Dieses Kapitel widmet sich den komplexen Zahlen. Die in den folgenden Kapiteln dargestellten Themen können damit

Größe: px
Ab Seite anzeigen:

Download "Dieses Kapitel widmet sich den komplexen Zahlen. Die in den folgenden Kapiteln dargestellten Themen können damit"

Transkript

1 Komplexe Zahlen Dieses Kapitel widmet sich den komplexen Zahlen. Die in den folgenden Kapiteln dargestellten Themen können damit komplex gelesen werden. Allerdings ist diese Sichtweise nicht unbedingt nötig; die meisten Darstellungen können auch reell verstanden werden. Entsprechend des Gebrauchs in der Elektrotechnik wird die imaginäre Einheit mit gekenneichnet; in anderen Disiplinen ist die Schreibweise i gebräuchlich.. Grundlagen Die Gleichung x = hat in den reellen Zahlen keine Lösung. Daher wird eine neue Zahl, die imaginäre Einheit (oft auch als i geschrieben), eingeführt, die = erfüllen soll. Definition.. (komplexe Zahlen) Die Menge C := {a + b a, b R} heißt Menge der komplexen Zahlen. Zwei komplexe Zahlen addiert, subtrahiert und multipliiert man wie üblich mit als Parameter unter Berücksichtigung von =. Bemerkung.. ur Schreibweise Bei komplexen Zahlen wird standardmäßig der Variablen-Buchstabe verwendet, während x meist für eine reelle Variable steht. Manchmal wird ein Variablenname auch unterstrichen, um kenntlich u machen, dass es sich um einen komplexen Wert handelt. G. Hoever, Höhere Mathematik kompakt, DOI 0.007/ _, Springer-Verlag Berlin Heidelberg 03 47

2 48 Komplexe Zahlen Bemerkungen..3 (Gaußsche Zahlenebene). Die komplexen Zahlen kann man in der Gaußschen Zahlenebene darstellen (s. Abb..): Die Zahl = a + b eichnet man als Punkt (a, b) oder als Pfeil (oft Zeiger genannt) vom Ursprung u (a, b). imaginäre Achse b = a + b a reelle Achse Abb.. Gaußsche Zahlenebene.. Die Addition komplexer Zahlen geschieht in der Gaußschen Zahlenebene durch Aneinanderseten der Zeiger, wird durch den am Ursprung gespiegelten Zeiger repräsentiert; entsprechend kann man als +( ) durch Zeiger veranschaulichen (s. Abb.. links). 3. Bei der Multiplikation werden die Längen der Zeiger multipliiert und die Winkel wischen Zeiger und reeller positiver Achse addiert (s. Abb.. rechts). Beispiel..4 Die Summe und Differen der komplexen Zahlen 3 + und +ist (3 + ) + ( +) = 3+ + = 3 + ( + ) = + 3, (3 + ) ( +) = 3++ = 3++( ) = 4 +. Die Multiplikation ergibt (3 + ) ( +) = 3 ( +)+ ( +) = = 3+(3 ) + ( ) = 5+. Abb.. veranschaulicht die Rechnungen in der Gaußschen Zahlenebene ( +)= Abb.. Addition, Subtraktion und Multiplikation in der Gaußschen Zahlenebene.

3 . Grundlagen 49 Definition..5 Zu einer komplexen Zahl = a + b C mit a, b R heißt a Realteil ( ) und b Imaginärteil ( ), = a + b Betrag (oder Länge) von, := a b dieu konugiert komplexe Zahl. Bemerkungen..6 u Definition..5. Wie man an Abb..3 sieht, entspricht der Betrag einer komplexen Zahl nach dem Sat des Pythagoras der Länge des entsprechenden Zeigers.. Die konugiert komplexe Zahl erhält man in der Gaußschen Zahlenebene durch Spiegelung von an der reellen Achse (s. Abb..3). Sie besitt also den entsprechend negativen Winkel bgl. der reellen Achse. 3. Die u konugiert komplexe Zahl wird manchmal auch mit beeichnet. Beispiele..7. Zu der Zahl =3+ist { b = a + b = 3, =, = 3 + = 3, = 3. } {{ } a Abb..3 Realteil, Imaginärteil, Betrag und konugiert komplexe Zahl u.. Man kann nachrechnen, dass sich bei der Multiplikation (3 + ) ( +) = 5+ (s. Beispiel..4) tatsächlich die Längen multipliieren: Mit 3+ = 3 (s..) und + = ( ) + = ist 5+ = ( 5) + = 6 = 3 = Lit.: [KSt].,.; [Wal]..,..; [Knorr] 4.; [Stingl] 4., 4.; [Dürr].4; [Rie] 0., 0.; [SS] 9., 9.3; [Pap] III.. bis.3

4 50 Komplexe Zahlen. Eigenschaften Sat... In den komplexen Zahlen gelten bgl. + und die gleichen Gesete wie in den reellen Zahlen.. Es gilt = sowie + = und =. 3. Für 0ist =. 4. Es gilt ( ± ) = ±,( ) = und ( ) =. 5. Es ist =, = und =. 6. Es gilt die Dreiecksungleichung + +. Bemerkungen.. u Sat... Die Beiehung = aus Sat..,., ergibt sich rechnerisch für = a + b wegen = (a + b) (a b) 3. binomische = Formel = a b ( ) = a + b =. a (b) = a b Da und ueinander gespiegelte Winkel haben, ist = auch mit Bemerkung..3, 3., klar. Die beiden anderen Beiehungen von Sat..,., lassen sich ähnlich nachrechnen, sind aber auch in der Gaußschen Zahlenebene plausibel (s. Abb..4). + } {{ } Abb..4 Addition und Subtraktion von und.. Sat.., 3., erhält man durch Erweiterung mit der konugiert komplexen Zahl : Merkregel: =..,., =. Man dividiert durch eine komplexe Zahl, indem man mit der konugiert komplexen Zahl erweitert.

5 . Eigenschaften 5 Beispiel... Es ist + = = ( + )( ) ( + = ) 5 = 5 5. Abb..5 Kehrwert einer komplexen Zahl. Die Lage von in der Gaußschen Zahlenebene kann man sich mit Bemerkung..3, 3. folgendermaßen überlegen (s. Abb..5): Die Multiplikation von mit ergibt, also den Winkel 0 ur rellen positiven Achse. Der Winkel des Zeigers u muss also u dem von gespiegelt sein, und somit dem von entsprechen. Die Längen müssen multipliiert ergeben, also = (vgl. auch Sat.., 5.). 3. Der Name Dreiecksungleichung ur Ungleichung von Sat.., 6., wird in der Gauß- schen Zahlenebene plausibel, wie Abb..6 eigt: Die Länge des Zeigers u + ist kleiner oder gleich der Summe der Länge der Zeiger u und. Bemerkung..3 + Abb..6 Dreiecksungleichung. Auf C gibt es keine größer- oder kleiner-relationen. Aussagen wie < sind sinnlos. Bemerkungen..4 ( Wureln aus komplexen Zahlen). Für edes w C gibt es ein C mit = w. Grafischerhält man ein solches durch Halbierung des Winkels und Wurel-Nehmen des Betrags, s. Abb..7 links. Mit gilt dann auch für =, dass =( ) = = w ist. Man erhält auch, indem man den Winkel u w in negativer Richtung (im Uhreigersinn) betrachtet und halbiert. Beispiel..4. Zu w = gilt für = und = =, dass = = w ist (s. Abb..7 Mitte).

6 5 Komplexe Zahlen Beispiel..4. Zu w = gilt für = + : = ( + ) = ( ) + = + + = + = = w. Damit gilt auch ( ) = = w (s. Abb..7 rechts). ( ) + w w w Abb..7 Lösungen u = w allgemein und konkret u w = und w =.. Da man nicht festlegen will, welche der beiden Lösungen u = w als Wurel aus w gemeint sein soll, ist die -Funktion weiterhin nur für reelle Zahlen x 0 definiert. 3. Umgangssprachlich sagt man oft =, aber genauso könnte man = sagen. Ein u unbekümmerter Umgang mit Wureln aus negativen Zahlen kann u Fehlschlüssen führen,.b. = = = ( ) ( ) = =. 4. Die Wurel aus negativen oder komplexen Zahlen kommt bei der üblichen Anwendung der p-q-formel (Sat..) ur Lösung quadratischer Gleichungen x + px + q =0vor.DieLösungsformel x = p ± D mit D = ( p ) q, ist weiterhin gültig (auch bei komplexen Koeffiienten p und q), wenn man den Ausdruck ± D so interpretiert, dass hier beide Lösungen ( und ) u = D u nehmen sind. Beispiel..4.3 Die Gleichung x +x + 3 = 0 hat nach der p-q-formel die Lösungen x = ± ( ) 3 = ±.

7 . Eigenschaften 53 Mit ± sind die beiden Lösungen u =, also = ± gemeint (vgl. Beispiel..4.), also x = ±. Man erhält also das richtige Ergebnis, wenn man (mathematisch nicht gan sauber) rechnet. ± = ± ( ) = ± = ± Beispiel..4.4 Die Gleichung +( ) = 0 hat die Lösungen ( = ) ± ( ) = ± ++ = ±. Nach Beispiel..4., sind ± ( + ) diebeidenlösungen, die quadriert ergeben, also ist weiter ( = ± + ). Die beiden Lösungen der quadratischen Gleichung sind also = + (+ ) und = ( + ). Sat..5 (Fundamentalsat der Algebra) In C besitt edes Polynom p() =a n n + a n n + + a + a 0 mit a n 0 genau n Nullstellen (inklusive Vielfachheit),,..., n. Es gilt dann p() =a n ( )( )... ( n ). Man sagt auch: In C kann man edes Polynom in Linearfaktoren erlegen. Beispiele..6. Das Polynom p() = + besitt die Nullstellen ±. Es ist p() = + = ( )( +).. Das Polynom p() = besitt = als Nullstelle. Eine Polynomdivision oder Anwendung des Horner-Schemas bringt

8 54 Komplexe Zahlen p() = ( )( + +3). Die Nullstellen von sind nach Beispiel..4.3 = ±. Damit ist p() =( ) ( ( + ) )( ( ) ). Sat..7 Ist p() ein Polynom mit reellen Koeffiienten, so gilt:. Für alle C ist p( )= ( p() ).. Ist 0 eine Nullstelle von p, soistauch 0 Nullstelle von p. Bemerkungen..8 u Sat..7. Das folgende Beispiel verdeutlicht, warum bei Polynomen mit reellen Koeffiienten p( )= ( p() ) gilt: Beispiel..8. Sei p() = Mehrfache Anwendung von Sat.., 4., ergibt ( ) 3 =( 3 ) und damit p( ) = ( ) 3 +4 = ( 3 ) +4. Für relle Zahlen a R gilt a = a, so dass man die reellen Koeffiienten auch konugiert komplex schreiben kann. Entsprechend Sat.., 4., kann man dann die komplexe Konugation auf den gesamten Ausdruck beiehen: p( ) = ( 3 ) +4 = ( 3 +4 ) ( ). = p(). Die weite Aussage von Sat..7 folgt direkt aus der ersten: Ist 0 eine Nullstelle von p, so gilt p( 0 )=(p( 0 )) =0 =0. 3. Ist 0 / R, soführt die Zusammenfassung der Linearfaktoren ( 0 ) und ( 0 ) u einem reellen quadratischen Polynom: ( 0 ) ( 0 ) = ( ) = Re ( 0 ) + 0. Dieses quadratische Polynom ist in den reellen Zahlen nullstellenfrei.

9 .3 Polardarstellung 55 Beispiel..8. Das Polynom p() = 4 + besitt als Nullstellen die Lösungen u 4 =, also u = ±: / = ±, 3/4 = ±. Nach Sat..5 ist damit 4 + = ( )( )( 3 )( 4 ). Abb..8 Die Lösungen von 4 =. Die Zusammenfassung der Linearfaktoren u den ueinander konugiert komplexen Nullstellen und führt nach Bemerkung..8, 3. u ( )( ) = Re ( ) + und die u 3 und 4 entsprechend u = + = +, ( 3 )( 4 ) = Re ( 3 ) + 3 = + +. Damit erhält man (vgl. Beispiel..33) p() = 4 + = ( + ) ( + + ). Lit.: [KSt].,.3; [Wal]..; [Knorr] 4.; [Stingl] 4.; [SS] 9..5, 9.3.3, 9.4.4, Polardarstellung Die Exponentialfunktion x e x kann man in natürlicher Weise auf komplexe Werte erweitern (s. Bemerkung 3.3.5, 3.) und so e für C definieren. Es gilt dann weiterhin e + = e e. Insbesondere gilt also für a, b R: e a+b =e a e b ; dabei ist e a durch die reelle Exponentialfunktion bekannt. Der folgende Sat.3. klärt die Bedeutung von e b. Sat.3. (Euler-Formel) Es gilt e x = cos x +sinx und e x = cos x sinx.

10 56 Komplexe Zahlen Die komplexe Zahl e x = cos x +sinx u x R liegt also in der Gaußschen Zahlenebene auf dem Einheitskreis im Winkel x ur reellen positiven Achse, s. Abb..9. Insbesondere gilt e x =für edes x R. e π sinx e x x cos x e π e π 4 e 0 =e π Abb..9 Die komplexe Exponentialfunktion in der Gaußschen Zahlenebene. Beispiele.3. Es ist e 0 = e 0 = cos 0 + sin 0 =, e π 4 = cos π 4 +sinπ 4 = +, e π = cos π +sinπ = 0+ =, e π = cos π +sinπ = + 0 =, e π = cos(π)+sin(π) = + 0 =. Bemerkungen.3.3 u Sat.3.. Eigentlich heißt nur die erste Formel ( e x = cos x +sinx) Euler-Formel. Die weite Gleichung folgt direkt aus der Euler-Formel wegen e x = e ( x) = cos x +sin( x) = cos x +( sin x) = cos x sinx. Jedes C ist eindeutig beschrieben durch den Abstand r u 0 und den Winkel ϕ ur reellen Achse, s. Abb..0. Es besitt also die Darstellung r sin ϕ r = r e ϕ e ϕ = r e ϕ = r (cos ϕ + sin ϕ) = r cos ϕ + r sin ϕ. ϕ }{{} r cos ϕ Abb..0 Polardarstellung.

11

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ): Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe

Mehr

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a Komplexe Zahlen. Bedarfsfrage Menge der natürlichen Zahlen = {,, 3,...} Aber: a + x = b ist nur lösbar, falls b > a (Peano-Axiome). Erweiterung: Menge der ganen Zahlen = {..., -3, -, -, 0,,, 3,...} a +

Mehr

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg Komplexe Funktionen für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Universität Hamburg SS 2006 Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen

Mehr

17 Grundrechenarten für komplexe Zahlen

17 Grundrechenarten für komplexe Zahlen 7 Grundrechenarten für komplexe Zahlen Jörn Loviscach Versionsstand: 2. September 203, 5:58 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3l7h.de/videos.html

Mehr

Komplexe Zahlen (Seite 1)

Komplexe Zahlen (Seite 1) (Seite 1) (i) Motivation: + 5 = 3 hat in N keine Lösung Erweiterung zu Z = 2 3 = 2 hat in Z keine Lösung Erweiterung zu Q = 2 / 3 ² = 2 hat in Q keine Lösung Erweiterung zu R = ± 2 ² + 1 = 0 hat in R keine

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems

Mehr

Facharbeit. Clemens-Brentano-Gymnasium in Dülmen. Schuljahr 2000/2001

Facharbeit. Clemens-Brentano-Gymnasium in Dülmen. Schuljahr 2000/2001 Facharbeit Clemens-Brentano-Gymnasium in Dülmen Schuljahr 000/00 Komplexe Zahlen Definition, das Rechnen mit komplexen Zahlen und ihre Darstellung Leistungskurs Mathematik bei Herrn Strohtkämper Verfasserin:

Mehr

Multiplikation und Division in Polarform

Multiplikation und Division in Polarform Multiplikation und Division in Polarform 1-E1 1-E Multiplikation und Division in Polarform: Mathematisches Rüstzeug n m b b = b n+m bn bm = bn m ( b n )m = b n m Additionstheoreme: cos 1 = cos 1 cos sin

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

Gleichungen, Ungleichungen, Beträge

Gleichungen, Ungleichungen, Beträge KAPITEL 2 Gleichungen, Ungleichungen, Beträge Man bestimme alle reellen Lösungen der Gleichung x + 2 x 2 4 = 1. Nach Multiplikation beider Seiten mit x 2 4 ergibt sich die quadratische Gleichung x + 2

Mehr

Zahlen und Funktionen

Zahlen und Funktionen Kapitel Zahlen und Funktionen. Mengen und etwas Logik Aufgabe. : Kreuzen Sie an, ob die Aussagen wahr oder falsch sind:. Alle ganzen Zahlen sind auch rationale Zahlen.. R beschreibt die Menge aller natürlichen

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen:

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen: 2. Zahlbereiche Besonderheiten und Rechengesetze Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen: 2.1. Die natürlichen Zahlen * + besitzt abzählbar unendlich viele Elemente

Mehr

Komplexe Zahlen. Rainer Hauser. Januar 2015

Komplexe Zahlen. Rainer Hauser. Januar 2015 Komplexe Zahlen Rainer Hauser Januar 015 1 Einleitung 1.1 Zahlen und Operationen auf Zahlen Addiert man mit Eins als erster gegebener Zahl beginnend sukzessive Eins zu einer bereits gefundenen Zahl, so

Mehr

Komplexe Zahlen und Wechselstromwiderstände

Komplexe Zahlen und Wechselstromwiderstände Komplexe Zahlen und Wechselstromwiderstände Axel Tobias 22.2.2000 Ein besonderer Dank geht an Ingo Treunowski, der die Übertragung meines Manuskriptes in L A TEX durchgeführt hat tob skript komplex.tex.

Mehr

7.1 Imaginäre Zahlen. Für die imaginäre Einheit gilt: i 2 = 1 bzw. j 2 = 1 i = 1 j = 1 Alle Vielfachen von i bzw. j nennt man imaginäre Zahlen.

7.1 Imaginäre Zahlen. Für die imaginäre Einheit gilt: i 2 = 1 bzw. j 2 = 1 i = 1 j = 1 Alle Vielfachen von i bzw. j nennt man imaginäre Zahlen. 7 Komplexe Zahlen In vielen Sammlungen mathematischer Zitate findet man den Ausspruch des deutschen Mathematikers Leopold Kronecker: Die natürlichen Zahlen hat der liebe Gott geschaffen, alles andere ist

Mehr

Einführung Seite 28. Zahlenebene C. Vorlesung bzw. 24. Oktober 2013

Einführung Seite 28. Zahlenebene C. Vorlesung bzw. 24. Oktober 2013 Einführung Seite 8 Vorlesung 1 3. bzw. 4. Oktober 013 Komplexe Zahlen Seite 9 Lösung von x + 1 = 0, pq-formel liefert x 1/ = ± 1 ; }{{} verboten Definition Imaginäre Einheit i := 1 Dann x 1/ = ±i; i =

Mehr

Zahlen und elementares Rechnen

Zahlen und elementares Rechnen und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3

Mehr

Kölner Mathematikturnier 2011 Das Turnierlogo

Kölner Mathematikturnier 2011 Das Turnierlogo Kölner Mathematikturnier 2011 Das Turnierlogo Was sind denn das für komische Punkte im Turnierlogo?, fragt Ihr Euch sicherlich. Unser Turnierlogo stellt einee Visualisierung der Primzahlen in den Gaußschen

Mehr

Mathematik = x 2 + x 2 = x + x 2 25x = 146 x =

Mathematik = x 2 + x 2 = x + x 2 25x = 146 x = 1 Prof. Dr. Matthias Gerdts Dr. Sven-Joachim Kimmerle Wintertrimester 014 Mathematik 1 + Übung 1 Gleichungen mit Wurzeln Bestimmen Sie alle Lösungen der folgenden Gleichungen. Beachten Sie dabei, dass

Mehr

Aufgaben zu Kapitel 5

Aufgaben zu Kapitel 5 Aufgaben zu Kapitel 5 Aufgaben zu Kapitel 5 Verständnisfragen Aufgabe 5. Geben Sie zu folgenden komplexen Zahlen die Polarkoordinatendarstellung an z i z + i z 3 + 3i). r 5 ϕ 5 4 3 π bzw. r 6 3 ϕ 6 4 5

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} bzw. N 0 = {0, 1, 2,

Mehr

Terme und Aussagen und

Terme und Aussagen und 1 Grundlagen Dieses einführende Kapitel besteht aus den beiden Abschnitten Terme und Aussagen und Bruchrechnung. Die Erfahrung zeigt, dass diese Dinge zwar in der Schule gelehrt und gelernt werden, dass

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

Zahlen und Gleichungen

Zahlen und Gleichungen Kapitel 2 Zahlen und Gleichungen 21 Reelle Zahlen Die Menge R der reellen Zahlen setzt sich zusammen aus den rationalen und den irrationalen Zahlen Die Mengen der natürlichen Zahlen N, der ganzen Zahlen

Mehr

Komplexe Zahlen und konforme Abbildungen

Komplexe Zahlen und konforme Abbildungen Kapitel 1 Komplexe Zahlen und konforme Abbildungen 1.0 Geometrie der komplexen Zahlen Die Menge C der komplexen Zahlen, lässt sich mithilfe der bijektiven Abbildung C := {x + iy : x,y R}, C z = x + iy

Mehr

Komplexe Zahlen. Lernziele dieses Abschnitts sind:

Komplexe Zahlen. Lernziele dieses Abschnitts sind: KAPITEL 1 Komplexe Zahlen Lernziele dieses Abschnitts sind: (1) Analytische und geometrische Darstellung komplexer Zahlen, () Grundrechenarten fur komplexe Zahlen, (3) Konjugation und Betrag komplexer

Mehr

7. KOMPLEXE ZAHLEN. und die. KOMPLEXE e-funktion

7. KOMPLEXE ZAHLEN. und die. KOMPLEXE e-funktion 7. KOMPLEXE ZAHLEN und die KOMPLEXE e-funktion 1 Wir gehen aus von der Ebene, versehen mit einem Koordinatensystem und x, y-koordinaten. Dann entsprechen Punkte z in der Ebene Zahlenpaaren: z = (x, y)

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

13. Funktionen in einer Variablen

13. Funktionen in einer Variablen 13. Funktionen in einer Variablen Definition. Seien X, Y Mengen. Eine Funktion f : X Y ist eine Vorschrift, wo jedem Element der Menge X eindeutig ein Element von Y zugeordnet wird. Wir betrachten hier

Mehr

Mathematischen Grundlagen und Notationen

Mathematischen Grundlagen und Notationen Mathematischen Grundlagen und Notationen Susanne Schimpf Juni 008 Es geht in dieser Lerneinheit darum, mathematische Notationen besser zu verstehen und auch selbst korrekt zu benutzen. Außerdem sollen

Mehr

1 Potenzen und Polynome

1 Potenzen und Polynome 1 Potenzen und Polynome Für eine reelle Zahl x R und eine natürliche Zahl n N definieren wir x n := x x x... x }{{} n-mal Einschub über die bisher aufgetretenen mathematischen Symbole: Definition mittels

Mehr

Zusammenfassung Zahlbereiche

Zusammenfassung Zahlbereiche Zusammenfassung Zahlbereiche Ekkehard Batzies 7. Mai 2008 1 Die rationalen Zahlen 1.1 Zahlbereiche in der Schule Als Zahlbereiche kennt man aus der Schule die natürlichen Zahlen, N = {0, 1, 2, 3,...},

Mehr

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung 34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis

Mehr

Ergänzung zu komplexe Zahlen

Ergänzung zu komplexe Zahlen Juli 2015 Übersicht 1 Ortskurven 2 Wechselstromkreis mit ohmschem und kapazitivem Widerstand (Parallelschaltung) i(t) u(t) R C Bei festen Werten für den ohmschen Widerstand R und die Kapazität C ergibt

Mehr

x 2 + px + q = 0 ) x 1;2 = p 2 r p 2 2

x 2 + px + q = 0 ) x 1;2 = p 2 r p 2 2 Komplexe Zahlen Komplexe Zahlen treten in der Schule zum ersten Mal bei der Lösung von quadratischen Gleichungen auf. Wir nehmen die Gleichung x 2 + 6x + 25 als Beispiel. Diesen Gleichungstyp können wir

Mehr

Die komplexen Zahlen

Die komplexen Zahlen Kapitel 9 Die komplexen Zahlen Der Körper der komplexen Zahlen Die Gauß sche Zahlenebene Algebraische Gleichungen Anwendungen Der Körper der komplexen Zahlen Die Definition der komplexen Zahlen Definition

Mehr

Vorkurs Mathematik 2016

Vorkurs Mathematik 2016 Vorkurs Mathematik 2016 Natürliche Zahlen Der grundlegende Zahlenbereich ist die Menge der natürlichen Zahlen N = {1, 2, 3,...}. In vielen Fällen ist es sinnvoll die Zahl 0 mit einzubeziehen: N 0 = N [

Mehr

Vertiefungskurs Mathematik

Vertiefungskurs Mathematik Vertiefungskurs Mathematik Anforderungen für das Universitäts-Zertifikat im Schuljahr 01/13 Grundvoraussetzung: Teilnahme am Vertiefungskurs Mathematik in Klasse 11. Inhaltliche Voraussetzungen: Aussagenlogik

Mehr

10. Die komplexen Zahlen.

10. Die komplexen Zahlen. 10-1 Funktionen 10 Die kompleen Zahlen Dies ist ein Thema, das unberechtigter Weise als schwer gilt! Die Konstruktion der kompleen Zahlen ist viel einfacher zu verstehen ist, als einige der bisherigen

Mehr

ANALYSIS 1 für Lehramt Ma Regelschullehrer SS 2008

ANALYSIS 1 für Lehramt Ma Regelschullehrer SS 2008 ANALYSIS 1 für Lehramt Ma Regelschullehrer SS 2008 Prof. Dr. Thomas Runst Friedrich Schiller Universität Jena Fakultät für Mathematik und Informatik Mathematisches Institut 1 Ziel der Vorlesung: Der Modul

Mehr

Linearfaktorenzerlegung und Polynomdivision 1 Aufgabe 1

Linearfaktorenzerlegung und Polynomdivision 1 Aufgabe 1 Interne Links auf dieser Seite: Abbildungsverzeichnis Inhaltsverzeichnis Linearfaktorenzerlegung und Polynomdivision 1 Aufgabe 1 Man löse die Gleichung x 3 2x 2 112 = 0 Dies ist eine kubische Gleichung.

Mehr

1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an:

1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: Aufgaben zum Vorkurs B S. 1 1 Übungen zu Mengen Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: A = {x N 0 < x < 4, 8} B = {t N t ist Teiler von 4} C = {z Z z ist positiv, durch 3 teilbar

Mehr

Komplexe Zahlen. 1) Motivierende Aufgabe. 2) Historisches

Komplexe Zahlen. 1) Motivierende Aufgabe. 2) Historisches Annelie Heuser, Jean-Luc Landvogt und Ditlef Meins im 1. Semester Komplexe Zahlen Will man nur addieren und subtrahieren, multiplizieren und dividieren, kommt man uneingeschränkt mit reellen Zahlen aus.

Mehr

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe:

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe: Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II Mathematik Symbol, Definition Deutsch Erklärung Mengenbegriffe: natürlichen Zahlen natürlichen Zahlen inkl. der 0 ganzen Zahlen rationalen

Mehr

Reihen/Partialsummenfolgen und vollständige Induktion. Robert Klinzmann

Reihen/Partialsummenfolgen und vollständige Induktion. Robert Klinzmann Reihen/Partialsummenfolgen und vollständige Induktion Robert Klinzmann 3. Mai 00 Reihen / Partialsummen 1 Inhaltsverzeichnis 1 Vorwort Das Prinzip der vollständigen Induktion 3 3 Herleitung der Gauß schen

Mehr

Technische Universität München. Lösung Montag WS 2013/14. (Einheitskreis, ohne Rechnung ersichtlich) (Einheitskreis, ohne Rechnung ersichtlich)

Technische Universität München. Lösung Montag WS 2013/14. (Einheitskreis, ohne Rechnung ersichtlich) (Einheitskreis, ohne Rechnung ersichtlich) Technische Universität München Andreas Wörfel Ferienkurs Analysis 1 für Physiker Lösung Montag WS 01/1 Aufgabe 1 Zum warm werden: Komplexe Zahlen - Lehrling Bestimmen Sie das komplex Konjugierte, den Betrag

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} Ganze Zahlen : Aus

Mehr

1.3. Beträge, Gleichungen und Ungleichungen

1.3. Beträge, Gleichungen und Ungleichungen 1.3. Beträge, Gleichungen und Ungleichungen Das Maximum zweier Zahlen a, b wird mit max(a,b) bezeichnet, ihr Minimum mit min(a,b). Der Absolutbetrag einer reellen Zahl a ist a = max ( a, a ) oder auch

Mehr

x 2 +1=0? Wo sind die Nullstellen von x 2 +1 versteckt? 5. Lange Nacht der Mathematik Thomas Westermann Wo ist das Problem?

x 2 +1=0? Wo sind die Nullstellen von x 2 +1 versteckt? 5. Lange Nacht der Mathematik Thomas Westermann Wo ist das Problem? =0? im n Wo sind die Nullstellen von versteckt? Thomas Westermann 5. Lange Nacht der Mathematik HS Karlsruhe 5. April 008 Parabeln y=x : Normalparabel Einfache Funktion Scheitel bei S=(0/0) Einen Schnittpunkt

Mehr

Mathematik 1 für Naturwissenschaften

Mathematik 1 für Naturwissenschaften Hans Walser Mathematik für Naturwissenschaften Modul 0 Einführung Hans Walser: Modul 0, Einführung ii Inhalt Zahlen.... Natürliche Zahlen.... Ganze Zahlen.... Rationale Zahlen.... Reelle Zahlen... Smbole....

Mehr

Vorkurs Mathematik-Physik, Teil 5 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 5 c 2016 A. Kersch Vorkurs Mathematik-Physik, Teil 5 c 206 A. Kersch Vektoren. Vektorrechnung Definition Ein Vektor ist eine gerichtete Größe welche einen Betrag ( Zahl und eine Richtung ( in 2D, 2 in 3D hat. Alternativ

Mehr

Erster Zirkelbrief: Komplexe Zahlen

Erster Zirkelbrief: Komplexe Zahlen Matheschülerzirkel Universität Augsburg Schuljahr 04/05 Erster Zirkelbrief: Komplexe Zahlen Inhaltsverzeichnis Zahlenbereiche. Natürliche Zahlen................................. Ganze Zahlen...................................3

Mehr

Vorbereitungskurs Mathematik

Vorbereitungskurs Mathematik Vorbereitungskurs Mathematik Grundlagen für das Unterrichtsfach Mathematik für die Fachhochschulreifeprüfung Zweijährige Höhere Berufsfachschule Berufsoberschule I Duale Berufsoberschule Inhalt 0. Vorwort...

Mehr

1. Elementare Algebra

1. Elementare Algebra 1. Elementare Algebra Mit Ausnahme des Abschnitts 1.3 wiederholen wir in diesem Kapitel einige wichtige Regeln und Formeln aus der Schulmathematik, die erfahrungsgemäß bei den meisten Studenten nicht in

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Poelchau-Oberschule Berlin A. Mentzendorff September 2007 Lineare Gleichungssysteme Inhaltsverzeichnis 1 Grundlagen 2 2 Das Lösungsverfahren von Gauß 4 3 Kurzschreibweise und Zeilensummenkontrolle 6 4

Mehr

Polynome sind Gefangene ihrer leicht durchschaubaren Eigenschaften.

Polynome sind Gefangene ihrer leicht durchschaubaren Eigenschaften. Polynome und mehrfache Nullstellen Polynome sind Gefangene ihrer leicht durchschaubaren Eigenschaften. Stichwort: Polynome im Affenkasten www.mathematik-verstehen.de 1 Polynome und mehrfache Nullstellen

Mehr

Quadratische Funktionen und Gleichungen Mathematik Jahrgangsstufe 9 (G8) Bergstadt-Gymnasium Lüdenscheid. Friedrich Hattendorf

Quadratische Funktionen und Gleichungen Mathematik Jahrgangsstufe 9 (G8) Bergstadt-Gymnasium Lüdenscheid. Friedrich Hattendorf Mathematik Jahrgangsstufe 9 (G8) Lüdenscheid Friedrich Hattendorf 4. September 2014 Vorbemerkung Die Datei entsteht noch; noch nicht alles ist optimal Hinweis zum Ausdruck: (Fast) Alles sollte noch gut

Mehr

i n diese Gegend wäre ich ohne GC nie...

i n diese Gegend wäre ich ohne GC nie... GC5833Y i n diese Gegend wäre ich ohne GC nie... Beim Geocaching kommt man gelegentlich an Stellen oder in Gegenden, wo man sonst nie hingekommen wäre. So etwas Ähnliches soll auch hier passieren. Der

Mehr

Die gleiche Lösung erhält man durch Äquivalenzumformung:

Die gleiche Lösung erhält man durch Äquivalenzumformung: R. Brinkmann http://brinkmann-du.de Seite 3..0 Quadratische Gleichungen Reinquadratische Gleichung Lösen Sie die Gleichung x = 5 Durch probieren erhält man die Lösung: x = 5 oder x = 5 Denn x = 5 = 5 oder

Mehr

ELEMENTAR-MATHEMATIK

ELEMENTAR-MATHEMATIK WILLERS ELEMENTAR-MATHEMATIK Ein Vorkurs zur Höheren Mathematik 13., durchgesehene Auflage von Dr.-Ing. G. Opitz und Dr. phil. H. Wilson Mit 189 Abbildungen VERLAG THEODOR STEINKOPFF DRESDEN 1968 Inhaltsverzeichnis

Mehr

Kapitel 2 Algebra und Arithmetik. Inhalt

Kapitel 2 Algebra und Arithmetik. Inhalt Kapitel 2 Algebra und Arithmetik Seite 1 Inhalt 2.1 Zahlbereiche N, Z, Q, R 2.2 Terme und (Un-) Gleichungen Lineare und quadratische Gleichungen, Nullstellen von Polynomen und gebrochenrationalen Funktionen,

Mehr

Betrag 1-E. Vorkurs, Mathematik

Betrag 1-E. Vorkurs, Mathematik Betrag 1-E Vorkurs, Mathematik Abstand Abb. 1-1a: Graphische Bestimmung der Punkte auf der Zahlengerade, deren Abstand von Null gleich 3 ist. Stellen wir uns folgende Aufgabe vor: Es soll eine Zahl oder

Mehr

4.1. Grundlegende Definitionen. Elemente der Analysis I Kapitel 4: Funktionen einer Variablen. 4.2 Graphen von Funktionen

4.1. Grundlegende Definitionen. Elemente der Analysis I Kapitel 4: Funktionen einer Variablen. 4.2 Graphen von Funktionen 4.1. Grundlegende Definitionen Elemente der Analysis I Kapitel 4: Funktionen einer Variablen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 22./29. November 2010 http://www.mathematik.uni-trier.de/

Mehr

1 Vektoren, Vektorräume, Abstände: 2D

1 Vektoren, Vektorräume, Abstände: 2D Vektoren, Vektorräume, Astände: D Definition: Die Menge aller (geordneten Paare reeller Zahlen (oder allgemeiner: Elemente eines elieigen Körpers, als Spalten geschrieen, ezeichnen wir als Vektoren: R

Mehr

Erste Schularbeit Mathematik Klasse 7A G am

Erste Schularbeit Mathematik Klasse 7A G am Erste Schularbeit Mathematik Klasse 7A G am 12.11.2015 SCHÜLERNAME: Punkte im ersten Teil: Punkte im zweiten Teil: Davon Kompensationspunkte: Note: Notenschlüssel: Falls die Summe der erzielten Kompensationspunkte

Mehr

Einiges zu den Potenzfunktionen. Exponentialfunktionen

Einiges zu den Potenzfunktionen. Exponentialfunktionen Einiges zu den Potenzfunktionen Es sind zunächst zwei Arten der Potenzfunktionen zu unterscheiden. Erstens die eigentlichen Potenzfunktionen, bei denen die Variable x als Basis von Potenzen vorkommt. Diese

Mehr

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient. Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe:

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe: Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II Mathematik Symbol, Definition N N 0 Z Q Z + + Q 0 A = {a 1,, a n } Deutsch Erklärung Mengenbegriffe: natürlichen Zahlen natürlichen Zahlen

Mehr

Kapitel 6. Exponentialfunktion

Kapitel 6. Exponentialfunktion Kapitel 6. Exponentialfunktion 6.1. Potenzreihen In Kap. 4 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

1.3. Beträge, Gleichungen und Ungleichungen

1.3. Beträge, Gleichungen und Ungleichungen .3. Beträge, Gleichungen und Ungleichungen Das Maimum zweier Zahlen a, b (also die größere von beiden) wird mit ma(a,b) bezeichnet, ihr Minimum (also die kleinere von beiden) mit min(a,b). Der Absolutbetrag

Mehr

Analytische Geometrie, Vektorund Matrixrechnung

Analytische Geometrie, Vektorund Matrixrechnung Kapitel 1 Analytische Geometrie, Vektorund Matrixrechnung 11 Koordinatensysteme Eine Gerade, eine Ebene oder den Anschauungsraum beschreibt man durch Koordinatensysteme 111 Was sind Koordinatensysteme?

Mehr

Leitfaden a tx t

Leitfaden a tx t Leitfaden -0.7. Potenz-Reihen. Definition: Es sei (a 0, a, a 2,...) eine Folge reeller Zahlen (wir beginnen hier mit dem Index t 0). Ist x R, so kann man die Folge (a 0, a x, a 2 x 2, a 3 x 3,...) und

Mehr

UND MOSES SPRACH AUCH DIESE GEBOTE

UND MOSES SPRACH AUCH DIESE GEBOTE UND MOSES SPRACH AUCH DIESE GEBOTE 1. Gebot: Nur die DUMMEN kürzen SUMMEN! Und auch sonst läuft bei Summen und Differenzen nichts! 3x + y 3 darfst Du NICHT kürzen! x! y. Gebot: Vorsicht bei WURZELN und

Mehr

Mathematik 1 für Chemische Technologie 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N =

Mathematik 1 für Chemische Technologie 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = {1, 2, 3, 4,... }. N ist abgeschlossen bezüglich der Addition und Multiplikation: a, b N mit

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I (Wintersemester 2003/2004) Aufgabenblatt 9

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

3 Vektoren. 3.1 Kartesische Koordinaten in Ebene und Raum. Höhere Mathematik 60

3 Vektoren. 3.1 Kartesische Koordinaten in Ebene und Raum. Höhere Mathematik 60 Kartesische Koordinaten in Ebene und Raum 3 Vektoren 3.1 Kartesische Koordinaten in Ebene und Raum In der Ebene (mathematisch ist dies die Menge R 2 ) ist ein kartesisches Koordinatensystem festgelegt

Mehr

Faktorisierung bei Brüchen und Bruchtermen

Faktorisierung bei Brüchen und Bruchtermen Faktorisierung bei Brüchen und Bruchtermen Rainer Hauser Mai 2016 1 Einleitung 1.1 Rationale Zahlen Teilt man einen Gegenstand in eine Anzahl gleich grosse Stücke, so bekommt man gebrochene Zahlen, die

Mehr

Komplexe Zahlen. Inhaltsverzeichnis. 1. Vorwort Historischer Rückblick 1

Komplexe Zahlen. Inhaltsverzeichnis. 1. Vorwort Historischer Rückblick 1 Komplexe Zahlen Kapitel Inhaltsverzeichnis Seite 1. Vorwort 1 2. Historischer Rückblick 1 3. Die Definition der komplexen Zahlen 2-3 3.1 Das Symbol i 2 3.2 Komplexe Zahlen 3 4. Darstellungsformen in der

Mehr

( ) ( ) Schnittpunkt mit der y Achse P 0 y : Bedingung: y = f 0. y s s

( ) ( ) Schnittpunkt mit der y Achse P 0 y : Bedingung: y = f 0. y s s R. Brinkmann http://brinkmann-du.de Seite 07.0.0 Achsenschnittpunkte ganzrationaler Funktionen Schnittpunkt mit der y Achse P 0 y : Bedingung: y = f 0 y s s f = f 0 = 0 0 = 0 0 = P ( 0 ) oder P ( 0 f(0)

Mehr

Primzahlen und die Riemannsche Vermutung

Primzahlen und die Riemannsche Vermutung Primzahlen und die Riemannsche Vermutung Benjamin Klopsch Mathematisches Institut Heinrich-Heine-Universität zu Düsseldorf Tag der Forschung November 2005 Untersuchung über die Häufigkeit der Primzahlen

Mehr

Inhaltsverzeichnis Mathematik

Inhaltsverzeichnis Mathematik 1. Mengenlehre 1.1 Begriff der Menge 1.2 Beziehungen zwischen Mengen 1.3 Verknüpfungen von Mengen (Mengenoperationen) 1.4 Übungen 1.5 Übungen (alte BM-Prüfungen) 1.6 Zahlenmengen 1.7 Grundmenge (Bezugsmenge)

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

Zahlen und elementares Rechnen (Teil 1)

Zahlen und elementares Rechnen (Teil 1) und elementares Rechnen (Teil 1) Dr. Christian Serpé Universität Münster 6. September 2010 Dr. Christian Serpé (Universität Münster) und elementares Rechnen (Teil 1) 6. September 2010 1 / 40 Gliederung

Mehr

56 Kapitel 6 Reelle Funktionen. B) Quadratische Funktionen: Eine Funktion der Gestalt. f(x) := ax 2 + bx + c (mit a 0)

56 Kapitel 6 Reelle Funktionen. B) Quadratische Funktionen: Eine Funktion der Gestalt. f(x) := ax 2 + bx + c (mit a 0) 55 6 Reelle Funktionen 6.1 Beispiele von Funktionen A) Lineare Funktionen: Seien a, b R, a 0. Dann heißt die Funktion f : R R, die durch definiert wird, eine lineare Funktion. 1 f(x) := ax + b Lineare

Mehr

6 Reelle und komplexe Zahlenfolgen

6 Reelle und komplexe Zahlenfolgen $Id: folgen.tex,v.7 200//29 :58:57 hk Exp hk $ 6 Reelle und komplexe Zahlenfolgen 6. Folgenkonvergenz In der letzten Sitzung hatten wir den Begriff der Konvergenz einer reellen oder komplexen Folge gegen

Mehr

Komplexe Zahlen. Die bildliche Vorstellung einer komplexen Zahl z = (a, b) stellt ein Punkt in der Bildebene dar. Die Elemente der Menge:

Komplexe Zahlen. Die bildliche Vorstellung einer komplexen Zahl z = (a, b) stellt ein Punkt in der Bildebene dar. Die Elemente der Menge: Komplexe Zahlen Die bildliche Vorstellung einer komplexen Zahl z = (a, b) stellt ein Punkt in der Bildebene dar. Die Elemente der Menge: R = R R = {(a, b) a, b R} heißen komplexe Zahlen wenn für die Verknüpfung

Mehr

Mathematische Zeichen und Abkürzungen 11. Grundlagen der Aussagenlogik und der Mengenlehre 13

Mathematische Zeichen und Abkürzungen 11. Grundlagen der Aussagenlogik und der Mengenlehre 13 Inhaltsverzeichnis Mathematische Zeichen und Abkürzungen 11 Grundlagen der Aussagenlogik und der Mengenlehre 13 1 Grundbegriffe der Aussagenlogik und ihre Verwendung in der Datenverarbeitung 13 1.1 Aussagen

Mehr

Doppelintegrale. rd dr. Folie 1

Doppelintegrale. rd dr. Folie 1 Doppelintegrale G fda f, dd R R G 1 f ( rcos, rsin) rd dr Folie 1 Doppelintegrale einführendes Beispiel Als Vorwissen sollten Sie die Grundlagen ur Integration mitbringen (s..b. L. Papula, Mathematik für

Mehr

Verschiebung/Streckung von Funktionsgraphen. Verwenden von Schablonen zum Zeichnen von Funktionsgraphen. Idee der Koordinatentransformation

Verschiebung/Streckung von Funktionsgraphen. Verwenden von Schablonen zum Zeichnen von Funktionsgraphen. Idee der Koordinatentransformation Verschiebung/Streckung von Funktionsgraphen Verwenden von Schablonen zum Zeichnen von Funktionsgraphen Idee der Koordinatentransformation Rahmenlehrplan Berlin P4 9/10: Situationen mit n und Potenzfunktionen

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = = 360 360 Das Bogenmaß eines Winkels ist

Mehr

Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung:

Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung: Vektorrechnung eine Einführung Einleitung: Um beispielsweise das Dreieck ABC in der Abbildung an die Position A'B'C' zu verschieben, muss jeder Punkt um sieben Einheiten nach rechts und drei nach oben

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = 2 = 360 360 Das Bogenmaß eines Winkels ist

Mehr

Die projektive Ebene Was sind unendlich ferne Punkte?

Die projektive Ebene Was sind unendlich ferne Punkte? Die projektive Ebene Was sind unendlich ferne Punkte? Prof. Dr. Hans-Georg Rück Fachbereich Mathematik/Informatik Universität Kassel Heinrich-Plett-Str. 40 34132 Kassel Zusammenfassung: Wir konstruieren

Mehr

Einleitung, historischer Hintergrund

Einleitung, historischer Hintergrund i i i Einleitung, historischer Hintergrund Der kürzester Weg zwischen zwei Wahrheiten im Reellen verläuft über das Komplexe. (Hadamard 1865-1963) 1-E1 unmöglich, eingebildet, imaginär 1-E2 Carl Friedrich

Mehr

Reelle Zahlen, Gleichungen und Ungleichungen

Reelle Zahlen, Gleichungen und Ungleichungen 9 2. Vorlesung Reelle Zahlen, Gleichungen und Ungleichungen 4 Zahlenmengen und der Körper der reellen Zahlen 4.1 Zahlenmengen * Die Menge der natürlichen Zahlen N = {0,1,2,3,...}. * Die Menge der ganzen

Mehr

DHBW Karlsruhe, Vorlesung Programmieren, Klassen (2)

DHBW Karlsruhe, Vorlesung Programmieren, Klassen (2) DHBW Karlsruhe, Vorlesung Programmieren, Klassen (2) Aufgabe 3 Bankkonto Schreiben Sie eine Klasse, die ein Bankkonto realisiert. Attribute für das Bankkonto sind der Name und Vorname des Kontoinhabers,

Mehr

2.2 Konstruktion der rationalen Zahlen

2.2 Konstruktion der rationalen Zahlen 2.2 Konstruktion der rationalen Zahlen Wie wir in Satz 2.6 gesehen haben, kann man die Gleichung a + x = b in Z jetzt immer lösen, allerdings die Gleichung a x = b im allgemeinen immer noch nicht. Wir

Mehr