Inhalt: Modellbildung technischer Systeme Zustandsraum

Größe: px
Ab Seite anzeigen:

Download "Inhalt: Modellbildung technischer Systeme Zustandsraum"

Transkript

1 Modellbldug echcher Syeme Zuadraum Ihal:. Löug der Zuadglechug m Zeberech, Fudamealmarx. Egechafe der Fudamealmarx 3. Gewchmarx 4. Löug der Zuadglechuge m Frequezberech 5. Grudlage der Marzeheore Mecharoche Syeme, Zuadraum, Fole:

2 Modellbldug echcher Syeme, Zuadraum Leraur. Böger, Regelugechk, R. Oldebourg Verlag, Müche We, 3. uflage 998. H. Ubehaue, Regelugechk I, Sudum Techk Veweg Verlag, Webade, 3. uflage 5 H. Ubehaue, Regelugechk II, Sudum Techk Veweg Verlag, Webade, 8. uflage J. Luze, Regelugechk, Sprger-Verlag Hedelberg, 5. uflage, 6 J. Luze, Regelugechk, Sprger-Verlag Hedelberg, 4. uflage, 6 O. Föllger, D. Frake, Eführug de Zuadbechrebug dyamcher Syeme Regelugechk, Eführug hre Mehode ud hre weduge, Oldebourg Verlag, Müche We, 98 K. Ogaa, Moder Corol Egeerg, Prece Hall, Fourh Edo, Upper Saddle Rver,... Mecharoche Syeme, Zuadraum, Fole:

3 . Löug der Zuadglechug m Zeberech, Fudamealmarx Berachug ee Syem erer Ordug: x& a x b u fagbedgug m Zepuk : x x Durch wedug der Laplace-Traformao: X x a X b U X x b U a a Rückraformao der Ze x e a x e a τ b u τ dτ Für de vekorelle Fall gl da: x e x e τ B u τ dτ I I Gl ur we auch: d e d m: e I e k k k k!! x & e x e x B u llgeme gl de Form: x 3 3 3! τ 4 4 K 4! Φ x Φ τ B u τ dτ B u τ dτ B u II Fudamealmarx- oder Übergagmarx Mecharoche Syeme, Zuadraum, Fole: 3

4 . Egechafe der Fudamealmarx merkug: I der fagwer, o äder ch II dadurch, da durch - erez wrd. x Φ x Φ B u τ dτ Egechafe der Fudamealmarx: a Φ e I b Φ e e Φ Ivererbarke c k k Φ e Φ k d Φ Φ Φ Φ e Φ ud au Φ Φ Φ Φ Φ j j j e Φ Φ Φ Mecharoche Syeme, Zuadraum, Fole: 4

5 . Egechafe der Fudamealmarx merkug: Für zevarae Syeme lä ch aürlch auch ee Fudamealmarx agebe, de vom fagwer abhägg. llerdg lä ch dee Fudamealmarx allgeme ch al Expoealfuko darelle. Egechafe der zevarae Fudamealmarx: a Φ, I b Φ, Φ, Ivererbarke c Φ, Φ, Φ, ußerdem x Φ auf zevarae überragbar: x Φ, x x Φ, τ B u τ dτ mee ur umerch löbar. Φ B u τ dτ Mecharoche Syeme, Zuadraum, Fole: 5

6 3. Gewchmarx Zur alye de Zuammehag zwche Egag- ud ugagvekor de Gewchfuko ehr üzlch. Se e zevarae Syem gegebe: y C x D u m I x e x e τ y Ce x Ce B u τ dτ τ B u τ dτ D u III E wrd folgede xr-marx III egeführ: τ G Ce B D δ bzw. G τ Ce B D δ τ Zuäzlch beache ma de Egechaf der δ-fuko: Du τ δ τ dτ D u Mecharoche Syeme, Zuadraum, Fole: 6

7 3. Gewchmarx y Ce x G τ u τ dτ Spezell für x Verallgemeerug de Duhamelche Falugegral G Ce B D δ Dehalb ka de Marx G al Verallgemeerug der Gewchfuko g dageell werde. G CΦ B D δ Gewchmarx zw. de r Egag- u. m ugaggröße Mecharoche Syeme, Zuadraum, Fole: 7

8 3. Gewchmarx Bepel: 6 x & x u; 5 y [ ] x ud x m der Fudamealmarx: 3 3 3e e 6e 6e Φ e ud d 3 3 e e e 3e folg für de Gewchmarx: G 3e e 3 [ ] 6e 6e e e 3 3 6e e 6e 3e 3 3 Mecharoche Syeme, Zuadraum, Fole: 8

9 4. Löug der Zuadglechuge m Frequezberech Für de Umwadlug der Zuadglechuge m Frequezberech Wrd de Laplace-Traformere gebrauch. L{u}U ud L{G}G Zur Bemmug der Übergagmarx Φ der Zuaddarellug, bedarf e eer Laplace-Traformao: x& y x Bu Cx D u Zuadglechug ugagglechug X x X BU Y CX DU Laplace-Traformao Durch Umformug: I X I x B U x I oder B U Löug der Zuadglechuge m Bld- oder Frequezberech Mecharoche Syeme, Zuadraum, Fole: 9

10 4. Löug der Zuadglechuge m Frequezberech Löug der Zuadglechuge m Bld- oder Frequezberech X I x I B U Egeverhale de Syem Erzwugee Reako de Syem - Φ L { I } oder L{ Φ } Φ I De Berechug der Marx Φ ergb ch durch de Bemmug der Ivere vo I-: Φ adj I I T Mecharoche Syeme, Zuadraum, Fole:

11 4. Löug der Zuadglechuge m Frequezberech De Berechug der Marx Φ ergb ch durch de Bemmug der Ivere vo I-: Φ adj I I T Bepel: ; I ; adj I 5 ; I 3 Φ I Φ I 3e e e e 3 3 6e e 6e 3e 3 3 Mecharoche Syeme, Zuadraum, Fole:

12 4. Löug der Zuadglechuge m Frequezberech Überragugfuko ee Syem au der gegebee Zuaddarellug Für e Mehrgrößeyem gl m x : Y C I BU DU oder Y C I B D U Für de Gewchmarx oder Überragugmarx m G CΦ B D δ G C I B D m Φ I G CΦ B D Für Egrößeyeme gl epreched: G c T I b d m Φ I T G c Φ b d wobe d ee kalare Größe. Mecharoche Syeme, Zuadraum, Fole:

13 4. Löug der Zuadglechuge m Frequezberech Mehode zur Ermlug der Überragugfuko, ach Roebrock: Für x : au X x X BU ud Y CX DU I X BU ud CX DU Y Dee Glechuge lae ch folgedermaße darelle: I C B X D U Y I P C B D Syemmarx oder Roebrock-Marx Für e Egrößeyem gl epreched m r P I c T b d wobe d e Skalar. Mecharoche Syeme, Zuadraum, Fole: 3

14 4. Löug der Zuadglechuge m Frequezberech Mehode zur Ermlug der Überragugfuko, ach Roebrock: Für de Deermae der xmxr-blockmarx de Mehrgrößeyem gl: P I C B D I D C I B Für Egrößeyeme gl epreched: P T I d c I b P I d c adj I b T m G c T I b d G c T adj I b d I I Da erhäl ma für de Überragugfuko: P G I Z N Mecharoche Syeme, Zuadraum, Fole: 4

15 4. Löug der Zuadglechuge m Frequezberech Bepel: 7 ; b ; c T [ 4] ; d I m der Deermae: I 7 7 P 7 Z P 3 4 Ud dam für de Überragugfuko: G 3 4 Mecharoche Syeme, Zuadraum, Fole: 5

16 5. Grudlage der Marzeheore, Saz vo Cayley-Hamlo De Syemmarx ee x-marx ud ehäl de vollädge Iformao de Egeverhale de Syem. I der Überragugmarx G Φ al ezger Term abhägg vo. De Glechug ehäl m Neer de Elemee der Deermae I-, welche e Polyom -er Ordug e mu. De Wurzel d de Pole de Syem. D.h., der Syemmarx al x-marx köe Pole zugeorde werde. Dee köe reel oder auch magär e. P * de I * Charakerche Glechug P a a a K a m a Φ adj I I G CΦ B D T M dem Polyom -er Ordug, lae ch de Egewere ermel. Mecharoche Syeme, Zuadraum, Fole: 6

17 5. Grudlage der Marzeheore, Saz vo Cayley-Hamlo merkug: Jeder Pol vo G zwar e Egewer vo, aber jeder Egewer vo ch mmer zwagläufg e Pol vo G! E Pol ka machmal durch ee Nullelle gekürz werde! We alle Egewere auch Pole d, da ha der Neergrad vo G de zahl der Zuadgröße. u de Pole der Überragugfuko G ka de Sablä de Syem bemm werde Hurwz, Rouh, ec.. Im Fall Mehrgrößeyeme de Sablä gewährlee, we de Pole der lke Halbebee lege. Be eer Dagoalmarx we be der Dreeckmarx lege de Egewere der Dagoalebee. Saz vo Cayley-Hamlo: Jede quadrache Marx geüg hrer charakerche Glechug. Mecharoche Syeme, Zuadraum, Fole: 7

18 5. Grudlage der Marzeheore, Saz vo Cayley-Hamlo Saz vo Cayley-Hamlo: Jede quadrache Marx geüg hrer charakerche Glechug. E gl m P * : * P a I a a K P * ee Marx ke Polyom we P! Bewe: adj I I adj I * I P Für de x Polyommarx gl: m P * I vo lk folg: P * I I adj I * ud durch Eeze vo P a a I I adj I Mecharoche Syeme, Zuadraum, Fole: 8

19 Mecharoche Syeme, Zuadraum, Fole: 9 I I a Durch Koeffzeeverglech glecher Poeze vo : I a I a I a I a M I Durch Mulplkao vo lk m I ud Mulplkao der zwee Glechug m uw, ud de leze m folg da durch ddo: a a I a K qed. 5. Grudlage der Marzeheore, Saz vo Cayley-Hamlo

20 Mecharoche Syeme, Zuadraum, Fole: Bepel: I P * Ereze durch I P * 4 P * 5. Grudlage der Marzeheore, Saz vo Cayley-Hamlo

21 5. Grudlage der Marzeheore, Saz vo Cayley-Hamlo Bepel: Berechug vo Poeze vo mel Cayley-Hamlo. M * P I ud durch Mulplkao m - folg.. u I I.5.5. Bepel: Berechug der Summe: 3 u * P I I Für 3 I 3 ergb ch da durch Mulplkao m ud Eeze vo : 3 3 I 3 Mecharoche Syeme, Zuadraum, Fole:

22 5. Grudlage der Marzeheore, Saz vo Cayley-Hamlo, wedug auf Marzefukoe Polyom der Ordug p: F f p f K f p Weerh e P* e Polyom der Ordug < p: * P a a K a Da ka durch F durch P* dvder werde F Q P * R Q da Ergeb der Dvo ud R e Repolyom vom Grad höche -. Nach Bldug der Marzefuko ergb ch: F f p I f K f p wobe de Syemmarx x ud P* hr charakerche Polyom. alog gl: F Q P * R Mecharoche Syeme, Zuadraum, Fole:

23 5. Grudlage der Marzeheore, Saz vo Cayley-Hamlo, wedug auf Marzefukoe alog gl: F Q P * R Da ach Cayley-Hamlo P* folg: F I α K R α α l Koequez ach Cayley-Hamlo: Jede x -Marxfuko F der Ordug p durch ee Fuko vo höche --er Ordug darellbar. De Fudamealmarx ka da m F Φ e we folg dargeell werde: Φ R e α I α Kα Zur Bemmug der Koeffzee brauch ma: F Q P * R Mecharoche Syeme, Zuadraum, Fole: 3

24 5. Grudlage der Marzeheore, Saz vo Cayley-Hamlo, wedug auf Marzefukoe Zur Bemmug der Koeffzee brauch ma: F Q P * Da P* folg: F R R Ud ez für de Egewere e: F R ud e α α Kα Dam ergebe ch de Egewere, alo Glechuge zur Bemmug der Koeffzee α j. merkug: Her wrd voraugeez, da de Egewere verchede d! Sd de Egewere mehrfach, da gl: d d µ µ e µ d [ α µ α K α d k k ] für µ,,...m k - Mecharoche Syeme, Zuadraum, Fole: 4

25 Mecharoche Syeme, Zuadraum, Fole: 5 R F R F j j j j F R j j j j I F R ufgrud vo ud m al Egewere der Marx Für de Ierpolaoformel vo Lagrage gl: Erez ma durch ud m Zähler durch I, o erhäl ma de Ewcklugaz vo Sylverer. R e Polyom --er Ordug 5. Grudlage der Marzeheore, Ewcklugaz vo Sylveer

26 5. Grudlage der Marzeheore, Ewcklugaz vo Sylveer Spezell gl agewad auf F e Φ m F j e j j Φ e j j I j M al Egewere vo. merkug: De Egewere müe alle verchede e! De wedug wrd dre Schre augeführ:. Berechug der Egewere vo. Berechug der Klammer 3. Berechug der Fudamealmarx Φ durch ddere der Produke. Mecharoche Syeme, Zuadraum, Fole: 6

27 Mecharoche Syeme, Zuadraum, Fole: 7 Bepel: I Egewere: 3 ; I I Ud dam de Fudamealmarx: 3e e e e 6 e 6 e e 3e 3 6 e 6 3 e Φ 5. Grudlage der Marzeheore, Ewcklugaz vo Sylveer

a) A, B sein Aussagen, betrachtet werde die Aussageverbindungen A B B und A B. Beweisen Sie deren Äquivalenz durch eine Wahrheitstabelle

a) A, B sein Aussagen, betrachtet werde die Aussageverbindungen A B B und A B. Beweisen Sie deren Äquivalenz durch eine Wahrheitstabelle . Auge ud ege A B e Auge berche werde de Augeerbduge A B B ud A B. Bewee Se dere Äqulez durch ee Whrhebelle b Selle Se de ege C der Gußche Zhleebee dr! } { z z C z } Im z > } 6 Puke. Komplee Zhle Bereche

Mehr

Klausur Einführung in die statistische Messdatenauswertung für Biotechnologen Kurzfragen

Klausur Einführung in die statistische Messdatenauswertung für Biotechnologen Kurzfragen Klauur Eführug de ache Medaeauwerug für Boechologe 3.7.9 Kurzfrage. We wrd przpell de relave Summehäugke S() au der relave Häugkedche h() bemm?. Welche Skaleveau müe zwe Merkmale habe um ee Regreogerade

Mehr

Inhalt: Modellbildung technischer Systeme Zustandsraum

Inhalt: Modellbildung technischer Systeme Zustandsraum Modllbldug hhr Sym Zuadraum hw aar Ihal:. Dagoalform. Jorda-Normalform 3. Blokdagoalform 4. Zuammfaug zu d Dagoalform 5. Traformaorgl dr Zuadglhug auf Normalform 6. Awdug kaohr Traformao Qull: Ubhau Barbara

Mehr

Analytische Statistik. Statistische Schätzungen ( Fortsetzung) Population N = unendlich. Stichprobe n = endlich

Analytische Statistik. Statistische Schätzungen ( Fortsetzung) Population N = unendlich. Stichprobe n = endlich Aalyche Sak Zur Ererug Sache Schäzuge ( Forezug) Populao N = uedlch Theoreche Verelug Erwarugwer Theoreche Sreuug Schprobe = edlch Häufgkeverelug Durchch Sadardabwechug Aufgabe der Schäzheore Zur Ererug

Mehr

Multiple Regression (1) - Einführung I -

Multiple Regression (1) - Einführung I - Multple Regreo Eführug I Mt eem Korrelatokoeffzete ud der efache leare Regreo köe ur varate Zuammehäge zwche zwe Varale uterucht werde. Beutzt ma tatt dee mehrere Varale zur Vorherage, egt ma ch auf da

Mehr

Der Parameter Migrationsmatrix Teil II

Der Parameter Migrationsmatrix Teil II Der Parameer Mgraomarx Tel II Pera Loerke Semar Porfolokredrko Uverä Mahem 29.11.27 Rückblck 1. Bedeuug der Mgraomarx 2. Schäzug der Mgraomarx. Sacher Hergrud: Markov-Kee.. Dkree v. kouerlche Ze Ze-Homogeä

Mehr

3 BE b) Wie kann man als Spieler eine Standardabweichung von annähernd null realisieren?

3 BE b) Wie kann man als Spieler eine Standardabweichung von annähernd null realisieren? Lk Mahemak /. Klauur. 0. 00 Bla (v ). Krakehauke 6 BE De Verwalug eer Spezalklk leg für de ufehaldauer X ee aee Tage flgede Wahrchelchkeverelug zugrude: x 5 (X x) 60 % 0 % 0 % Jeder ae zahl für de ufahme

Mehr

Das Verfahren von Godunov. Seminar Numerik 25.11.2010 Anja Bettendorf

Das Verfahren von Godunov. Seminar Numerik 25.11.2010 Anja Bettendorf Das Verfahre vo Goduov Semar Numerk 5..00 Aja Beedorf Das Verfahre vo Goduov Übersch Goduov - Goduovs Verfahre für Leare Syseme Aweduge & Folgeruge aus Goduovs Verfahre - De Numersche Fluss-Fuko m Goduov

Mehr

Institut für Produktionsmesstechnik Technische Universität Braunschweig. Klausur

Institut für Produktionsmesstechnik Technische Universität Braunschweig. Klausur Iu für Produkomeechk Techche Uverä Brauchweg Klauur Eführug de ache Medaeauwerug für Boechologe 4.3. Name:............................... Markel-Nr.:............................... Aufgabe Kurfrage Geam

Mehr

Normalverteilung (Gauss Verteilung) Gauss Kurve. ( x. (Deskriptive Statistik, Vortsetzung)

Normalverteilung (Gauss Verteilung) Gauss Kurve. ( x. (Deskriptive Statistik, Vortsetzung) (Dekrpve Sak, Vorezug) Achaulche Darellug der Fläche uer der heoreche Verelugkurve De heoreche Verelug ka Abhäggke vo der ueruche Varable uerchedlche Forme aehme, der Mehrzahl der Fälle e aber ee ymmerche

Mehr

Entladung Wanderung Entladung Wanderung H + --- Q -t - F OH - - F. Q --- +t - F

Entladung Wanderung Entladung Wanderung H + --- Q -t - F OH - - F. Q --- +t - F B - - Überführgszahle d Wadergsgeschwdgke fgabe: Besmmg der orfsche Überführgszahle vo - d O - -oe 0N O oder vo 2 - d SO 4 -oe 0N 2SO 4 d Berechg hrer oeäqvalelefähgkee 2 Besmmg der Wadergsgeschwdgkee

Mehr

Institut für Produktionsmesstechnik Technische Universität Braunschweig. Klausur

Institut für Produktionsmesstechnik Technische Universität Braunschweig. Klausur Iu für Produkomeechk Techche Uverä Brauchweg Klauur Eführug de ache Medaeauwerug für Boechologe.7. Name:............................... Markel-Nr.:............................... Aufgabe Kurfrage Geam

Mehr

Induktive Statistik. Statistik-Kurs

Induktive Statistik. Statistik-Kurs Idukve Sask Deskrve Sask Sask-Kurs Idukve Sask Im Allgemee dee Idexzahle dazu Aussage über Grue verschedeer aber ählcher Merkmale zu mache. I de Wrschafswsseschafe werde m Idexzahle Verhälsse zwsche eem

Mehr

Die Fouriertransformation und ihre Eigenschaften

Die Fouriertransformation und ihre Eigenschaften De Fourerransormaon und hre Egenschaen Klene Formelsammlung zusammengesell von Pro. Dr. ajana Lange Fachberech Elekroechnk Fachhochschule Merseburg Inhal: Fourerrehe und Fourernegral ransormaon enger wchger

Mehr

Mathematik für VIW - Prof. Dr. M. Ludwig Lineare Systeme in Jordanscher Normalform - Lineare Dgl'n höherer Ordnung.

Mathematik für VIW - Prof. Dr. M. Ludwig Lineare Systeme in Jordanscher Normalform - Lineare Dgl'n höherer Ordnung. Maeak für VIW - Prof. Dr. M. Ludwg 7.3.3 Leare Sysee Jordascer Noralfor - Leare Dgl' öerer Ordug Geg.: x Ax; A Jordascer Noralfor, d.. x x x x x x a a a a x x A x x Durc Ausullzere Ax eräl a x x x3 x x

Mehr

Schätzverfahren bei der linearen Einfachregression

Schätzverfahren bei der linearen Einfachregression chäzverfahre e der leare fachregreo Kofdezervalle der Regreokoeffzee Kofdezervalle der Progoewere Prof. Kück / Dr. Rcaal Delgado Lehruhl ak Regreo IV lografe: Prof. Dr. Kück Uverä Roock ak, Vorleugkrp.

Mehr

Statistik für Ingenieure (IAM) Version 3.0/21.07.2004

Statistik für Ingenieure (IAM) Version 3.0/21.07.2004 Stattk fü Igeeue (IAM) Veo 74 Vaazaalye Mt de efache Vaazaalye (ANOVA Aaly of Vaace) wd de Hypothee gepüft, ob de Mttelwete zwee ode mehee Stchpobe detch d, de au omaletelte Gudgeamthete gezoge wede, de

Mehr

Interpolationspolynome

Interpolationspolynome Iterpolatospolyome Ac Gegebe sd +1 Stützstelle x 0 bs x zusamme mt hre Stützwerte y 0 bs y. Durch de Pukte ( x / y ) soll e Polyom p(x) -te Grades gelegt werde : p(x) = a 0 + a 1 x + a 2 x² + + a x = Das

Mehr

Tests/Regression/ANOVA. Lösungen Blatt Test auf den unbekannten Erwartungswert bei unbekannter Streuung:

Tests/Regression/ANOVA. Lösungen Blatt Test auf den unbekannten Erwartungswert bei unbekannter Streuung: Löuge latt 7. Tet auf de ubekate Erwartugwert be ubekater Streuug: () H 0 : µ 0, 5 H : µ < 0, 5 (lketger Tet) X µ () Tetfukto: Ψ (t-vertelt mt (-)99 G) 0,497 0,5 Realerug: ψ 00 5, 57 0,0075 (3) krtcher

Mehr

Lösungen. Lösung zu d):

Lösungen. Lösung zu d): Löuge Löug zu a De Date chee ch äherugwee etlag eer Gerade potoert zu e. Da lät cho recht gut vermute, da e learer Zuammehag vorhade e köte. Löug zu b We e Ateg/ee Abahme der Deutche Bak Akte auch zu eem

Mehr

( ) ( ) ( ) E ( ) ( ) ( ) ( ) ( ) Def Erwartungswert. 1. Diskreter Fall X sei diskrete Zufallsgröße mit = { 1, x2,

( ) ( ) ( ) E ( ) ( ) ( ) ( ) ( ) Def Erwartungswert. 1. Diskreter Fall X sei diskrete Zufallsgröße mit = { 1, x2, Def.. Erwarugswer. Dsreer Fall se dsree Zufallsgröße m = {, x, } p = P( = x ),( =,, ), so e ma µ = E = xp = de Erwarugswer vo, falls W x ud de Ezelwahrschelchee = x p

Mehr

Ein paar einfache q-analoga des binomischen Lehrsatzes

Ein paar einfache q-analoga des binomischen Lehrsatzes E paar efache -Aaloga des bosche Lehrsatzes Joha Cgler Sowet r beat st, gbt es ee allgeee Utersuchuge darüber, we sch das Reurrezverhalte vo Boalsue ädert, we a de Boaloeffzete durch ersetzt U ee erste

Mehr

Carl Friedrich Gauß (Deutscher Mathematiker, 1777 bis 1855) formulierte die folgende Formel n

Carl Friedrich Gauß (Deutscher Mathematiker, 1777 bis 1855) formulierte die folgende Formel n mthphys-ole Alyss. Klsse Techk Itegrlrechug Vertefug des Itegrlegrffs De Itegrlrechug ht ds Zel, de Flächehlt krummlg egrezter Flächestücke zu ereche. Be der äherugswese Berechug der Fläche uter Polyomfuktoe

Mehr

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes Quellecoderug I: Redudazredukto, redudazsparede Codes. Redudaz. Eführug. Defto der Redudaz. allgemee Redudazredukto. redudazsparede Codes. Coderug ach Shao. Coderug ach Fao. Coderug ach Huffma.4 Coderug

Mehr

Formelsammlung. Unter diesen Annahmen kann der Korrelationskoeffizient nach folgenden Schritten getestet werden:

Formelsammlung. Unter diesen Annahmen kann der Korrelationskoeffizient nach folgenden Schritten getestet werden: Formelammlug. Korrelatoaalye Korrelatooeffzet (Brava-Pearo) ( )( y y) y y r, r + ( ) ( y y) y y Stattcher et Soll tattch getetet werde, ob e learer Zuammehag zwche de Varable ud y für de Grudgeamthet beteht,

Mehr

Bézier-Kurven, Modellierung von Freiformkurven und flächen. Prof. U. Rüde - Algorithmik kontinuierlicher Systeme

Bézier-Kurven, Modellierung von Freiformkurven und flächen. Prof. U. Rüde - Algorithmik kontinuierlicher Systeme Algorhmk kouerlcher Syeme Bézer-Kurve Modellerug vo Freformkurve ud fläche Prof. U. Rüde - Algorhmk kouerlcher Syeme Modellerug vo Freformkurve Regelgeomere: D : Le Kre-boge D : Ebee Kugel Kegel Zylder

Mehr

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) 6. Zuammehagmaße Kovaraz ud Korrelato Problemtellug: Bher: Ee Varable pro Merkmalträger, Stchprobe x,, x Geucht: Maße für Durchchtt, Streuug, uw. Jetzt: Zwe metrche! Varable pro Merkmalträger, Stchprobe

Mehr

Bogenlängen. Beispiele: Die Länge eines Grafen (Bogenlänge) einer Funktion f über [ a ; b ] läßt sich berechnen mit der Formel :

Bogenlängen. Beispiele: Die Länge eines Grafen (Bogenlänge) einer Funktion f über [ a ; b ] läßt sich berechnen mit der Formel : Bogeläge De Läge ees Gre Bogeläge eer Fuko üer [ ; ] läß sch ereche m der Formel : l ' d Des ühr de mese Fälle u komplzere Iegrde, de sch häug ur äherugswese ereche lsse. Bespele: De Keele m h, e e - h

Mehr

Statistische Grundlagen Ein kurzer Überblick (diskret)

Statistische Grundlagen Ein kurzer Überblick (diskret) Prof. J.C. Jackwerth 1 Statstsche Grudlage E kurzer Überblck (dskret De wchtgste Begrffe ud Deftoe: 1 Erwartugswert Varaz / Stadardabwechug 3 Stchprobevaraz 4 Kovaraz 5 Korrelatoskoeffzet 6 Uabhäggket

Mehr

Eigenschaften trigonometrischer Reihen. Trigonometrische Reihen. Reihenentwicklung. Reihenentwicklung. Fourierreihenentwicklung

Eigenschaften trigonometrischer Reihen. Trigonometrische Reihen. Reihenentwicklung. Reihenentwicklung. Fourierreihenentwicklung roomrsch Rh Do: Rh dr Gsal a + a cos x + b s x + a cos x + L + a cos x + b s x +L hß roomrsch Rh. D Zahl a a, b,..., a, b,..., b: prodsch Fuko sd hr Koz. Escha roomrschr Rh a + a cos x + b s x + a cos

Mehr

( x) eine Funktion definiert, in der nur die i-te Komponente variabel ist. Folgende Schreibweisen werden aufgrund dieser Anmerkungen auch verwendet:

( x) eine Funktion definiert, in der nur die i-te Komponente variabel ist. Folgende Schreibweisen werden aufgrund dieser Anmerkungen auch verwendet: Pro. Dr. Fredel Bolle LS ür Volkswrtschatslehre sb. Wrtschatstheore (Mkroökoome) Vorlesug Mathematk - WS 008/009 4. Deretalrechug reeller Fuktoe IR IR (Karma, S. 00 06, dort glech ür IR IR m ) 4. Partelle

Mehr

Wie man für einen Test Peroe testet

Wie man für einen Test Peroe testet Pädagogche Ittut der Uvertät Freburg 996 ALLES ZUFALL - ODER WAS? Eführug de Stattk für Pädagoge ud Pädagoge III Formelammlug Ha-Peter Hotz, Iwa Schrackma Ihaltverzech. Stattche Kewerte. Verglech eer Stchprobe

Mehr

Standardnormalverteilung. Normalverteilung. Verteilungsfunktion. Intervallwahrscheinlichkeiten

Standardnormalverteilung. Normalverteilung. Verteilungsfunktion. Intervallwahrscheinlichkeiten Normalvertelug Stadardormalvertelug Normalvertelug N(μ, ) mt chte : Gaußche Glockekurve μ μ μ+ μ >, f ( ) = ( μ) WS 7/8 Prof. r. J. Schütze, FB GW NV π Egechafte der chte: - Mamum μ - mmetrch zu μ - Wedepukte

Mehr

Grundlagen der Informatik 2. Grundlagen der Digitaltechnik. 3. Entwicklungssatz der Schaltalgebra

Grundlagen der Informatik 2. Grundlagen der Digitaltechnik. 3. Entwicklungssatz der Schaltalgebra Grudlage der Iormatk Grudlage der Dgtaltechk 3. Etwcklugssatz der Schaltalgebra Pro. Dr.-Ig. Jürge Tech Dr.-Ig. Chrsta Haubelt Lehrstuhl ür Hardware-Sotware Sotware-Co-Desg Grudlage der Dgtaltechk Etwcklugssatz

Mehr

Lösungen (6. Blatt) 2 ny + dy b. = ö nein, aber asymptotische Erwartungstreue. } = ö ja. 4 4n ...

Lösungen (6. Blatt) 2 ny + dy b. = ö nein, aber asymptotische Erwartungstreue. } = ö ja. 4 4n ... Mahemak-Servce Dr. Frch uk- ud Kofdechäuge www.mah-ervce.de.a Für ee Wer y [ 0,] F gl: Löuge 6. Bla y Y y Y y y,..., y y... y ud dfy y y. fy y dy Erwarugreue der 3 Schäer: E{ Θ } E{ } ö ja y y E{ Θ } E{0,5

Mehr

Deskriptive Statistik - Aufgabe 2

Deskriptive Statistik - Aufgabe 2 Derptve Statt - Augabe Budelad Mäer Fraue Bade-Württemberg 7,5 7,5 Bayer 6,8 7,5 Berl-Wet 4,4 Berl-Ot,8 4, Bradeburg 0, 0,8 Breme 4,6,6 Hamburg, 8, Hee 8, 8, Mecleburg-Vorpommer,3, Nederache 0,3, Nordrhe-Wetale

Mehr

v. Weter st + r X + = ( X + ) = ( X + ) ( X + ) = P Deshalb fr 6 6 = + X = K, d. h. I desem Berech ( 6 6 ) glt also ( Idukto ach ) ( ) ( mod ), was fr

v. Weter st + r X + = ( X + ) = ( X + ) ( X + ) = P Deshalb fr 6 6 = + X = K, d. h. I desem Berech ( 6 6 ) glt also ( Idukto ach ) ( ) ( mod ), was fr 5. De Stze vo Sylow Im gaze Abschtt st G ee edlche Grue, 4 #( G). 5.. Problem: Gbt es zu jedem Teler t vo ( tj ) ee Utergrue H mt #( H) = t? We ja, wevele? Gegebesel: 9 Utergrue H vo G = A 5 mt #( H) =

Mehr

Eigenwerteinschließungen I

Eigenwerteinschließungen I auptsemar: Numersche Lösuge für Egewertaufgabe Egewerteschleßuge I Referet: Wolfgag Wesselsky Glederug Eletug Kodto vo Egewerte 3 Eschleßugssätze Bauer-Fke, Gershgor, Wlkso, Bedxo 4 Zusatz: Courat / Weyl

Mehr

Erzeugen und Testen von Zufallszahlen

Erzeugen und Testen von Zufallszahlen Erzeuge ud Teste vo Zufallszahle Jürge Zumdck Eletug Ee Lergruppe wrd aufgefordert 00 Zufallszahle (0 oder ) ach folgede Methode zu erzeuge: De Hälfte der Gruppe beutzt a) ee Müze oder b) de Zufallszahlefukto

Mehr

Vorlesung: "Grundlagen ingenieurwissenschaftlichen Arbeitens (GIA)"

Vorlesung: Grundlagen ingenieurwissenschaftlichen Arbeitens (GIA) 6 Zuverlägke und Produklebenzyklu 6. Genaugke und Fehlerverhalen 6.2 Technche Zuverlägke 6.2. Klafkaon von Aufällen 6.2.2 Aufall- und Überlebenwahrchenlchke 6.2.3 Fehlerrae 6.3 Zuverlägke von Hardware-Funkonen

Mehr

Grundlagen der Entscheidungstheorie

Grundlagen der Entscheidungstheorie Kaptel 0 Grudlage der Etschedugstheore B. 0 (Gegestad) De Etschedugstheore befasst sch mt dem Etschedugsverhalte vo Idvdue ud Gruppe. Se besteht aus we Telgebete. Deskrptve Etschedugstheore De deskrptve

Mehr

Prinzip "Proportional Reduction of Error" (PRE)

Prinzip Proportional Reduction of Error (PRE) Dr. Reate Prust: Eführug quattatve Forschugsmethode Bvarate Maße: Przp "Proportoal Reducto of Error" (PRE) E 1 - E Fehler be Regel 1 - Fehler be Regel = E 1 Fehler be Regel 1 Regel 1: Vorhersageregel ur

Mehr

Abschnitt III: Gleichungen, Ungleichungen, lineare Gleichungssysteme, Summen. x 2x

Abschnitt III: Gleichungen, Ungleichungen, lineare Gleichungssysteme, Summen. x 2x Thema: Glechuge 4 4 a) 3 ; b) 3 6 4 1 1 Swatje hat zwe Sparbücher mt glech hohe Beträge. Ihr Bruder Horst Kev hat ur e Sparbuch, auf dem dremal so vel Geld st we auf eem Sparbuch vo Swatje. Horst Kevs

Mehr

(Markowitz-Portfoliotheorie)

(Markowitz-Portfoliotheorie) Thema : ortfolo-selekto ud m-s-rzp (Markowtz-ortfolotheore) Beurtelugskrtere be quadratscher Nutzefukto: Beroull-rzp + quadratsche Nutzefukto Thema Höhekompoete: Erwartugswert µ Rskokompoete: Stadardabwechug

Mehr

Gegeben sei eine BOOLEsche Funktion in einer beliebigen Schreibweise, gesucht ein funktionsgleiches Gatternetz aus vorgegebenen Gattern.

Gegeben sei eine BOOLEsche Funktion in einer beliebigen Schreibweise, gesucht ein funktionsgleiches Gatternetz aus vorgegebenen Gattern. 56 Techche Realerug vo Gatteretze Gegebe e ee BLEche Fukto eer belebge Schrebwee, geucht e fuktogleche Gatteretz au vorgegebee Gatter 56 Gatteretze au NANDGatter Schrtt Umwael er gegebee Schrebwee ee (vorzugwee

Mehr

(b) (a) II. Das Bestimmtheitsmaß R 2. augenscheinlich ist schon klar, dass die Punktewolke in (b) durch die Gerade besser angepasst wird als in (a).

(b) (a) II. Das Bestimmtheitsmaß R 2. augenscheinlich ist schon klar, dass die Punktewolke in (b) durch die Gerade besser angepasst wird als in (a). Bepel: II. Da Betmmthetmaß ( ) ( )( ) - - 6 6 b /, ud b, ˆ, ˆ ( ) ( )( ) - / -/ / / 6 6 b /, ud b, ˆ, ˆ augechelch t ch klar, da de Puktewlke durch de Gerade beer agepat wrd al. Da t allerdg ke wrklch

Mehr

Oesterreichische Kontrollbank AG. Pensionskassen. Performanceberechnung Asset Allocation. Berechnungsmethoden

Oesterreichische Kontrollbank AG. Pensionskassen. Performanceberechnung Asset Allocation. Berechnungsmethoden Oeserrechsche Korollbak AG esoskasse erformaceberechug Asse Allocao Berechugsmehode Jul 200 Ihal erformaceberechug der OeKB...3 2 erformace...3 2. Defo der erformace...3 2.2 Berechugsmehode...4 2.3 Formel...4

Mehr

Lösungen. Häufigkeitsverteilung (Stabdiagramm) Aufgabe 1. Häufigkeit (h) Merkmal (x)

Lösungen. Häufigkeitsverteilung (Stabdiagramm) Aufgabe 1. Häufigkeit (h) Merkmal (x) Lösuge Aufgabe Merkmal (x) Häufgket (h) h x,, 3, 3,, 8, 5, 5, 6, 6, 7, 3, 8, 3 5, 9, 38,, 5,, 8 68,, 6 3, 3, 9,, 8, 5, 5 5, 6, 3 78, 7, 5, 8, 8, 3, 3, Summe 5.63, Aufgabe Häufgketsvertelug (Stabdagramm)

Mehr

Formelsammlung zur Zuverlässigkeitsberechnung

Formelsammlung zur Zuverlässigkeitsberechnung Formelsmmlug zur Zuverlässgetsberechug zusmmegestellt vo Tt Lge Fchhochschule Merseburg Fchberech Eletrotech Ihlt:. Zuverlässget vo Betrchtugsehete.... Zuverlässget elemetrer, chtreprerbrer ysteme... 3.

Mehr

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik Prof. Dr. Ig. Post Grudlage der Eergetechk Eergewrtschaft Kosterechug EEG. Vorlesug EEG Grudlage der Eergetechk De elektrsche Eergetechk st e sogeates klasssches Fach. Folglch st deses Fach vele detallert

Mehr

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...}

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...} 1 Allgeme Geometrsche Rehe: q t = 1 q1 t=0 1 q Mtterachtsformel: ax 2 bxc=0 x 1/ 2 = b±b2 4ac 2a Bomsche Formel: 1. ab 2 =a 2 2abb 2 2. a b 2 =a 2 2abb 2 3. ab a b=a 2 b 2 Wurzel: ugerade 1 Ergebs gerade

Mehr

Kapitel XI. Funktionen mit mehreren Variablen

Kapitel XI. Funktionen mit mehreren Variablen Kaptel XI Fuktoe mt mehrere Varable D (Fuktoe vo uabhägge Varable Se R ud D( f R Ist jedem Vektor (Pukt (,,, D( f durch ee Vorschrft f ee reelle Zahl z = f (,,, zugeordet, so heßt f ee Fukto vo uabhägge

Mehr

Einführung in die Stochastik 3. Übungsblatt

Einführung in die Stochastik 3. Übungsblatt Eführug de Stochastk 3. Übugsblatt Fachberech Mathematk SS 0 M. Kohler 06.05.0 A. Fromkorth D. Furer Gruppe ud Hausübug Aufgabe 9 (4 Pukte) Der Mkrozesus st ee statstsche Erhebug. Herbe werde ach bestmmte

Mehr

annehmen, so heißt die Funktion, die jedem atomaren Ereignis { x i } mit i { 1; 2; ;

annehmen, so heißt die Funktion, die jedem atomaren Ereignis { x i } mit i { 1; 2; ; Wahrschelchet Ee Futo X : Ω R, de edem Ergebs ees zufällge Vorgages ee reelle Zahl zuordet, heßt Zufallsgröße (oder auch Zufallsvarable Ee Zufallsgröße X heßt edlch, we X ur edlch vele Werte x aehme a

Mehr

Mathematik für VIW - Prof. Dr. M. Ludwig ( ) ( ) ( ) n f. bestimmt m Funktionen. durch die Festlegung f (,,

Mathematik für VIW - Prof. Dr. M. Ludwig ( ) ( ) ( ) n f. bestimmt m Funktionen. durch die Festlegung f (,, Matheatk ür VIW - Pro. Dr. M. Ludwg 8. Deretato reeller Fuktoe ehrerer Varabler 8. Skalare Felder Vektorelder Koordatesystee Bsher wurde reelle Fuktoe ür ee Varable utersucht: : D t der egeührte Schrebwese

Mehr

Berechnung der Kriech- und Schwindwerte

Berechnung der Kriech- und Schwindwerte Berehnung der Kreh- und Shwndwere Grundlagen Beon zeg bere uner üblhen Gebrauhbedngungen en augepräge zeabhängge Verhalen wodurh Dehnungen aufreen können de en Mehrfahe der elahen Dehnung beragen: laabhängge

Mehr

3. Taylorformel und Taylorreihen

3. Taylorformel und Taylorreihen Prof Dr Siegfried Echterhoff Aalysis Vorlesug SS 9 3 Taylorformel ud Taylorreihe Sei I R ei Itervall ud sei f : I R eie Fuktio Ziel: Wolle utersuche, wa sich die Fuktio f i eier Umgebug vo eiem Pukt I

Mehr

MST Übung 3 Mathematik 2 Prof.Dr.B.Grabowski Tel.:

MST Übung 3 Mathematik 2 Prof.Dr.B.Grabowski   Tel.: MST Übug Mthemtk Prof.Dr.B.Grbowsk e-ml: grbowsk@htw-srld.de Tel.: 87- Iverse Mtrze ufgbe : Bereche Se de Iverse Mtr zu folgede Mtrze. Prüfe Se Ihr Ergebs, dem Se - bereche! b dg-,,-,,-, c 7 d ufgbe :

Mehr

Formelsammlung zur beschreibenden Statistik

Formelsammlung zur beschreibenden Statistik Dr rer pol hl Burhrd Uech Profeor eer Berufdee - Slche Sudedee Wrchf Berufdee Thürge Sudeelug Eech Sudeerech Wrchf Forellug zur echreede S Glederug Edeole Vereluge Häufgee, Häufgefuo ud Verelugfuo Lgeße

Mehr

Die Binomialverteilung als Wahrscheinlichkeitsverteilung für die Schadenversicherung

Die Binomialverteilung als Wahrscheinlichkeitsverteilung für die Schadenversicherung De Bomalvertelg al Wahrchelchketvertelg für de Schadevercherg Für da Modell eer Schadevercherg e gegebe: = Schade ee Verchergehmer, we der Schadefall etrtt w = Wahrchelchket dafür, da der Schadefall etrtt

Mehr

ξ i ξ i N ψ i 7. Zusammensetzung fluider Stoffgemische

ξ i ξ i N ψ i 7. Zusammensetzung fluider Stoffgemische 7. Zusaesetzug fluder Stoffgesche I der Techk sele flude Stoffgesche ee bedeutede Rolle. ebe der atoshärsche Luft, de überweged aus Stckstoff ud Sauerstoff besteht, se vor alle auf de als Eergeträger für

Mehr

Der Approximationssatz von Weierstraß

Der Approximationssatz von Weierstraß Der Approxmatossatz vo Weerstraß Ja Köster 22. Oktober 2007 1 Eführug Aus der Aalyss wsse wr, dass sch aalytsche Fuktoe durch Potezrehe der Form f(x = a 0 + a 1 x + a 2 x 2 +... darstelle lasse. Dabe kovergert

Mehr

Realisierung von Bezier-Flächen durch Anwendung von De Casteljau

Realisierung von Bezier-Flächen durch Anwendung von De Casteljau Projekarbe Compergrafk Dokmeao Compergrafk Thema: Realerg vo ezer-fläche drch Awedg vo De Caelja Doze: earbeer: Lehrgag: Prof. Dr. Zho Mar Sommer, Elv Corbo 12. Ifo NTA Iy Iy, de 8.7.25-1 - Projekarbe

Mehr

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes Quellecoderug I: Redudazredukto, redudazsparede Codes Quellecoderug Durch de Quellecoderug werde de Date aus der Quelle codert, bevor se ee Übertragugskaal übertrage werde De Coderug det der Verkleerug

Mehr

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen IT Zahlesysteme Zahledarstellug eem Stellewertcode (jede Stelle hat ee bestmmte Wert) Def. Code: Edeutge Abbldugsvorschrft für de Abbldug ees Zeche-Vorrates eem adere Zechevorrat. Dezmalsystem De Bass

Mehr

Es wird zwischen expliziter und impliziter Integration unterschieden. Die explizite Integration hat die Form:

Es wird zwischen expliziter und impliziter Integration unterschieden. Die explizite Integration hat die Form: Eleg er Grgeae er olgee beschrebee Verahre beseh ar, ass a as Glechgewch r z bese Zee bes. ese Vorgeheswese a be Aagswerroblee agewee were. Bege beae Were z Ze wr schrwese er Glechgewchszsa z ee säere

Mehr

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten Festverzslche Wertaere Kurse ud Redte be gazzahlge Restlaufzete Glederug. Rückblck: Grudlage der Kursrechug ud Redteermttlug 2. Ausgagsstuato 3. Herletug der Formel 4. Abhäggket vom Marktzsveau 5. Übugsaufgabe

Mehr

Ein Maß für die Ungleichheit bzw. Heterogenität kategorialer Daten ist Simpsons normiertes D:

Ein Maß für die Ungleichheit bzw. Heterogenität kategorialer Daten ist Simpsons normiertes D: Streuug omalkalerter Varable Streuug omalkalerter Varable: Smpo D Gültg WHITE BLACK OTHER Geamt RACE OF RESPODET Gültge Kumulerte Häufgket Prozet Prozete Prozete 483 83, 83, 83, 388 13, 13, 96, 11 4, 4,

Mehr

Statistik. ist die Kunst, Daten zu gewinnen, darzustellen, zu analysieren und zu interpretieren um zu neuem Wissen zu gelangen.

Statistik. ist die Kunst, Daten zu gewinnen, darzustellen, zu analysieren und zu interpretieren um zu neuem Wissen zu gelangen. Statstk st de Kust, Date zu gewe, darzustelle, zu aalysere ud zu terpretere um zu euem Wsse zu gelage. Sachs (984) Aufgabe De Statstk hat also folgede Aufgabe: Zusammefassug vo Date Darstellug vo Date

Mehr

5 Reproduktions- und Grenzwertsätze

5 Reproduktions- und Grenzwertsätze Reproduktos- ud Grezwertsätze Reproduktos- ud Grezwertsätze. Reproduktossätze Bespel 0: Der Aufzug eer Frma st zugelasse für Persoe bzw. 000 kg. Das Durchschttsgewcht der Agestellte der Frma st µ = 80

Mehr

Rekurrenz. Algorithmen rufen sich selbst (rekursiv) auf.

Rekurrenz. Algorithmen rufen sich selbst (rekursiv) auf. Rekurrez Rekurso: Algorthme rue sch selst rekursv u. Rekurrez: Ds Luzetverhlte zw. der Specherpltzedr vo rekursve Algorthme k der Regel durch ee Rekursosormel recurrece, RF eschree werde. Rekurrez Bespel:

Mehr

Maße zur Kennzeichnung der Form einer Verteilung (1)

Maße zur Kennzeichnung der Form einer Verteilung (1) Maße zur Kezechug der Form eer Vertelug (1) - Schefe (skewess): Defto I - Ee Vertelug vo Messwerte wrd als schef bezechet, we se der Wese asymmetrsch st, dass lks oder rechts des Durchschtts ee Häufug

Mehr

Formelzusammenstellung

Formelzusammenstellung Hochschule Müche Faultät Wrtschaftsgeeurwese Formelzusammestellug zugelasse für de Prüfug Dateaalyse der Faultät 09 für Wrtschaftsgeeurwese Prof. Dr. Voler Abel Formelsammlug Dateaalyse / Ihaltsverzechs

Mehr

Grundgesetze der BOOLEschen Algebra und Rechenregeln

Grundgesetze der BOOLEschen Algebra und Rechenregeln 5... Grudgesetze der BOOLEsche Algebra ud Recheregel Auf de mathematsch korrekte Eführug der BOOLEsche Algebra ka ch verzchte, da das Ihrer Mathematkausbldug ausführlch behadelt wrd. Ich stelle Ihe zuächst

Mehr

01 OM: Hilfsmittelfreie Fertigkeiten im Umgang mit Termen in der Oberstufe

01 OM: Hilfsmittelfreie Fertigkeiten im Umgang mit Termen in der Oberstufe 0 OM: Hlfsmttelfree Fertgkete m Umgag mt Terme der Oberstufe Im Kercurrculum wrd de prozess- ud haltsbezogee Kompeteze ur da eplzt sowohl auf de Esatz dgtaler Mathematkwerkzeuge als auch auf hlfsmttelfre

Mehr

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung.

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung. Rudolf Brkma http://brkma-du.de Sete 06.0.008 Spawete, Meda Quartlsabstad, Varaz ud Stadardabwechug. Streuug um de Mttelwert. I de folgede Säuledagramme st de Notevertelug zweer Schülergruppe (Mädche,

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien:

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien: Regressoslse De Regressoslse st ee Slug vo sttstshe Alseverfhre. Zel e de häufgste egesetzte Alseverfhre st es Bezehuge zwshe eer hägge ud eer oder ehrere uhägge rle festzustelle. Se wrd sesodere verwedet

Mehr

av, Stand % w w w.alvico.ch

av, Stand % w w w.alvico.ch T o c euh ouv eau e eu U g V D V B U V L U UV UD Ä B be -T VU D UV av, Sad 06.2017 alv L U Verka uf- é V L D V U LV Z V al U U B UV be eu U UV V L V D U ue q Téch e m â du B de Vee T 20% euh e LV V l G

Mehr

BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS

BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS Name: Vorame: Matrkel-Nr.: BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS Itegrerter Studegag Wrtshaftswsseshaft Klausuraufgabe zur Hauptprüfug Prüfugsgebet: BWW 2.8

Mehr

Mathematik Formeln 3. und 4. Semester von Gerald Meier

Mathematik Formeln 3. und 4. Semester von Gerald Meier Mahea Foel 3. d 4. Seese o Geald Mee Ke. Veoe.. ageeeo = ( s = & ( &(.. Kügseo & = = & κ κ= : Küg ρ = : Kügsads ( κ ( & && && & Paaeedasellg: = κ= 3 ( ( & + & f eplze asellg: = f( κ= 3 + f Poladasellg:

Mehr

3. Das Messergebnis. Was ist ein Messergebnis?

3. Das Messergebnis. Was ist ein Messergebnis? . Das Messergebs Was st e Messergebs? Wederholug der Messug Wahrer Wert? Mehrere Eflussgröße Fehlerbetrachtug Messergebs Vorgeheswese für Messergebs. Bestmmug des bekate systematsche Fehlers 2. Aufahme

Mehr

9. Berechnungen aus der Thermodynamik

9. Berechnungen aus der Thermodynamik 9. Berechuge aus der Thermodyamk 9. Wärmeübergag durch ebe Platte T T x δ dx Bld 9- Wärmeletug durch e Wadelemet Wedet ma de Glechug ach Fourer für de Wärmeletug auf ee Schcht der Wad mt der Dcke dx a,

Mehr

Lohnkosten pro Arbeitsstunde. Wie hoch sind die Lohnkosten pro Arbeitsstunde im Jahresdurchschnitt?

Lohnkosten pro Arbeitsstunde. Wie hoch sind die Lohnkosten pro Arbeitsstunde im Jahresdurchschnitt? Klausur Wrtschaftsstatstk. [ Pukte] E Uterehme hat folgede Date ermttelt: Moat Gelestete Arbetsstude Lohkoste pro Arbetsstude Jauar 86.400 0,06 Februar 75.000 3,0 März 756.000 4,47 Aprl 768.000,53 Ma 638.400

Mehr

Sitzplatzreservierungsproblem

Sitzplatzreservierungsproblem tzplatzreserverugsproblem Be vele Zugsysteme Europa müsse Passagere mt hrem Zugtcet ee tzplatzreserverug aufe. Da das Tcetsystem Kude ee ezele Platz zuwese muss, we dese e Tcet aufe, ohe zu wsse, welche

Mehr

Einführende Übersicht zu den erzeugenden Funktionen

Einführende Übersicht zu den erzeugenden Funktionen Pof. D. Pee vo de Lppe vesä Dusbug-Esse, Campus Esse Efühede Übesch zu de ezeugede Fuoe (pobably, mome ec. geeag fucos. Fuoe vo ufallsvaable Is ee V, da s auch ee Fuo g (, ( - μ, e ode ee V ud ha dam ee

Mehr

5. Eine weitere Klasse von q-fibonacci-zahlen und der Euler sche Pentagonalzahlensatz.

5. Eine weitere Klasse von q-fibonacci-zahlen und der Euler sche Pentagonalzahlensatz. 5 Eie weitere Klae vo -Fiboacci-Zahle ud der Euler che Petagoalzahleatz I dieem Abchitt betrachte wir ei weitere Aalogo der Fiboacci-Polyome, für da auch ei chöe Aalogo der Luca-Polyome exitiert ud da

Mehr

Hier die ausführlichen Lösungen (wenn auch nicht druckreif ): Zeigen Sie für vollkommene Konkurrenz auf dem Faktormarkt:

Hier die ausführlichen Lösungen (wenn auch nicht druckreif ): Zeigen Sie für vollkommene Konkurrenz auf dem Faktormarkt: Her de ausführlche Lösuge (e auch cht druckref ): ufgabeblatt 5: ufgabe : Zege Se für ollkoee Kokurrez auf de Faktorarkt: a) e ollstädger Kokurrez auf de Güterarkt rd jeder Faktor t see Wertgrezrodukt

Mehr

1. Zufallsbewegung und Binomialverteilung. Statistische Betrachtungsweise bezieht sich stets auf ein Ensemble.

1. Zufallsbewegung und Binomialverteilung. Statistische Betrachtungsweise bezieht sich stets auf ein Ensemble. . Zfallsbewegg d Boalvertelg Statstsche Betrachtgswese bezeht sch stets af e Eseble. Eseble: Gesathet eer sehr große Zahl N detscher Systee. Wahrschelchket für das Etrete ees Eregsses A: Brchtel der Systee,

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap.5: Kombinatorik. Referenzen zum Nacharbeiten:

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap.5: Kombinatorik. Referenzen zum Nacharbeiten: FH Wedel Prof. Dr. Sebasta Iwaows D5 Fole Dsrete athemat Sebasta Iwaows FH Wedel ap.5: ombator Refereze zum Nacharbete: Lag 5. 5. 7. (Bsp. 4) Beutelspacher 4 (außer Fxpute vo Permutatoe) eel 8 Hacheberger

Mehr

2. Mittelwerte (Lageparameter)

2. Mittelwerte (Lageparameter) 2. Mttelwerte (Lageparameter) Bespele aus dem täglche Lebe Pro Hemspel hatte Borussa Dortmud der letzte Saso durchschttlch 7.2 Zuschauer. De deutsche Akte sd m Durchschtt um 0 Zähler gefalle. I Ide wurde

Mehr

Elektrotechnik Formeln 3. und 4. Semester von Gerald Meier

Elektrotechnik Formeln 3. und 4. Semester von Gerald Meier Elekoechk Fomel 3. 4. Semese vo Gel Mee lyse vo Eschwgvogäge. Nezwekelemee.. Wes ( ( ( (.. Ikvä..3 Kzä..4 Übege ( ( ( mß seg se ( + τ τ ( + τ τ ( mß seg se..4. lose gekoele Übege ( ( ( M ( ( + ( M + müsse

Mehr

a) bei unklassierten Daten b) bei klassierten Daten a) bei einer ungeraden Anzahl von Werten b) bei einer geraden Anzahl von Werten

a) bei unklassierten Daten b) bei klassierten Daten a) bei einer ungeraden Anzahl von Werten b) bei einer geraden Anzahl von Werten Eprche Vertelufuto Eprche Vertelufuto 0 für a F f für a ud a für a Stete eprche Vertelufuto F F 0 f für für d für 0 Stattche Laeaße rthetche Mttel a be ulaerte Date b be laerte Date Meda f a be eer uerade

Mehr

2.2 Rangkorrelation nach Spearman

2.2 Rangkorrelation nach Spearman . Ragkorrelato ach Spearma Wr wolle desem Kaptel de Ragkorrelatoskoeffzete ach Spearma bereche. De erste Daterehe besteht aus Realseruge x, x,..., x der uabhägg ud detsch stetg vertelte Zufallsvarable

Mehr

Von der Fourier-Reihe zum Fourier-Integral

Von der Fourier-Reihe zum Fourier-Integral Von der Fourier-Reihe um Fourier-Inegral Fourier-Reihe für periodiche Signale + f() = ν= c e ω = π f = ν j νω π + j νω cν = f() e d Nichperiodiche Signale dω d = df =, νω ω π + + j ω j ω π dω cν f() e

Mehr

Lösung: Zur Erinnerung noch mal die Werte (Klasseneinteilung), aus Serie1, Aufgabe 4:

Lösung: Zur Erinnerung noch mal die Werte (Klasseneinteilung), aus Serie1, Aufgabe 4: Derptve Sttt Löug zu. Übugufgbe Aufgbe. Betmme Se zu Aufgbe 4 der. Sere jewel uter Verwedug der 0 Stchprobedte ud uter Verwedug der Kleetelug de Atel der Glühlmpe, dere Lebeduer zwche 400 ud 600 Stude

Mehr

Determinante und Resultante Azadeh Pasandi

Determinante und Resultante Azadeh Pasandi Determiate ud Resultate 07.01.2009 Azadeh Pasadi Defiitio ud Grudeigeschafte: sei U, V, W ud Vektor-Raum über Körper F ud beachte eie Abbildug f ( u,v ) vo kartesische Produkt: f: U x V W Diese Abbildug

Mehr

Kapitel 6: Regression

Kapitel 6: Regression udwg-maxmlas-uverstät Müche Isttut für Iformatk ehr- ud Forschugsehet für Datebaksysteme Skrpt zur Vorlesug Kowledge Dscovery Databases m Sommersemester 05 Kaptel 6: Regresso Vorlesug: PD Dr. Arthur Zmek

Mehr