sω cos( ω ϕ x e c + c ae, b.3 aerodscer Grezfall: δ < ω λ λ δ x e c + c δ Ioogeer Fall [vgl ] Ioogee leare Dgl-Sysee Leares oogees Syse: x Ax+ f ; A R Gesuc: x (, x c x (, c ; f f ( f 3

5 Maeak für VIW - Prof. Dr. M. Ludwg Voraussezug: x (, f ( seg ( ab, Meode zur Besug eer arkuläre Lösug. Varao der Kosae. Asaz 3. Lalace-Trasforao Varao der Kosae Se x c x + c x + + c x allgeee Lösug vo x Ax Fudaealsyse Marxscrebwese: x ( x ( F x ( x( Es gl: F A F, (Eseze der Lösug x x Ax, wobe F ( de α, β Asaz: x ϕ ( x + ϕ ( x + + ϕ x Fϕ x F ϕ + F ϕ A Fϕ + Fϕ ϕ ϕ ϕ Eseze x Ax+ f : AF ϕ + F ϕ AF ϕ + f ϕ F f ϕ F fd + c x F F fd + F c x x, d.. x F F fd s Besel: x Ax+ f; A, f cos Hoogee Lösug: P A ( λ ( λ λ (algebr. V., geoer. V. v v c v v v v c A E c + c c+ c x e E+ A E v e x e, x e c c c Varao der Kosae e e e e 4 Marxfor der FL: F, de e F F e e Teck e e e e s cos+ 4s x F F fd d c e + F e cos cos s 4

6 Maeak für VIW - Prof. Dr. M. Ludwg cos+ 4s e e c x + cos s e c Asazeode Für eface Sörfukoe, de vor alle der Elekroeck oder Mecak aufree, für e Asaz für ee arkuläre Lösug zu Zel. Gegebe: x x f ( f ( f ( Saz 7. Sd x A +., arkuläre Lösuge vo x A x+ f ( k,, k, da s x k ee arkuläre Lösug vo x x+ f ( ( A f r f. k r x, Asazeode x Ax+ f f b + b+ + b e α, wobe α γ + ω, α. Es se ( ( (. P A α, d.. α s kee Nullselle der carakerssce Glecug α Asaz: x e ( B + B + B. P A ( α, d.. α s -face Nullselle der carakerssce Glecug ( < + Asaz: α x B + B + B + + B+ e. s Besel: [vgl ]. x Ax+ f ; A, s + f cos cos Hoogee Lösug: P A ( λ ( λ λ (algebr. V., geoer. V. ( x e E+ A E v e c + c c Asaz: Beace: ses vollsädger Asaz!! c c c c x x + c c + c cos s s cos c Eseze geg. Dgl-syse: c c c c s s + cos cos s c c + + c c cos Ausullzere ud Koeffzeeverglec: 4 c, c, c, c 4 cos+ 4s x cos+ s coss

7 Maeak für VIW - Prof. Dr. M. Ludwg Überragug der Asazeode auf Dgl' 'er Ordug Da leare Dgl' belebger Ordug als sezelle leare Sysee aufgefass werde köe, gl sowol Saz 7. als auc de Asazeode. So gl zur Asazeode ( Es se + a x + + ax f f b + b+ b e α, ax ( wobeα γ + ω, α.. P A ( α, d.. α s kee Nullselle der carakerssce Glecug α Asaz: x e ( B + B + B. P A α, d.. α s µ - face Nullselle der carakerssce Glecug Asaz: ( + µ α +. x B B B e Beerkug: Rad ud Afagsbedguge füre.a. zu Glecugssysee (für leare Dgl' zu leare, de zu löse sd. Besele:. x x + x x e 3 ( P λ λ λ + λ λ λ + λ, λ, λ x ce + c cos+ c s 3 P( λ, deac Asaz: x x be ( + x be ( + x be ( 3 + b e [ ] Eseze Dgl : be ( 3+ ( + + ( + e seze : b x e 3. x + x 3cos P( λ λ + λ λ( λ + λ, λ - x c e + c e c + c e Asaz: Zerlegug der Sörfuko : cos e + e, Beace: e s zugeörge Fudaeallösug zu λ -, 6

8 Maeak für VIW - Prof. Dr. M. Ludwg deac (vollsädger Asaz: x ae + b e x a e + b e b e x a e + b e be Eseze Dgl. ud Koeffzeeverglec ergb a, b ud 3 3 x e e 3. Scwgugsdgl. [vgl , Besel.] duc R du C d L d LC U + + C LC e Scwgugsdgl. Erregug R Es se UC ( x, ω, δ ;... Erregug LC L LC e a cosω a. δ : x + ω x acosω x c cosω + c sω a. ω ω (Resoaz Asaz: x A cosω + B sω ( ω ω ω ( ω ω ω ( ω ( sω ω cosω ωsω ωcosω ω sω ωcosω x A cos s + B s + cos x A + B + Eseze Dgl.: A ω sω ω cosω ω sω + B ω cosω ω sω + ω cosω ( ( + ωa cosω + ωb sω a cosω Koeffzeeverglec: ω B a a B ω ; ω A A a Resula: x sω ω a. ω ω Kolexer Asaz (d.. aderer Weg ω ω x Ce x ω Ce x -ω Ce Eseze Dgl.: ω ω -ω Ce + ω Ce a Re e ω ω Koeffzeeverglec: a C( ω + ω a C C + C C ω ω ; C C + C d.. C 7

9 Maeak für VIW - Prof. Dr. M. Ludwg Resula: Asaz war: ω x Ce ( C+ C( cosω+ sω ( Ccos ω Csω + ( Ccosω+ Csω C a x Ccos C s x cosω ω ω Realel: ( ω ω b. δ : x + δx + ω x acosω P( λ λ + δλ + ω λ δ + δ ω, λ δ δ ω ; Resoaz ka c aufree. Re I Kolexer Asaz ω ω x Ce x ω Ce x -ω Ce ω ; C C + C d.. C Eseze Dgl.: ( ω ( ω - ( ω ω + δω + ω Re ω ω + δω Re( e ω C e a e C e a Koeffzeeverglec: C C [ ] a C C C a ω ω δω + ( ω ω + δω ( ω ω + ( δω a( ω ω a δω C ( ; ( ω ω + δω ( ω ω + ( δω Resula: Asaz war: ω x Ce ( C+ C( cosω+ sω ( Ccos ω Csω + ( Ccosω+ Csω Realel esrc der Lösug: x ( C cosω C s berecee Were ezuseze sd. Re ω, wobe für C ud C de obe Beerkug: Reeller Asaz für x : x c cosω + c sω c, c für zu glece Ergebs. I 8

Mathematik Formeln 3. und 4. Semester von Gerald Meier

Mathematik Formeln 3. und 4. Semester von Gerald Meier Mahea Foel 3. d 4. Seese o Geald Mee Ke. Veoe.. ageeeo = ( s = & ( &(.. Kügseo & = = & κ κ= : Küg ρ = : Kügsads ( κ ( & && && & Paaeedasellg: = κ= 3 ( ( & + & f eplze asellg: = f( κ= 3 + f Poladasellg:

Mehr

3. Die Methode der Finiten Elemente

3. Die Methode der Finiten Elemente 3 De Meode der Fe Elemee M Bespele für: Raumdmesoe (,y Feldfreesgrad u Leare Bassfuoe Allgemee Form eer parelle Dffereal-Glecug Feld: u, u u Gebe: 3. De Meode der Fe Elemee D + Γ= 0 = R auf Drcle Radbed.

Mehr

Mathematik für VIW - Prof. Dr. M. Ludwig ( ) ( ) ( ) n f. bestimmt m Funktionen. durch die Festlegung f (,,

Mathematik für VIW - Prof. Dr. M. Ludwig ( ) ( ) ( ) n f. bestimmt m Funktionen. durch die Festlegung f (,, Matheatk ür VIW - Pro. Dr. M. Ludwg 8. Deretato reeller Fuktoe ehrerer Varabler 8. Skalare Felder Vektorelder Koordatesystee Bsher wurde reelle Fuktoe ür ee Varable utersucht: : D t der egeührte Schrebwese

Mehr

Eigenwerteinschließungen I

Eigenwerteinschließungen I auptsemar: Numersche Lösuge für Egewertaufgabe Egewerteschleßuge I Referet: Wolfgag Wesselsky Glederug Eletug Kodto vo Egewerte 3 Eschleßugssätze Bauer-Fke, Gershgor, Wlkso, Bedxo 4 Zusatz: Courat / Weyl

Mehr

Pyramidenvolumen Was haben Treppenkörper mit Intervallschachtelung zu tun?

Pyramidenvolumen Was haben Treppenkörper mit Intervallschachtelung zu tun? Pyramdevolume Was abe Treppekörper mt Itervallscactelug zu tu? Gegebe st ee Pyramde mt der Grudkate a = 5 ud der Höe = 8. De Höe st äqudstat Tele egetelt ud der Pyramde sd 3 Quader ebescrebe. 1) Berece

Mehr

Prof.Dr.B.Grabowski (Schwingungen als komplexe Zeiger) Lösung zum Übungsblatt Nr. 2. (Wiederholung Linearfaktorzerlegung von Polynomen)

Prof.Dr.B.Grabowski (Schwingungen als komplexe Zeiger) Lösung zum Übungsblatt Nr. 2. (Wiederholung Linearfaktorzerlegung von Polynomen) Maheaik 3 Übug Schwiguge als koplexe Zeiger KI Maheaik 3 Lösug zu Übugsbla Nr. I. LFZ Zu Aufgabe Wiederholug Liearfakorzerlegug vo Polyoe Zerlege Sie folgede Polyoe i Liearfakore: a y x 4 x 5 4 3 b y.5x.5x

Mehr

1 Definition der Trägheits- und Zentrifugalmomente von Flächen. Abb.1. Flächenträgheitsmomente (axiale Trägheitsmomente) Zentrifugalmoment I

1 Definition der Trägheits- und Zentrifugalmomente von Flächen. Abb.1. Flächenträgheitsmomente (axiale Trägheitsmomente) Zentrifugalmoment I Letzte ete ete... Glederug Ede Formelsammlug Defto der Trägets- ud Zetrfugalmomete vo Fläce d r s. 0 Defto Größe Maßeet Momete zweter Ordug (Kompoete des Trägetstesors) Fläceträgetsmomete (aale Trägetsmomete)

Mehr

Formelsammlung Maschinendynamik/-akustik

Formelsammlung Maschinendynamik/-akustik R Masheau orelsalug Mashedyak/-akustk ete vo Matheatshe Beshreug vo hwguge y As t B os t y s Urehug: A y os y A B B y s B ta A B Ugedäfte free hwguge A Newto: Δ Δ hoogee Dgl.. Ordug ösug der hoogee Dfferetalglehug:

Mehr

( ) ( ) ( ) E ( ) ( ) ( ) ( ) ( ) Def Erwartungswert. 1. Diskreter Fall X sei diskrete Zufallsgröße mit = { 1, x2,

( ) ( ) ( ) E ( ) ( ) ( ) ( ) ( ) Def Erwartungswert. 1. Diskreter Fall X sei diskrete Zufallsgröße mit = { 1, x2, Def.. Erwarugswer. Dsreer Fall se dsree Zufallsgröße m = {, x, } p = P( = x ),( =,, ), so e ma µ = E = xp = de Erwarugswer vo, falls W x ud de Ezelwahrschelchee = x p

Mehr

Inhalt: Modellbildung technischer Systeme Zustandsraum

Inhalt: Modellbildung technischer Systeme Zustandsraum Modellbldug echcher Syeme Zuadraum Ihal:. Löug der Zuadglechug m Zeberech, Fudamealmarx. Egechafe der Fudamealmarx 3. Gewchmarx 4. Löug der Zuadglechuge m Frequezberech 5. Grudlage der Marzeheore Mecharoche

Mehr

Kapitel III. Lagemaße. die beobachteten Werte eines Merkmals X mit Ausprägungen a 1

Kapitel III. Lagemaße. die beobachteten Werte eines Merkmals X mit Ausprägungen a 1 aptel III Lagemaße D (Artmetsces Mttel) See,,, de beobactete Werte ees Merkmals X mt Auspräguge a, a,, a k Als artmetsces Mttel (für ctgrupperte Date) bezecet ma: = = (efaces) k = a H ( a ) (gewogees)

Mehr

5 Reproduktions- und Grenzwertsätze

5 Reproduktions- und Grenzwertsätze Reproduktos- ud Grezwertsätze Reproduktos- ud Grezwertsätze. Reproduktossätze Bespel 0: Der Aufzug eer Frma st zugelasse für Persoe bzw. 000 kg. Das Durchschttsgewcht der Agestellte der Frma st µ = 80

Mehr

Entladung Wanderung Entladung Wanderung H + --- Q -t - F OH - - F. Q --- +t - F

Entladung Wanderung Entladung Wanderung H + --- Q -t - F OH - - F. Q --- +t - F B - - Überführgszahle d Wadergsgeschwdgke fgabe: Besmmg der orfsche Überführgszahle vo - d O - -oe 0N O oder vo 2 - d SO 4 -oe 0N 2SO 4 d Berechg hrer oeäqvalelefähgkee 2 Besmmg der Wadergsgeschwdgkee

Mehr

Es wird zwischen expliziter und impliziter Integration unterschieden. Die explizite Integration hat die Form:

Es wird zwischen expliziter und impliziter Integration unterschieden. Die explizite Integration hat die Form: Eleg er Grgeae er olgee beschrebee Verahre beseh ar, ass a as Glechgewch r z bese Zee bes. ese Vorgeheswese a be Aagswerroblee agewee were. Bege beae Were z Ze wr schrwese er Glechgewchszsa z ee säere

Mehr

Theorie und Numerik von Differentialgleichungen mit MATLAB und SIMULINK. K. Taubert Universität Hamburg SS08

Theorie und Numerik von Differentialgleichungen mit MATLAB und SIMULINK. K. Taubert Universität Hamburg SS08 Theore ud Numerk vo Dfferealglechuge m MATLAB ud SIMULINK K. Tauber Uversä Hamburg SS8 Usege Dfferealglechuge 6 OPTIMALE STEUERUNGSPROBLEME UND NUMERIK FÜR UNSTETIGE DIFFERENTIALGLEICHUNGEN Be Regelugsprobleme

Mehr

( x) eine Funktion definiert, in der nur die i-te Komponente variabel ist. Folgende Schreibweisen werden aufgrund dieser Anmerkungen auch verwendet:

( x) eine Funktion definiert, in der nur die i-te Komponente variabel ist. Folgende Schreibweisen werden aufgrund dieser Anmerkungen auch verwendet: Pro. Dr. Fredel Bolle LS ür Volkswrtschatslehre sb. Wrtschatstheore (Mkroökoome) Vorlesug Mathematk - WS 008/009 4. Deretalrechug reeller Fuktoe IR IR (Karma, S. 00 06, dort glech ür IR IR m ) 4. Partelle

Mehr

Die Top 10 der Algorithmen: Integer Relation Detection

Die Top 10 der Algorithmen: Integer Relation Detection De Top 0 der Algorte: Iteger Relato Detecto elae Sce TU Cetz WS 04/05 Ialtverzec: Eletug 3 Geccte 3 3 ateatce erletug 4 4 Der PSLQ-Algortu 9 5 Kopletät 6 Obere Scrae für Iteger Relato 6 7 Beeruge 7 8 Aweduge

Mehr

Kapitel XI. Funktionen mit mehreren Variablen

Kapitel XI. Funktionen mit mehreren Variablen Kaptel XI Fuktoe mt mehrere Varable D (Fuktoe vo uabhägge Varable Se R ud D( f R Ist jedem Vektor (Pukt (,,, D( f durch ee Vorschrft f ee reelle Zahl z = f (,,, zugeordet, so heßt f ee Fukto vo uabhägge

Mehr

annehmen, so heißt die Funktion, die jedem atomaren Ereignis { x i } mit i { 1; 2; ;

annehmen, so heißt die Funktion, die jedem atomaren Ereignis { x i } mit i { 1; 2; ; Wahrschelchet Ee Futo X : Ω R, de edem Ergebs ees zufällge Vorgages ee reelle Zahl zuordet, heßt Zufallsgröße (oder auch Zufallsvarable Ee Zufallsgröße X heßt edlch, we X ur edlch vele Werte x aehme a

Mehr

Aufgaben zur Festigkeitslehre - ausführlich gelöst

Aufgaben zur Festigkeitslehre - ausführlich gelöst ufge ur Festgketslere - usfürlc gelöst Mt Grudegrffe, Formel, Frge, tworte vo Gerrd Kppste üerretet ufge ur Festgketslere - usfürlc gelöst Kppste scell ud portofre erältlc e eck-sop.de DE FCHBUCHHNDLUNG

Mehr

Basics of FEM Time Integration. Grundlagen der FEM Zeitintegration. Zeitintegration am Beispiel des Grillens. Innovative Numerical Technologies

Basics of FEM Time Integration. Grundlagen der FEM Zeitintegration. Zeitintegration am Beispiel des Grillens. Innovative Numerical Technologies Iovave umercal Tecologes Des s de orrgere Fassug des Arels Grudlage der FEM Zeegrao aus dem Ifoplaer I/5 der CADFEM GmbH. Es ae sc e Feler der Defo der Radbedguge egesclce. Bascs of FEM Tme Iegrao Te opc

Mehr

Standardnormalverteilung. Normalverteilung. Verteilungsfunktion. Intervallwahrscheinlichkeiten

Standardnormalverteilung. Normalverteilung. Verteilungsfunktion. Intervallwahrscheinlichkeiten Normalvertelug Stadardormalvertelug Normalvertelug N(μ, ) mt chte : Gaußche Glockekurve μ μ μ+ μ >, f ( ) = ( μ) WS 7/8 Prof. r. J. Schütze, FB GW NV π Egechafte der chte: - Mamum μ - mmetrch zu μ - Wedepukte

Mehr

v. Weter st + r X + = ( X + ) = ( X + ) ( X + ) = P Deshalb fr 6 6 = + X = K, d. h. I desem Berech ( 6 6 ) glt also ( Idukto ach ) ( ) ( mod ), was fr

v. Weter st + r X + = ( X + ) = ( X + ) ( X + ) = P Deshalb fr 6 6 = + X = K, d. h. I desem Berech ( 6 6 ) glt also ( Idukto ach ) ( ) ( mod ), was fr 5. De Stze vo Sylow Im gaze Abschtt st G ee edlche Grue, 4 #( G). 5.. Problem: Gbt es zu jedem Teler t vo ( tj ) ee Utergrue H mt #( H) = t? We ja, wevele? Gegebesel: 9 Utergrue H vo G = A 5 mt #( H) =

Mehr

Problem des Zufalls wird durch mathematische Modelle widergespiegelt.

Problem des Zufalls wird durch mathematische Modelle widergespiegelt. Mahemak für VIW - Prof. Dr. M. Ludwg.2 Zufällge Eregsse Problem des Zufalls wrd durch mahemasche Modelle wdergespegel. Zufällger Versuch: Versuch m fesgelege belebg wederholbare Bedguge ud ugewssem Ergebs

Mehr

x = a + b α + β. b) Wir erweitern den Bruch geeignet (Standardtrick: z z ist reell, daher ergibt 1/z = 1/z z/ z = z/(z z) einen reellen Nenner):

x = a + b α + β. b) Wir erweitern den Bruch geeignet (Standardtrick: z z ist reell, daher ergibt 1/z = 1/z z/ z = z/(z z) einen reellen Nenner): Karlsruher Istitut für Techologie (KIT) Istitut für Aalysis Priv-Doz Dr P C Kustma Dr D Frey WS 0/ Höhere Mathematik I für die Fachrichtug Physik Lösugsvorschläge zum 3 Übugsblatt Aufgabe Zuächst zum Supremum:

Mehr

1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen

1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen .. Jährlche Retezahluge... Vorschüssge Retezahluge Ausgagspukt: Über ee edlche Zetraum wrd aus eem Kaptal (Retebarwert v, ), das zseszslch agelegt st, jewels zu Beg ees Jahres ee bestmmte Reterate ř gezahlt

Mehr

Das Verfahren von Godunov. Seminar Numerik 25.11.2010 Anja Bettendorf

Das Verfahren von Godunov. Seminar Numerik 25.11.2010 Anja Bettendorf Das Verfahre vo Goduov Semar Numerk 5..00 Aja Beedorf Das Verfahre vo Goduov Übersch Goduov - Goduovs Verfahre für Leare Syseme Aweduge & Folgeruge aus Goduovs Verfahre - De Numersche Fluss-Fuko m Goduov

Mehr

Taylor-Entwicklung der exakten Lösung und Verfahrensfehler

Taylor-Entwicklung der exakten Lösung und Verfahrensfehler Lösug ud Verfaresfeler Ngaleu Poutceu Paul Fracs Fracsc@upb.de 8.6.4 Semar Numerk 1 Lösug ud Verfaresfeler Beobactug, Defto ud Notato Beobactug Notato Taylor-Etwcklug Defto ud Bespele Satz ud Bewes Verfaresfeler

Mehr

Elektrotechnik Formeln 3. und 4. Semester von Gerald Meier

Elektrotechnik Formeln 3. und 4. Semester von Gerald Meier Elekoechk Fomel 3. 4. Semese vo Gel Mee lyse vo Eschwgvogäge. Nezwekelemee.. Wes ( ( ( (.. Ikvä..3 Kzä..4 Übege ( ( ( mß seg se ( + τ τ ( + τ τ ( mß seg se..4. lose gekoele Übege ( ( ( M ( ( + ( M + müsse

Mehr

Einführung 2. Teil: Fehleranalyse

Einführung 2. Teil: Fehleranalyse Phskalsch-chesches Praktku I Modul Eführug. Tel: Fehleraalse Ja Helbg, 7.09.08 Uterlage: htt://www.che.uzh.ch/stud/old/docuets/ear/che3.htl Fehlerrechug Gesucht: wahrer Wert eer Grösse Aber: Sere vo Messuge

Mehr

Fakultät Grundlagen. Februar 2016

Fakultät Grundlagen. Februar 2016 Schwingungsdifferenzialgleichung Fakultät Grundlagen Hochschule Esslingen Februar 016 Fakultät Grundlagen Schwingungsdifferenzialgleichung Übersicht 1 Schwingungsdifferenzialgleichung Fakultät Grundlagen

Mehr

Erzeugen und Testen von Zufallszahlen

Erzeugen und Testen von Zufallszahlen Erzeuge ud Teste vo Zufallszahle Jürge Zumdck Eletug Ee Lergruppe wrd aufgefordert 00 Zufallszahle (0 oder ) ach folgede Methode zu erzeuge: De Hälfte der Gruppe beutzt a) ee Müze oder b) de Zufallszahlefukto

Mehr

Lineare Algebra I. Prof. H. Knörrer. inoffizielles Vorlesungsskript WS 2002/2003 ETH Zürich. Version 1.71

Lineare Algebra I. Prof. H. Knörrer. inoffizielles Vorlesungsskript WS 2002/2003 ETH Zürich. Version 1.71 Leae lgeba I Pof H Köe offzelles Volesugssp WS /3 ETH Züch Veso 7 geschebe vo So uchel ehscps@ybesco Ihal Das Elaosvefahe vo Gauss 3 Vogff auf Maxulplao 6 Veoäue (Fsche 4, 5 6 Eschub übe Maxulplao II Leae

Mehr

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 7, Wintersemester vom 21. Januar 2006

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 7, Wintersemester vom 21. Januar 2006 Prof. E.-W. Zk Isttut für Matheatk Huboldt-Uverstät zu Berl Eleete der Algebra ud Zahletheore Musterlösug, Sere 7, Wterseester 2005-06 vo 21. Jauar 2006 1. Se = 2 p 1 Mersee-Zahl, d.h. p P 1. a) Zege:

Mehr

Systemtheorie. Theorie linearer Regelsysteme. Wintersemester 2007/ Andreas Rauh, Eberhard P. Hofer, Michael A. Danzer

Systemtheorie. Theorie linearer Regelsysteme. Wintersemester 2007/ Andreas Rauh, Eberhard P. Hofer, Michael A. Danzer heore learer Regelsyseme Wersemeser 7/ 8 Adreas Rauh, Eberhard P. Hofer, Mchael A. Dazer Doze: Dpl.-Ig. Adreas Rauh Isu für Mess, Regel ud Mkroechk Fakulä für Igeeurwsseschafe ud Iformak Daksagug De Auore

Mehr

Höhere Mathematik I für die Fachrichtung Physik

Höhere Mathematik I für die Fachrichtung Physik Isiu für Aalysis SS7 Arbeisgruppe Agewade Aalysis 997 PD Dr Peer Chrisia Kusma Höhere Mahemaik I für die Fachrichug Physik Lösugsvorschläge zur Bachelor-Modulprüfug Aufgabe : (a) (i) Kurze Rechug liefer

Mehr

Seminar: Stochastische Geometrie und ihre Anwendungen - Unbegrenzt teilbare und stabile Verteilungen.

Seminar: Stochastische Geometrie und ihre Anwendungen - Unbegrenzt teilbare und stabile Verteilungen. Uverstät Ulm, Isttut Stochastk 5. Jul 200 Semar: Stochastsche Geometre ud hre Aweduge - Ubegrezt telbare ud stable Verteluge. Ausarbetug: Stefa Fuke Betreuer: Ju.-Prof. Dr. Zakhar Kabluchko Ubegrezt telbare

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 4. Marshallsche Nachfragefuktoe Frage:

Mehr

7. Ströme auf differenzierbaren Mannigfaltigkeiten

7. Ströme auf differenzierbaren Mannigfaltigkeiten 7 Söme auf ffeezebae agfalgee Defo 7 Es se Ξ ( e -Fome aus Ω (, e ee ompae Täge besze E -Som s e Eleme es Dualaumes vo Ξ ( W seze ( Ξ ( = : ( Ξ ( Bemeug Wll ma Ξ ( opologsee, so s es we folg möglch: Ee

Mehr

Verschiedene Ausgangspunkte für numerische Verfahren

Verschiedene Ausgangspunkte für numerische Verfahren Vescedee Asgagspke fü mesce Vefae Poblem Maemasce Bescebg Eemalpzp Vaaospoblem Paelle ffeealglecg Elesce gl. Fkoal weselce RB [ ] E q f af A - ffeealopeao öee Ablege we be Vaaospoblem ac aülce RB Fe-Elemee-Meode

Mehr

Klausur HM I H 2005 HM I : 1

Klausur HM I H 2005 HM I : 1 Klausur HM I H 5 HM I : 1 Aufgabe 1 4 Punkte): Zeigen Sie mit Hilfe der vollständigen Induktion: n 1 1 + 1 ) k nn k n! für n. Lösung: Beweis mittels Induktion nach n: Induktionsanfang: n : 1 ) 1 + 1 k

Mehr

Musterlösung für die Klausur zur Vorlesung Stochastik I im WiSe 2014/2015

Musterlösung für die Klausur zur Vorlesung Stochastik I im WiSe 2014/2015 Musterlösug für die Klausur zur Vorlesug Stochastik I im WiSe 204/205 Teil I wahr falsch Aussage Gilt E[XY ] = E[X]E[Y ] für zwei Zufallsvariable X ud Y mit edlicher Variaz, so sid X ud Y uabhägig. Für

Mehr

Ein paar einfache q-analoga des binomischen Lehrsatzes

Ein paar einfache q-analoga des binomischen Lehrsatzes E paar efache -Aaloga des bosche Lehrsatzes Joha Cgler Sowet r beat st, gbt es ee allgeee Utersuchuge darüber, we sch das Reurrezverhalte vo Boalsue ädert, we a de Boaloeffzete durch ersetzt U ee erste

Mehr

7. Vorlesung Wintersemester

7. Vorlesung Wintersemester 7. Vorlesung Winersemeser Der ungedämpfe Oszillaor mi komplexem Lösungsansaz Wie gezeig, wird die DGL des ungedämpfen Oszillaors mẍ() + kx() = 0 () im Komplexen von den Funkionen x () = e iω und x 2 ()

Mehr

Der Approximationssatz von Weierstraß

Der Approximationssatz von Weierstraß Der Approxmatossatz vo Weerstraß Ja Köster 22. Oktober 2007 1 Eführug Aus der Aalyss wsse wr, dass sch aalytsche Fuktoe durch Potezrehe der Form f(x = a 0 + a 1 x + a 2 x 2 +... darstelle lasse. Dabe kovergert

Mehr

3 Finite Difference Time Domain Method (FDTD)

3 Finite Difference Time Domain Method (FDTD) - - Fe eree Te oa Mehod FT. sehug der Mehode. skaare Weegehug Lösuge: = F + F + Taorrehe ür vo Puk 0 u Puk 0 ± u Zeuk :... 6... 6 Addo beder Ausdrüke:... Zerae eree Aroao der. Abeug. Geaugke:. rdug Feher

Mehr

Asymptotische Normalverteilung nach dem zentralen Grenzwertsatz

Asymptotische Normalverteilung nach dem zentralen Grenzwertsatz Asymptotsche ormalvertelug ach dem zetrale Grezwertsatz Erwartugswert eer Summe vo Zufallsvarable mt jewels de Erwartugswert x (Y Y Asymptotsche ormalvertelug ach dem zetrale Grezwertsatz Varaz eer Summe

Mehr

Lösungen zu Übungs-Blatt 7 Klassische Wahrscheinlichkeit in Glücksspielen, Bedingte Wkt, Unabhängigkeit, Satz von Bayes

Lösungen zu Übungs-Blatt 7 Klassische Wahrscheinlichkeit in Glücksspielen, Bedingte Wkt, Unabhängigkeit, Satz von Bayes Lösuge zu Übugs-latt 7 Klasssche Wahrschelchet Glücsspele, edgte Wt, Uabhägget, Satz vo ayes Master M Höhere ud gewadte Mathemat rof. Dr.. Grabows De folgede ufgabe löse wr uter Verwedug der bede ombatorsche

Mehr

Optimale Steuerung von Rüst- und Produktionsprozessen

Optimale Steuerung von Rüst- und Produktionsprozessen JOHANNES KEPLER UNIVERSITÄT LINZ Nezwerk für Forschug, Lehre ud Praxs Opale Seuerug vo Rüs- ud Produkosprozesse DISSERTATION zur Erlagug des akadesche Grades DOKTOR DER NATURWISSENSCHAFTEN Ageferg a Isu

Mehr

1. Wahrscheinlichkeitsrechnung. 2. Diskrete Zufallsvariable. 3. Stetige Zufallsvariable. 4. Grenzwertsätze. 5. Mehrdimensionale Zufallsvariable

1. Wahrscheinlichkeitsrechnung. 2. Diskrete Zufallsvariable. 3. Stetige Zufallsvariable. 4. Grenzwertsätze. 5. Mehrdimensionale Zufallsvariable 1. Wahrscheilichkeitsrechug. Diskrete Zufallsvariable 3. Stetige Zufallsvariable 4. Grezwertsätze 5. Mehrdimesioale Zufallsvariable Stetige Zufallsvariable Eie Zufallsvariable X : Ω R heißt stetig, we

Mehr

3 Harmonische Anregung

3 Harmonische Anregung 3 Harmoische Aregg Lieare ihomogee Dieretialgleichg Partikläre Lösg: + ζ + p () t (3.4) Lösg der homogee DGL: h h + ζ h + h (3.5) Vollstädige Lösg: + C h Bei eier harmoische Aregg ka die Krat Ft () etweder

Mehr

Kapitel 2 Kontinuierliche Systemmodelle (III)

Kapitel 2 Kontinuierliche Systemmodelle (III) Modellerg d Smlao mecharoscher Syseme Kapel Koerlche Sysemmodelle III 8. Orsdskreserg Syseme m verele Parameer 8. Gewöhlche d parelle Dfferealglechge sher: Mahemasche Modelle koerlcher dyamscher Syseme

Mehr

6. Vorlesung Grundlagen der analogen Schaltungstechnik : Operationsverstärker & Dynamik (KWSR + x)

6. Vorlesung Grundlagen der analogen Schaltungstechnik : Operationsverstärker & Dynamik (KWSR + x) 6. Vorlesug Grudlage der aaloge Schaltugstechik : Operatiosverstärker & Dyaik (KWSR + x) 9..6 Die große Etappeziele i GST roter Fade Netzwerkaalyse it gesteuerte Quelle icht ehr als 3 Gleichuge für jede

Mehr

Gernot Liedtke. Optimale Netzbewirtschaftung durch Knappheitspreissignale und resultierende Langfristanreize

Gernot Liedtke. Optimale Netzbewirtschaftung durch Knappheitspreissignale und resultierende Langfristanreize Gero Lede Omae ezbewrschafug durch Kahesressgae ud resuerede Lagfrsareze Ageda Sozae Grezose m Verehr (Sau-Kosefuoe ud omae Kahesgebühr Beresugsösuge für uerscheh dmesoere Ifrasruur Schussfogeruge ud Aerave

Mehr

Hochschule Furtwangen University Sommersemester Prof. Dr. Thomas Schneider Medien und Informatik 2. Übungsblatt 5. dar.

Hochschule Furtwangen University Sommersemester Prof. Dr. Thomas Schneider Medien und Informatik 2. Übungsblatt 5. dar. Hochschle Frtwage Uversty Sommersemester 0 Fakltät Dgtale Mede Mathematk Prof. Dr. Thomas Scheder Mede d Iformatk Übgsblatt. Elemetares Reche mt komplexe Zahle Es se w= +. a) Blde Se de komplex Kojgerte

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 5/6..6 Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum. Übungsblatt Aufgabe

Mehr

Einführung in die Stochastik 3. Übungsblatt

Einführung in die Stochastik 3. Übungsblatt Eführug de Stochastk 3. Übugsblatt Fachberech Mathematk SS 0 M. Kohler 06.05.0 A. Fromkorth D. Furer Gruppe ud Hausübug Aufgabe 9 (4 Pukte) Der Mkrozesus st ee statstsche Erhebug. Herbe werde ach bestmmte

Mehr

Klausur SS 2005 Version 1

Klausur SS 2005 Version 1 BEMERKUG: für de Rchtgket der Lösuge wrd atürlch kee Garate überomme!! Klausur SS 005 Verso Aufgabe : e Gamma-Quat hat kee Ladug > el. Felder übe kee Kräfte aus > kee Kräfte, kee Äderug der Bewegug (ewto)

Mehr

19. Amortisierte Analyse

19. Amortisierte Analyse 9. Amortserte Aalyse Amortserte Aalyse wrd egesetzt zur Aalyse der Laufzet vo Operatoe Datestrukture. Allerdgs wrd cht mehr Laufzet ezeler Operatoe aalysert, soder de Gesamtlaufzet eer Folge vo Operatoe.

Mehr

4 Andreas Gathmann. x 2 +y 2 x 2 +y 2 x 2 +y 2

4 Andreas Gathmann. x 2 +y 2 x 2 +y 2 x 2 +y 2 4 Adreas Gathma 1. Komplexe Zahle Bevor wir mit der komplexe Aalysis begie, wolle wir uächst die grudlegede Defiitioe ud Eigeschafte der komplexe Zahle och eimal kur wiederhole. Defiitio 1.1. Die Mege

Mehr

( ) å ( ) z.b. p = 0,25 oder = 0,5. 1 n. = å. = = å. ; falls n ungerade. = í1 ï + ; falls n gerade. Dr. Christian Schwarz

( ) å ( ) z.b. p = 0,25 oder = 0,5. 1 n. = å. = = å. ; falls n ungerade. = í1 ï + ; falls n gerade. Dr. Christian Schwarz BBA roesemar Tess Dr. Crsa Scwarz Formelsammlug Desrpve Sas. EINDIMENSIONALES DATENMATERIAL ( MERKMAL).. Noao Zal der Mermalsräger (Beobacugswere oder Messwere) Zal der Mermalsauspräguge bzw. Klasse (Cave:

Mehr

Klausur Statistik IV Sommersemester 2009

Klausur Statistik IV Sommersemester 2009 Klausur Statstk IV (Lösug) Name, Vorame 013456 Klausur Statstk IV Sommersemester 009 Prof. Dr. Torste Hothor Isttut für Statstk Name: Name, Vorame Matrkelummer: 013456 Wchtg: ˆ Überprüfe Se, ob Ihr Klausurexemplar

Mehr

F 6-2 π. Seitenumbruch

F 6-2 π. Seitenumbruch 6 trebsauslegug Für dese ckelprozess üsse de otore so ausgelegt werde, dass dese Fahrbetreb cht überlastet werde. Herfür üsse de ezele asseträghetsoete [7] der Bautele (otor, etrebe, ckler ud Ulekrolle)

Mehr

Seminararbeit. Der Logarithmus von Matrizen

Seminararbeit. Der Logarithmus von Matrizen Semiararbeit Der Logarithmus vo Matrize SoSe 2 Prof. Dr. L. Schwachhöfer Techische Uiversität Dortmud Name: Gülsüm Sirik Studiegag: BfP Datum: 8.6.2 Ihaltsverzeichis Eileitug 3 2 Der Logarithmus vo Matrize

Mehr

Die Lösung der Rekursion. mit a, c, d R >0, b N >0 verhält sich so:

Die Lösung der Rekursion. mit a, c, d R >0, b N >0 verhält sich so: Asymptotische Notatio Ladaus asymptotische Notatio O, Ω, o, ω, Θ, wird vorausgesetzt siehe Folie auf webseite oder eischlägige Literatur (z.b. Corme, Leiserso, Rivest) Geometrische Reihe α 0 folgt aus

Mehr

b) Der eintretende und der austretende Lichtstrahl sind parallel. Es tritt keine Verzerrung auf.

b) Der eintretende und der austretende Lichtstrahl sind parallel. Es tritt keine Verzerrung auf. Physik awede ud verstehe: Lösuge 5. Brechug ud Totalreflexio 004 Orell Füssli Verlag AG 5. Brechug ud Totalreflexio Beim Übergag i ei Medium gilt obige Aussage icht mehr. Würde das Licht die kürzeste Strecke

Mehr

a) Wir nutzen den Drallsatz für die Rolle und horizontale Komponente des Schwerpunktsatzes, für kleine Auslenkungen: Abb.

a) Wir nutzen den Drallsatz für die Rolle und horizontale Komponente des Schwerpunktsatzes, für kleine Auslenkungen: Abb. Tutoriumsaufgaben. Aufgabe a) Wir nutzen den Drallsatz für die olle und horizontale Komponente des Schwerpunktsatzes, für kleine Auslenkungen: Θ S φ = M(t) rs + cos(φ) F c + F H () m x = S + F H F c Gl.

Mehr

3.2 Reihen Folgen und Reihen. Beispiele : (i) a n+1 = 1 2 beschränkt. a n 2. ), n N, a 1 = 2; zeigen: (a n ) n monoton fallend & nach unten

3.2 Reihen Folgen und Reihen. Beispiele : (i) a n+1 = 1 2 beschränkt. a n 2. ), n N, a 1 = 2; zeigen: (a n ) n monoton fallend & nach unten 6 3 Folge ud Reihe Beispiele : i + = beschrät Satz 3..5 + = +, N, a = ; zeige: ooto falled & ach ute + a = li + = + s.o. a + = + a = a + a a = a a+ a ii x =, x + = + x, =,,... x ooto wachsed: Idutio: x

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Gewöhnlche Dfferenalglechungen (von Mchael Ddas, Wnersemeser 2001/2002) 1. Exsenz- und Endeugke von Lösungen 2. Trennung der Varablen 3. Syseme lnearer Dfferenalglechungen 1. Ordnung 4. Syseme m konsanen

Mehr

Lösungen: 1. Übung zur Vorlesung Optoelektronik I

Lösungen: 1. Übung zur Vorlesung Optoelektronik I Geke/Lemme SS 4 Lösuge:. Übug u Volesug Optoelektok Augabe : Releo ud Bechug a Geläche (a De Ausbetug o elektomagetsche Welle wd duch de Mawell Glechuge ( bs (4 beschebe. t B& ( t J D& H ( t ρ D ( 3 B

Mehr

MST Übung 3 Mathematik 2 Prof.Dr.B.Grabowski Tel.:

MST Übung 3 Mathematik 2 Prof.Dr.B.Grabowski   Tel.: MST Übug Mthemtk Prof.Dr.B.Grbowsk e-ml: grbowsk@htw-srld.de Tel.: 87- Iverse Mtrze ufgbe : Bereche Se de Iverse Mtr zu folgede Mtrze. Prüfe Se Ihr Ergebs, dem Se - bereche! b dg-,,-,,-, c 7 d ufgbe :

Mehr

Spezieller Ansatz bei spezieller Inhomogenität.

Spezieller Ansatz bei spezieller Inhomogenität. Spezieller Ansatz bei spezieller Inhomogenität. Bei Inhomogenitäten der Form h(t) = e µt kann man spezielle Ansätze zur Bestimmung von y p (t) verwenden: Ist µ keine Nullstelle der charakteristischen Gleichung

Mehr

6. Vorlesung Grundlagen der analogen Schaltungstechnik : Operationsverstärker & Dynamik (KWSR + x)

6. Vorlesung Grundlagen der analogen Schaltungstechnik : Operationsverstärker & Dynamik (KWSR + x) 6. Vorlesug Grudlage der aaloge Schaltugstechik : Operatiosverstärker & Dyamik (KWSR + x) Die große Etappeziele i GST roter Fade Netzwerkaalyse mit gesteuerte Quelle icht mehr als 3 Gleichuge für jede

Mehr

6. Fourier-Transformation

6. Fourier-Transformation 6. Fourier-rasformatio Wir betrachte zuächst eie periodische Fuktio: f t+ f t. (6- Die Idee ist, das sie sich durch eie Überlagerug periodischer, harmoischer Schwiguge darstelle lässt. Aalogie: ( + cos(

Mehr

Tests/Regression/ANOVA. Lösungen Blatt Test auf den unbekannten Erwartungswert bei unbekannter Streuung:

Tests/Regression/ANOVA. Lösungen Blatt Test auf den unbekannten Erwartungswert bei unbekannter Streuung: Löuge latt 7. Tet auf de ubekate Erwartugwert be ubekater Streuug: () H 0 : µ 0, 5 H : µ < 0, 5 (lketger Tet) X µ () Tetfukto: Ψ (t-vertelt mt (-)99 G) 0,497 0,5 Realerug: ψ 00 5, 57 0,0075 (3) krtcher

Mehr

Prüfung DAV-Spezialwissen in Finanzmathematik 2010 Version 4. September 2011

Prüfung DAV-Spezialwissen in Finanzmathematik 2010 Version 4. September 2011 Prüfug DAV-Spezalwsse Fazmaemak 1 Verso 4 Sepember 11 Block I (Albrec) Aufgabe 1: (3 Mue) a) De Rede R V / v eer Fazposo über e Zeervall der Läge se ormalverel, R ~ N(, ) Lee Se de Value a Rsk deser Fazposo

Mehr

1.4 Wellenlängenbestimmung mit dem Prismenspektrometer

1.4 Wellenlängenbestimmung mit dem Prismenspektrometer F Lorbeer ud Ardt Quer 5.0.006 Physkalsches Praktkum für Afäger Tel Gruppe Optk.4 Wellelägebestmmug mt dem Prsmespektrometer I. Vorbemerkug E Prsmespektrometer st e optsches Spektrometer, welches das efallede

Mehr

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes Quellecoderug I: Redudazredukto, redudazsparede Codes Quellecoderug Durch de Quellecoderug werde de Date aus der Quelle codert, bevor se ee Übertragugskaal übertrage werde De Coderug det der Verkleerug

Mehr

Grundgesetze der BOOLEschen Algebra und Rechenregeln

Grundgesetze der BOOLEschen Algebra und Rechenregeln 5... Grudgesetze der BOOLEsche Algebra ud Recheregel Auf de mathematsch korrekte Eführug der BOOLEsche Algebra ka ch verzchte, da das Ihrer Mathematkausbldug ausführlch behadelt wrd. Ich stelle Ihe zuächst

Mehr

Versuch III. Drehpendel. Oliver Heinrich. Bernd Kugler Abgabe:

Versuch III. Drehpendel. Oliver Heinrich. Bernd Kugler Abgabe: Versuch III Drehpendel Oliver Heinrich oliver.heinrich@uni-ulm.de Bernd Kugler berndkugler@web.de 12.10.2006 Abgabe: 03.11.2006 Betreuer: Alexander Berg 1 Inhaltsverzeichnis 1 Theoretische Grundlagen 3

Mehr

1. Zufallsbewegung und Binomialverteilung. Statistische Betrachtungsweise bezieht sich stets auf ein Ensemble.

1. Zufallsbewegung und Binomialverteilung. Statistische Betrachtungsweise bezieht sich stets auf ein Ensemble. . Zfallsbewegg d Boalvertelg Statstsche Betrachtgswese bezeht sch stets af e Eseble. Eseble: Gesathet eer sehr große Zahl N detscher Systee. Wahrschelchket für das Etrete ees Eregsses A: Brchtel der Systee,

Mehr

Korrespondenzen der FOURIER - Transformation I

Korrespondenzen der FOURIER - Transformation I Korresodee der FOURIER - rsormio I A: HEOREME s() S() F-rsormio s () jπ S( ) = s e d Iverse F- jπ rsormio s () = S e d S( ) 3 Zerlegug reeller Zeiukioe mi s () = s() + s() S( ) = Re{ S( )} + jim{ S( )}

Mehr

Hochschule Darmstadt Fachbereich MK Prof. Dr. Fritz Bierbaum Mathematik I Wintersemester 2017 / 2018 Kapitel 1, Übungen, Seite 1/7

Hochschule Darmstadt Fachbereich MK Prof. Dr. Fritz Bierbaum Mathematik I Wintersemester 2017 / 2018 Kapitel 1, Übungen, Seite 1/7 Hohshule Darmstadt Fahbereh K Prof Dr Frtz Berbaum athematk I Wtersemester 0 / 08 Kaptel, Übuge, Sete / Aufgabe We es x Lter auf de Quadratmeter reget, we hoh steht da das Wasser m Aufgabe Gegebe sd utershedlhe

Mehr

Die Fouriertransformation und ihre Eigenschaften

Die Fouriertransformation und ihre Eigenschaften De Fourerransormaon und hre Egenschaen Klene Formelsammlung zusammengesell von Pro. Dr. ajana Lange Fachberech Elekroechnk Fachhochschule Merseburg Inhal: Fourerrehe und Fourernegral ransormaon enger wchger

Mehr

Höhere Mathematik 3. Kapitel 12 Differenzengleichungen, z-transformation. Prof. Dr.-Ing. Dieter Kraus

Höhere Mathematik 3. Kapitel 12 Differenzengleichungen, z-transformation. Prof. Dr.-Ing. Dieter Kraus Höhere Mathematik 3 Kapitel 1 Differezegleichuge, z-trasformatio Prof. Dr.-Ig. Dieter Kraus Höhere Mathematik 3 Kapitel 1 Ihaltsverzeichis 1 Differezegleichuge, -Trasformatio...1-1 1.1 Eiführug i Differezegleichuge...1-1

Mehr

Varianzfortpflanzung

Varianzfortpflanzung 5.0 / SES.5 Parameterschätzug Varazortplazug Torste Maer-Gürr Torste Maer-Gürr Dskrete Zuallsvarable Ee dskrete Zuallsvarable mmt edlch vele oder abzählbar uedlch vele Werte a. - Werte: - Wahrschelchket:,,,,,,,,

Mehr

Konvexität und Ungleichungen

Konvexität und Ungleichungen Koveität ud Ugleichuge Tag der Mathematik 2003 Holger Stepha Weierstraß Istitut für Agewadte Aalysis ud Stochastik http://www.wias-berli.de/people/stepha = Für mathematisch iteressierte Schüler = Folie

Mehr

Lösungen zu den Aufgaben zu Mathematik I. w w w f f f f w w f f w w f f w f w w f w w w w f f w w w w w w. s = p q p q erhalten wir folgende Tabelle:

Lösungen zu den Aufgaben zu Mathematik I. w w w f f f f w w f f w w f f w f w w f w w w w f f w w w w w w. s = p q p q erhalten wir folgende Tabelle: TEIL B Lösuge zu de Aufgabe zu Mathematik I.. Logik... A B A B A B A B A B w w w f f f f w f f w f w w f w f w w f w f f f w w w w A B A B B A B [ ] ( A B) ( A B) A ( ) ( ) A B A B A w w w f f f f w w

Mehr

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk ----------------------------------------------------------------------------------------------- Satz vo Bayes ud totale

Mehr

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und:

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und: 1 L - Hausaufgabe Nr. 55 Sotag, 1. Ju 2003 Ee Müze werde dremal geworfe. Was st das Zufallsexpermet, das Elemetareregs, das zusammegesetzte Eregs, der Eregsraum ud de Wahrschelchket? Lösugs kte.: 1 De

Mehr

Grundlagen der Informatik 2. Grundlagen der Digitaltechnik. 3. Entwicklungssatz der Schaltalgebra

Grundlagen der Informatik 2. Grundlagen der Digitaltechnik. 3. Entwicklungssatz der Schaltalgebra Grudlage der Iormatk Grudlage der Dgtaltechk 3. Etwcklugssatz der Schaltalgebra Pro. Dr.-Ig. Jürge Tech Dr.-Ig. Chrsta Haubelt Lehrstuhl ür Hardware-Sotware Sotware-Co-Desg Grudlage der Dgtaltechk Etwcklugssatz

Mehr

3. Das Messergebnis. Was ist ein Messergebnis?

3. Das Messergebnis. Was ist ein Messergebnis? . Das Messergebs Was st e Messergebs? Wederholug der Messug Wahrer Wert? Mehrere Eflussgröße Fehlerbetrachtug Messergebs Vorgeheswese für Messergebs. Bestmmug des bekate systematsche Fehlers 2. Aufahme

Mehr

für. für. für. Univariate Beschreibung/ Maße. für. für. für. Formelsammlung Statistik I. Rechenregeln zu Summenzeichen

für. für. für. Univariate Beschreibung/ Maße. für. für. für. Formelsammlung Statistik I. Rechenregeln zu Summenzeichen Goete Uvertät Fraurt Soereeter 4 ro. Dr. Katr uu Forelalug Statt I Receregel zu Suezece 3 3 3 Uvarate ecrebug/ Maße Kuulerte Häugetvertelug - ür ür ür H a a H wobe a < a + Erce Verteluguto. t tel der Werte

Mehr

Lösung der Schrödinger- Gleichung für ein Harmonisches Potential.

Lösung der Schrödinger- Gleichung für ein Harmonisches Potential. Lösug dr Srödigr- Gliug für i aroiss Poial. Ggb is di Srödigr Gliug i saioärr For: o s soll i aroisr Oszillaor vorlig: o i Variablrasforaio wird durgfür: ( ε ) Lösug dur d Asaz a Allgi, oog, liar Diffrialgliug.

Mehr

Lösungen. Häufigkeitsverteilung (Stabdiagramm) Aufgabe 1. Häufigkeit (h) Merkmal (x)

Lösungen. Häufigkeitsverteilung (Stabdiagramm) Aufgabe 1. Häufigkeit (h) Merkmal (x) Lösuge Aufgabe Merkmal (x) Häufgket (h) h x,, 3, 3,, 8, 5, 5, 6, 6, 7, 3, 8, 3 5, 9, 38,, 5,, 8 68,, 6 3, 3, 9,, 8, 5, 5 5, 6, 3 78, 7, 5, 8, 8, 3, 3, Summe 5.63, Aufgabe Häufgketsvertelug (Stabdagramm)

Mehr

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten Festverzslche Wertaere Kurse ud Redte be gazzahlge Restlaufzete Glederug. Rückblck: Grudlage der Kursrechug ud Redteermttlug 2. Ausgagsstuato 3. Herletug der Formel 4. Abhäggket vom Marktzsveau 5. Übugsaufgabe

Mehr

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg Isttut für Physkalshe Chee lbert-ludwgs-uverstät Freburg Lösuge zu 1. Übugsblatt zur orlesug Physkalshe Chee I SS 2014 Prof. Dr. Bartsh 1.1 L We groß st de olasse vo Dethylether (CH CH 2 OCH 2 CH )? We

Mehr

Aufgaben Reflexionsgesetz und Brechungsgesetz

Aufgaben Reflexionsgesetz und Brechungsgesetz Aufgabe Reflexiosgesetz ud Brechugsgesetz 24. Zeiche zwei Spiegel, die sekrecht zueiader stehe. Utersuche mit zwei verschiede eifallede Strahle, welche Eigeschafte die reflektierte Strahle habe, die acheiader

Mehr