Deskriptive Statistik - Aufgabe 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Deskriptive Statistik - Aufgabe 2"

Transkript

1 Derptve Statt - Augabe Budelad Mäer Fraue Bade-Württemberg 7,5 7,5 Bayer 6,8 7,5 Berl-Wet 4,4 Berl-Ot,8 4, Bradeburg 0, 0,8 Breme 4,6,6 Hamburg, 8, Hee 8, 8, Mecleburg-Vorpommer,3, Nederache 0,3, Nordrhe-Wetale 0,7 0,6 Rhelad-Palz 8, 8,8 Saarlad,7, Sache 9,6,3 Sache-Ahalt,3 3,3 Schlewg-Holte 9,3 8,7 Thürge 0,8,6 Tabelle: Arbetloequote 994 ( %) a) Bereche Se ür de Gechlechter bezüglch der Arbetloequote de olgede Zetral- ud Streuugmaße Meda arthmetche Mttel Varatowete durchchttlche Abwechug Varaz Stadardabwechug De Formel d der Formelammlug zu etehme. b) Vergleche Se de jewelge Zetral- ud Streuugmaße mteader ud hebe Se Stäre ud Schwäche hervor. Löug Kurzaug: a) Mäer Fraue Meda 0,7- Nordrhe-Wetale,- Nederache arthmetche Mttel 0,6 3,6 Varatowete 7,8 5,8 durchchttlche Abwechug,77 5, Stadardabwechug,9 5,84 Varaz 4,79 34, b) Verglech der Zetralmaße: Bem arthmetche Mttel wrd m Gegeatz zum Meda der geamte Stchprobeumag berücchtgt, wehalb e e zuverläge Zetralmaß t. Allerdg t da arthmetche Mttel aureßerempdlch. Der Meda t da cht, wel er de Stchprobe ledglch zwe glech große Hälte telt. Verglech der Streuugmaße: De Varatowete t ehr aureßerempdlch. De Varaz t de weger, am wegte aureßerempdlch t de Stadardabwechug. I Varaz ud Stadardabwechug leße m Gegeatz zur Varatowete alle Werte de Berechug e.

2 Löug Erläuterug: Mäer ) Meda: We ma Aupräguge eer Vertelug der Größe ach ordet, t der Meda de Auprägug, de ma der Mtte der geordete Rehe det. Der Meda t alo der mttlere Wert eer Vertelug. Er utertelt de Rehe zwe Hälte: de ee Hälte der Aupräguge t leer al der Meda (oder höchte glech groß), de adere Hälte der Aupräguge t größer al der Meda (oder höchte glech groß). Fall de Azahl der Fälle () ee gerade Zahl t, t da arthmetche Mttel der bede mttlere Werte zu blde. Um de Meda zu bereche, mu de Lte ür Mäer ud Fraue getret ach der Arbetloequote geordet werde. Geordete Urlte: Budelad Mäer Bayer 6,8 Bade-Württemberg 7,5 3 Rhelad-Palz 8, 4 Hee 8, 5 Schlewg-Holte 9,3 6 Sache 9,6 7 Bradeburg 0, 8 Nederache 0,3 9 Nordrhe-Wetale 0,7 0 Thürge 0,8 Hamburg, Berl-Ot,8 3 Sache-Ahalt,3 4 Mecleburg-Vorpommer,3 5 Saarlad,7 6 Berl-Wet 4,4 Breme 4,6 Meda ~ ~ 8 : 9. Wert 0, 7 Nordrhe Wetale ) Arthmetche Mttel: Da arthmetche Mttel t der durchchttlche Wert eer Vertelug. Berechet wrd e dem alle Aupräguge auaddert werde ud de Summe durch de Azahl der Fälle getelt wrd. jewelge Mermalauprägug vo (6,8) b (4,6) = Azahl der Fälle =, da de Geamtzahl der Budeläder beträgt 6,8 7,5 8, 8, 9,3 9,6 0, 0,3 0,7 0,8,,8,3,3,7 4,4 4,6 80,8 0,64 3) Varatowete V: De Varatowete erat de Abtad zwche dem mmale ud dem mamale Wert eer Vertelug. Ma erhält de Wert ür de Varatowete, dem ma de lete Wert vo dem größte Wert ubtrahert. Varatowete = größter Wert leter Wert = Vma - Vm = 4,6 6,8 = 7,8

3 4) Durchchttlche Abwechug e: Herür wrd der Betrag (der vorzecheloe Wert) der ezele Abtäde der Mewerte vom Mttelwert addert. De Summe der Beträge wrd da durch de Azahl der Fälle dvdert ud ergbt de durchchttlche Abwechug. e 6,8 0,64 7,5 0,64 8, 0,64 8, 0,64 9,3 0,64 9,6 0,64 0, 0,64 0,3 0,64 0,7 0,64 0,8 0,64, 0,64,8 0,64,3 0,64,3 0,64,7 0,64 4,4 0,64 4,6 0,64 3,84 3,4,54,44,34,04 0,44 0,34 0,06 0,6 0,56,6,66,66,06 3,76 3,96 30,6 =, 77 5) Stadardabwechug: 6,8 0,64² 7,5 0,64² 8, 0,64² 8, 0,64² 9,3 0,64² 9,6 0,64² 0, 0,64² 0,3 0,64² 0,7 0,8 0,64², 0,64²,8 0,64²,3 0,6 ²,3 0,6 ²,7 0,64² 4,4 0,64² 4,6 0,64² 4,7 9,83 6,43 5,93,78,07 0,9 0, 0,00 0,03 0,3,36,77,77 4,6 4, 5,7 0,64² 8,45,9 6) Varaz: De Varaz (²) tellt da Quadrat der Stadardabwechug () dar. Da de Stadardabwechug beret berechet wurde lät ch de Varaz durch ee Quadrerug der Stadardabwechug bereche. ²=,9² = 4,796 Alteratv leße ch atürlch auch zuert de Varaz bereche ud m Achlu dara de Stadardabwechug al Wurzel der Varaz zehe. De Ergebe wäre de gleche, abgeehe vo Uterchede durch uterchedlche Rudug.

4 Alteratve zetparede Berechugmöglchet ür Streuugmaße Ee alteratve zetparede Berechugmöglchet der durchchttlche Abwechug, der Stadardabwechug ud der Varaz tellt de Ertellug der olgede Tabelle dar. Be der Berechug werde de gleche Formel we obe verwedet. De erte bede Spalte der Tabelle (her Budelad ud Mäer ) werde au der Tabelle der Augabetellug überomme. De Tabelle wrd da um de Spalte (Abwechug der gemeee Mermalaupräguge vom arthmetche Mttel) erwetert. Am utere Ede der Spalte ummert ma de ezele Werte ud a de Summe de Formel der durchchttlche Abwechug eetze. De Summe wrd deer Formel ledglch och durch getelt ud ma erhält de durchchttlche Abwechug. Um de Varaz oder de Stadardabwechug zu bereche erwetert ma de Tabelle zuätzlch um de. Auch her ummert ma de ezele Werte ud etzt de Summe de Formel der Varaz bzw. der Stadardabwechug e. Ma eht, da de Ergebe der bede Berechugmöglchete detch d. Spalte Budelad Mäer Bayer 6,8 3,84 4,7 Bade-Württemberg 7,5 3,4 9,83 Rhelad-Palz 8,,54 6,43 Hee 8,,44 5,93 Schlewg-Holte 9,3,34,78 Sache 9,6,04,07 Bradeburg 0, 0,44 0,9 Nederache 0,3 0,34 0, Nordrhe-Wetale 0,7 0,06 0,00 Thürge 0,8 0,6 0,03 Hamburg, 0,56 0,3 Berl-Ot,8,6,36 Sache-Ahalt,3,66,77 Mecleburg-Vorpommer,3,66,77 Saarlad,7,06 4,6 Berl-Wet 4,4 3,76 4, Breme 4,6 3,96 5,7 30,6 8,45 30,6 4) Durchchttlche Abwechug e: e, 77 (de Zahl 30,6 a der Tabelle am utere Ede der drtte Spalte abgelee werde) 5) Stadardabwechug : 8,45, 9 (de Zahl 8,45 a der Tabelle am utere Ede der verte Spalte abgelee werde) 6) Varaz: 8,45 4,79 Alteratve Berechug der Varaz: Quadrerug der Stadardabwechug: ²=,9²= 4,796 (Gerge Uterchede ettehe durch uterchedlche Rudug!)

5 Fraue ) Meda Budelad Fraue Bade-Württemberg 7,5 Bayer 7,5 3 Hamburg 8, 4 Hee 8, 5 Schlewg-Holte 8,7 6 Rhelad-Palz 8,8 7 Nordrhe-Wetale 0,6 8 Saarlad, 9 Nederache, 0 Berl-Wet Breme,6 Berl-Ot 4, 3 Bradeburg 0,8 4 Mecleburg-Vorpommer, 5 Sache,3 6 Thürge,6 Sache-Ahalt 3,3 N 8 Meda : ~ ~ 9. Wert, Nederache ) Arthmetche Mttel : 7,5 7,5 8, 8, 8,7 8,8 0,6,,,6 4, 0,8,,3,6 3,3 3,7 3,6 3) Varatowete V: 3,3 7,5 = 5,8 4) Durchchttlche Abwechug e: e 7,5 3,6 7,5 3,6 8, 3,6 8, 3,6 8,7 3,6 8,8 3,6 0,6 3,6, 3,6, 3,6 3,6,6 3,6 4, 3,6 0,8 3,6, 3,6,3 3,6,6 3,6 3,3 3,6 6,3 6,3 5,53 5,43 4,93 4,83 3,03,43,43,63,03 0,57 7, 8,47 8,67 8,97 9,67 87,05 5,

6 5) Stadardabwechug : 7,5 3,6² 7,5 3,6² 8, 3,6² 8, 3,6² 8,7 3,6² 8,8 3,6² 0,6 3,6², 3,6², 3,6 3,6²,6 3,6² 4, 3,6² 0,8 3,6², 3,6²,3 3,6²,6 3,6² 3,3 3,6² 580,8 5,84 6) Varaz: ² = 5,84² = 34, ² Alteratve zetparede Berechugmöglchet Budelad Fraue Bade-Württemberg 7,5 6,3 37,57 Bayer 7,5 6,3 37,57 Hamburg 8, 5,53 30,57 Hee 8, 5,43 9,48 Schlewg-Holte 8,7 4,93 4,30 Rhelad-Palz 8,8 4,83 3,3 Nordrhe-Wetale 0,6 3,03 9,8 Saarlad,,43 5,90 Nederache,,43 5,90 Berl-Wet,63,65 Breme,6,03,06 Berl-Ot 4, 0,57 0,33 Bradeburg 0,8 7, 5,4 Mecleburg-Vorpommer, 8,47 7,75 Sache,3 8,67 75,8 Thürge,6 8,97 80,47 Sache-Ahalt 3,3 9,67 93,5 87,05 580,8 4) Durchchttlche Abwechug e: 87,05 e 5, 5) Stadardabwechug : 580,8 5,84 6) Varaz: 580,8 34,3 Alteratve Berechug der Varaz: Quadrerug der Stadardabwechug: ²= 5,84²= 34, (gerge Uterchede ettehe durch uterchedlche Rudug!)

Deskriptive Statistik - Aufgabe 3

Deskriptive Statistik - Aufgabe 3 Desrptve Statst - Aufgabe 3 De Überachtugszahle der Fremdeverehrsgemede "Bachstadt" für de Moate ud zege auf de erste Blc scho deutlche Uterschede de ezele Ortschafte. We seht e etsprecheder Verglech der

Mehr

Lösungen. Lösung zu d):

Lösungen. Lösung zu d): Löuge Löug zu a De Date chee ch äherugwee etlag eer Gerade potoert zu e. Da lät cho recht gut vermute, da e learer Zuammehag vorhade e köte. Löug zu b We e Ateg/ee Abahme der Deutche Bak Akte auch zu eem

Mehr

ALLES ZUFALL - ODER WAS?

ALLES ZUFALL - ODER WAS? Pädagogche Ittut der Uvertät Freburg 996 ALLES ZUFALL - ODER WAS? Eführug de Stattk für Pädagoge ud Pädagoge III Formelammlug Ha-Peter Hotz, Iwa Schrackma Ihaltverzech. Stattche Kewerte. Verglech eer Stchprobe

Mehr

Ein Maß für die Ungleichheit bzw. Heterogenität kategorialer Daten ist Simpsons normiertes D:

Ein Maß für die Ungleichheit bzw. Heterogenität kategorialer Daten ist Simpsons normiertes D: Streuug omalkalerter Varable Streuug omalkalerter Varable: Smpo D Gültg WHITE BLACK OTHER Geamt RACE OF RESPODET Gültge Kumulerte Häufgket Prozet Prozete Prozete 483 83, 83, 83, 388 13, 13, 96, 11 4, 4,

Mehr

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung.

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung. Rudolf Brkma http://brkma-du.de Sete 06.0.008 Spawete, Meda Quartlsabstad, Varaz ud Stadardabwechug. Streuug um de Mttelwert. I de folgede Säuledagramme st de Notevertelug zweer Schülergruppe (Mädche,

Mehr

Verdichtete Informationen

Verdichtete Informationen Verdchtete Iormatoe Maßzahle Statstke be Stchprobe Parameter be Grudgesamthete Maßzahle zur Beschrebug uvarater Verteluge Maßzahle der zetrale Tedez (Mttelwerte) Maßzahle der Varabltät (Streuugswerte)

Mehr

Lösung: Zur Erinnerung noch mal die Werte (Klasseneinteilung), aus Serie1, Aufgabe 4:

Lösung: Zur Erinnerung noch mal die Werte (Klasseneinteilung), aus Serie1, Aufgabe 4: Derptve Sttt Löug zu. Übugufgbe Aufgbe. Betmme Se zu Aufgbe 4 der. Sere jewel uter Verwedug der 0 Stchprobedte ud uter Verwedug der Kleetelug de Atel der Glühlmpe, dere Lebeduer zwche 400 ud 600 Stude

Mehr

Multiple Regression (1) - Einführung I -

Multiple Regression (1) - Einführung I - Multple Regreo Eführug I Mt eem Korrelatokoeffzete ud der efache leare Regreo köe ur varate Zuammehäge zwche zwe Varale uterucht werde. Beutzt ma tatt dee mehrere Varale zur Vorherage, egt ma ch auf da

Mehr

Formelsammlung. Unter diesen Annahmen kann der Korrelationskoeffizient nach folgenden Schritten getestet werden:

Formelsammlung. Unter diesen Annahmen kann der Korrelationskoeffizient nach folgenden Schritten getestet werden: Formelammlug. Korrelatoaalye Korrelatooeffzet (Brava-Pearo) ( )( y y) y y r, r + ( ) ( y y) y y Stattcher et Soll tattch getetet werde, ob e learer Zuammehag zwche de Varable ud y für de Grudgeamthet beteht,

Mehr

Histogramm / Säulendiagramm

Histogramm / Säulendiagramm Hstogramm / Säuledagramm Häugkete 10 9 8 7 6 5 4 3 2 1 0 3,45 3,75 4,05 4,35 4,65 Flüge lläge [mm] Be Hstogramme st soort deutlch, daß es sch um Häugketsauszähluge hadelt. De Postoe der Klasse sowe hre

Mehr

Maße zur Kennzeichnung der Form einer Verteilung (1)

Maße zur Kennzeichnung der Form einer Verteilung (1) Maße zur Kezechug der Form eer Vertelug (1) - Schefe (skewess): Defto I - Ee Vertelug vo Messwerte wrd als schef bezechet, we se der Wese asymmetrsch st, dass lks oder rechts des Durchschtts ee Häufug

Mehr

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen.

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen. Rudolf Brkma http://brkma-du.de Sete 0.0.008 Lagemaße der beschrebede Statstk. Zur Iterpretato eer Beobachtugsrehe ka ma ebe der grafsche Darstellug wetere charakterstsche Größe herazehe. Mttelwert ud

Mehr

Standardnormalverteilung. Normalverteilung. Verteilungsfunktion. Intervallwahrscheinlichkeiten

Standardnormalverteilung. Normalverteilung. Verteilungsfunktion. Intervallwahrscheinlichkeiten Normalvertelug Stadardormalvertelug Normalvertelug N(μ, ) mt chte : Gaußche Glockekurve μ μ μ+ μ >, f ( ) = ( μ) WS 7/8 Prof. r. J. Schütze, FB GW NV π Egechafte der chte: - Mamum μ - mmetrch zu μ - Wedepukte

Mehr

Statistik mit Excel und SPSS

Statistik mit Excel und SPSS Stattk mt Excel ud SPSS G. Kargl Grudbegrffe Grudgeamthet Erhebugehet Merkmale Werteberech Stchprobe Telbereche der Stattk: Dekrtpve Stattk Iduktve Stattk Exploratve Stattk U- / B- / Multvarate Stattk

Mehr

(0) = 0 mit Mittelwert μi

(0) = 0 mit Mittelwert μi Semarvortrag vo Xaotog Guo am 26. Ma 29 5. Da dvduelle Romodell 5. Eletug Geamtchadeumme (olletve Romodell) - N : de Azahl Ezelchde,ZV N S = X - X : de Schadehhe,ZV X t detch vertelt - N, X, X,... tochatch

Mehr

Statistik. ist die Kunst, Daten zu gewinnen, darzustellen, zu analysieren und zu interpretieren um zu neuem Wissen zu gelangen.

Statistik. ist die Kunst, Daten zu gewinnen, darzustellen, zu analysieren und zu interpretieren um zu neuem Wissen zu gelangen. Statstk st de Kust, Date zu gewe, darzustelle, zu aalysere ud zu terpretere um zu euem Wsse zu gelage. Sachs (984) Aufgabe De Statstk hat also folgede Aufgabe: Zusammefassug vo Date Darstellug vo Date

Mehr

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes Quellecoderug I: Redudazredukto, redudazsparede Codes. Redudaz. Eführug. Defto der Redudaz. allgemee Redudazredukto. redudazsparede Codes. Coderug ach Shao. Coderug ach Fao. Coderug ach Huffma.4 Coderug

Mehr

Lösungen. Häufigkeitsverteilung (Stabdiagramm) Aufgabe 1. Häufigkeit (h) Merkmal (x)

Lösungen. Häufigkeitsverteilung (Stabdiagramm) Aufgabe 1. Häufigkeit (h) Merkmal (x) Lösuge Aufgabe Merkmal (x) Häufgket (h) h x,, 3, 3,, 8, 5, 5, 6, 6, 7, 3, 8, 3 5, 9, 38,, 5,, 8 68,, 6 3, 3, 9,, 8, 5, 5 5, 6, 3 78, 7, 5, 8, 8, 3, 3, Summe 5.63, Aufgabe Häufgketsvertelug (Stabdagramm)

Mehr

Skalentypen Skala Eigenschaften Zulässige Transformation Nominal. =, keine Ordnungen, keine Alle bijektiven Abbildungen

Skalentypen Skala Eigenschaften Zulässige Transformation Nominal. =, keine Ordnungen, keine Alle bijektiven Abbildungen I. Derptve tatt Formelammlug 005 Formelammlug I. Derptve tatt Grudgeamthet (Gg tchprobe (P Mege vo Objete, de hchtlch ee Uteruchugzele al glechartg ageehe werde. Mege vo beobachtete Mermalwerte a eer (zufällge

Mehr

2.2 Rangkorrelation nach Spearman

2.2 Rangkorrelation nach Spearman . Ragkorrelato ach Spearma Wr wolle desem Kaptel de Ragkorrelatoskoeffzete ach Spearma bereche. De erste Daterehe besteht aus Realseruge x, x,..., x der uabhägg ud detsch stetg vertelte Zufallsvarable

Mehr

Einführung Fehlerrechnung

Einführung Fehlerrechnung IV Eführug Fehlerrechug Fehlerrechuge werde durchgeführt, um de Vertraueswürdgket vo Meßergebsse beurtele zu köe. Uter dem Fehler eer Messug versteht ma de Abwechug ees Meßergebsses vom (grudsätzlch ubekate

Mehr

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt.

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt. Webull & Wöhler 0 CRGRAPH Wöhlerdagramm Im Wöhlerdagramm wrd de Lebesdauer ( oder Laufzet) ees Bautels Abhägget vo der Belastug dargestellt. Kurzetfestget Beaspruchug Zetfestget auerfestget 0 5 3 4 6 0

Mehr

Schiefe- und Konzentrationsmaße

Schiefe- und Konzentrationsmaße Statst für SozologIe Schefe- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Mermal wurde 3 Gruppe beobachtet ud Form der folgede Häufgetstabelle berchtet: Klasse m Gruppe

Mehr

Statistische Kennzahlen für die Streuung

Statistische Kennzahlen für die Streuung Statstsche Kezahle für de Streuug Ordale Date,..., W X,,..., WX {(j) j,..., J} () < () < < (J) {(),...,(J)} (3) () 3 () Geordete Lste k X (k) () () 3 () Smpso s D ud H() sd awedbar, allerdgs wrd Iformato

Mehr

Schiefe- und Konzentrationsmaße

Schiefe- und Konzentrationsmaße Statstk für SozologIe Schefe- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Merkmal wurde 3 Gruppe beobachtet ud Form der folgede Häufgketstabelle berchtet: Klasse m Gruppe

Mehr

Die Binomialverteilung als Wahrscheinlichkeitsverteilung für die Schadenversicherung

Die Binomialverteilung als Wahrscheinlichkeitsverteilung für die Schadenversicherung De Bomalvertelg al Wahrchelchketvertelg für de Schadevercherg Für da Modell eer Schadevercherg e gegebe: = Schade ee Verchergehmer, we der Schadefall etrtt w = Wahrchelchket dafür, da der Schadefall etrtt

Mehr

Konzentrationsanalyse

Konzentrationsanalyse Kaptel V Kozetratosaalyse B. 5.. Im Allgemee wrd aus statstscher Scht zwsche - absoluter ud - relatver Kozetrato uterschede Der absolute ud relatve Aspekt wrd och emal utertelt - statscher ud - dyamscher

Mehr

Ordnungsstatistiken und Quantile

Ordnungsstatistiken und Quantile KAPITEL Ordugsstatste ud Quatle Um robuste Lage- ud Streuugsparameter eführe zu öe, beötge wr Ordugsstatste ud Quatle... Ordugsstatste ud Quatle Defto... Se (x,..., x R ee Stchprobe. Wr öe de Elemete der

Mehr

Deskriptive Statistik2 Durchschnittswert (der arithmetische Mittelwert)

Deskriptive Statistik2 Durchschnittswert (der arithmetische Mittelwert) Lagemasse, Lokatosmasse Lageparameter. Charakterserug das Zetrum der Date Deskrptve Statstk Durchschttswert (der arthmetsche Mttelwert) average(...) Mttelwert(...) K (Modalwert, Dchtemttel): der Wert mt

Mehr

Statistische Grundlagen Ein kurzer Überblick (diskret)

Statistische Grundlagen Ein kurzer Überblick (diskret) Prof. J.C. Jackwerth 1 Statstsche Grudlage E kurzer Überblck (dskret De wchtgste Begrffe ud Deftoe: 1 Erwartugswert Varaz / Stadardabwechug 3 Stchprobevaraz 4 Kovaraz 5 Korrelatoskoeffzet 6 Uabhäggket

Mehr

Erzeugen und Testen von Zufallszahlen

Erzeugen und Testen von Zufallszahlen Erzeuge ud Teste vo Zufallszahle Jürge Zumdck Eletug Ee Lergruppe wrd aufgefordert 00 Zufallszahle (0 oder ) ach folgede Methode zu erzeuge: De Hälfte der Gruppe beutzt a) ee Müze oder b) de Zufallszahlefukto

Mehr

Lohnkosten pro Arbeitsstunde. Wie hoch sind die Lohnkosten pro Arbeitsstunde im Jahresdurchschnitt?

Lohnkosten pro Arbeitsstunde. Wie hoch sind die Lohnkosten pro Arbeitsstunde im Jahresdurchschnitt? Klausur Wrtschaftsstatstk. [ Pukte] E Uterehme hat folgede Date ermttelt: Moat Gelestete Arbetsstude Lohkoste pro Arbetsstude Jauar 86.400 0,06 Februar 75.000 3,0 März 756.000 4,47 Aprl 768.000,53 Ma 638.400

Mehr

5 Reproduktions- und Grenzwertsätze

5 Reproduktions- und Grenzwertsätze Reproduktos- ud Grezwertsätze Reproduktos- ud Grezwertsätze. Reproduktossätze Bespel 0: Der Aufzug eer Frma st zugelasse für Persoe bzw. 000 kg. Das Durchschttsgewcht der Agestellte der Frma st µ = 80

Mehr

Statistische Grundlagen

Statistische Grundlagen Stattche Grudlage Defto Zufallvarable Ee Zufallvarable t ee Größe, de be eem Zufallexpermet auftrete ka, z. B. de Läge der Bredauer eer Glühbre oder da Ergeb eer Petzdbetmmug. Grudgeamthet Ee Grudgeamthet

Mehr

Prinzip "Proportional Reduction of Error" (PRE)

Prinzip Proportional Reduction of Error (PRE) Dr. Reate Prust: Eführug quattatve Forschugsmethode Bvarate Maße: Przp "Proportoal Reducto of Error" (PRE) E 1 - E Fehler be Regel 1 - Fehler be Regel = E 1 Fehler be Regel 1 Regel 1: Vorhersageregel ur

Mehr

Tests/Regression/ANOVA. Lösungen Blatt Test auf den unbekannten Erwartungswert bei unbekannter Streuung:

Tests/Regression/ANOVA. Lösungen Blatt Test auf den unbekannten Erwartungswert bei unbekannter Streuung: Löuge latt 7. Tet auf de ubekate Erwartugwert be ubekater Streuug: () H 0 : µ 0, 5 H : µ < 0, 5 (lketger Tet) X µ () Tetfukto: Ψ (t-vertelt mt (-)99 G) 0,497 0,5 Realerug: ψ 00 5, 57 0,0075 (3) krtcher

Mehr

Einführung in die deskriptive Statistik

Einführung in die deskriptive Statistik Eführug de dekrptve Stattk Übercht: 1. Grudlage: Mee, Skalere, edeoale Häufgketverteluge 1.1. Mee 1.. Skaleveau 1.3. Mewertklae 1.4. Uvarate Häufgketverteluge 1.5. Graphche Dartellug vo uvarate Häufgketverteluge

Mehr

1 n. STATISTIK I Übung 06 Schiefe und Wölbung. 1 Kurze Wiederholung. Eine dritte Form von Verteilungsparametern?

1 n. STATISTIK I Übung 06 Schiefe und Wölbung. 1 Kurze Wiederholung. Eine dritte Form von Verteilungsparametern? Stattk I Übu 06 Chrta Reboth STATISTIK I Übu 06 Schefe ud Wölbu Kurze Wederholu Ee drtte For vo Verteluparaeter? Nebe de Maße der zetrale Tedez (Zetru eer Vertelu) ud de Dperoparae- ter (Streuu der Werte

Mehr

Allgemeine Zielstellung der Regression. Lineare Regression. Lineare Regression. Lineare Regression

Allgemeine Zielstellung der Regression. Lineare Regression. Lineare Regression. Lineare Regression llgemee Zeltellug der Regreo Leare Regreo echrebug de Zuammehag vo zwe metrche Größe durch ee Futo ugagput d.a. Mepute eer Zelgröße Y ud eer oder mehrerer Eflugröße X (Stchprobewerte. abhägge Mermal Y

Mehr

Klausur SS 2005 Version 1

Klausur SS 2005 Version 1 BEMERKUG: für de Rchtgket der Lösuge wrd atürlch kee Garate überomme!! Klausur SS 005 Verso Aufgabe : e Gamma-Quat hat kee Ladug > el. Felder übe kee Kräfte aus > kee Kräfte, kee Äderug der Bewegug (ewto)

Mehr

2. Mittelwerte (Lageparameter)

2. Mittelwerte (Lageparameter) 2. Mttelwerte (Lageparameter) Bespele aus dem täglche Lebe Pro Hemspel hatte Borussa Dortmud der letzte Saso durchschttlch 7.2 Zuschauer. De deutsche Akte sd m Durchschtt um 0 Zähler gefalle. I Ide wurde

Mehr

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Aufgabe ud Lösuge vo Peter M Schulze, Verea Dexhemer. Auflage Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Schulze / Dexhemer schell ud portofre

Mehr

Schiefe-, Wölbungs- und Konzentrationsmaße

Schiefe-, Wölbungs- und Konzentrationsmaße Statstk für SozologIe Schefe-, Wölbugs- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Merkmal wurde 3 Gruppe beobachtet ud Form der folgede Häufgketstabelle berchtet: Klasse

Mehr

Statistische Maßzahlen

Statistische Maßzahlen Statstsche Maßzahle Stochastk h Mt h Mt Varaz arosches Mttelwert Azahl der Klasse, Azahl der Beobachtugswerte, statstscher Beobachtugswert, Zufallsvarable, Azahl der Beobachtugswerte Azahl der Beobachtugswerte,

Mehr

1 1 1 x0,25 x200 0,25 x200 0,25 1 x50 x51 1 1

1 1 1 x0,25 x200 0,25 x200 0,25 1 x50 x51 1 1 Klausur: Statstk 2.06.2018 Jürge Mesel Hlfsmttel: Ncht progr. Tascherecher Bearbetugszet: 60 Mute Aufgabe 1 E Koskbestzer otert 200 Tage lag de Zahl der verkaufte Exemplare eer seer Tageszetuge. Verkaufte

Mehr

(Markowitz-Portfoliotheorie)

(Markowitz-Portfoliotheorie) Thema : ortfolo-selekto ud m-s-rzp (Markowtz-ortfolotheore) Beurtelugskrtere be quadratscher Nutzefukto: Beroull-rzp + quadratsche Nutzefukto Thema Höhekompoete: Erwartugswert µ Rskokompoete: Stadardabwechug

Mehr

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK Mathematk: Mag. Schmd Wolfgag & LehrerIeteam Arbetsblatt 7-7 7. Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK STATISTISCHE GRUNDBEGRIFFE Statstk gledert sch zwe Telbereche De Beschrebede

Mehr

Einheitliches Verfahren zur Ermittlung von Messunsicherheiten

Einheitliches Verfahren zur Ermittlung von Messunsicherheiten Prof. Dr. Mafred Schmdt März 008 Ehetlche Verfahre zur Ermttlug vo Meucherhete. Allgemee Jede Meug t grudätzlch mt Ucherhete behaftet, o da zur volltädge Agabe ee Meergebe auch de Agabe über de Meucherhete

Mehr

Statistik für Ingenieure (IAM) Version 3.0/21.07.2004

Statistik für Ingenieure (IAM) Version 3.0/21.07.2004 Stattk fü Igeeue (IAM) Veo 74 Vaazaalye Mt de efache Vaazaalye (ANOVA Aaly of Vaace) wd de Hypothee gepüft, ob de Mttelwete zwee ode mehee Stchpobe detch d, de au omaletelte Gudgeamthete gezoge wede, de

Mehr

Einschlägige Begriffe zur Meßunsicherheit Dr. Wolfgang Kessel, Braunschweig

Einschlägige Begriffe zur Meßunsicherheit Dr. Wolfgang Kessel, Braunschweig Eschlägge Begrffe zur Meßuscherhet /7 Eschlägge Begrffe zur Meßuscherhet Dr. Wolfgag Kessel, Brauschweg De Aufstellug folgt cht der re lexografsch-alphabetsche Aordug. Verwadte Begrffe sd velmehr zu Gruppe

Mehr

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit Bespelklausur BWLB TelMarketg 45MuteBearbetugszet BWLBBespelklausurTelMarketg Sete WchtgeHwese:. VOLLSTÄNDIGKEIT: PrüfeSeuverzüglch,obIhreKlausurvollstädgst(Aufgabe).. ABGABE: EsstdegesamteKlausurabzugebe.

Mehr

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) 6. Zuammehagmaße Kovaraz ud Korrelato Problemtellug: Bher: Ee Varable pro Merkmalträger, Stchprobe x,, x Geucht: Maße für Durchchtt, Streuug, uw. Jetzt: Zwe metrche! Varable pro Merkmalträger, Stchprobe

Mehr

Verteilungen und Schätzungen

Verteilungen und Schätzungen Verteluge ud Schätzuge Zufallseperet Grudbegrffe Vorgag ach eer bestte Vorschrft ausgeführt ( Przp) belebg oft wederholbar se Ergebs st zufallsabhägg be ehralge Durchführug des Eperets beeflusse de Ergebsse

Mehr

Intervallschätzungen geben unter Berücksichtigung des Verteilungstyps von X einen Bereich an, der den Parameter mit vorgegebener Sicherheit enthält.

Intervallschätzungen geben unter Berücksichtigung des Verteilungstyps von X einen Bereich an, der den Parameter mit vorgegebener Sicherheit enthält. Parameterschätzuge Fachhochschule Jea Uversty of Appled Sceces Jea Oft st der Vertelugstyp eer Zufallsgröße X bekat, ur de Parameter sd ubekat. Da erfolgt hre Schätzug aus eer Stchprobe. Ma uterschedet

Mehr

Unter einer Rente versteht man eine regelmässige und konstante Zahlung

Unter einer Rente versteht man eine regelmässige und konstante Zahlung 8 Aweduge aus der Fazmathematk Perodsche Zahluge: Rete ud Leasg Uter eer Rete versteht ma ee regelmässge ud kostate Zahlug Bespele: moatlche Krakekassepräme, moatlche Altersrete, perodsches Spare, verteljährlcher

Mehr

AG Konstruktion KONSTRUKTION 2. Planetengetriebe (Umlaufgetriebe) Skript. TU Berlin, AG Konstruktion

AG Konstruktion KONSTRUKTION 2. Planetengetriebe (Umlaufgetriebe) Skript. TU Berlin, AG Konstruktion AG Kstrut KONTRUKTION Plaetegetrebe (Umlaufgetrebe) rpt TU Berl, AG Kstrut Plaetegetrebe Vrtele Plaetegetrebe: e Achsversatz z.t. sehr grße Über-/Utersetzuge möglch grße Tragraft guter Wrugsgrad Rhlff

Mehr

Einführung in die Stochastik 3. Übungsblatt

Einführung in die Stochastik 3. Übungsblatt Eführug de Stochastk 3. Übugsblatt Fachberech Mathematk SS 0 M. Kohler 06.05.0 A. Fromkorth D. Furer Gruppe ud Hausübug Aufgabe 9 (4 Pukte) Der Mkrozesus st ee statstsche Erhebug. Herbe werde ach bestmmte

Mehr

Verteilungen und Schätzungen

Verteilungen und Schätzungen Verteluge ud Schätzuge Zufallseperet Grudbegrffe Vorgag ach eer bestte Vorschrft ausgeführt ( Przp) belebg oft wederholbar se Ergebs st zufallsabhägg be ehralge Durchführug des Eperets beeflusse de Ergebsse

Mehr

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 54

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 54 Prof. Dr. H. Rommelfager: tschedugstheore, Katel 3 54 3.2.8 ARROW-PRATT-Maß für de Rskoestellug Rskoverhalte bsher grob kategorsert ach Rskoeutraltät, -symathe ud averso be Rskoaverso: (X) < SÄ Rskoräme

Mehr

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste):

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste): Aufgabe. Gegebe see folgede Date eer statstsche Erhebug, berets ach Größe sortert (Raglste): 0 3 4 4 5 6 7 7 8 8 8 9 9 0 0 0 0 0 3 3 3 3 4 4 5 5 5 5 5 6 6 6 7 7 8 30 Erstelle Se ee Tabelle, der de Merkmalsauspräguge

Mehr

Lageparameter (Mittelwerte) und Streuungsparameter

Lageparameter (Mittelwerte) und Streuungsparameter Statstk Grudlage Charakterserug vo Verteluge Eführug Wahrschelchketsrechug Wahrschelchketsverteluge Schätze ud Teste Korrelato Regresso Lageparameter (Mttelwerte) ud Streuugsparameter Mttelwerte: Gebe

Mehr

Formelzusammenstellung

Formelzusammenstellung Hochschule Müche Faultät Wrtschaftsgeeurwese Formelzusammestellug zugelasse für de Prüfug Dateaalyse der Faultät 09 für Wrtschaftsgeeurwese Prof. Dr. Voler Abel Formelsammlug Dateaalyse / Ihaltsverzechs

Mehr

Schiefe-, Wölbungs- und Konzentrationsmaße

Schiefe-, Wölbungs- und Konzentrationsmaße Statstk für SozologIe Schefe-, Wölbugs- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Merkmal wurde 3 Gruppe beobachtet ud Form der folgede Häufgketstabelle berchtet: Klasse

Mehr

(b) (a) II. Das Bestimmtheitsmaß R 2. augenscheinlich ist schon klar, dass die Punktewolke in (b) durch die Gerade besser angepasst wird als in (a).

(b) (a) II. Das Bestimmtheitsmaß R 2. augenscheinlich ist schon klar, dass die Punktewolke in (b) durch die Gerade besser angepasst wird als in (a). Bepel: II. Da Betmmthetmaß ( ) ( )( ) - - 6 6 b /, ud b, ˆ, ˆ ( ) ( )( ) - / -/ / / 6 6 b /, ud b, ˆ, ˆ augechelch t ch klar, da de Puktewlke durch de Gerade beer agepat wrd al. Da t allerdg ke wrklch

Mehr

Dr. H. Grunert Einführung in die Wahrscheinlichkeitsrechnung Vorlesungscharts. Vorlesung 5.2. Eigenschaften von Zufallsvariablen

Dr. H. Grunert Einführung in die Wahrscheinlichkeitsrechnung Vorlesungscharts. Vorlesung 5.2. Eigenschaften von Zufallsvariablen Vorlesugscharts Vorlesug 5. Egeschafte vo Zufallsvarable Reproduktvtät Approxmatoe Zetraler Grezwertsatz Sete vo Chart : Uabhäggket vo Zufallsvarable Zwe Zufallsvarable X ud Y mt hre Realsatoe { x, x,...,

Mehr

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik Formelsammlug rtschaftsmathemat / Statst Formelsammlug für de Lehrverastaltug rtschaftsmathemat / Statst zugelasse für de Klausure zur rtschaftsmathemat ud Statst de Studegäge der Techsche Betrebswrtschaft

Mehr

Deskriptive Statistik und Explorative Datenanalyse

Deskriptive Statistik und Explorative Datenanalyse rger Gabler PLU Zusatzformatoe zu Mede vo rger Gabler Thomas Cleff Desrtve tatst ud Eloratve Dateaalse Ee comutergestützte Eführug mt Ecel, P ud TATA 05 3., überarbetete ud erweterte Auflage rger Gabler

Mehr

Korrelations- und Assoziationsmaße

Korrelations- und Assoziationsmaße k m χ : j l r +. Zusammehagsmaße ( o e ) jl jl e jl Korrelatos- ud Assozatosmaße e jl 5 Merkmal Y Summe X b b m a H (a,b) H (a,b). a H (a,b) H (a,b). Summe.. Zusammehagsmaße Eführug Sche- ud Noses-Korrelato

Mehr

FH D WS 2007/08 Prof. Dr. Horst Peters Dezember 2007

FH D WS 2007/08 Prof. Dr. Horst Peters Dezember 2007 FH D WS 007/08 Prof. Dr. Horst Peters Dezember 007 Formelsammlug Wahrschelchetsrechug ud dutve Statst m Bachelor-Studegag Busess Admstrato (Modul BWL B) Sete / 6 Formelsammlug Wahrschelchetsrechug ud Idutve

Mehr

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten Festverzslche Wertaere Kurse ud Redte be gazzahlge Restlaufzete Glederug. Rückblck: Grudlage der Kursrechug ud Redteermttlug 2. Ausgagsstuato 3. Herletug der Formel 4. Abhäggket vom Marktzsveau 5. Übugsaufgabe

Mehr

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik Prof. Dr. Ig. Post Grudlage der Eergetechk Eergewrtschaft Kosterechug EEG. Vorlesug EEG Grudlage der Eergetechk De elektrsche Eergetechk st e sogeates klasssches Fach. Folglch st deses Fach vele detallert

Mehr

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n).

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n). Aufgabe Wr betrachte ee Reteverscherug der Retebezugszet mt jährlch vorschüssger Retezahlug solage der Verscherte lebt. a) Bezeche V bzw. V de rechugsmäßge Deckugsrückstellug am Afag bzw. am Ede des Verscherugsjahres.

Mehr

1.3 Fehlerbetrachtung, Kalibrierung Genauigkeit und Statistische Beschreibung und Analyse von Messungen. Genauigkeit

1.3 Fehlerbetrachtung, Kalibrierung Genauigkeit und Statistische Beschreibung und Analyse von Messungen. Genauigkeit .3 Fehlerbetrachtg, Kalbrerg.3. Geagket d Stattche Bechrebg d Aale vo Mege Wederholg vo ezele Mege Ergeb eer Meg t ledglch Schätzwert für de wahre Wert eer Megröße 8 Ergeb der Meg Meabwechg (Fehler) ε:

Mehr

Allgemeine Prinzipien

Allgemeine Prinzipien Allgemee Przpe Es estere sebe Grudehete der Physk; alle adere physkalsche Größe ka ma darauf zurückführe. Dese Grudehete sd: Läge [m] Masse [kg] Zet [s] Elektrsche Stromstärke [A] Temperatur [K], Stoffmege

Mehr

Asymptotische Normalverteilung nach dem zentralen Grenzwertsatz

Asymptotische Normalverteilung nach dem zentralen Grenzwertsatz Asymptotsche ormalvertelug ach dem zetrale Grezwertsatz Erwartugswert eer Summe vo Zufallsvarable mt jewels de Erwartugswert x (Y Y Asymptotsche ormalvertelug ach dem zetrale Grezwertsatz Varaz eer Summe

Mehr

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes Quellecoderug I: Redudazredukto, redudazsparede Codes Quellecoderug Durch de Quellecoderug werde de Date aus der Quelle codert, bevor se ee Übertragugskaal übertrage werde De Coderug det der Verkleerug

Mehr

Deskriptive Statistik

Deskriptive Statistik Elemet Deskrptve Statstk KAD 0.09. Grudgesamthet (Populato): Gesamthet der Idvdue (Elemete), dere Egeschafte be der Stude utersucht werde solle. De gesamte Mege der teresserede Date. N = uedlch Stchprobe:

Mehr

Lage- und Streuungsmaße

Lage- und Streuungsmaße Statstk für SozologIe Lage- ud Streuugsmaße Uv.Prof. Dr. Marcus Hudec Beschrebug quattatver Date Um de emprsche Vertelug ees quattatve Merkmals zu beschrebe, betrachte wr Parameter, de ee Verdchtug der

Mehr

Korrelation und Assoziation

Korrelation und Assoziation Sche- ud Noe- Korrelato Korrelato ud Aozato Schekorrelato: zwe Merkmale häge bede vo eem wetere drtte ab Noekorrelato: zwe Merkmale habe ee hohe Korrelato, aber kee urächlche Zuammehag Korrelato ud Aozato

Mehr

Lagemaßzahlen (1) Beschreibung quantitativer Daten. Statistische Maßzahlen, welche die absolute Lage der Verteilung beschreiben

Lagemaßzahlen (1) Beschreibung quantitativer Daten. Statistische Maßzahlen, welche die absolute Lage der Verteilung beschreiben echrebug quattatver Date Um ee emprche Vertelug ee quattatve Mermal zu bechrebe, betrachte wr Parameter, de ee Verdchtug der Iformato de Dateatze bzw. der Vertelug ermöglche. De wchtgte Parameter d de

Mehr

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen IT Zahlesysteme Zahledarstellug eem Stellewertcode (jede Stelle hat ee bestmmte Wert) Def. Code: Edeutge Abbldugsvorschrft für de Abbldug ees Zeche-Vorrates eem adere Zechevorrat. Dezmalsystem De Bass

Mehr

Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen

Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen Ivestmetfods Kezahleberechug erformace Rsko- ud Ertragsaalyse, Rskokezahle Gültg ab 01.01.2007 Ihalt 1 erformace 4 1.1 Berechug der erformace über de gesamte Beobachtugzetraum (absolut)... 4 1.2 Aualserug

Mehr

Einführung 2. Teil: Fehleranalyse

Einführung 2. Teil: Fehleranalyse Phskalsch-chesches Praktku I Modul Eführug. Tel: Fehleraalse Ja Helbg, 7.09.08 Uterlage: htt://www.che.uzh.ch/stud/old/docuets/ear/che3.htl Fehlerrechug Gesucht: wahrer Wert eer Grösse Aber: Sere vo Messuge

Mehr

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien:

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien: Regressoslse De Regressoslse st ee Slug vo sttstshe Alseverfhre. Zel e de häufgste egesetzte Alseverfhre st es Bezehuge zwshe eer hägge ud eer oder ehrere uhägge rle festzustelle. Se wrd sesodere verwedet

Mehr

Physikalische Messungen sind immer fehlerbehaftet! Der wahre Wert ist nicht ermittelbar. Der wahre Wert x ist nicht identisch mit dem Mittelwert

Physikalische Messungen sind immer fehlerbehaftet! Der wahre Wert ist nicht ermittelbar. Der wahre Wert x ist nicht identisch mit dem Mittelwert Physkalsche Messuge sd mmer fehlerbehaftet! Der wahre Wert st cht ermttelbar. Der wahre Wert st cht detsch mt dem Mttelwert Der Wert legt mt eer gewsse Wahrschelchket (Kofdezahl bzw. Vertrauesveau %) m

Mehr

1 Mathe Formeln Statistik und Wahrscheinlichkeitsrechnung

1 Mathe Formeln Statistik und Wahrscheinlichkeitsrechnung 1 Mathe Formel Statstk ud Wahrschelchketsrechug Jör Horstma, 6.10.003. Alle Agabe ohe Gewähr. http://www.ba-stuttgart.de/ w017/ 1.1 Grudlage Ezelklasse [a ; b [ Klassewete Klassemtte Mttelwert b a = w

Mehr

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...}

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...} 1 Allgeme Geometrsche Rehe: q t = 1 q1 t=0 1 q Mtterachtsformel: ax 2 bxc=0 x 1/ 2 = b±b2 4ac 2a Bomsche Formel: 1. ab 2 =a 2 2abb 2 2. a b 2 =a 2 2abb 2 3. ab a b=a 2 b 2 Wurzel: ugerade 1 Ergebs gerade

Mehr

Schiefe-, Wölbungs- und Konzentrationsmaße

Schiefe-, Wölbungs- und Konzentrationsmaße Statstk für SozologIe Schefe-, Wölbugs- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Merkmal wurde 3 Gruppe beobachtet ud Form der folgede Häufgketstabelle berchtet: Klasse

Mehr

Fehlerrechnung im Praktikum

Fehlerrechnung im Praktikum Fehlerrechug m Pratum Pratum Phsalsche Cheme (A. Dael Boese) I chts zegt sch der Magel a mathematscher Bldug mehr, als eer überbertrebe geaue Rechug. Carl Fredrch Gauß, 777-855 Themegebete Utertelug vo

Mehr

Induktion am Beispiel des Pascalschen Dreiecks

Induktion am Beispiel des Pascalschen Dreiecks Iduto am Bespel des Pascalsche Dreecs Alexader Rehold Coldtz 0.02.2005 Eletug vollstädge Iduto De vollstädge Iduto st ebe dem drete ud drete Bewesverfahre ees der wchtgste der Mathemat. Eher bespelhaft

Mehr

( ) ( ) ( ) ( ) è ø. P A Wahrscheinlichkeitsmaß. lim n. Dr. Christian Schwarz 4. KOMBINATORIK Permutationen

( ) ( ) ( ) ( ) è ø. P A Wahrscheinlichkeitsmaß. lim n. Dr. Christian Schwarz 4. KOMBINATORIK Permutationen BBA Projektsemar Thess Dr. Chrsta Schwarz Formelsammlug Aalytsche Statstk 4. KOMBINATORIK 4.. Permutatoe Azahl der Permutatoe vo N Elemete ohe Wederholug: Multomalkoeffzet: N! = N N- N -... 3 N! N! N!...

Mehr

Vl. Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 3: Diskrete Verteilungen

Vl. Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 3: Diskrete Verteilungen Vl. Statstsche Prozess- ud Qualtätsotrolle ud Versuchsplaug Übug 3: Dsrete Verteluge Prof. Dr. B. Grabows Zur Lösug der folgede Aufgabe öe Se auch de begefügte Tabelle der dsrete Verteluge m Ahag verwede.

Mehr

Schätzfehler in der linearen Regression (1) Einführung

Schätzfehler in der linearen Regression (1) Einführung Schätzfehler ( Reduum: Schätzfehler n der lnearen Regreon ( e Enführung Zel der Regreontattk t e, Schätzglechungen nach dem Krterum der klenten Quadrate aufzutellen und anzugeben, we groß der jewelge Schätzfehler

Mehr

Varianzfortpflanzung

Varianzfortpflanzung 5.0 / SES.5 Parameterschätzug Varazortplazug Torste Maer-Gürr Torste Maer-Gürr Dskrete Zuallsvarable Ee dskrete Zuallsvarable mmt edlch vele oder abzählbar uedlch vele Werte a. - Werte: - Wahrschelchket:,,,,,,,,

Mehr

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk ----------------------------------------------------------------------------------------------- Bedgte Wahrschelchket

Mehr

Kapitel III. Lagemaße. die beobachteten Werte eines Merkmals X mit Ausprägungen a 1

Kapitel III. Lagemaße. die beobachteten Werte eines Merkmals X mit Ausprägungen a 1 aptel III Lagemaße D (Artmetsces Mttel) See,,, de beobactete Werte ees Merkmals X mt Auspräguge a, a,, a k Als artmetsces Mttel (für ctgrupperte Date) bezecet ma: = = (efaces) k = a H ( a ) (gewogees)

Mehr

Formeln für Statistik und Wahrscheinlichkeitstheorie (Dutter)

Formeln für Statistik und Wahrscheinlichkeitstheorie (Dutter) Formel für tatstk ud Wahrschelchketstheore (Dutter) Fehler a: fpalmater@gmal.com Cotets Beschrebede tatstk... Kegröße vo Verteluge... Verteluge... 3 Wahrschelchketstheore... 3 Grudlage... 4 Erwartug &

Mehr

Alternative Darstellung des 2-Stichprobentests für Anteile. Beobachtete Response No Response Total absolut DCF CF

Alternative Darstellung des 2-Stichprobentests für Anteile. Beobachtete Response No Response Total absolut DCF CF Alteratve Darstellug des -Stchprobetests für Atele DCF CF Total 111 11 3 Respose 43 6 69 Resp. Rate 0,387 0,3 0,309 Beobachtete Respose No Respose Total absolut DCF 43 68 111 CF 6 86 11 69 154 3 Be Gültgket

Mehr

= k. , mit k als Anzahl der Hypothesen A i und den Daten B. Bestimmtheitsmaß:!Determinationskoeffizient

= k. , mit k als Anzahl der Hypothesen A i und den Daten B. Bestimmtheitsmaß:!Determinationskoeffizient Ablehugsberech:!Sgfkazveau abhägge Gruppe: Gruppe vo Versuchspersoe, dee jede ezele Versuchsperso aus Gruppe A eer äquvalete Versuchsperso aus Gruppe B etsprcht (oder tatsächlch de gleche Versuchsperso

Mehr