29 Komplexe Zahlen und Polynome

Größe: px
Ab Seite anzeigen:

Download "29 Komplexe Zahlen und Polynome"

Transkript

1 29 Komplexe Zahlen und Polynome 30 Komplexe Zahlen und Polynome 147 Lernziele: Konzepte: Komplexe Zahlen Resultate: Fundamentalsatz der Algebra Methoden: Polarkoordinaten Kompetenzen: Lösung kubischer Gleichungen, Faktorisierung von Polynomen, Partialbruchzerlegung rationaler Funktionen 29.1 Komplexe Zahlen. a) Gewisse quadratische Gleichungen wie x = 0 besitzen bekanntlich keine reelle Lösung; trotzdem wurden spätestens seit dem 16. Jahrhundert solche Lösungen als zunächst mysteriöse imaginäre und komplexe Zahlen gefunden. Diese komplexen Zahlen können als Punkte einer Ebene veranschaulicht werden, welche die reelle Zahlengerade als x-achse enthält; die präzise Fassung dieser Vorstellung wurde von C.F. Gauß und W.R. Hamilton im ersten Drittel des 19. Jahrhunderts entwickelt. b) Man definiert auf C := R 2 eine Addition durch (x,y)+(u,v) := (x+u, y +v) (1) wie in (28.2) und zusätzlich eine Multiplikation durch (x,y) (u,v) := (xu yv, xv +yu); (2) für die imaginäre Einheit i := (0,1) gilt dann i 2 = ( 1,0). Für (x,y) C erhält man daraus (x,y) = (x,0) + (0,y) = (x,0) + (0,1)(y,0) = x + iy mit der Identifizierung R x (x,0) C. Es ist z = x+iy, x,y R, (3) die Standardbeschreibung komplexer Zahlen z C. Dabei heißen Rez := x und Imz := y (4) Realteil und Imaginärteil von z. Durch z := x iy = Rez iimz (5) wird die zu z komplex konjugierte Zahl definiert. Damit gilt stets z + z = 2Rez, z z = 2iImz und z z = (x+iy)(x iy) = x 2 +y 2 R. c) Unter der oben definierten Addition und Multiplikation ist C ein Körper, d. h. es gelten die Axiome K aus Abschnitt 1. Dies wird einfach durch Nachrechnen bewiesen; für 0 z = x+iy etwa gilt (x+iy) x iy x 2 +y 2 = 1. Die Nenner komplexer Brüche z w

2 148 V. Topologische Grundlagen der Analysis können durch Erweitern mit w stets reell gemacht werden: z w = z w w w. d) Rechnungen in R, die nur die Körperaxiome K benutzen, bleiben auch in C gültig, so etwa die geometrische Summenformel (2.5), der binomische Satz 3.2 oder der Euklidische Algorithmus 11.5 für Polynome. e) Auf C existiert keine Ordnung, die Axiom O genügt. Aus diesem würde nämlich 1 = 1 2 > 0 und auch 1 = i 2 > 0 folgen. f) Durch x (x, 0) wird R mit einem Unterkörper von C identifiziert. g) Die komplexe Konjugation z z ist eine Bijektion von C auf C; stets gilt z +w = z + w und z w = z w. Man hat z = z z R. h) Der Abstand einer komplexen Zahl z = x + iy C zum Nullpunkt (vgl. 28.2) heißt Betrag oder Absolutbetrag von z. Aufgrund des Satzes von Pythagoras ist dieser gegeben durch z := x 2 +y 2 = z z. (6) Offenbar gilt stets z = z. Weiter gelten die in Feststellung?? formulierten Eigenschaften des Absolutbetrages auch im Komplexen: 29.2 Satz. Für z,w C gelten: z 0; z = 0 z = 0, (7) zw = z w, (8) z +w z + w (Dreiecks-Ungleichung). (9) Beweise zu diesem Abschnitt findet man in [A1], Abschnitte 27 und 28. Aus (9) folgt für die Abstände oder Distanzen von Punkten z 1,z 2,z 3 C sofort z 1 z 2 z 1 z 3 + z 3 z 2, (10) wodurch die Bezeichnung Dreiecks-Ungleichung auch für (9) motiviert wird Polarkoordinaten. a) Komplexe Zahlen können gemäß (3) durch ihre rechtwinkligen oder kartesischen Koordinaten x, y, aber auch durch Polarkoordinaten r, ϕ beschrieben werden: b) Für z C setzt man zunächst r := z. Für z 0 liegt dann z auf der Kreislinie r S = {ζ C ζ = 1}, und aufgrund der Konstruktion von Sinus und Kosinus am Anfang von Abschnitt 24 gibt es Zahlen ϕ R mit z = r(cosϕ+isinϕ). (11) c)gilt(11),sogibtϕ den(imbogenmaßgemessenen) Winkelan,dendieStrecke [0,z] mit der positiven reellen Achse bildet. Jede solche Zahl ϕ R heißt ein Argument der komplexen Zahl z C\{0}. Ist ϕ 0 ein Argument von z, so ist argz := {ϕ = ϕ 0 +2kπ k Z} (12)

3 30 Komplexe Zahlen und Polynome 149 die Menge aller Argumente von z. Es ist also argz eine Äquivalenzklasse reeller Zahlen unter der Äquivalenzrelation ϕ 1 ϕ 2 ϕ 1 ϕ 2 2πZ. Ähnlich wie bei Stammfunktionen (vgl. Bemerkung 17) schreibt man aber oft ϕ = argz statt ϕ argz. (13) Mit Argz wird der Hauptwert des Arguments von z C\{0}, d.h. das eindeutig bestimmte Argument im Intervall ( π, π] bezeichnet. Die Abbildung z Arg z kann als Schraubenfläche über der gelochten Ebene C\{0} veranschaulicht werden. d) Zur Berechnung von Argz = Arg(x+iy) kann man mehrere Fälle unterscheiden (vgl. [A1], 27.5b). Mit { 1, y 0 signy := (14) 1, y < 0 hat man die Formel Arg(x+iy) = signy arccos x x 2 +y 2. (15) e) In reeller Schreibweise ist dann mit X = R 2 \{(0,0)} und U := (0, ) ( π,π] Ψ : U X, Ψ(r,ϕ) := (rcosϕ, rsinϕ), (16) die Transformation auf Polarkoordinaten. Es wird nun zur Abkürzung die Notation (vgl. Satz 37.5) E(ϕ) := cosϕ+isinϕ für ϕ R (17) eingeführt. Aus den Funktionalgleichungen von Sinus und Kosinus ergibt sich: 29.4 Satz. Für komplexe Zahlen z 1 = r 1 E(ϕ 1 ) und z 2 = r 2 E(ϕ 2 ) gilt z 1 z 2 = r 1 r 2 E(ϕ 1 +ϕ 2 ). (18) 29.5 Beispiele und Bemerkungen. a) Bei der Multiplikation komplexer Zahlen werden also die Beträge dieser Zahlen multipliziert und ihre Argumente addiert. Insbesondere liefert die Multiplikation mit E(ϕ) eine Drehung der Ebene um den Winkel ϕ. b) Durch Ausrechnen des Produkts (cosϕ + isinϕ)(u + iv) erhält man die reelle Schreibweise D ϕ (u,v) = (cosϕ u sinϕ v, sinϕ u+cosϕ v). (19) Für ϕ = π 4 gilt sinϕ = cosϕ = 1 2 2; die Drehung Dϕ führt beispielsweise das Polynom Q(x,y) = xy über in (Q D ϕ )(u,v) = 1 2 (u2 v 2 ). c) Aus Satz 29.4 ergibt sich die Formel arg(z 1 z 2 ) = argz 1 +argz 2 := {ϕ = ϕ 1 +ϕ 2 ϕ 1 argz 1, ϕ 2 argz 2 }. Insbesondere gilt stets Argz 1 + Argz 2 arg(z 1 z 2 ); diese Summe muß aber nicht = Arg(z 1 z 2 ) sein. So gilt etwa Argi+Arg( 1) = π 2 +π = 3π 2 = Arg( i)+2π.

4 150 V. Topologische Grundlagen der Analysis Aus Satz 29.4 ergibt sich die Formel von de Moivre: 29.6 Folgerung. Für z = re(ϕ) und n N gelten z n = r n E(nϕ), 1 = 1 E( ϕ). (20) z r 29.7 Satz. Für n N und w C\{0} gibt es genau n Lösungen der Gleichung z n = w Einheitswurzeln. Die Gleichung z n = 1 hat die n verschiedenen Lösungen z n,k = ǫ k n, k = 0,...,n 1, mit ǫ n := E( 2π ). Diese n-ten Einheitswurzeln bilden die n Eckpunkte eines regelmäßigen n-ecks mit Umkreis S = {z C z = 1} Polynome mit komplexen Koeffizienten sind gegeben durch P(z) := m a k z k C[z], a k C; (21) k=0 sie definieren stetige (vgl. Abschnitt 31) Funktionen P : C C. Wie in Abschnitt 11 ist im Fall a m 0 der Grad von P gegeben durch m = degp. Einige elementare Überlegungen unter Verwendung von Satz 29.7 und Folgerung genügen bereits zum Beweis des folgenden wichtigen Resultats (vgl. [A1], 27.16). Ein sehr kurzer Beweis wird in der Analysis III behandelt Theorem (Fundamentalsatz der Algebra). Für jedes Polynom P(z) = m a k z k vom Grad m 1 gibt es z 0 C mit P(z 0 ) = 0. k=0 Wie in Satz 11.6 (Abspalten von Nullstellen) ergibt sich daraus: Folgerung. Für ein Polynom P C[z] vom Grad m gilt P(z) = α r (z z j ) m j, α, z j C, j=1 r m j = m. (22) j= Beispiele und Bemerkungen. a) Die in (22) auftretenden Zahlen m j heißen Vielfachheiten der Nullstellen z j ; dabei wird z j z k für j k angenommen. Im Fall m j = 1 heißt z j einfache Nullstelle von P. b) Bekanntlich lassen sich quadratische Gleichungen z 2 + 2pz + q = 0 explizit lösen durch die Formel (man beachte Satz 29.7) z = p± p 2 q. (23) c) Kubische Gleichungen z 3 +bz 2 +cz+d = 0 werden durch die Substitution z = w b 3 auf die Form w 3 + pw + q = 0 reduziert. Setzt man w = v p, so erhält man für 3v v 3 die quadratische Gleichung 27(v 3 ) qv 3 p 3 = 0 und somit wieder explizite Lösungen.

5 30 Komplexe Zahlen und Polynome 151 d) Es wird die von R. Bombelli im 16. Jahrhundert diskutierte Gleichung z 3 15z 4 = 0 (24) gelöst. Mit z = v + 5 v erfüllt dann also u := v 3 die quadratische Gleichung 27u u+15 3 = 0 oder u 2 4u+5 3 = 0. Es folgt v 3 = u ± = 2± = 2±i 121 = 2±11i. Es ist u ± = 125, also v = 5 für jede Lösung von v 3 = u ±. Man hat Argu + = arctan 11 2, für eine Lösung v +,0 von v 3 = u + also Argv +,0 = 1 3 arctan 11 2 = arctan 1 2. Somit gilt v +,0 = 2+i; in der Tat läßt sich (2+i) 3 = 2+11i unmittelbar nachrechnen. Für die entsprechende Lösung von (24) ergibt sich z +,0 = 2+i+ 5 2+i = 2+i+ 5(2 i) 5 = 4, was man durch Einsetzen sofort bestätigt. Ähnlich findet man fünf weitere Lösungen v +,1, v +,2,v,0,v,1 und v,2 von v 3 = u ± ; aus den sechs Lösungen dieser Gleichung ergeben sich aber nur die drei verschiedenen Lösungen 4 und 2± 3 von (24). e) Natürlich kann man in d) auch die Lösung 4 raten und dann mit dem Euklidischen Algorithmus den Faktor z 4 abspalten. Man erhält dann z 3 15z 4 = (z 4)(z 2 +4z +1) und hat nur noch eine quadratische Gleichung zu lösen. f) Ähnlich wie für kubische Gleichungen gibt es auch explizite Lösungsformeln für Gleichungen 4. Ordnung, was aber ab der Ordnung 5 nach einem berühmten Resultat von N.H. Abel (1826) nicht mehr der Fall ist Rationale Funktionen. a) Quotienten R = P von Polynomen werden als Q rationale Funktionen bezeichnet, Notation: R C(z). Nach (29.22) lassen sich Zähler und Nenner in Produkte von Linearfaktoren zerlegen; durch Kürzen gemeinsamer Linearfaktoren läßt sich daher erreichen, daß für alle w C stets P(w) 0 oder Q(w) 0 gilt. b) Eine Zahl w C heißt Pol von R = P C(z), falls Q(w) = 0 und P(w) 0 gilt. Q Die Vielfachheit m von w als Nullstelle von Q heißt Polordnung von R in w. Im Fall m = 1 heißt w einfacher Pol von R Lemma. Es seien P, Q C[z] mit degp < degq+k für ein k N, und es gelte Q(a) 0 für ein a C. Zu R(z) := P(z) (z a) k Q(z) C(z) (25)

6 152 V. Topologische Grundlagen der Analysis gibt es dann P 1 C[z] mit degp 1 < max{degp,degq} und c C mit R(z) = c (z a) + P 1 (z) k (z a) k 1 Q(z). (26) Durch (26) sind P 1 und c eindeutig bestimmt Theorem (Partialbruchzerlegung). Es sei R = P C(z) eine rationale Q Funktion, und Q(z) = α r (z z j ) m j sei die Zerlegung von Q in Linearfaktoren j=1 gemäß (29.22). Dann gibt es T C[z] und c j,k C mit R(z) = T(z) + r m j j=1 k=1 c j,k (z z j ) k. (27) Durch (27) sind T C[z] und die c j,k C eindeutig bestimmt Beispiel. Zur praktischen Durchführung einer Partialbruchzerlegung setzt man (27) mit unbestimmten Koeffizienten an und berechnet diese anschließend. Beispiel: R(z) = z2 +1 z 3 2z 2 +z Faktorisierung und Partialbruchzerlegung im Reellen. a) Hat ein Polynom Q R[z] reelle Koeffizienten, so folgt aus Q(a) = 0 auch Q(ā) = Q(a) = 0. Mit (x a) k enthält dasproduktin(22)auchdenfaktor(x ā) k, insgesamt mita = b+id also den reellen Faktor ((x b) 2 +d 2 ) k. Somit haben also irreduzible Polynome über R den Grad 2; jedes Polynom Q R[x] ist ein endliches Produkt von Konstanten, Linearfaktoren (x a), a R, und von quadratischen Faktoren (x 2 + 2px+q) mit p,q R und p 2 < q. c (x a) k b) In der Partialbruchzerlegung (27) von R R(z) tritt mit Term c auf. Für a = b+id erhält man dann die reellen Terme (x ā) k c (x a) + c = 2Re(c(x b+id)k ). k (x ā) k ((x b) 2 +d 2 ) k stets auch der Mittels des Euklidischen Algorithmus kann man diese in Summen von Termen der αx+β Form, l k, zerlegen. ((x b) 2 +d 2 ) l b) Damit sind die bisher unbewiesenen Aussagen aus 21 und 21 auf den Fundamentalsatz der Algebra zurückgeführt.

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ): Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe

Mehr

1. VORLESUNG,

1. VORLESUNG, 1. VORLESUNG, 18.04.2017 1 1. KOMPLEXE ZAHLEN UND FUNKTIONEN 1.1. Der Körper der komplexen Zahlen. Die komplexe Ebene und die Riemannsche Zahlenkugel bilden den Grundbereich der Funktionentheorie; dort

Mehr

erfanden zu den reellen Zahlen eine neue Zahl

erfanden zu den reellen Zahlen eine neue Zahl Vorlesung 9 Komplexe Zahlen Die Gleichung x 2 = 1 ist in R nicht lösbar, weil es keine Zahl gibt, deren Quadrat eine negative Zahl ist. Die Mathematiker erfanden zu den reellen Zahlen eine neue Zahl i,

Mehr

2.9 Die komplexen Zahlen

2.9 Die komplexen Zahlen LinAlg II Version 1 3. April 2006 c Rudolf Scharlau 121 2.9 Die komplexen Zahlen Die komplexen Zahlen sind unverzichtbar für nahezu jede Art von höherer Mathematik. Systematisch gehören sie zum einen in

Mehr

Analysis 1, Woche 3. Komplexe Zahlen I. 3.1 Etwas Imaginäres

Analysis 1, Woche 3. Komplexe Zahlen I. 3.1 Etwas Imaginäres Analysis, Woche 3 Komplexe Zahlen I A 3. Etwas Imaginäres Zusätzlich zu den reellen Zahlen führen wir das Symbol i ein und wir vereinbaren: i. Wir möchten die reellen Zahlen erweitern mit i. Das heißt,

Mehr

3 Der Körper der komplexen Zahlen

3 Der Körper der komplexen Zahlen 3 Der Körper der kompleen Zahlen Nicht jede quadratische Gleichung hat eine reelle Lösung + p + q = (p, q R) Beispiel: Für alle R ist und daher + 1 Abhilfe: Man erweitert R zu einem größerem Körper C,

Mehr

A Die Menge C der komplexen Zahlen

A Die Menge C der komplexen Zahlen A Die Menge C der komplexen Zahlen (Vgl. auch Abschnitt C) A.1 Definition Wir erweitern R um eine Zahl i / R (genannt imaginäre Einheit) mit der Eigenschaft i 2 i i = 1. (653) Unter einer komplexen Zahl

Mehr

beschrieben. Von unten betrachtet, werden die ganzen Zahlen als Erweiterung der natürlichen Zahlen eingeführt, um uneingeschränkt die Gleichung

beschrieben. Von unten betrachtet, werden die ganzen Zahlen als Erweiterung der natürlichen Zahlen eingeführt, um uneingeschränkt die Gleichung 4 Komplexe Zahlen Wir haben bisher das Zahlengebäude N Z Q R beschrieben. Von unten betrachtet, werden die ganzen Zahlen als Erweiterung der natürlichen Zahlen eingeführt, um uneingeschränkt die Gleichung

Mehr

02. Komplexe Zahlen. a = Re z ist der Realteil von z, b = Im z der Imaginärteil von z.

02. Komplexe Zahlen. a = Re z ist der Realteil von z, b = Im z der Imaginärteil von z. 0. Komplexe Zahlen Da für alle x R gilt dass x 0, hat die Gleichung x +1 = 0 offenbar keine reellen Lösungen. Rein formal würden wir x = ± 1 erhalten, aber dies sind keine reellen Zahlen. Um das Problem

Mehr

Mathematischer Vorkurs NAT-ING1

Mathematischer Vorkurs NAT-ING1 Mathematischer Vorkurs NAT-ING1 (02.09. 20.09.2013) Dr. Robert Strehl WS 2013-2014 Mathematischer Vorkurs TU Dortmund Seite 1 / 40 Kapitel 12 Komplexe Zahlen Kapitel 12 Komplexe Zahlen Mathematischer Vorkurs

Mehr

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c)

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c) Komplexe Zahlen Wir betrachten Zahlenpaare (a, b, (c, d R und definieren eine Addition und eine Multiplikation wie folgt: (a, b + (c, d := (a + c, b + d (a, b (c, d := (a c b d, a d + b c Satz: R mit dieser

Mehr

LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN

LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN Fakultät Mathematik Institut für Numerische Mathematik LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN 6. Komplexe Zahlen Prof. Dr. Gunar Matthies Wintersemester 2017/18 G. Matthies Lineare

Mehr

KAPITEL 1. Komplexe Zahlen

KAPITEL 1. Komplexe Zahlen KAPITEL Komplexe Zahlen. Lernziele im Abschnitt: Komplexe Zahlen............... Was sind komplexe Zahlen?......................3 Komplexe Zahlenebene....................... 3.4 Grundrechenarten in C.......................

Mehr

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen Komplexe Zahlen Allgemeines Definition Eine komplexe Zahl z x + y i besteht aus einem Realteil Re(z) x und einem Imaginärteil Im(z) y. Der Imaginärteil wird mit der Imaginären-Einheit i multipliziert.

Mehr

beschrieben. Von unten betrachtet, werden die ganzen Zahlen als Erweiterung der natürlichen Zahlen eingeführt, um uneingeschränkt die Gleichung

beschrieben. Von unten betrachtet, werden die ganzen Zahlen als Erweiterung der natürlichen Zahlen eingeführt, um uneingeschränkt die Gleichung 4 Komplexe Zahlen Wir haben bisher das Zahlengebäude N Z Q R beschrieben. Von unten betrachtet, werden die ganzen Zahlen als Erweiterung der natürlichen Zahlen eingeführt, um uneingeschränkt die Gleichung

Mehr

4.3 Der Körper der komplexen Zahlen

4.3 Der Körper der komplexen Zahlen $Id: korper.tex,v.20 202/05/22 :02:43 hk Exp $ 4 Körper 4.3 Der Körper der komplexen Zahlen In der letzten Sitzung hatten wir begonnen die komplexen Zahlen C zu besprechen. Wie schon angekündigt beruht

Mehr

Die komplexen Zahlen

Die komplexen Zahlen Die komplexen Zahlen Wir haben gesehen, dass die Menge R der reellen Zahlen einen angeordneten Körper bildet und dass für die Menge Q der rationalen Zahlen entsprechendes gilt. In beiden Körpern sind Gleichungen

Mehr

11 Komplexe Zahlen. Themen: Der Körper der komplexen Zahlen Die Mandelbrot-Menge Der Fundamentalsatz der Algebra

11 Komplexe Zahlen. Themen: Der Körper der komplexen Zahlen Die Mandelbrot-Menge Der Fundamentalsatz der Algebra 11 Komplexe Zahlen Themen: Der Körper der komplexen Zahlen Die Mandelbrot-Menge Der Fundamentalsatz der Algebra Addition ebener Vektoren Sei Ê 2 = {(x, y) : x, y Ê}. Ê 2 können wir als Punkte in der Ebene

Mehr

Mathematischer Vorkurs NAT-ING II

Mathematischer Vorkurs NAT-ING II Mathematischer Vorkurs NAT-ING II (02.09.2013 20.09.2013) Dr. Jörg Horst WS 2013-2014 Mathematischer Vorkurs TU Dortmund Seite 1 / 252 Kapitel 15 Komplexe Zahlen Mathematischer Vorkurs TU Dortmund Seite

Mehr

10 Komplexe Zahlen. 2. Februar Komplexe Multiplikation: Für zwei Vektoren. z 1 =

10 Komplexe Zahlen. 2. Februar Komplexe Multiplikation: Für zwei Vektoren. z 1 = 2. Februar 2009 66 0 Komplexe Zahlen 0. Komplexe Multiplikation: Für zwei Vektoren [ [ a a2 z =, z 2 = in R 2 wird neben der üblichen Addition die komplexe Multiplikation [ a a z z 2 := 2 b b 2 a b 2 +

Mehr

Stefan Ruzika. 24. April 2016

Stefan Ruzika. 24. April 2016 Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 2: Körper 24. April 2016 1 / 21 Gliederung 1 1 Schulstoff 2 Körper Definition eines Körpers

Mehr

1. Definition der komplexen Zahlen Ziel: neuerliche Zahlbereichserweiterung, so dass auch Quadratwurzeln aus negativen Zahlen

1. Definition der komplexen Zahlen Ziel: neuerliche Zahlbereichserweiterung, so dass auch Quadratwurzeln aus negativen Zahlen Komplexe Zahlen Mathe I / 12.11.08 1. Definition der komplexen Zahlen Ziel: neuerliche Zahlbereichserweiterung, so dass auch Quadratwurzeln aus negativen Zahlen gezogen werden können (in nicht möglich!).

Mehr

Körper sind nullteilerfrei

Körper sind nullteilerfrei Mathematik I für Informatiker Komplexe Zahlen p. 1 Körper sind nullteilerfrei Für Elemente a, b eines Körpers gilt stets: Aus a b = 0 folgt a = 0 oder b = 0. Beweis: Aus a b = 0 und a 0 folgt also b =

Mehr

Komplexe Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Komplexe Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Komplexe Zahlen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Körper sind nullteilerfrei Für Elemente a, b eines Körpers gilt stets: Aus a b = 0 folgt a

Mehr

2. alle Grundrechenarten +,, und / uneingeschränkt durchführbar sind und die Rechenregeln für R erhalten bleiben.

2. alle Grundrechenarten +,, und / uneingeschränkt durchführbar sind und die Rechenregeln für R erhalten bleiben. 41 3 Komplexe Zahlen Für alle reellen Zahlen x gilt x 2 0. Es gibt also keine reelle Zahl, welche Lösung der Gleichung x 2 +1 = 0 ist. Allgemein hat die quadratische Gleichung ax 2 +bx+c = 0, a,b,c R nur

Mehr

2.4 Stetige Funktionen auf abgeschlossenen Intervallen

2.4 Stetige Funktionen auf abgeschlossenen Intervallen .4. Stetige Funktionen auf abgeschlossenen Intervallen 39.4 Stetige Funktionen auf abgeschlossenen Intervallen Wir stellen nun die wichtigsten Sätze über stetige Funktionen auf abgeschlossenen Intervallen

Mehr

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen Komplexe Zahlen Lösungshinweise. Sei z = + i und z = i. Berechnen Sie z + z, z z, z z, z z, z /z, z + z, z z, z z, z

Mehr

Ergänzungen in Mathematik Studierende Nanowissenschaften

Ergänzungen in Mathematik Studierende Nanowissenschaften Hans Walser Ergänzungen in Mathematik Studierende Nanowissenschaften Komplexe Zahlen Hans Walser: Komplexe Zahlen ii Inhalt 1 Die imaginäre Einheit... 1 2 Rechenregeln... 1 3 Quadratische Gleichungen...

Mehr

Serie 6: Komplexe Zahlen

Serie 6: Komplexe Zahlen D-ERDW, D-HEST, D-USYS Mathematik I HS 15 Dr. Ana Cannas Serie 6: Komplexe Zahlen Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom 26. und 28. Oktober. Es gibt zwei Darstellungsformen

Mehr

Körper der komplexen Zahlen (1)

Körper der komplexen Zahlen (1) Die komplexen Zahlen Körper der komplexen Zahlen (1) Da in angeordneten Körpern stets x 2 0 gilt, kann die Gleichung x 2 = 1 in R keine Lösung haben. Wir werden nun einen Körper konstruieren, der die reellen

Mehr

Serie 3 - Komplexe Zahlen II

Serie 3 - Komplexe Zahlen II Analysis D-BAUG Dr. Meike Akveld HS 2015 Serie - Komplexe Zahlen II 1. Wir betrachten die komplexe Gleichung z 6 = 4 4i. a) Bestimmen Sie alle en z C dieser Gleichung. b) Zeichnen Sie die en in die komplexe

Mehr

Einiges über komplexe Zahlen

Einiges über komplexe Zahlen Lineare Algebra und Analytische Geometrie I für LB WS 2001/2002 Dr. Bruno Riedmüller Einiges über komplexe Zahlen Es muss davon ausgegangen werden, dass der Leser mit komplexen Zahlen wenig oder nicht

Mehr

Faktorisierung von Polynomen

Faktorisierung von Polynomen Faktorisierung von Polynomen Ein Polynom p vom Grad n besitzt, einschließlich Vielfachheiten, genau n komplexe Nullstellen z k und lässt sich somit als Produkt der entsprechenden Linearfaktoren schreiben:

Mehr

2 Polynome und rationale Funktionen

2 Polynome und rationale Funktionen Gleichungen spielen auch in der Ingenieurmathematik eine große Rolle. Sie beschreiben zum Beispiel Bedingungen, unter denen Vorgänge ablaufen, Gleichgewichtszustände, Punktmengen. Gleichungen für eine

Mehr

4 Erweiterungen der natürlichen Zahlen

4 Erweiterungen der natürlichen Zahlen 4 Erweiterungen der natürlichen Zahlen 1. Ganze Zahlen Die arithmetischen Operationen der Addition und Multiplikation sind in den natürlichen Zahlen nur eingeschränkt umkehrbar. Will man zu jedem n ein

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 6. Komplexe Zahlen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen

Mehr

Höhere Mathematik 3 Vorlesung im Wintersemester 2006/2007 im Wissenschaftszentrum Weihenstephan. Prof. Dr. Johann Hartl

Höhere Mathematik 3 Vorlesung im Wintersemester 2006/2007 im Wissenschaftszentrum Weihenstephan. Prof. Dr. Johann Hartl Höhere Mathematik 3 Vorlesung im Wintersemester 2006/2007 im Wissenschaftszentrum Weihenstephan Prof. Dr. Johann Hartl Kapitel 1 Komplexe Zahlen Wozu brauchen wir komplexe Zahlen? 1 Für das Rechnen in

Mehr

4 Komplexe Zahlen. 4.1 Notwendigkeit und Darstellung Einführung

4 Komplexe Zahlen. 4.1 Notwendigkeit und Darstellung Einführung Komplexe Zahlen 4 4 Komplexe Zahlen Die komplexen Zahlen sind eine Erweiterung der reellen Zahlen. Die Konstruktion erfolgt durchc=r R. 4.1 Notwendigkeit und Darstellung 4.1.1 Einführung Hat die Gleichung

Mehr

KOMPLEXE ZAHLEN UND FUNKTIONEN

KOMPLEXE ZAHLEN UND FUNKTIONEN Übungen zu Theoretische Physik L2 KOMPLEXE ZAHLEN UND FUNKTIONEN E I N R E F E R A T M I T A N N E T T E Z L A T A R I T S U N D F L O R I A N G R A B N E R. 2 1. 1 0. 2 0 1 3 INHALT Geschichte Definition

Mehr

15 Integration (gebrochen) rationaler Funktionen

15 Integration (gebrochen) rationaler Funktionen 5 Integration (gebrochen) rationaler Funktionen Wir werden im folgenden sehen, daß sich die Integration gebrochen rationaler Funktionen auf die folgenden drei einfachen Fälle zurückführen läßt (für komplexe

Mehr

Komplexe Zahlen und konforme Abbildungen

Komplexe Zahlen und konforme Abbildungen Kapitel 1 Komplexe Zahlen und konforme Abbildungen 1.0 Geometrie der komplexen Zahlen Die Menge C der komplexen Zahlen, lässt sich mithilfe der bijektiven Abbildung C := {x + iy : x,y R}, C z = x + iy

Mehr

Zusatzmaterial zur Mathematik I für E-Techniker Übung 2

Zusatzmaterial zur Mathematik I für E-Techniker Übung 2 Mathematik I für E-Techniker C. Erdmann WS 011/1, Universität Rostock,. Vorlesungswoche Zusatzmaterial zur Mathematik I für E-Techniker Übung Wiederholung - Theorie: Komplexe Zahlen (a Wir definieren mit

Mehr

Fortgeschrittene Mathematik Raum und Funktionen

Fortgeschrittene Mathematik Raum und Funktionen Fortgeschrittene Mathematik Raum und Funktionen Thomas Zehrt Universität Basel WWZ Thomas Zehrt (Universität Basel WWZ) R n und Funktionen 1 / 33 Outline 1 Der n-dimensionale Raum 2 R 2 und die komplexen

Mehr

Komplexe Zahlen. Axel Schüler, Leipzig Juli 2003

Komplexe Zahlen. Axel Schüler, Leipzig Juli 2003 Komplexe Zahlen Axel Schüler, Leipzig schueler@mathematikuni-leipzigde Juli 2003 Da die komplexen Zahlen nicht mehr im Lehrplan stehen, sollen hier die Grundlagen gelegt werden Eine sehr schöne Einführung

Mehr

2D-Visualisierung komplexer Funktionen

2D-Visualisierung komplexer Funktionen 2D-Visualisierung komplexer Funktionen 1 Komplexe Zahlen Die komplexen Zahlen C stellen eine Erweiterung der reellen Zahlen dar, in der das Polynom z 2 + 1 eine Nullstelle besitzt. Man kann sie als Paare

Mehr

Funktionen einer Variablen

Funktionen einer Variablen Funktionen einer Variablen 1 Zahlen 1.1 Zahlmengen Im täglichen Gebrauch trifft man vor allem auf die natürlichen Zahlen N = {1,2,3,...}. Gelegentlich wird auch die Bezeichnung N 0 = {0,1,2,...} benutzt.

Mehr

2. Reelle und komplexe Zahlen [Sch-St ]

2. Reelle und komplexe Zahlen [Sch-St ] 7 2. Reelle und komplexe Zahlen [Sch-St 6.4-6.5] 2.1 Körperstruktur und Anordnung von R [Kö 2.1-2.2] Für (beliebige) reelle Zahlen a, b, c R gelten die folgenden (algebraischen) Körperaxiome: (K1) a +

Mehr

Analysis I. Vorlesung 21. Die Zahl π

Analysis I. Vorlesung 21. Die Zahl π Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 21 Die Zahl π Die Zahl π ist der Flächeninhalt bzw. der halbe Kreisumfang eines Kreises mit Radius 1. Um darauf eine präzise Definition

Mehr

13 Polynome und Nullstellen

13 Polynome und Nullstellen 60 II. Differentialrechnung 13 Polynome und Nullstellen Lernziele: Resultat: Zwischenwertsatz Methoden: Raten von Nullstellen, Euklidischer Algorithmus, Horner-Schema Kompetenzen: Bestimmung von Nullstellen

Mehr

Die komplexen Zahlen werden definiert als die geordneten Paare z = (x, y) reeller Zahlen x, y R, zusammen mit den Rechenoperationen

Die komplexen Zahlen werden definiert als die geordneten Paare z = (x, y) reeller Zahlen x, y R, zusammen mit den Rechenoperationen 2 Komplexe Zahlen 2.1 Definition Die omplexen Zahlen werden definiert als die geordneten Paare z = (x, y) reeller Zahlen x, y R, zusammen mit den Rechenoperationen z 1 + z 2 (x 1, y 1 ) + (x 2, y 2 ) :=

Mehr

Komplexe Zahlen. Lernziele dieses Abschnitts sind:

Komplexe Zahlen. Lernziele dieses Abschnitts sind: KAPITEL 1 Komplexe Zahlen Lernziele dieses Abschnitts sind: (1) Analytische und geometrische Darstellung komplexer Zahlen, () Grundrechenarten fur komplexe Zahlen, (3) Konjugation und Betrag komplexer

Mehr

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg Komplexe Funktionen für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Universität Hamburg SS 2006 Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen

Mehr

1 Grundlagen. 1.1 Elementare Logik

1 Grundlagen. 1.1 Elementare Logik Höhere Mathematik 7 1 Grundlagen 1.1 Elementare Logik Eine (mathematische) Aussage ist ein Satz, der entweder wahr oder falsch ist (keine Aussage ist sowohl wahr als auch falsch). Der Wahrheitswert v(a)

Mehr

Crash-Kurs Komplexe Zahlen

Crash-Kurs Komplexe Zahlen 1 Definitionen: j, C, z Im Körper R der reellen Zahlen besitzt die lineare Gleichung ax + b = 0 (a, bεr; a 0) stets eine Lösung. Die quadratische Gleichung ax 2 + bx + c = 0 führt zu der Lösungsformel

Mehr

viele weitere Anwendungen wie zum Beispiel Schwingungsvorgänge. 4.1 Die algebraische Struktur der komplexen Zahlen

viele weitere Anwendungen wie zum Beispiel Schwingungsvorgänge. 4.1 Die algebraische Struktur der komplexen Zahlen 4 Komplexe Zahlen In diesem Kapitel wollen wir uns erneut mit dem R 2 beschäftigen, diesmal aber mit einer anderen algebraischen Struktur. Dies erlaubt uns weitere Anwendungen in der Geometrie die Lösung

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

Polynomiale Gleichungen

Polynomiale Gleichungen Vorlesung 5 Polynomiale Gleichungen Definition 5.0.3. Ein polynomiale Funktion p(x) in der Variablen x R ist eine endliche Summe von Potenzen von x, die Exponenten sind hierbei natürliche Zahlen. Wir haben

Mehr

Vorlesung Mathematik 1 für Ingenieure (A)

Vorlesung Mathematik 1 für Ingenieure (A) 1 Vorlesung Mathematik 1 für Ingenieure (A) Wintersemester 2016/17 Kapitel 1: Zahlen Prof. Dr. Gerald Warnecke Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg http://fma2.math.uni-magdeburg.de:8001

Mehr

die kanonische Faktorisierung von p. Dann besitzt q/p eine Summendarstellung

die kanonische Faktorisierung von p. Dann besitzt q/p eine Summendarstellung Partialbruchzerlegung rationaler Funktionen Satz 4 (komplexe Partialbruchzerlegung) Es sei q/p eine echt gebrochen rationale Funktion, dh deg q < deg p und es sei p(z) = c (z z 1 ) α 1 (z z k ) α k die

Mehr

Mathematik I Herbstsemester 2014 Kapitel 7: Komplexe Zahlen

Mathematik I Herbstsemester 2014 Kapitel 7: Komplexe Zahlen Mathematik I Herbstsemester 2014 Kapitel 7: Komplexe Zahlen www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1/60

Mehr

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a Komplexe Zahlen. Bedarfsfrage Menge der natürlichen Zahlen = {,, 3,...} Aber: a + x = b ist nur lösbar, falls b > a (Peano-Axiome). Erweiterung: Menge der ganen Zahlen = {..., -3, -, -, 0,,, 3,...} a +

Mehr

Auswertung Probeklausur

Auswertung Probeklausur 0. Intensivkurse ab Januar 07! Auswertung Probeklausur Fakultät Elektrotechnik und Informationstechnik Christoph Laabs christoph.laabs@tu-dresden.de www.k-quadrat.biz/pk-et/ 0. Profil Intensivkurse ab

Mehr

Zahlen und Gleichungen

Zahlen und Gleichungen Kapitel 2 Zahlen und Gleichungen 21 Reelle Zahlen Die Menge R der reellen Zahlen setzt sich zusammen aus den rationalen und den irrationalen Zahlen Die Mengen der natürlichen Zahlen N, der ganzen Zahlen

Mehr

Brückenkurs Mathematik für Studierende der Chemie

Brückenkurs Mathematik für Studierende der Chemie Brückenkurs Mathematik für Studierende der Chemie PD Dr Dirk Andrae (nach Vorlagen von Dr Werner Gans vom WS 2015/2016) Institut für Chemie und Biochemie Freie Universität Berlin 20 September 2016 1 Teil:

Mehr

Mathematik I. Vorlesung 9. Die eulersche Zahl e

Mathematik I. Vorlesung 9. Die eulersche Zahl e Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 9 Die eulersche Zahl e Wir besprechen eine Beschreibung der sogenannten eulerschen Zahl e. Lemma 9.1. Die Intervalle I n = [a n,b n ],

Mehr

Fundamentalsatz der Algebra

Fundamentalsatz der Algebra Philipps Universität Marburg Fachbereich Mathematik SE: Klassische Probleme der Mathematik WS 2009/2010 Leitung: Benjamin Schwarz Referent: Joachim Franz 02.12.2009 Fundamentalsatz der Algebra Ausarbeitung

Mehr

5.A Die Konstruktion der komplexen Zahlen

5.A Die Konstruktion der komplexen Zahlen 5. Komplexe Zahlen 49 5. Komplexe Zahlen Nachdem wir die reellen Zahlen genau charakterisiert haben, wollen wir nun noch einen weiteren Körper einführen, der in der gesamten Mathematik sehr wichtig ist:

Mehr

Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Komplexe Funktionen für Studierende der Ingenieurwissenschaften Komplexe Funktionen für Studierende der Ingenieurwissenschaften Prof. Dr. Armin Iske Department Mathematik, Universität Hamburg Technische Universität Hamburg-Harburg Sommersemester 2008 Komplexe Funktionen

Mehr

Der Fundamentalsatz der Algebra. 1 Motivation

Der Fundamentalsatz der Algebra. 1 Motivation Vortrag im Rahmen des Proseminars zur Analysis, 24. April 2006 Micha Bittner Motivation Den ersten des Fundamentalsatzes der Algebra erbrachte C.F. Gauss im Jahr 799 im Rahmen seiner Dissertation. Heute

Mehr

a i x i, (1) Ein Teil der folgenden Betrachtungen gilt auch, wenn man den Körper durch einen Ring ersetzt.

a i x i, (1) Ein Teil der folgenden Betrachtungen gilt auch, wenn man den Körper durch einen Ring ersetzt. Polynome Definition 1. Ein Polynom f über einem Körper K mit der Unbestimmten x ist eine formale Summe f(x) = i 0 a i x i, (1) wobei nur endlich viele der Koeffizienten a i K von Null verschieden sind.

Mehr

Komplexe Zahlen. Rainer Hauser. Januar 2015

Komplexe Zahlen. Rainer Hauser. Januar 2015 Komplexe Zahlen Rainer Hauser Januar 015 1 Einleitung 1.1 Zahlen und Operationen auf Zahlen Addiert man mit Eins als erster gegebener Zahl beginnend sukzessive Eins zu einer bereits gefundenen Zahl, so

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Eigenvektoren

Mehr

3.2. Polarkoordinaten

3.2. Polarkoordinaten 3.2. Polarkoordinaten Die geometrische Bedeutung der komplexen Multiplikation versteht man besser durch die Einführung von Polarkoordinaten. Der Betrag einer komplexen Zahl z x + i y ist r: z x 2 + y 2.

Mehr

ANALYSIS 1 Kapitel 2: Reelle und komplexe Zahlen

ANALYSIS 1 Kapitel 2: Reelle und komplexe Zahlen ANALYSIS 1 Kapitel 2: Reelle und komplexe Zahlen MAB.01012UB MAT.101UB Vorlesung im WS 2017/18 Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen Karl-Franzens-Universität Graz 2.1 Körperstruktur

Mehr

42.3 Der Fundamentalsatz der Algebra

42.3 Der Fundamentalsatz der Algebra 42 Der Fundamentalsatz der Algebra 42.2 Die Argandsche Ungleichung 42.3 Der Fundamentalsatz der Algebra 42.4 Faktorisierung komplexer olynome 42.5 Faktorisierung reeller olynome 42.6 artialbruchzerlegung

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation In den reellen Zahlen haben nicht alle Polynome Nullstellen. Der einfachste Fall einer solchen Nullstellen-Gleichung ist x 2 + 1 = 0. Die komplexen Zahlen ("C") sind

Mehr

1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an:

1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: Aufgaben zum Vorkurs B S. 1 1 Übungen zu Mengen Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: A = {x N 0 < x < 4, 8} B = {t N t ist Teiler von 4} C = {z Z z ist positiv, durch 3 teilbar

Mehr

Mathematik I für das MW und VIW. Karsten Eppler Technische Universität Dresden Institut für Numerische Mathematik

Mathematik I für das MW und VIW. Karsten Eppler Technische Universität Dresden Institut für Numerische Mathematik Mathematik I für das MW und VIW Karsten Eppler Technische Universität Dresden Institut für Numerische Mathematik karsten.eppler@tu-dresden.de http://www.math.tu-dresden.de/ eppler Vorlesungsassistent:

Mehr

Mathematik I für das MW und VIW. Karsten Eppler Technische Universität Dresden Institut für Numerische Mathematik

Mathematik I für das MW und VIW. Karsten Eppler Technische Universität Dresden Institut für Numerische Mathematik Mathematik I für das MW und VIW Karsten Eppler Technische Universität Dresden Institut für Numerische Mathematik karsten.eppler@tu-dresden.de http://www.math.tu-dresden.de/ eppler Vorlesungsassistent:

Mehr

Ê 2 = {(x, y) : x, y Ê}.

Ê 2 = {(x, y) : x, y Ê}. Komplee Zahlen.1 Der Körper der kompleen Zahlen Sei Ê = {(, y :, y Ê}. Ê können wir als Punkte in der Ebene oder als Vektoren mit Komponenten und y auffassen. Für (, y, (, y Ê definieren wir die Summe

Mehr

6.1 Komplexe Funktionen

6.1 Komplexe Funktionen 118 6 Funktionentheorie 6.1 Komplexe Funktionen Wir kennen die komplexen Zahlen als Erweiterung des Körpers der reellen Zahlen. Man postuliert die Existenz einer imaginären Größe i mit der Eigenschaft

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 34 Die Diagonalisierbarkeit von Isometrien im Komplexen Satz 34.1. Es sei V ein endlichdimensionaler C-Vektorraum

Mehr

Gleichungen dritten und vierten Grades

Gleichungen dritten und vierten Grades Karl-Franzens Universität Graz Institut für Mathematik und Wissenschaftliches Rechnen Heinrichstrasse 22/I 8010 Graz Gleichungen dritten und vierten Grades Sandra Fink und Benedikt Neuhold Mathematisches

Mehr

8 Dezimalzahlen und Fehlerfortpflanzung

8 Dezimalzahlen und Fehlerfortpflanzung 7 Dezimalzahlen und Fehlerfortpflanzung 29 8 Dezimalzahlen und Fehlerfortpflanzung Lernziele: Konzepte: Dezimalzahlen und Runden Methoden: spezielle Umrechungen Kompetenzen: Einschätzen von Fehlerfortpflanzungen

Mehr

31 Polynomringe Motivation Definition: Polynomringe

31 Polynomringe Motivation Definition: Polynomringe 31 Polynomringe 31.1 Motivation Polynome spielen eine wichtige Rolle in vielen Berechnungen, einerseits weil oftmals funktionale Zusammenhänge durch Polynome beschrieben werden, andererseits weil Polynome

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

Kapitel 3. Folgen Körper der reellen Zahlen. Wir kennen schon den Körper Q der rationalen Zahlen: : a, b Z, b 0}. Q = { a b

Kapitel 3. Folgen Körper der reellen Zahlen. Wir kennen schon den Körper Q der rationalen Zahlen: : a, b Z, b 0}. Q = { a b Kapitel 3. Folgen 3.1. Körper der reellen Zahlen Wir kennen schon den Körper Q der rationalen Zahlen: Q = { a b : a, b Z, b 0}. Die natürliche Ordnung auf Q ist eine totale Ordnung. Überdies gilt folgendes

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

Komplexe Zahlen (Seite 1)

Komplexe Zahlen (Seite 1) (Seite 1) (i) Motivation: + 5 = 3 hat in N keine Lösung Erweiterung zu Z = 2 3 = 2 hat in Z keine Lösung Erweiterung zu Q = 2 / 3 ² = 2 hat in Q keine Lösung Erweiterung zu R = ± 2 ² + 1 = 0 hat in R keine

Mehr

INHALTSVERZEICHNIS: DEFINITION UND EIGENSCHAFTEN VON KOMPLEXEN ZAHLEN 2 GESCHICHTE DER KOMPLEXEN ZAHLEN 4 DARSTELLUNG DER KOMPLEXEN ZAHLEN 5

INHALTSVERZEICHNIS: DEFINITION UND EIGENSCHAFTEN VON KOMPLEXEN ZAHLEN 2 GESCHICHTE DER KOMPLEXEN ZAHLEN 4 DARSTELLUNG DER KOMPLEXEN ZAHLEN 5 INHALTSVERZEICHNIS: ZAHLENBEREICHSERWEITERUNG 1 DEFINITION UND EIGENSCHAFTEN VON KOMPLEXEN ZAHLEN 2 GESCHICHTE DER KOMPLEXEN ZAHLEN 4 DARSTELLUNG DER KOMPLEXEN ZAHLEN 5 RECHNEN MIT KOMPLEXEN ZAHLEN 7 DIE

Mehr

30 Metriken und Normen

30 Metriken und Normen 31 Metriken und Normen 153 30 Metriken und Normen Lernziele: Konzepte: Metriken, Normen, Skalarprodukte, Konvergenz von Folgen Frage: Versuchen Sie, möglichst viele verschiedene Konvergenzbegriffe für

Mehr

Ê 2 = {(x,y) : x,y Ê}.

Ê 2 = {(x,y) : x,y Ê}. 6 Komplexe Analysis 6. Komplexe Zahlen Sei Ê 2 = {(x,y) : x,y Ê}. Ê 2 können wir als Punkte in der Ebene oder als Vektoren mit Komponenten x und y auffassen. Für (x,y),(x,y ) Ê 2 definieren wir die Summe

Mehr

Partialbruchzerlegung für Biologen

Partialbruchzerlegung für Biologen Partialbruchzerlegung für Biologen Rationale Funktionen sind Quotienten zweier Polynome, und sie tauchen auch in der Biologie auf. Die Partialbruchzerlegung bedeutet, einen einfacheren Ausdruck für eine

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie

Mathematik für Studierende der Biologie und des Lehramtes Chemie Mathematik für Studierende der Biologie und des Lehramtes Chemie ominik Schillo Universität des Saarlandes 7 Vorlesung, 007 (Stand: 007, 4: Uhr) Notation Seien A R n n sowie b R n und betrachte das LGS

Mehr

Brüche, Polynome, Terme

Brüche, Polynome, Terme KAPITEL 1 Brüche, Polynome, Terme 1.1 Zahlen............................. 1 1. Lineare Gleichung....................... 3 1.3 Quadratische Gleichung................... 6 1.4 Polynomdivision........................

Mehr

Zahlen und elementares Rechnen

Zahlen und elementares Rechnen und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3

Mehr

Potenzen und Wurzeln komplexer Zahlen. Eulersche Identität. Polardarstellung. Additionstheoreme. Vollständige Faktorisierung von Polynomen

Potenzen und Wurzeln komplexer Zahlen. Eulersche Identität. Polardarstellung. Additionstheoreme. Vollständige Faktorisierung von Polynomen Potenzen und Wurzeln komplexer Zahlen. Eulersche Identität. Polardarstellung. Additionstheoreme. Vollständige Faktorisierung von Polynomen Jörn Loviscach Versionsstand: 3. Dezember 200, 20:42 Die nummerierten

Mehr

Dieses Kapitel widmet sich den komplexen Zahlen. Die in den folgenden Kapiteln dargestellten Themen können damit

Dieses Kapitel widmet sich den komplexen Zahlen. Die in den folgenden Kapiteln dargestellten Themen können damit Komplexe Zahlen Dieses Kapitel widmet sich den komplexen Zahlen. Die in den folgenden Kapiteln dargestellten Themen können damit komplex gelesen werden. Allerdings ist diese Sichtweise nicht unbedingt

Mehr

13 Die trigonometrischen Funktionen

13 Die trigonometrischen Funktionen 13 Die trigonometrischen Funktionen Wir schreiben die Werte der komplexen Exponentialfunktion im Folgenden auch als e z = exp(z) (z C). Geometrisch definiert man üblicherweise die Werte der Winkelfunktion

Mehr