3 Der Körper der komplexen Zahlen

Größe: px
Ab Seite anzeigen:

Download "3 Der Körper der komplexen Zahlen"

Transkript

1 3 Der Körper der kompleen Zahlen Nicht jede quadratische Gleichung hat eine reelle Lösung + p + q = (p, q R) Beispiel: Für alle R ist und daher + 1 Abhilfe: Man erweitert R zu einem größerem Körper C, in dem jede quadratische Gleichung lösbar ist Konstruktion des Körpers C der kompleen Zahlen 1) Als Menge ist C = R Damit ist C auch ein R Vektorraum ) Die Addition im Körper C ist erklärt als die Vektoraddition in R, also + + := + Damit sind schon die Körperaiome (A1) bis (A4) erfüllt = ist das neutrale Element von C bzgl der Additon und := das Inverse von 3) Multiplikation in C: := + (M1) Das Assoziativgesetz zeige man als Übungsaufgabe (M) = + = + = 1 (M3) ist das neutrale Element bzgl der Multiplikation: 1 = = + 1 1

2 In C schreibe man 1 für 1 Es gilt weiter für R: + + = und ( ) = Setze daher := für R Damit wird R mit dem Teilbereich { R} von C identifiziert in welchem genau wie in R gerechnet wird Somit ist R C ( = ) und C ist eine Erweiterung von R Definition: Die reelle Zahl z = ( + heißt Betrag der kompleen Zahl z = Für z ist auch z ) Setze dann w = 1 Es folgt z zw = ( ) + = + Damit ist gezeigt: (M4) Jedes z = ( + ( + + ) ( ) + = ) ) = 1 = 1 hat ein Inverses bzgl, nämlich z 1 := 1 z (D) Das Distributivgesetz zeige man als Übungsaufgabe Damit ist gezeigt, dass C ein Körper ist, welcher den Körper R umfaßt Schreibe i für die komplee Zahl Dann gilt: 1 i = 1 1 = 1 1 = = 1, dh i + 1 = Fazit: Die Gleichung z + 1 = hat im Körper C die Lösungen z = i und z = i

3 Weiter gilt: z = = + = + = + i 1 Jede komplee Zahl z schreibt sich somit in der Form z = + i mit, R ( und diese Darstellung ist eindeutig, + i = ) Definition: Ist z = +i mit, R, so heißt Realteil von z ( Re(z) ) und Imaginärteil von z ( Im (z) ) Die Gaußsche Zahlenebene: (Veranschaulichung der kompleen Zahlen) Lege in die Ebene ein orthogonales Koordinatensstem ir = -Achse i z = + i = (, ) z R = -Achse Der Punkt z = stellt die komplee Zahl z = + i dar Die Achse besteht aus den reellen Zahlen = ( Reelle Achse ) Die Achse be- 3

4 steht aus den rein imaginären Zahlen i, R Sei r der Abstand zwischen Nullpunkt und z = Nach Pthagoras ist r = +, dh r = + = z Der Betrag von z ist also der Abstand des Punktes z = vom Nullpunkt Definition: Die Zahl z = i heißt die zu z = +i konjugiert komplee Zahl Offenbar ist z = z genau dann, wenn z = R ist Geometrisch entsteht z = aus z durch Spiegelung an der reellen Achse ir z = + i z = i R (31) Regel: Seien z und w komplee Zahlen a) = z = z, z + z = Re (z), zz = z Insbesondere sind z + z und zz reelle Zahlen 4

5 b) z + w = z + w, zw = z w, (z) n = (z n ) Dies rechne man zur Übung nach Veranschaulichung von Addition und Multiplikation (i) Die Addition von Vektoren im R erfolgt nach dem Kräfteparallelogramms : z = + i und w = u + iv +u z + w = (+u) + i (+v) v z +v u w v (ii) Zur Beschreibunng der Multiplikation führen wir in der Ebene sogenannte Polarkoordinaten ein Für z C, z sei r := z und ϕ der Winkel zwischen der positiven Achse und dem von angehenden Strahl durch den Punkt z, wobei ϕ im Bogenmaß gemessen wird und ϕ < π Durch diese beiden Daten ist der Punkt z eindeutig festgelegt r und ϕ heißen die Polarkoordinaten von z, r ihr Betrag und ϕ ihr Argument 5

6 ir ϕ z = + i = r sin ϕ r = z ϕ = r cosϕ R Nach den Regeln der Elementargeometrie ist = r cosϕ und = r sin ϕ, dh z = r(cosϕ + i sin ϕ) Ist ψ = ϕ + kπ, k Z, so gilt ebenfalls z = r(cosψ + i sin ψ) Wir nennen daher auch ψ ein Argument von z (Das Argument von z ist also nur bis auf ganzzahlige Vielfache von π bestimmt) (3) Regel: Seien z und w mit r = z, s = w, ϕ = Arg z, ψ = Arg w Dann gilt: z w = (r s)(cos(ϕ + ψ) + i sin(ϕ + ψ)) Also: zw = rs = z w und Arg (zw) = Arg z+ Arg w Beweis: Nach den Additionstheoremen für Sinus und Cosinus gilt cos(ϕ + ψ) = cos ϕ cosψ sin ϕ sinψ sin(ϕ + ψ) = cos ϕ sin ψ + sin ϕ cosψ 6

7 Es folgt zw = rs(cosϕ + i sin ϕ)(cosψ + i sin ψ) = rs((cosϕ cosψ sin ϕ sin ψ) + i(cos ϕ sin ψ + sin ϕ cosψ)) = rs(cos(ϕ + ψ) + i sin ϕ + ψ)) Nach (3) werden also komplee Zahlen multipliziert, indem man ihre Beträge multipliziert und ihre Argumente addiert Anschaulich: ir zw rs w ϕ s r z ψ ϕ R Induktiv ergibt sich: Arg z n = n ϕ für n N Die Quadratwurzel aus einer kompleen Zahl: Sei a C Eine Zahl w C heißt Quadratwurzel von a, falls w = a 1) a = hat nur eine Quadratwurzel, nämlich w = ) a Schreibe a in Polarkoordinaten, a = r(cosϕ + i sin ϕ) mit reellen Zahlen ϕ < π und r > Sei ρ = r die positive Quadratwurzel 7

8 aus r Dann sind α = ρ(cos ϕ + i sin ϕ ) und α die Quadratwurzeln aus a : ( α) = α 3 = ρ (cos( ϕ ) + i sin( ϕ )) = r(cosϕ + i sin ϕ) = a Ferner ist (z α)(z + α) = z α = z a für alle z C Somit sind ±α die einzigen Lösungen der Gleichung z = a Nullstellen von Polnomen Sei p : C C ein Polnom (Polnomfunktion), dh: Es gibt komplee Zahlen a,,a n (n N), so dass p(z) = a + a 1 z + + a n 1 z n 1 + a n z n für alle z C Sind die a j alle reell, so spricht man von einem reellen Polnom λ C heißt Nullstelle von p, wenn p(λ) = Frage: Wie viele Nullstellen kann p haben? 1) Ist a = a 1 = = a n =, so ist p(z) = für alle z C ) Ist n =, a, also p(z) = a für alle z C, so hat p(z) keine Nullstelle Von nun an sei n 1 und p(z) nicht das Nullpolnom Wir können a n annehmen Da p(z) und p(z)/a n die gleichen Nullstellen haben, können wir a n = 1 annehmen p(z) ist also von der Form (1) p(z) = z n + a n 1 z n a mit a,,a n 1 C und n 1 3) n = 1 : p(z) = z + a hat die einzige Nullstelle z = a 4) n = : p(z) = z + a 1 z + a ist eine quadratische Gleichung p(z) = z + a 1 z + a 1 4 (a 1 4 a ) = (z + a 1 ) ( a 1 4 a ) = genau dann, wenn (z + a 1 ) = a 1 4 a =: d Unterscheide zwei Fälle: d = : z = a 1 ist die einzige Nullstelle von p und p(z) = (z + a 1 ) für alle z C d : (z+ a 1 ) = d genau dann, wenn z+ a 1 eine Quadratwurzel von d ist Wie oben gezeigt hat d zwei verschiedenen Quadratwurzeln ±δ Daher gilt z = a 1 ± δ sind die Nullstellen von p(z) 8

9 Es folgt: p(z) = (z + a 1 δ)(z + a 1 + δ) für alle z C 5) Der allgemeine Fall: Sei p(z) = z n + a n 1 z n a 1 z + a ein Polnom, n 1 und a,, a n 1 C In der Analsis lernt man: (33) Fundamentalsatz der Algebra: Jede nicht konstante Polnom (1) p(z) = z n + a n 1 z n a 1 z + a mit 1 und Koeffizienten a,,a n 1 C hat in C mindestens eine Nullstelle Genauer gilt: Sind λ 1,, λ r C die verschiedenen Nullstellen von p(z), so gibt es eindeutig bestimmte positive ganze Zahlen ν 1,,ν r, so dass ν ν r = n und () p(z) = (z λ 1 ) ν1 (z λ r ) νr für alle z C Man nennt n den Grad von p(z) und ν j die Vielfachheit der Nullstelle λ j von p(z) (34) Korollar: (Zerlegung reeller Polnome) Sei p(z) = z n + a n 1 z n a 1 z + a ein reelles Polnom (dh a,,a n 1 R) Dann gilt: a) Ist p(λ) = so ist auch p(λ) =, und λ und λ haben die gleiche Vielfachheit b) p(z) schreibt sich als Produkt von reellen linearen und quadratischen Polnomen Beweis: a) Sei p(z) = z n +a n 1 z n 1 + +a 1 z+a = (z λ 1 ) ν1 (z λ r ) νr Durch Übergang zum konjugiert Kompleen auf beiden Seiten folgt nach Regel 31 wegen a j = a j für alle z C (z λ 1 ) ν1 (z λ r ) νr = (z λ 1 ) νr + (z λ r ) νr = z n + a n 1 z n a 1 z + a = z n + a n+1 z n a 1 z + a = p(z) 9

10 Wegen der Eindeutigkeit der Zerlegung () von p(z) kommt der Faktor z λ j somit genau so oft vor wie z λ j, dh λ j und λ j haben die gleiche Vielfachheit bei p(z) b) Nach a) gilt: p(z) hat in C (evtl) reelle Nullstellen α 1,,α s ( s n) und (evtl) nicht reelle Nullstellen λ 1, λ 1,,λ t, λ t ( t n) Genauer ist p(z) = (z α 1 ) µ1 (z α s ) µ1 (z λ 1 ) ν 1 (z λ t ) ν 1, (z λ t ) νt (z λ t ) νt = = (z α 1 ) ν1 (z α 1 )Q ν 1 1 (z) Q νt t (z), wobei Q j (z) = (z λ j )(z λ j ) = z (λ j + λ j )z + λ j λ j Nach Regel 31 gilt λ j + λ j R und λ j λ j R, also sind die quadratischen Polnome Q j (z) reell und p(z) = (z α 1 ) µ1 (z α s ) µs Q ν 1 1 (z) Q νt t (z) 1

2.9 Die komplexen Zahlen

2.9 Die komplexen Zahlen LinAlg II Version 1 3. April 2006 c Rudolf Scharlau 121 2.9 Die komplexen Zahlen Die komplexen Zahlen sind unverzichtbar für nahezu jede Art von höherer Mathematik. Systematisch gehören sie zum einen in

Mehr

02. Komplexe Zahlen. a = Re z ist der Realteil von z, b = Im z der Imaginärteil von z.

02. Komplexe Zahlen. a = Re z ist der Realteil von z, b = Im z der Imaginärteil von z. 0. Komplexe Zahlen Da für alle x R gilt dass x 0, hat die Gleichung x +1 = 0 offenbar keine reellen Lösungen. Rein formal würden wir x = ± 1 erhalten, aber dies sind keine reellen Zahlen. Um das Problem

Mehr

10 Komplexe Zahlen. 2. Februar Komplexe Multiplikation: Für zwei Vektoren. z 1 =

10 Komplexe Zahlen. 2. Februar Komplexe Multiplikation: Für zwei Vektoren. z 1 = 2. Februar 2009 66 0 Komplexe Zahlen 0. Komplexe Multiplikation: Für zwei Vektoren [ [ a a2 z =, z 2 = in R 2 wird neben der üblichen Addition die komplexe Multiplikation [ a a z z 2 := 2 b b 2 a b 2 +

Mehr

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ): Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe

Mehr

11 Komplexe Zahlen. Themen: Der Körper der komplexen Zahlen Die Mandelbrot-Menge Der Fundamentalsatz der Algebra

11 Komplexe Zahlen. Themen: Der Körper der komplexen Zahlen Die Mandelbrot-Menge Der Fundamentalsatz der Algebra 11 Komplexe Zahlen Themen: Der Körper der komplexen Zahlen Die Mandelbrot-Menge Der Fundamentalsatz der Algebra Addition ebener Vektoren Sei Ê 2 = {(x, y) : x, y Ê}. Ê 2 können wir als Punkte in der Ebene

Mehr

Stefan Ruzika. 24. April 2016

Stefan Ruzika. 24. April 2016 Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 2: Körper 24. April 2016 1 / 21 Gliederung 1 1 Schulstoff 2 Körper Definition eines Körpers

Mehr

Die komplexen Zahlen

Die komplexen Zahlen Die komplexen Zahlen Wir haben gesehen, dass die Menge R der reellen Zahlen einen angeordneten Körper bildet und dass für die Menge Q der rationalen Zahlen entsprechendes gilt. In beiden Körpern sind Gleichungen

Mehr

Körper sind nullteilerfrei

Körper sind nullteilerfrei Mathematik I für Informatiker Komplexe Zahlen p. 1 Körper sind nullteilerfrei Für Elemente a, b eines Körpers gilt stets: Aus a b = 0 folgt a = 0 oder b = 0. Beweis: Aus a b = 0 und a 0 folgt also b =

Mehr

Komplexe Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Komplexe Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Komplexe Zahlen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Körper sind nullteilerfrei Für Elemente a, b eines Körpers gilt stets: Aus a b = 0 folgt a

Mehr

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c)

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c) Komplexe Zahlen Wir betrachten Zahlenpaare (a, b, (c, d R und definieren eine Addition und eine Multiplikation wie folgt: (a, b + (c, d := (a + c, b + d (a, b (c, d := (a c b d, a d + b c Satz: R mit dieser

Mehr

Mathematischer Vorkurs NAT-ING1

Mathematischer Vorkurs NAT-ING1 Mathematischer Vorkurs NAT-ING1 (02.09. 20.09.2013) Dr. Robert Strehl WS 2013-2014 Mathematischer Vorkurs TU Dortmund Seite 1 / 40 Kapitel 12 Komplexe Zahlen Kapitel 12 Komplexe Zahlen Mathematischer Vorkurs

Mehr

Komplexe Zahlen. Bemerkungen. (i) Man zeigt leicht, dass C mit diesen beiden Operationen

Komplexe Zahlen. Bemerkungen. (i) Man zeigt leicht, dass C mit diesen beiden Operationen Komplexe Zahlen Da für jede reelle Zahl x R gilt dass x 0, besitzt die Gleichung x + 1 = 0 keine Lösung in R bzw. das Polynom P (x) = x + 1 besitzt in R (!) keine Nullstelle. Dies führt zur Frage, ob es

Mehr

Körper der komplexen Zahlen (1)

Körper der komplexen Zahlen (1) Die komplexen Zahlen Körper der komplexen Zahlen (1) Da in angeordneten Körpern stets x 2 0 gilt, kann die Gleichung x 2 = 1 in R keine Lösung haben. Wir werden nun einen Körper konstruieren, der die reellen

Mehr

Komplexe Zahlen. Axel Schüler, Leipzig Juli 2003

Komplexe Zahlen. Axel Schüler, Leipzig Juli 2003 Komplexe Zahlen Axel Schüler, Leipzig schueler@mathematikuni-leipzigde Juli 2003 Da die komplexen Zahlen nicht mehr im Lehrplan stehen, sollen hier die Grundlagen gelegt werden Eine sehr schöne Einführung

Mehr

Ê 2 = {(x, y) : x, y Ê}.

Ê 2 = {(x, y) : x, y Ê}. Komplee Zahlen.1 Der Körper der kompleen Zahlen Sei Ê = {(, y :, y Ê}. Ê können wir als Punkte in der Ebene oder als Vektoren mit Komponenten und y auffassen. Für (, y, (, y Ê definieren wir die Summe

Mehr

Einiges über komplexe Zahlen

Einiges über komplexe Zahlen Lineare Algebra und Analytische Geometrie I für LB WS 2001/2002 Dr. Bruno Riedmüller Einiges über komplexe Zahlen Es muss davon ausgegangen werden, dass der Leser mit komplexen Zahlen wenig oder nicht

Mehr

Analysis 1, Woche 3. Komplexe Zahlen I. 3.1 Etwas Imaginäres

Analysis 1, Woche 3. Komplexe Zahlen I. 3.1 Etwas Imaginäres Analysis, Woche 3 Komplexe Zahlen I A 3. Etwas Imaginäres Zusätzlich zu den reellen Zahlen führen wir das Symbol i ein und wir vereinbaren: i. Wir möchten die reellen Zahlen erweitern mit i. Das heißt,

Mehr

A Die Menge C der komplexen Zahlen

A Die Menge C der komplexen Zahlen A Die Menge C der komplexen Zahlen (Vgl. auch Abschnitt C) A.1 Definition Wir erweitern R um eine Zahl i / R (genannt imaginäre Einheit) mit der Eigenschaft i 2 i i = 1. (653) Unter einer komplexen Zahl

Mehr

Mathematischer Vorkurs NAT-ING II

Mathematischer Vorkurs NAT-ING II Mathematischer Vorkurs NAT-ING II (02.09.2013 20.09.2013) Dr. Jörg Horst WS 2013-2014 Mathematischer Vorkurs TU Dortmund Seite 1 / 252 Kapitel 15 Komplexe Zahlen Mathematischer Vorkurs TU Dortmund Seite

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 6. Komplexe Zahlen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen

Mehr

Einführung Seite 28. Zahlenebene C. Vorlesung bzw. 24. Oktober 2013

Einführung Seite 28. Zahlenebene C. Vorlesung bzw. 24. Oktober 2013 Einführung Seite 8 Vorlesung 1 3. bzw. 4. Oktober 013 Komplexe Zahlen Seite 9 Lösung von x + 1 = 0, pq-formel liefert x 1/ = ± 1 ; }{{} verboten Definition Imaginäre Einheit i := 1 Dann x 1/ = ±i; i =

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation In den reellen Zahlen haben nicht alle Polynome Nullstellen. Der einfachste Fall einer solchen Nullstellen-Gleichung ist x 2 + 1 = 0. Die komplexen Zahlen ("C") sind

Mehr

2D-Visualisierung komplexer Funktionen

2D-Visualisierung komplexer Funktionen 2D-Visualisierung komplexer Funktionen 1 Komplexe Zahlen Die komplexen Zahlen C stellen eine Erweiterung der reellen Zahlen dar, in der das Polynom z 2 + 1 eine Nullstelle besitzt. Man kann sie als Paare

Mehr

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen Komplexe Zahlen Allgemeines Definition Eine komplexe Zahl z x + y i besteht aus einem Realteil Re(z) x und einem Imaginärteil Im(z) y. Der Imaginärteil wird mit der Imaginären-Einheit i multipliziert.

Mehr

Fortgeschrittene Mathematik Raum und Funktionen

Fortgeschrittene Mathematik Raum und Funktionen Fortgeschrittene Mathematik Raum und Funktionen Thomas Zehrt Universität Basel WWZ Thomas Zehrt (Universität Basel WWZ) R n und Funktionen 1 / 33 Outline 1 Der n-dimensionale Raum 2 R 2 und die komplexen

Mehr

Komplexe Zahlen (Seite 1)

Komplexe Zahlen (Seite 1) (Seite 1) (i) Motivation: + 5 = 3 hat in N keine Lösung Erweiterung zu Z = 2 3 = 2 hat in Z keine Lösung Erweiterung zu Q = 2 / 3 ² = 2 hat in Q keine Lösung Erweiterung zu R = ± 2 ² + 1 = 0 hat in R keine

Mehr

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg Komplexe Funktionen für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Universität Hamburg SS 2006 Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen

Mehr

Komplexe Zahlen. Rainer Hauser. Januar 2015

Komplexe Zahlen. Rainer Hauser. Januar 2015 Komplexe Zahlen Rainer Hauser Januar 015 1 Einleitung 1.1 Zahlen und Operationen auf Zahlen Addiert man mit Eins als erster gegebener Zahl beginnend sukzessive Eins zu einer bereits gefundenen Zahl, so

Mehr

Komplexe Zahlen und Allgemeines zu Gruppen

Komplexe Zahlen und Allgemeines zu Gruppen Komplexe Zahlen und Allgemeines zu Gruppen Die komplexen Zahlen sind von der Form z = x + iy mit x, y R, wobei i = 1 als imaginäre Einheit bezeichnet wird. Wir nennen hierbei Re(z = x den Realteil von

Mehr

Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29

Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29 Dynamische Systeme und Zeitreihenanalyse Komplexe Zahlen Kapitel 3 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.0/29 Motivation Für die

Mehr

Demo: Mathe-CD KOMPLEXE ZAHLEN

Demo: Mathe-CD KOMPLEXE ZAHLEN KMPLEXE ZAHLEN Diese Datei gibt einige Seiten Einblick in die Serie Komplexe Zahlen, und, die gegen Zusatbestellung auf der CD u haben ist. Abonnenten erhalten sie automatisch. Datei Nr. 50000 Januar 00

Mehr

Serie 6: Komplexe Zahlen

Serie 6: Komplexe Zahlen D-ERDW, D-HEST, D-USYS Mathematik I HS 15 Dr. Ana Cannas Serie 6: Komplexe Zahlen Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom 26. und 28. Oktober. Es gibt zwei Darstellungsformen

Mehr

Die komplexen Zahlen werden definiert als die geordneten Paare z = (x, y) reeller Zahlen x, y R, zusammen mit den Rechenoperationen

Die komplexen Zahlen werden definiert als die geordneten Paare z = (x, y) reeller Zahlen x, y R, zusammen mit den Rechenoperationen 2 Komplexe Zahlen 2.1 Definition Die omplexen Zahlen werden definiert als die geordneten Paare z = (x, y) reeller Zahlen x, y R, zusammen mit den Rechenoperationen z 1 + z 2 (x 1, y 1 ) + (x 2, y 2 ) :=

Mehr

12 3 Komplexe Zahlen. P(x y) z = x + jy

12 3 Komplexe Zahlen. P(x y) z = x + jy 2 3 Komplexe Zahlen 3 Komplexe Zahlen 3. Grundrechenoperationen Definition Die Menge C = {z = a + jb a, b IR; j 2 = } heißt Menge der komplexen Zahlen; j heißt imaginäre Einheit. (andere Bezeichnung: i)

Mehr

29 Komplexe Zahlen und Polynome

29 Komplexe Zahlen und Polynome 29 Komplexe Zahlen und Polynome 30 Komplexe Zahlen und Polynome 147 Lernziele: Konzepte: Komplexe Zahlen Resultate: Fundamentalsatz der Algebra Methoden: Polarkoordinaten Kompetenzen: Lösung kubischer

Mehr

1. Definition der komplexen Zahlen Ziel: neuerliche Zahlbereichserweiterung, so dass auch Quadratwurzeln aus negativen Zahlen

1. Definition der komplexen Zahlen Ziel: neuerliche Zahlbereichserweiterung, so dass auch Quadratwurzeln aus negativen Zahlen Komplexe Zahlen Mathe I / 12.11.08 1. Definition der komplexen Zahlen Ziel: neuerliche Zahlbereichserweiterung, so dass auch Quadratwurzeln aus negativen Zahlen gezogen werden können (in nicht möglich!).

Mehr

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a Komplexe Zahlen. Bedarfsfrage Menge der natürlichen Zahlen = {,, 3,...} Aber: a + x = b ist nur lösbar, falls b > a (Peano-Axiome). Erweiterung: Menge der ganen Zahlen = {..., -3, -, -, 0,,, 3,...} a +

Mehr

2. alle Grundrechenarten +,, und / uneingeschränkt durchführbar sind und die Rechenregeln für R erhalten bleiben.

2. alle Grundrechenarten +,, und / uneingeschränkt durchführbar sind und die Rechenregeln für R erhalten bleiben. 41 3 Komplexe Zahlen Für alle reellen Zahlen x gilt x 2 0. Es gibt also keine reelle Zahl, welche Lösung der Gleichung x 2 +1 = 0 ist. Allgemein hat die quadratische Gleichung ax 2 +bx+c = 0, a,b,c R nur

Mehr

Mathematik I für das MW und VIW. Karsten Eppler Technische Universität Dresden Institut für Numerische Mathematik

Mathematik I für das MW und VIW. Karsten Eppler Technische Universität Dresden Institut für Numerische Mathematik Mathematik I für das MW und VIW Karsten Eppler Technische Universität Dresden Institut für Numerische Mathematik karsten.eppler@tu-dresden.de http://www.math.tu-dresden.de/ eppler Vorlesungsassistent:

Mehr

Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Komplexe Funktionen für Studierende der Ingenieurwissenschaften Komplexe Funktionen für Studierende der Ingenieurwissenschaften Prof. Dr. Armin Iske Department Mathematik, Universität Hamburg Technische Universität Hamburg-Harburg Sommersemester 2008 Komplexe Funktionen

Mehr

KAPITEL 1. Komplexe Zahlen

KAPITEL 1. Komplexe Zahlen KAPITEL Komplexe Zahlen. Lernziele im Abschnitt: Komplexe Zahlen............... Was sind komplexe Zahlen?......................3 Komplexe Zahlenebene....................... 3.4 Grundrechenarten in C.......................

Mehr

Mathematik I Herbstsemester 2014 Kapitel 7: Komplexe Zahlen

Mathematik I Herbstsemester 2014 Kapitel 7: Komplexe Zahlen Mathematik I Herbstsemester 2014 Kapitel 7: Komplexe Zahlen www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1/60

Mehr

Mathematik I für das MW und VIW. Karsten Eppler Technische Universität Dresden Institut für Numerische Mathematik

Mathematik I für das MW und VIW. Karsten Eppler Technische Universität Dresden Institut für Numerische Mathematik Mathematik I für das MW und VIW Karsten Eppler Technische Universität Dresden Institut für Numerische Mathematik karsten.eppler@tu-dresden.de http://www.math.tu-dresden.de/ eppler Vorlesungsassistent:

Mehr

1 Vektoren, Vektorräume, Abstände: 2D

1 Vektoren, Vektorräume, Abstände: 2D Vektoren, Vektorräume, Astände: D Definition: Die Menge aller (geordneten Paare reeller Zahlen (oder allgemeiner: Elemente eines elieigen Körpers, als Spalten geschrieen, ezeichnen wir als Vektoren: R

Mehr

4 Erweiterungen der natürlichen Zahlen

4 Erweiterungen der natürlichen Zahlen 4 Erweiterungen der natürlichen Zahlen 1. Ganze Zahlen Die arithmetischen Operationen der Addition und Multiplikation sind in den natürlichen Zahlen nur eingeschränkt umkehrbar. Will man zu jedem n ein

Mehr

erfanden zu den reellen Zahlen eine neue Zahl

erfanden zu den reellen Zahlen eine neue Zahl Vorlesung 9 Komplexe Zahlen Die Gleichung x 2 = 1 ist in R nicht lösbar, weil es keine Zahl gibt, deren Quadrat eine negative Zahl ist. Die Mathematiker erfanden zu den reellen Zahlen eine neue Zahl i,

Mehr

viele weitere Anwendungen wie zum Beispiel Schwingungsvorgänge. 4.1 Die algebraische Struktur der komplexen Zahlen

viele weitere Anwendungen wie zum Beispiel Schwingungsvorgänge. 4.1 Die algebraische Struktur der komplexen Zahlen 4 Komplexe Zahlen In diesem Kapitel wollen wir uns erneut mit dem R 2 beschäftigen, diesmal aber mit einer anderen algebraischen Struktur. Dies erlaubt uns weitere Anwendungen in der Geometrie die Lösung

Mehr

Komplexe Zahlen und Geometrie

Komplexe Zahlen und Geometrie Komplexe Zahlen und Geometrie Dr. Axel Schüler, Univ. Leipzig März 1998 Zusammenfassung Ziel dieses Beitrages ist es, die komplexen Zahlen bei einfachen geometrischen Aufgaben einzusetzen. Besonderes Augenmerk

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

Zahlen und Gleichungen

Zahlen und Gleichungen Kapitel 2 Zahlen und Gleichungen 21 Reelle Zahlen Die Menge R der reellen Zahlen setzt sich zusammen aus den rationalen und den irrationalen Zahlen Die Mengen der natürlichen Zahlen N, der ganzen Zahlen

Mehr

3. Zahlbereiche und algebraische Strukturen

3. Zahlbereiche und algebraische Strukturen technische universität dortmund Dortmund, im November 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung von Kapitel 3 3. Zahlbereiche

Mehr

beschrieben. Von unten betrachtet, werden die ganzen Zahlen als Erweiterung der natürlichen Zahlen eingeführt, um uneingeschränkt die Gleichung

beschrieben. Von unten betrachtet, werden die ganzen Zahlen als Erweiterung der natürlichen Zahlen eingeführt, um uneingeschränkt die Gleichung 4 Komplexe Zahlen Wir haben bisher das Zahlengebäude N Z Q R beschrieben. Von unten betrachtet, werden die ganzen Zahlen als Erweiterung der natürlichen Zahlen eingeführt, um uneingeschränkt die Gleichung

Mehr

7. KOMPLEXE ZAHLEN. und die. KOMPLEXE e-funktion

7. KOMPLEXE ZAHLEN. und die. KOMPLEXE e-funktion 7. KOMPLEXE ZAHLEN und die KOMPLEXE e-funktion 1 Wir gehen aus von der Ebene, versehen mit einem Koordinatensystem und x, y-koordinaten. Dann entsprechen Punkte z in der Ebene Zahlenpaaren: z = (x, y)

Mehr

beschrieben. Von unten betrachtet, werden die ganzen Zahlen als Erweiterung der natürlichen Zahlen eingeführt, um uneingeschränkt die Gleichung

beschrieben. Von unten betrachtet, werden die ganzen Zahlen als Erweiterung der natürlichen Zahlen eingeführt, um uneingeschränkt die Gleichung 4 Komplexe Zahlen Wir haben bisher das Zahlengebäude N Z Q R beschrieben. Von unten betrachtet, werden die ganzen Zahlen als Erweiterung der natürlichen Zahlen eingeführt, um uneingeschränkt die Gleichung

Mehr

6.1 Komplexe Funktionen

6.1 Komplexe Funktionen 118 6 Funktionentheorie 6.1 Komplexe Funktionen Wir kennen die komplexen Zahlen als Erweiterung des Körpers der reellen Zahlen. Man postuliert die Existenz einer imaginären Größe i mit der Eigenschaft

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Trigonometrische Funktionen Jens Wirth, Freiberg wirth@mathtu-freibergde 1 Bezeichnungen, komplexe Zahlen Im folgenden bezeichnet die Menge der komplexen Zahlen z = x+ i y mit x, y, i = 1 Die Zahl x =

Mehr

Komplexe Zahlen und konforme Abbildungen

Komplexe Zahlen und konforme Abbildungen Kapitel 1 Komplexe Zahlen und konforme Abbildungen 1.0 Geometrie der komplexen Zahlen Die Menge C der komplexen Zahlen, lässt sich mithilfe der bijektiven Abbildung C := {x + iy : x,y R}, C z = x + iy

Mehr

Definition von R n. Parallelverschiebungen in R n. Definition 8.1 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R... R (n-mal), d.h.

Definition von R n. Parallelverschiebungen in R n. Definition 8.1 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R... R (n-mal), d.h. 8 Elemente der linearen Algebra 81 Der euklidische Raum R n Definition von R n Definition 81 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R R (n-mal), dh R n = {(x 1, x 2,, x n ) : x

Mehr

10. Die komplexen Zahlen.

10. Die komplexen Zahlen. 10-1 Funktionen 10 Die kompleen Zahlen Dies ist ein Thema, das unberechtigter Weise als schwer gilt! Die Konstruktion der kompleen Zahlen ist viel einfacher zu verstehen ist, als einige der bisherigen

Mehr

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen Komplexe Zahlen Lösungshinweise. Sei z = + i und z = i. Berechnen Sie z + z, z z, z z, z z, z /z, z + z, z z, z z, z

Mehr

KOMPLEXE ZAHLEN UND FUNKTIONEN

KOMPLEXE ZAHLEN UND FUNKTIONEN Übungen zu Theoretische Physik L2 KOMPLEXE ZAHLEN UND FUNKTIONEN E I N R E F E R A T M I T A N N E T T E Z L A T A R I T S U N D F L O R I A N G R A B N E R. 2 1. 1 0. 2 0 1 3 INHALT Geschichte Definition

Mehr

Serie 3 - Komplexe Zahlen II

Serie 3 - Komplexe Zahlen II Analysis D-BAUG Dr. Meike Akveld HS 2015 Serie - Komplexe Zahlen II 1. Wir betrachten die komplexe Gleichung z 6 = 4 4i. a) Bestimmen Sie alle en z C dieser Gleichung. b) Zeichnen Sie die en in die komplexe

Mehr

BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education. Höhere Mathematik II. Übungen. Komplexe Zahlen. i e π + 1=

BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education. Höhere Mathematik II. Übungen. Komplexe Zahlen. i e π + 1= BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education Höhere Mathematik II Übungen Komplexe Zahlen i e π + 0 8 R. Mohr FK Blatt Komplexe Zahlen I WS 004/ Aufgabe : Gegeben sind die komplexen

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems

Mehr

3.2. Polarkoordinaten

3.2. Polarkoordinaten 3.2. Polarkoordinaten Die geometrische Bedeutung der komplexen Multiplikation versteht man besser durch die Einführung von Polarkoordinaten. Der Betrag einer komplexen Zahl z x + i y ist r: z x 2 + y 2.

Mehr

Inhaltsübersicht. Definition und erste Eigenschaften komplexer Zahlen

Inhaltsübersicht. Definition und erste Eigenschaften komplexer Zahlen Inhaltsübersicht Kapitel 4: Die Macht des Imaginären: Komplexe Zahlen Definition und erste Eigenschaften komplexer Zahlen Die Polardarstellung komplexer Zahlen Polynome im Komplexen Exponentialfunktion

Mehr

Mathematische Strukturen

Mathematische Strukturen Mathematische Strukturen Lineare Algebra I Kapitel 3 18. April 2012 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de

Mehr

Mathematik I. Vorlesung 9. Die eulersche Zahl e

Mathematik I. Vorlesung 9. Die eulersche Zahl e Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 9 Die eulersche Zahl e Wir besprechen eine Beschreibung der sogenannten eulerschen Zahl e. Lemma 9.1. Die Intervalle I n = [a n,b n ],

Mehr

Kapitel II. Algebraische Grundbegriffe

Kapitel II. Algebraische Grundbegriffe Kapitel II. Algebraische Grundbegriffe 1 Ringe und Körper Für das Rechnen in Z haben wir in Kap. I, 1 Regeln aufgestellt, welche auch in Q und R gelten. Damit werden Z, Q und R zu Ringen im folgenden Sinn:

Mehr

Multiplikation und Division in Polarform

Multiplikation und Division in Polarform Multiplikation und Division in Polarform 1-E1 1-E Multiplikation und Division in Polarform: Mathematisches Rüstzeug n m b b = b n+m bn bm = bn m ( b n )m = b n m Additionstheoreme: cos 1 = cos 1 cos sin

Mehr

Technische Universität München

Technische Universität München Technische Universität München Michael Schreier Ferienkurs Lineare Algebra für Physiker Vorlesung Montag WS 2008/09 1 komplexe Zahlen Viele Probleme in der Mathematik oder Physik lassen sich nicht oder

Mehr

12 Übungen zu Gauß-Algorithmus

12 Übungen zu Gauß-Algorithmus Aufgaben zum Vorkurs B S. 2 Übungen zu Gauß-Algorithmus 2x x 2 = 7x +, 5x 2 = 7 Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: 2x x 2 = x +2x 2 = 2 2x x 2 = 7x +, 5x 2 =, 5 x 2x 2 = x +x 2 = 5 2x +x 2 = 4

Mehr

Lineare Algebra. Theo de Jong. Higher Education. a part of Pearson plc worldwide

Lineare Algebra. Theo de Jong. Higher Education. a part of Pearson plc worldwide Theo de Jong Lineare Algebra Higher Education München Harlow Amsterdam Madrid Boston San Francisco Don Mills Mexico City Sydney a part of Pearson plc worldwide 3 Körper LERNZIELE Der Begriff Körper Komplexe

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 213 Prof. Dr. Erich Walter Farkas Kapitel 7: Lineare Algebra Kapitel 7.5: Eigenwerte und Eigenvektoren einer quadratischen Matrix Prof. Dr. Erich Walter Farkas Mathematik

Mehr

35 Matrixschreibweise für lineare Abbildungen

35 Matrixschreibweise für lineare Abbildungen 35 Matrixschreibweise für lineare Abbildungen 35 Motivation Wir haben gesehen, dass lineare Abbildungen sich durch ihre Wirkung auf die Basisvektoren ausdrücken lassen Mithilfe von Matrizen können wir

Mehr

2 Die Algebra der Matrizen

2 Die Algebra der Matrizen Die Algebra der Matrizen Ein Hauptziel der Vorlesung zur Linearen Algebra besteht darin, Aussagen über die Lösungsmenge linearer Gleichungssysteme zu machen Etwa ob das Gleichungssystem x y + z 1 x + y

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 Komplexe Zahlen Das Auffinden aller Nullstellen von algebraischen Gleichungen ist ein Grundproblem, das in der Physik

Mehr

Komplexe Zahlen. Lernziele dieses Abschnitts sind:

Komplexe Zahlen. Lernziele dieses Abschnitts sind: KAPITEL 1 Komplexe Zahlen Lernziele dieses Abschnitts sind: (1) Analytische und geometrische Darstellung komplexer Zahlen, () Grundrechenarten fur komplexe Zahlen, (3) Konjugation und Betrag komplexer

Mehr

Der Fundamentalsatz der Algebra. 1 Motivation

Der Fundamentalsatz der Algebra. 1 Motivation Vortrag im Rahmen des Proseminars zur Analysis, 24. April 2006 Micha Bittner Motivation Den ersten des Fundamentalsatzes der Algebra erbrachte C.F. Gauss im Jahr 799 im Rahmen seiner Dissertation. Heute

Mehr

Einführung in die Komplexen Zahlen (I): Grundlagen

Einführung in die Komplexen Zahlen (I): Grundlagen Einführung in die Komplexen Zahlen (I): Grundlagen von U. Kirchgraber und D. Stoffer, Departement Mathematik, ETH-Zürich Version 1/2006 Zusammenfassung Im Laufe der Entwicklung musste der Vorrat an Zahlen

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Vorlesung Mathematik 1 für Ingenieure (A)

Vorlesung Mathematik 1 für Ingenieure (A) 1 Vorlesung Mathematik 1 für Ingenieure (A) Wintersemester 2016/17 Kapitel 1: Zahlen Prof. Dr. Gerald Warnecke Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg http://fma2.math.uni-magdeburg.de:8001

Mehr

Zusammenfassung Zahlbereiche

Zusammenfassung Zahlbereiche Zusammenfassung Zahlbereiche Ekkehard Batzies 7. Mai 2008 1 Die rationalen Zahlen 1.1 Zahlbereiche in der Schule Als Zahlbereiche kennt man aus der Schule die natürlichen Zahlen, N = {0, 1, 2, 3,...},

Mehr

Brückenkurs Mathematik. Mittwoch Freitag

Brückenkurs Mathematik. Mittwoch Freitag Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs

Mehr

Kapitel II. Vektoren und Matrizen

Kapitel II. Vektoren und Matrizen Kapitel II. Vektoren und Matrizen Vektorräume A Körper Auf der Menge R der reellen Zahlen hat man zwei Verknüpfungen: Addition: R R R(a, b) a + b Multiplikation: R R R(a, b) a b (Der Malpunkt wird oft

Mehr

17 Grundrechenarten für komplexe Zahlen

17 Grundrechenarten für komplexe Zahlen 7 Grundrechenarten für komplexe Zahlen Jörn Loviscach Versionsstand: 2. September 203, 5:58 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3l7h.de/videos.html

Mehr

Menge der irrationalen Zahlen C = {z z = a + bi; a, b R, i 2 = 1} Menge der komplexen Zahlen R C Somit ergibt sich: N N Z Q R C

Menge der irrationalen Zahlen C = {z z = a + bi; a, b R, i 2 = 1} Menge der komplexen Zahlen R C Somit ergibt sich: N N Z Q R C 1 Komplexe Zahlen 1.1 Übersicht N = {1, 2, 3,... } Menge der natürlichen Zahlen ohne 0 N = {0, 1, 2, 3,... } Menge der natürlichen Zahlen mit 0 N N Z = {..., 2, 1, 0, 1, 2,... } Menge der ganzen Zahlen

Mehr

5.A Die Konstruktion der komplexen Zahlen

5.A Die Konstruktion der komplexen Zahlen 5. Komplexe Zahlen 49 5. Komplexe Zahlen Nachdem wir die reellen Zahlen genau charakterisiert haben, wollen wir nun noch einen weiteren Körper einführen, der in der gesamten Mathematik sehr wichtig ist:

Mehr

Ergänzungen in Mathematik Studierende Nanowissenschaften

Ergänzungen in Mathematik Studierende Nanowissenschaften Hans Walser Ergänzungen in Mathematik Studierende Nanowissenschaften Komplexe Zahlen Hans Walser: Komplexe Zahlen ii Inhalt 1 Die imaginäre Einheit... 1 2 Rechenregeln... 1 3 Quadratische Gleichungen...

Mehr

42.3 Der Fundamentalsatz der Algebra

42.3 Der Fundamentalsatz der Algebra 42 Der Fundamentalsatz der Algebra 42.2 Die Argandsche Ungleichung 42.3 Der Fundamentalsatz der Algebra 42.4 Faktorisierung komplexer olynome 42.5 Faktorisierung reeller olynome 42.6 artialbruchzerlegung

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

PROSEMINAR LINEARE ALGEBRA SS10

PROSEMINAR LINEARE ALGEBRA SS10 PROSEMINAR LINEARE ALGEBRA SS10 Körper und Konstruktion mit Zirkel und Lineal Neslihan Yikici Mathematisches Institut der Heinrich-Heine Universität Düsseldorf Juni 2010 Betreuung: Prof. Dr. Oleg Bogopolski

Mehr

SBP Mathe Aufbaukurs 3. Imaginäre und komplexe Zahlen. Komplexe Zahlen in der Gaußschen Zahlenebene. Darstellungen komplexer Zahlen.

SBP Mathe Aufbaukurs 3. Imaginäre und komplexe Zahlen. Komplexe Zahlen in der Gaußschen Zahlenebene. Darstellungen komplexer Zahlen. SBP Mathe Aufbaukurs 3 # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das Lernen mit Lernkarten

Mehr

SBP Mathe Aufbaukurs 3 # 0 by Clifford Wolf. SBP Mathe Aufbaukurs 3

SBP Mathe Aufbaukurs 3 # 0 by Clifford Wolf. SBP Mathe Aufbaukurs 3 SBP Mathe Aufbaukurs 3 # 0 by Clifford Wolf SBP Mathe Aufbaukurs 3 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 22 Algebraische Körpererweiterung Satz 1. Sei K L eine Körpererweiterung und sei f L ein Element. Dann sind folgende Aussagen

Mehr

8 Die Riemannsche Zahlenkugel

8 Die Riemannsche Zahlenkugel 8 Die Riemannsche Zahlenkugel Wir untersuchen zunächst Geraden- und Kreisgleichungen in der komplexen Ebene C = R 2. Geradengleichungen Die Parameterdarstellung einer Geraden durch zwei Punkte z 1 z 2

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Eigenvektoren

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr