ELEMENTAR-MATHEMATIK

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "ELEMENTAR-MATHEMATIK"

Transkript

1 WILLERS ELEMENTAR-MATHEMATIK Ein Vorkurs zur Höheren Mathematik 13., durchgesehene Auflage von Dr.-Ing. G. Opitz und Dr. phil. H. Wilson Mit 189 Abbildungen VERLAG THEODOR STEINKOPFF DRESDEN 1968

2 Inhaltsverzeichnis Aus dem Vorwort zur ersten Auflage Aus dem Vorwort zur fünften Auflage Vorwort zur zwölften und dreizehnten Auflage Griechisches Alphabet Arithmetik und Algebra V V VI XI I. Die vier Grundrechenarten 1. Addition und Subtraktion 1 2. Negative Zahlen 2 3. Multiplikation 2 4. Division 3 5. Faktorenzerlegung 5 II. Bruchrechnung 6. Allgemeines 6 7. Addition und Subtraktion 7 8. Multiplikation und Division 7 9. Aufgaben 8 III. Gleichungen 1. Grades mit einer Unbekannten 10. Allgemeines Beispiele 10 IV. Systeme linearer Gleichungen 12. Zwei lineare Gleichungen mit zwei Unbekannten Allgemeine Lösung von zwei linearen Gleichungen Drei lineare Gleichungen mit drei Unbekannten Dreireihige Determinanten 18 V. Die lineare Funktion 16. Der Begriff der Funktion Graphische Darstellung der Funktion y = mx Die Funktion y = mx + n Graphische Lösung einer linearen Gleichung Graphische Lösung von linearen Gleichungssystemen mit zwei Unbekannten 29 VI. Potenzrechnung und Potenzfunktion 21. Potenzen mit ganzen positiven Exponenten Erste Erweiterung des Potenzbegriffes Die Potenzfunktion y = x* 34 VII. Wurzelrechnung 24. Das Radizieren Rationale und irrationale Zahlen Rechengesetze Rationalmachen des Nenners Zweite Erweiterung des Potenzbegriffes Die Umkehrfunktion Die Exponentialfunktion 53 VII

3 VIII. Die quadratische Gleichung 31. Sonderfälle und vierte Erweiterung des Zahlenbereiches Der allgemeine Fall Ax 2 + Bx+ C= Beziehungen zwischen Koeffizienten und Lösungen Aufgaben Die Beträge beider Lösungen sind sehr verschieden 63 jj 36. Wurzelgleichungen Die quadratische Funktion Graphische Lösung der quadratischen Gleichung 68 IX. Ungleichungen 68 X. Der Logarithmus 39. Der Begriff des Logarithmus Die logarithmische Funktion Logarithmengesetze Zusammenhang zwischen den Logarithmensystemen Der Zehner-Logarithmus Lineare Interpolation Beispiele 78 XL Die arithmetische und die geometrische Reihe 46. Die arithmetische Reihe Die endliche geometrische Reihe Das Summenzeichen 86 XII. Der binomische Satz 49. Die Binomialkoeffizienten Beweis des binomischen Satzes durch vollständige Induktion Die Ungleichung von Bernoulli Symmetriesatz der Binomialkoeffizienten 95 Goniometrie und Trigonometrie XIII. VIII Goniometrie 53. Gradmaß und Bogenmaß Die Winkelfunktionen im rechtwinkligen Dreieck Verallgemeinerung des Winkelfunktionsbegriffes Verlauf der trigonometrischen Funktionen Beziehungen zwischen verschiedenen Funktionen des gleichen Winkels Benutzung der Funktionstafeln Werte der Funktionen von beliebigen Winkeln Die Additionstheoreme Folgerungen aus den Additionstheoremen Summe und Differenz der sin- und cos-werte zweier Winkel XIV. Goniometrische Bestimmungsgleichungen 63. Gleichungen mit einer Unbekannten Goniometrische Gleichungen mit zwei Unbekannten 115 XV. Berechnung des schiefwinkligen Dreiecks 65. Der Sinussatz Anwendung des Sinussatzes auf die Dreiecksberechnung Der Cosinussatz Weitere Dreiecksformeln Aufgaben 124 XVI. Komplexe Zahlen 70. Imaginäre Zahlen Komplexe Zahlen Gaußsche Zahlenebene Die vier Grundrechenarten in der Gaußschen Zahlenebene 130

4 74. Das Eechnen mit den Beträgen komplexer Zahlen Der Satz von Moivre Das Radizieren einer komplexen Zahl Die binomische Gleichung 138 Analytische Geometrie der Ebene XVII. Die Strecke 78. Länge und Richtung einer Strecke Innere und äußere Teilung einer Strecke Dreiecks- und Vielecksinhalt 145 XVIII. Die Gerade 81. Verschiedene Formen der Geradengleichung Punktrichtungs- und Zweipunktgleichung Die Hessesche Normalform Die Gleichungen der Winkelhalbierenden Schnittpunkt und Schnittwinkel zweier Geraden Koordinatentransformation 157 XIX. Der Kreis 87. Die Kreisgleichung Die Gleichung der Kreistangente 162 XX. Die Kegelschnitte 89. Erste Definition der Kegelschnitte Zweite Definition der Kegelschnitte Die Scheitelgleichung der Kegelschnitte Die Parabel Die Ellipse Die Hyperbel Die Asymptoten der Hyperbel Geometrische Eigenschaften der Mittelpunktskegelschnitte Geometrische Eigenschaften der Parabel Transformation der Kegelschnittgleichungen durch Parallelverschiebung und Drehung des Koordinatensystems Das Hauptachsenproblem Polarkoordinaten Die Polargleichung der Geraden Die Polargleichung der Kegelschnitte 201 XXI. Aufstellen von Kurvengleichungen 103. Die Parameterdarstellung Geometrische Örter 207 Vektoralgebra XXII. Das räumliche kartesische Koordinatensystem 105. Rechts- und Linkssysteme Der räumliche Pythagoras Die Richtungscosinus Abstand zweier Punkte Aufgaben 217 XXIII. Der Vektor 110. Der Begriff des Vektors Rechenregeln Spezielle Vektoren Vektoren in der Physik Komponenten Beispiele Aufgaben 228 IX

5 XXIV. Das skalare Produkt 117. Definition Rechenregeln Das skalare Produkt in Komponentendarstellung Folgerungen Anwendungsbeispiele Aufgaben 237 XXV. Das Vektorprodukt 123. Definition Rechenregeln Komponentendarstellung Beispiele Aufgaben 242 XXVI. Mehrfache Vektorprodukte 128. Das Spatprodukt Beispiele Das dreifache Vektorprodukt Produkte mit mehr als drei Faktoren Aufgaben 249 Anhang XXVII. Unendliche Folgen und Reihen 133. Die unendliche geometrische Reihe Die unendliche Folge Die unendliche Reihe 256 Lösungen 258 Namen- und Sachverzeichnis 315 X

ELEMENTAR-MATHEMATIK

ELEMENTAR-MATHEMATIK ELEMENTAR-MATHEMATIK ELEMENTAR-MATHEMATIK Ein Vorkurs zur Höheren Mathematik Begründet von PROF. DR. DR. FRIEDRICH ADOLF WILLERS t Dresden 14. überarbeitete Auflage von DIPL.-ING. KLAUS-GEORG KRAPF Darmstadt

Mehr

Vorkurs der Ingenieurmathematik

Vorkurs der Ingenieurmathematik Jürgen Wendeler 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Vorkurs der Ingenieurmathematik Mit 249 Aufgaben

Mehr

Algebra und Geometrie für Ingenieure

Algebra und Geometrie für Ingenieure Algebra und Geometrie für Ingenieure von Dr. H. Nickel, Dr. G. Kettwig, H. Beinhoff, W. Pauli, Prof. Dr.-Ing. H. Kreul, Prof. Dr.-Ing. W. Leupold 17. Auflage Mit 365 Bildern und 1062 Aufgaben mit Lösungen

Mehr

Mathematik- Vorkurs. Übungs- und Arbeitsbuch für Studienanfänger

Mathematik- Vorkurs. Übungs- und Arbeitsbuch für Studienanfänger Mathematik- Vorkurs Übungs- und Arbeitsbuch für Studienanfänger Von Prof. Dr. rer. nat. habil. Wolfgang Schäfer Oberstudienrat Kurt Georgi und Doz. Dr. rer. nat. habil. Gisela Trippier Unter Mitarbeit

Mehr

Inhaltsverzeichnis. Inhalt. Einleitung Vektoralgebra

Inhaltsverzeichnis. Inhalt. Einleitung Vektoralgebra Inhalt 3 Inhaltsverzeichnis Einleitung...9 1 Vektoralgebra 1.1 Geometrische Darstellung von Vektoren... 14 1.1.1 Begriff des Vektors... 14 1.1.2 Inverser Vektor und Nullvektor... 17 1.1.3 Addition von

Mehr

Arithmetik, Algebra, Mengen- und Funktionenlehre

Arithmetik, Algebra, Mengen- und Funktionenlehre Carsten Gellrich Regina Gellrich Arithmetik, Algebra, Mengen- und Funktionenlehre Mit zahlreichen Abbildungen, Aufgaben mit Lösungen und durchgerechneten Beispielen VERLAG HARRI DEUTSCH Inhaltsverzeichnis

Mehr

Mathematik für die ersten Semester

Mathematik für die ersten Semester Mathematik für die ersten Semester von Prof. Dr. Wolfgang Mückenheim 2., verbesserte Auflage Oldenbourg Verlag München Inhaltsverzeichnis I Grundlagen 1 1 Logik 3 2 Mengen 7 3 Relationen 15 3.1 Abbildungen

Mehr

Inhalt. Inhaltsverzeichnis. Einleitung Vektoralgebra

Inhalt. Inhaltsverzeichnis. Einleitung Vektoralgebra 3 Inhaltsverzeichnis Einleitung... 9 1 Vektoralgebra 1.1 Geometrische Darstellung von Vektoren... 14 1.1.1 Begriff des Vektors... 14 1.1.2 Inverser Vektor und Nullvektor... 17 1.1.3 Addition von Vektoren...

Mehr

Mathematik. für die ersten Semester von Prof. Dr. Wolfgang Mückenheim. OldenbourgVerlag München

Mathematik. für die ersten Semester von Prof. Dr. Wolfgang Mückenheim. OldenbourgVerlag München Mathematik für die ersten Semester von Prof. Dr. Wolfgang Mückenheim OldenbourgVerlag München Inhaltsverzeichnis I 1 2 3 3.1 11 4 4.1 4.2 4.3 5 5.1 5.2 5.3 5.4 5.5 5.6 Grundlagen Logik 3 Mengen 7 Relationen

Mehr

Einführung in die Mathematik

Einführung in die Mathematik Helmut Koch Einführung in die Mathematik Hintergründe der Schulmathematik Zweite, korrigierte und erweiterte Auflage Springer Inhaltsverzeichnis Einleitung 1 1 Natürliche Zahlen 11 1.1 Zählen 11 1.2 Die

Mehr

Mathematik für Naturwissenschaftler

Mathematik für Naturwissenschaftler Mathematik für Naturwissenschaftler von Prof. Dr. Bartel Leendert van der Waerden Universität Zürich Wissenschaftsverlag Mannheim/Wien/Zürich INHALTSVERZEICHNIS 1. Teil: Analytische Geometrie und Vektorrechnung

Mehr

Inhaltsverzeichnis. 1 Hinweise zur Benutzung des Buches... 1

Inhaltsverzeichnis. 1 Hinweise zur Benutzung des Buches... 1 1 Hinweise zur Benutzung des Buches... 1 2 Zur Technik des Zahlenrechnens... 5 2.1 DerZahlbegriff... 5 2.1.1 DienatürlichenZahlen... 5 2.1.2 DasdekadischePositionssystem... 7 2.1.3 DasdualePositionssystem...

Mehr

Mathematik-1, Wintersemester Vorlesungsplan, Übungen, Hausaufgaben

Mathematik-1, Wintersemester Vorlesungsplan, Übungen, Hausaufgaben Mathematik-1, Wintersemester 2014-15 Vorlesungsplan, Übungen, Hausaufgaben Vorlesungen: Lubov Vassilevskaya Übungen: Dr. Wilhelm Mons, Lubov Vassilevskaya http://www.math-grain.de/ Inhaltsverzeichnis 1.

Mehr

Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie

Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie Regina Gellrich Carsten Gellrich Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie Mit zahlreichen Abbildungen, Aufgaben mit Lösungen und durchgerechneten Beispielen

Mehr

1 Arithmetik 1 1.1 Mengen 1 1.2 Aussageformen und logische Zeichen 4 1.3 Einteilung der Zahlen 8 1.4 Grundrechenarten 11 1.5 Grundlegende Rechenregeln 12 1.5.1 Buchstabenrechnen 12 1.5.2 Kehrwert, Quersumme

Mehr

Inhaltsverzeichnis. Vorwort 1. I Zahlen 5. II Algebra 29

Inhaltsverzeichnis. Vorwort 1. I Zahlen 5. II Algebra 29 Inhaltsverzeichnis Vorwort 1 I Zahlen 5 1. Rechnen mit ganzen Zahlen 6 Addition, Subtraktion und Multiplikation............. 7 Division mit Rest........................... 7 Teiler und Primzahlen........................

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik Eine Einführung mit Beispielen und Übungsaufgaben von Prof. Dr. Karl Bosch 14., korrigierte Auflage Oldenbourg Verlag München Inhaltsverzeichnis 1 Grundlagen der Mengenlehre 1 1.1

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik Von Dr. Karl Bosch Professor für angewandte Mathematik und Statistik an der Universität Stuttgart-Hohenheim 10., verbesserte Auflage R. Oldenbourg Verlag München Wien Inhaltsverzeichnis

Mehr

Inhalt. 1 Rechenoperationen Gleichungen und Ungleichungen... 86

Inhalt. 1 Rechenoperationen Gleichungen und Ungleichungen... 86 Inhalt 1 Rechenoperationen.................................. 13 1.1 Grundbegriffe der Mengenlehre und Logik............................. 13 1.1.0 Vorbemerkung.................................................

Mehr

Heinz Rapp. Mathematik. Grundlagen für die Fachschule Technik. Mit über 500 Abbildungen 2., überarbeitete Auflage. vieweg

Heinz Rapp. Mathematik. Grundlagen für die Fachschule Technik. Mit über 500 Abbildungen 2., überarbeitete Auflage. vieweg Heinz Rapp Mathematik Grundlagen für die Fachschule Technik Mit über 500 Abbildungen 2., überarbeitete Auflage 31 vieweg Inhaltsverzeichnis 1 Mathematische Begriffe und Schreibweisen 1 1.1 Zahlen 1 1.1.1

Mehr

Mathematik leicht gemacht

Mathematik leicht gemacht Hans Kreul Mathematik leicht gemacht Verlag Harri Deutsch Inhaltsverzeichnis 1 Hinweise zur Benutzung des Buches 1 2 Zur Technik des Zahlenrechnens 5 2.1 Der Zahlbegriff 5 2.1.1 Die natürlichen Zahlen

Mehr

Lineare Algebra und Geometrie für Ingenieure

Lineare Algebra und Geometrie für Ingenieure Lineare Algebra und Geometrie für Ingenieure Eine, anwendungsbezogene Einführung mit Übungen Prof. Dr. Manfred Andrie Dipl.-Ing. Paul Meier 3. Auflage VER^G Inhaltsverzeichnis MENGEN 1 Grundbegriffe 13

Mehr

Inhaltsverzeichnis. Vorwort. I Zahlen 5. II Algebra 29

Inhaltsverzeichnis. Vorwort. I Zahlen 5. II Algebra 29 Inhaltsverzeichnis Vorwort I Zahlen 5 1. Rechnen mit ganzen Zahlen 6 Addition, Subtraktion und Multiplikation 7 Division mit Rest 7 Teiler und Primzahlen 9 Der ggt und das kgv 11 2. Rechnen mit Brüchen

Mehr

MATHEMATISCHE AUFGABENSAMMLUNG

MATHEMATISCHE AUFGABENSAMMLUNG MATHEMATISCHE AUFGABENSAMMLUNG Arithmetik Algebra und Analysis Zweite verbesserte Auflage 1956 VEB DEUTSCHER VERLAG DER WISSENSCHAFTEN BERLIN VII INHALT ERSTER ABSCHNITT Rechnen mit natürlichen Zahlen

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Geometrie für Studierende der Technik und zum Selbststudium Von Dr. Adolf Hess Professor am kantonalen Technikum in Wintertbur Dritte Auflage Mit 105 Textabbildungen Springer-Verlag Berlin

Mehr

Aufgabensammlung der höheren Mathematik

Aufgabensammlung der höheren Mathematik W. P. Minorski Aufgabensammlung der höheren Mathematik 13. Auflage Mit 92 Bildern und 2570 Aufgaben mit Lösungen Fachbuchverlag Leipzig-Köln * Inhaltsverzeichnis 1. Analytische Geometrie der Ebene 11 1.1.

Mehr

3vieweg. Mathematik zum Studienbeginn. Arnfried Kemnitz

3vieweg. Mathematik zum Studienbeginn. Arnfried Kemnitz Arnfried Kemnitz Mathematik zum Studienbeginn Grundlagenwissen für alle technischen, mathematisch-naturwissenschaftlichen und wirtschaftswissenschaftlichen Studiengänge 3vieweg Vll Inhaltsverzeichnis 1

Mehr

Passerelle. Beschrieb der Fach-Module. von der Berufsmaturität. zu den universitären Hochschulen

Passerelle. Beschrieb der Fach-Module. von der Berufsmaturität. zu den universitären Hochschulen Passerelle von der Berufsmaturität zu den universitären Hochschulen Beschrieb der Fach-Module Fachbereich Mathematik Teilmodule Teilmodul 1: Analysis (Differential- und Integralrechnung) Teilmodul 2: Vektorgeometrie

Mehr

Inhaltsverzeichnis. I Planimetrie.

Inhaltsverzeichnis. I Planimetrie. Inhaltsverzeichnis I Planimetrie. Winkel 1.1 Einführung 1.1.1 Definition eines Winkels 1 1.1.2 Messung von Winkeln in Grad (Altgrad) 1 1.1.3 Orientierte Winkel 2 1.1.4 Winkelkategorien 2 1.2 Winkel an

Mehr

Mathematik zum Studienbeginn

Mathematik zum Studienbeginn Arnfried Kemnitz Mathematik zum Studienbeginn Grundlagenwissen für alle technischen, mathematisch-naturwissenschaftlichen und wirtschaftswissenschaftlichen Studiengänge 10., aktualisierte Auflage STUDIUM

Mehr

Inhaltsverzeichnis. xiii. Vorworte

Inhaltsverzeichnis. xiii. Vorworte Inhaltsverzeichnis Vorworte xiii I Einführung 1 I.1 Ein paar Beispiele............................... 1 I.2 Interpretation von Schaubildern....................... 3 I.3 Mathematische Beschreibung von Abhängigkeiten.............

Mehr

Otto Rang. Vektoralgebra. Mit 94 Abbildungen und 66 Übungsaufgaben mit Lösungen. Dr. Dietrich Steinkopff Verlag Darmstadt

Otto Rang. Vektoralgebra. Mit 94 Abbildungen und 66 Übungsaufgaben mit Lösungen. Dr. Dietrich Steinkopff Verlag Darmstadt Otto Rang Vektoralgebra Mit 94 Abbildungen und 66 Übungsaufgaben mit Lösungen Dr. Dietrich Steinkopff Verlag Darmstadt Vorwort Inhaltsverzeichnis 1. Die Vektordefinition und einfachere Gesetzmäßigkeiten

Mehr

BM Stoffplan Mathematik BMS 1 (3-jährig) Lehrmittel Mathematik I Algebra (hep Verlag) Skript Jakob/Göldi/Saier

BM Stoffplan Mathematik BMS 1 (3-jährig) Lehrmittel Mathematik I Algebra (hep Verlag) Skript Jakob/Göldi/Saier 1/6 L.8. Organisatorisches 0 6 Wo Arithmetik I 1.1.1-1.1.2 : Zahlenmengen, Zahlenstrahl S.1 Ü 1, 2 S. 0 23.8. MA I-1 1.1.3 Terme S. 7 Ü 3, S. 0 Addition, Subtraktion 1.2 Addition und Subtraktion S. Ü 5.

Mehr

Grundlagen für die Mittelstufe 7 1. SYMBOLE UND ZEICHEN DIE NATÜRLICHEN ZAHLEN N...19

Grundlagen für die Mittelstufe 7 1. SYMBOLE UND ZEICHEN DIE NATÜRLICHEN ZAHLEN N...19 Grundlagen für die Mittelstufe 7 Inhaltsverzeichnis 1. SYMBOLE UND ZEICHEN...17 2. DIE NATÜRLICHEN ZAHLEN N...19 2.1. Ziffernsysteme...19 2.1.1. Dekadisches Zehnersystem...19 2.1.1.1. Darstellung am Zahlenstrahl...20

Mehr

EINFÜHRUNG IN DIE ANALYTISCHE GEOMETRIE UND LINEARE ALGEBRA

EINFÜHRUNG IN DIE ANALYTISCHE GEOMETRIE UND LINEARE ALGEBRA EINFÜHRUNG IN DIE ANALYTISCHE GEOMETRIE UND LINEARE ALGEBRA VON SIEGFRIED BREHMER UND HORST BELKNER MIT 146 A B B I L D U N G E N VEB DEUTSCHER VERLAG DER WISSENSCHAFTEN BERLIN 1966 INHALTSVERZEICHNIS

Mehr

Mathematik für Ingenieure mit Maple

Mathematik für Ingenieure mit Maple Thomas Westermann Mathematik für Ingenieure mit Maple Band 1: Differential- und Integralrechnung für Funktionen einer Variablen, Vektor- und Matrizenrechnung, Komplexe Zahlen, Funktionenreihen Mit 300

Mehr

Mathematik zum Studienbeginn

Mathematik zum Studienbeginn Arnfried Kemnitz Mathematik zum Studienbeginn Grundlagenwissen für alle technischen, mathematisch-naturwissenschaftlichen und wirtschaftswissenschaftlichen Studiengänge 9., überarbeitete und erweiterte

Mehr

Mathematik leicht gemacht

Mathematik leicht gemacht Mathematik leicht gemacht von Hans Kreul, Harald Ziebarth überarbeitet Mathematik leicht gemacht Kreul / Ziebarth schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Harri Deutsch 2006

Mehr

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth REPETITORIUM DER HÖHEREN MATHEMATIK Gerhard Merziger Thomas Wirth 6 INHALTSVERZEICHNIS Inhaltsverzeichnis Fl Formelsammlung F2 Formelsammlung Alphabete 11 Zeichenindex 12 1 Grundbegriffe 14 1.1 Logische

Mehr

Mathematik für Ingenieure mit Maple

Mathematik für Ingenieure mit Maple Thomas Westermann Mathematik für Ingenieure mit Maple Band 1: Differential- und Integralrechnung für Funktionen einer Variablen, Vektor- und Matrizenrechnung, Komplexe Zahlen, Funktionenreihen 2. Auflage

Mehr

JoachimlRisius. Vektorrechnung. Koordinaten, Vektoren, Matrizen, Tensoren und Grundlagen der Vektoranalysis. VOGEL-VERU^G

JoachimlRisius. Vektorrechnung. Koordinaten, Vektoren, Matrizen, Tensoren und Grundlagen der Vektoranalysis. VOGEL-VERU^G JoachimlRisius Vektorrechnung Koordinaten, Vektoren, Matrizen, Tensoren und Grundlagen der Vektoranalysis. VOGEL-VERU^G Inhaltsverzeichnis 1. Darstellung von Punkten durch Koordinatensysteme 11 1.1. Die

Mehr

Mathematischer Vorkurs

Mathematischer Vorkurs Klaus Hefft Mathematischer Vorkurs zum Studium der Physik Das Begleitbuch zum Heidelberger Online-Kurs ELSEVIER SPEKTRUM AKADEMISCHER VERLAG Spektrum k_/l AKADEMISCHER VERLAG Inhaltsverzeichnis Vorwort

Mehr

Kapitel I. Grundlagen der ebenen euklidischen Geometrie... 5 Einleitung Affine Ebenen... 7

Kapitel I. Grundlagen der ebenen euklidischen Geometrie... 5 Einleitung Affine Ebenen... 7 Inhaltsverzeichnis Prolog. Die Elemente des Euklid... 1 1. Euklid 2. Axiome 3. Über die Sprache der Geometrie Kapitel I. Grundlagen der ebenen euklidischen Geometrie... 5 Einleitung... 5 1. Affine Ebenen...

Mehr

Inhaltsverzeichnis VII. Vorwort...

Inhaltsverzeichnis VII. Vorwort... VII Vorwort... V 1 Mathematische Begriffe und Schreibweisen... 1 1.1 Zahlen... 1 1.1.1 Zahlendarstellung auf der Zahlengeraden... 2 1.2 Mengen... 3 1.2.1 Aufzählende Mengenschreibweise... 4 1.2.2 Beschreibende

Mehr

Mathematik für Elektrotechniker

Mathematik für Elektrotechniker Mathematik für Elektrotechniker Methoden - Problemlösungen - Bandl: Grundstufe Anwendungen von Ulrich Freyer und Heinz-Josef Bauckholt Mit 358 Bildern, zahlreichen Beispielen, Übungen und Testaufgaben

Mehr

0 Einleitung I. 1 Elementarmathematik 1

0 Einleitung I. 1 Elementarmathematik 1 Inhaltsverzeichnis 0 Einleitung I i Das Team ist der Primus............................... II ii Eingangstest...................................... III iii Wolfis Welt.......................................

Mehr

Höhere Mathematik für Ingenieure Band II

Höhere Mathematik für Ingenieure Band II Teubner-Ingenieurmathematik Höhere Mathematik für Ingenieure Band II Lineare Algebra Bearbeitet von Klemens Burg, Herbert Haf, Friedrich Wille, Andreas Meister 1. Auflage 2012. Taschenbuch. xvii, 417 S.

Mehr

12 Übungen zu Gauß-Algorithmus

12 Übungen zu Gauß-Algorithmus Aufgaben zum Vorkurs B S. 2 Übungen zu Gauß-Algorithmus 2x x 2 = 7x +, 5x 2 = 7 Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: 2x x 2 = x +2x 2 = 2 2x x 2 = 7x +, 5x 2 =, 5 x 2x 2 = x +x 2 = 5 2x +x 2 = 4

Mehr

Mathematik Werkstätte Sekundarstufe I

Mathematik Werkstätte Sekundarstufe I Kurs I Addition und Subtraktion Tag 1 Zahlenstrahl, Zahlenraum Tag 2 schriftliche Addition Tag 3 schriftliche Subtraktion Tag 4 Zahlenrätsel - Überschlagen - Rechengesetze Kurs II Multiplikation und Division

Mehr

Mathematik für Wirtschaftswissenschaftler und Finanzmathematik

Mathematik für Wirtschaftswissenschaftler und Finanzmathematik Mathematik für Wirtschaftswissenschaftler und Finanzmathematik von Dr. Günter Hettich Verwaltungs- und Wirtschaftsakademie Baden-Württemberg Prof. Dr. Helmut Jüttler Technische Universität Dresden Prof.

Mehr

Inhaltsverzeichnis: Lösungswege 5 E-BOOK+

Inhaltsverzeichnis: Lösungswege 5 E-BOOK+ 1. Zahlen und Zahlenmengen Inhaltsverzeichnis: Lösungswege 5 E-BOOK+ kommentierte Linksammlung: Videos, Zeitungsartikel, Websites zum Thema Zahlen und S. 6 Zahlenmengen GeoGebra-Anleitung: Rechnen mit

Mehr

Die Kandidatin/der Kandidat kann:

Die Kandidatin/der Kandidat kann: 3.4.2 Programm für das erweiterte Niveau Algebra Gleichungen, Ungleichungen und Systeme Komplexe Zahlen Analysis Elementare Funktionen Gleichungen und Systeme von Gleichungen 1. Grades mit einer, zwei

Mehr

Mathematik für Elektrotechniker Methoden - Problemlösungen - Anwendungen

Mathematik für Elektrotechniker Methoden - Problemlösungen - Anwendungen Mathematik für Elektrotechniker Methoden - Problemlösungen - Anwendungen Band 1: Grundstufe von Ulrich Freyer und Heinz-Josef Bauckholt Mit 358 Bildern, zahlreichen Beispielen, Übungen und Testaufgaben

Mehr

Inhaltsverzeichnis INHALTSVERZEICHNIS. Fl Formelsammlung F2 Formelsammlung. Alphabete 11. Zeichenindex 12

Inhaltsverzeichnis INHALTSVERZEICHNIS. Fl Formelsammlung F2 Formelsammlung. Alphabete 11. Zeichenindex 12 Inhaltsverzeichnis Fl Formelsammlung F2 Formelsammlung Alphabete 11 Zeichenindex 12 1 Grundbegriffe 14 1.1 Logische Grundlagen, Aussagen 14 1.2 Mathematische Grundlagen, Mengen 17 1.3 Vollständige Induktion

Mehr

Mathematik für Ingenieure mit Maple

Mathematik für Ingenieure mit Maple Thomas Westermann Mathematik für Ingenieure mit Maple Bandl: Differential- und Integralrechnung für Funktionen einer Variablen, Vektor- und Matrizenrechnung, Komplexe Zahlen, Funktionenreihen 4., neu bearbeitete

Mehr

Mathematik leicht gemacht

Mathematik leicht gemacht Mathematik leicht gemacht von Prof. Dr.-Ing. H. Kreul, K. Kulke H. Pester, R. Schroedter mit 457 Abbildungen und 781 Aufgaben mit Lösungen 4. Auflage Verlag Harri Deutsch Thun und Frankfurt am Main Inhaltsverzeichnis

Mehr

Definitions- und Formelübersicht Mathematik

Definitions- und Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Mengen Intervalle Eine Menge ist eine Zusammenfassung von wohlunterschiedenen Elementen zu einem Ganzen. Dabei muss entscheidbar

Mehr

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 Mathematik I+II für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 I. Wiederholung Schulwissen 1.1. Zahlbereiche 1.2. Rechnen mit reellen Zahlen 1.2.1. Bruchrechnung 1.2.2. Betrag 1.2.3. Potenzen 1.2.4. Wurzeln

Mehr

Kurven. Mathematik-Repetitorium

Kurven. Mathematik-Repetitorium Kurven 7.1 Vorbemerkungen, Koordinatensysteme 7.2 Gerade 7.3 Kreis 7.4 Parabel 7.5 Ellipse 7.6 Hyperbel 7.7 Allgemeine Gleichung 2. Grades Kurven 1 7. Kurven 7.1 Vorbemerkungen, Koordinatensysteme Koordinatensystem

Mehr

Inhaltsverzeichnis. ' Zählung. Zehnersystem. Gleichheit. Ganze Zahlen. Bezeichnungen.

Inhaltsverzeichnis. ' Zählung. Zehnersystem. Gleichheit. Ganze Zahlen. Bezeichnungen. Inhaltsverzeichnis Arithmetik Knomera ', Seite i 7 Kapitel I. Dezimale Zählung i ' Zählung. Zehnersystem. Gleichheit. Ganze Zahlen. Bezeichnungen. Aufgaben zu Kapitel I 5 Kapitel II. Addition und Subtraktion

Mehr

ANALYTISCHE GEOMETRIE, VEKTORRECHNUNG UND INFINITESIMALRECHNUNG

ANALYTISCHE GEOMETRIE, VEKTORRECHNUNG UND INFINITESIMALRECHNUNG ANALYTISCHE GEOMETRIE, VEKTORRECHNUNG UND INFINITESIMALRECHNUNG 21. Auflage Mit 3 74 Bildern und 1080 A ufgaben mit Lösungen A Fachbuchverlag Leipzig Inhaltsverzeichnis Analytische Geometrie 1. Punkte

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Lösungen Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Kapitel I: Mengen Aufgabe

Mehr

Inhaltsverzeichnis. Hinweise zur Benutzung des Buches 1

Inhaltsverzeichnis. Hinweise zur Benutzung des Buches 1 Inhaltsverzeichnis Hinweise zur Benutzung des Buches 1 1 Zur Technik des Zahlenrechnens 11 1.1 Der Zahlbegriff 11 1.1.1 Die natürlichen Zahlen 11 1.1.2 Das dekadische Positionssystem 13 1.1.3 Das duale

Mehr

Inhaltsverzeichnis VII. Vorwort...

Inhaltsverzeichnis VII. Vorwort... VII Inhaltsverzeichnis Vorwort... V 1 Mathematische Begriffe und Schreibweisen... 1 1.1 Zahlen... 1 1.1.1 Zahlendarstellung auf der Zahlengeraden... 1 1.2 Mengen... 3 1.2.1 Aufzählende Mengenschreibweise...

Mehr

Springer-Lehrbuch. Ebene Geometrie. Bearbeitet von Max Koecher, Aloys Krieg

Springer-Lehrbuch. Ebene Geometrie. Bearbeitet von Max Koecher, Aloys Krieg Springer-Lehrbuch Ebene Geometrie Bearbeitet von Max Koecher, Aloys Krieg erweitert, überarbeitet 2008. Taschenbuch. xii, 280 S. Paperback ISBN 978 3 540 49327 3 Format (B x L): 15,5 x 23,5 cm Gewicht:

Mehr

ANALYTISCHEN GEOMETRIE DER EBENE.

ANALYTISCHEN GEOMETRIE DER EBENE. DIE ELEMENTE DEB ANALYTISCHEN GEOMETRIE DER EBENE. ZUM GEBRAUCH AN HÖHEREN LEHRANSTALTEN SOWIE ZUM SELBSTSTUDIUM DARGESTELLT UND MIT ZAHLREICHEN ÜBUNGSBEISPIELEN VERSEHEN VON DR. H. GANTER UND DE. F. RUDIO

Mehr

Mathematik für Studienanfänger

Mathematik für Studienanfänger Mathematik für Studienanfänger von Dr. G. Tinhofer mit 191 Bildern Carl Hanser Verlag München Wien 1977 Kapitel 1: Grundbegriffe der Mathematik 1 1.1 Mengen 1 1.2 Eigenschaften von Objekten - Eigenschaften

Mehr

Komplexe Zahlenmengen und ihre Abbildungen

Komplexe Zahlenmengen und ihre Abbildungen VERSTÄNDLICHE MATHEMATIK Ilse Rapsch Komplexe Zahlenmengen und ihre Abbildungen Der Versuch, ein Kapitel der höherervmathematik anschaulich zu machen franzbecker Inhaltsübersicht VORWORT 9 EINFÜHRUNG 11

Mehr

MATHEMATIK FÜR DIE PRAXIS

MATHEMATIK FÜR DIE PRAXIS MATHEMATIK FÜR DIE PRAXIS EIN HANDBUCH HERAUSGEGEBEN VON KURT SCHRÖDER UNTER MITARBEIT VON GISELA REISSIG UND ROLF REISSIG MIT 254 ABBILDUNGEN DRITTE, BERICHTIGTE AUFLAGE Technische Hochschule Institut

Mehr

Großes Lehrbuch der Mathematik für Ökonomen

Großes Lehrbuch der Mathematik für Ökonomen Großes Lehrbuch der Mathematik für Ökonomen Von Professor Dr. Karl Bosch o. Professor für angewandte Mathematik und Statistik an der Universität Stuttgart-Hohenheim und Professor Dr. Uwe Jensen R. Oldenbourg

Mehr

Crash-Kurs Komplexe Zahlen

Crash-Kurs Komplexe Zahlen 1 Definitionen: j, C, z Im Körper R der reellen Zahlen besitzt die lineare Gleichung ax + b = 0 (a, bεr; a 0) stets eine Lösung. Die quadratische Gleichung ax 2 + bx + c = 0 führt zu der Lösungsformel

Mehr

W. Schäfer/K. Georgi. Mathematik-Vorkurs

W. Schäfer/K. Georgi. Mathematik-Vorkurs W. Schäfer/K. Georgi Mathematik-Vorkurs Mathematik Vorkurs Übungs- und Arbeitsbuch tür Studienantänger Von Prof. Dr. rer. nat. habil. Wolfgang Schäfer und Oberstudienrat Kurt Georgi unter Mitarbeit von

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Höhere Mathematik. Grundlagen Beispiele Aufgaben. Mit 887 Bildern, 525 vollständig durchgerechneten Beispielen und 4759 Aufgaben

Höhere Mathematik. Grundlagen Beispiele Aufgaben. Mit 887 Bildern, 525 vollständig durchgerechneten Beispielen und 4759 Aufgaben shermann K. stein Einf ührungskurs Höhere Mathematik Grundlagen Beispiele Aufgaben Mit 887 Bildern, 525 vollständig durchgerechneten Beispielen und 4759 Aufgaben Friedr. Vieweg & Sohn Braunschweig/Wiesbaden

Mehr

Mathematik für die Fachschule Technik

Mathematik für die Fachschule Technik Heinz Rapp Mathematik für die Fachschule Technik Algebra, Geometrie, Differentialrechnung, Integralrechnung, Vektorrechnung, Komplexe Rechnung Mit 587 Abbildungen, 620 Beispielen und 1298 Aufgaben 6.,

Mehr

Mathematik für Ahnungslose

Mathematik für Ahnungslose Mathematik für Ahnungslose Eine Einstiegshilfe für Studierende Von Dipl.-lng. Yära Detert, Rodenberg S. Hirzel Verlag Stuttgart VII Inhaltsverzeichnis Vorwort Verzeichnis mathematischer Symbole V XII 1

Mehr

LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN

LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN Fakultät Mathematik Institut für Numerische Mathematik LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN 6. Komplexe Zahlen Prof. Dr. Gunar Matthies Wintersemester 2017/18 G. Matthies Lineare

Mehr

Teil I: Algebra.

Teil I: Algebra. Teil I: Algebra 1 Mathematische Begriffe und Schreibweisen 1 1.1 Zahlen 1 1.2 Mengen 1 1.2.1 Aufzählende Mengenschreibweise 1 1.2.2 Beschreibende Mengenschreibweise 2 1.2.3 Mengendiagramme 2 1.2.4 Beziehungen

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 6. Komplexe Zahlen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen

Mehr

Spezialthema Komplexe Zahlen Fragen

Spezialthema Komplexe Zahlen Fragen Spezialthema Komplexe Zahlen Fragen Lukas Prokop 31. Mai 2009 Dank an Prof. Egger Die ganzen Zahlen hat der liebe Gott gemacht, alles weitere ist Menschenwerk (Leopold Kronecker 1 ) 1 frei zitiert nach

Mehr

1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an:

1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: Aufgaben zum Vorkurs B S. 1 1 Übungen zu Mengen Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: A = {x N 0 < x < 4, 8} B = {t N t ist Teiler von 4} C = {z Z z ist positiv, durch 3 teilbar

Mehr

INHALTSVERZEICHNIS. Mathematische Zeichen Formelzeichen Verwendung der Begriffe Masse und Gewicht. A. Grundbegriffe der Mengenlehre. 1.

INHALTSVERZEICHNIS. Mathematische Zeichen Formelzeichen Verwendung der Begriffe Masse und Gewicht. A. Grundbegriffe der Mengenlehre. 1. INHALTSVERZEICHNIS 10 13 14 Mathematische Zeichen Formelzeichen Verwendung der Begriffe Masse und Gewicht A. Grundbegriffe der Mengenlehre 15 16 17 17 20 21 22 25 28 33 35 36 36 44 46 49 50 52 53 56 56

Mehr

Mit Selbsttests gezielt Mathematik lernen

Mit Selbsttests gezielt Mathematik lernen Mit Selbsttests gezielt Mathematik lernen Gert Höfner Mit Selbsttests gezielt Mathematik lernen Für Studienanfänger aller Fachrichtungen zur Vorbereitung und studienbegleitend Gert Höfner Langenfeld, Deutschland

Mehr

Inhaltsverzeichnis Mathematik

Inhaltsverzeichnis Mathematik 1. Mengenlehre 1.1 Begriff der Menge 1.2 Beziehungen zwischen Mengen 1.3 Verknüpfungen von Mengen (Mengenoperationen) 1.4 Übungen 1.5 Übungen (alte BM-Prüfungen) 1.6 Zahlenmengen 1.7 Grundmenge (Bezugsmenge)

Mehr

1. Sem. 60 Lektionen. Profil E 140 Lektionen. Mathematik

1. Sem. 60 Lektionen. Profil E 140 Lektionen. Mathematik 1. Sem. 60 Lektionen Grundlagen / 15L Zahlen, Zahlendarstellung, Gebrauch des Taschenrechners Koordinatensystem, grafische Darstellungen SI-Einheiten Zeitberechnungen Prozente, Promille Taschenrechner

Mehr

Lehrplan Mathematik für die Berufsmatur

Lehrplan Mathematik für die Berufsmatur Lehrplan Mathematik für die Berufsmatur Stand: 1. Januar 2001 Gemeinsamer Lehrplan für alle Berufsmaturatypen 1. Elemente der Mengenlehre und der formalen Logik Elemente der mathematischen Logik (Beherrschen

Mehr

Bildungszentrum Limmattal. Semesterplan Mathematik. Logistik und Technologie Polymechaniker/in, Konstrukteur/in V17.4

Bildungszentrum Limmattal. Semesterplan Mathematik. Logistik und Technologie Polymechaniker/in, Konstrukteur/in V17.4 Bildungszentrum Limmattal Logistik und Technologie Semesterplan Mathematik V17.4 2/5 1. Semester XXF1.1 Grundlagen der Mathematik XXF1.1.1 Zahlen, Zahlendarstellung, Gebrauch des Taschenrechners XXF1.1.2

Mehr

Lineare Algebra und analytische Geometrie

Lineare Algebra und analytische Geometrie Lineare Algebra und analytische Geometrie von Günther Eisenreich Mit 107 Abbildungen und 2 Tabellen 3., erweiterte und berichtigte Auflage Akademie Verlag Inhaltsverzeichnis A. Allgemeine Vorbemerkungen

Mehr

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz.

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz. FH Gießen-Friedberg, Sommersemester 010 Skript 9 Diskrete Mathematik (Informatik) 30. April 010 Prof. Dr. Hans-Rudolf Metz Funktionen Einige elementare Funktionen und ihre Eigenschaften Eine Funktion f

Mehr

Mathematik I. Algebra für Berufsmaturitätsschulen. Hans Marthaler Benno Jakob. Ein Lehr- und Arbeitsbuch für den Unterricht und für das Selbststudium

Mathematik I. Algebra für Berufsmaturitätsschulen. Hans Marthaler Benno Jakob. Ein Lehr- und Arbeitsbuch für den Unterricht und für das Selbststudium Hans Marthaler Benno Jakob Mathematik I Algebra für Berufsmaturitätsschulen Ein Lehr- und Arbeitsbuch für den Unterricht und für das Selbststudium Mit zahlreichen Beispielen aus Naturwissenschaft und Technik

Mehr

Inhaltsverzeichnis: Mathematik verstehen 5 E-BOOK+ 1. Zahlen und Zahlenmengen

Inhaltsverzeichnis: Mathematik verstehen 5 E-BOOK+ 1. Zahlen und Zahlenmengen Inhaltsverzeichnis: Mathematik verstehen 5 E-BOOK+ 1. Zahlen und Zahlenmengen Lesetext: Historisches zu Mengen S. 9 Applet: Darstellung von Zahlenmengen auf der Zahlengeraden S. 17 Interaktive Musteraufgabe:

Mehr

Themenkorb für die mündliche Reifeprüfung aus Mathematik 8B 2016/17

Themenkorb für die mündliche Reifeprüfung aus Mathematik 8B 2016/17 Themenkorb für die mündliche Reifeprüfung aus Mathematik 8B 2016/17 Thema 1: Zahlenbereiche und Rechengesetze Reflektieren über das Erweitern von Zahlenbereichen von den natürlichen Zahlen zu den ganzen,

Mehr

Mathematik 1. ^A Springer. Albert Fetzer Heiner Fränkel. Lehrbuch für ingenieurwissenschaftliche Studiengänge

Mathematik 1. ^A Springer. Albert Fetzer Heiner Fränkel. Lehrbuch für ingenieurwissenschaftliche Studiengänge Albert Fetzer Heiner Fränkel Mathematik 1 Lehrbuch für ingenieurwissenschaftliche Studiengänge Mit Beiträgen von Akad. Dir. Dr. rer. nat. Dietrich Feldmann Prof. Dr. rer. nat. Albert Fetzer Prof. Dr. rer.

Mehr

Verlag Harri Deutsch

Verlag Harri Deutsch HOCHSCHULBÜCHER FÜR MATHEMATIK HERAUSGEGEBEN VON H. GRELL, K. MARUHN UND W. RINOW BAND 60 EINFÜHRUNG IN DIE THEORIE DER LINEAREN VEKTORRÄUME VON H. BOSECK MIT 14 ABBILDUNGEN Fünfte Auflage Verlag Harri

Mehr

Mathematische Zeichen und Abkürzungen 11. Grundlagen der Aussagenlogik und der Mengenlehre 13

Mathematische Zeichen und Abkürzungen 11. Grundlagen der Aussagenlogik und der Mengenlehre 13 Inhaltsverzeichnis Mathematische Zeichen und Abkürzungen 11 Grundlagen der Aussagenlogik und der Mengenlehre 13 1 Grundbegriffe der Aussagenlogik und ihre Verwendung in der Datenverarbeitung 13 1.1 Aussagen

Mehr

Aufgaben zum Vorkurs Mathematik für Natur- und Ingenieurwissenschaften. 1 Übungsblatt Mengen. Dr. Jörg Horst WS 2014/2015

Aufgaben zum Vorkurs Mathematik für Natur- und Ingenieurwissenschaften. 1 Übungsblatt Mengen. Dr. Jörg Horst WS 2014/2015 Dr. Jörg Horst WS 04/05 Aufgaben zum Vorkurs Mathematik für Natur- und Ingenieurwissenschaften Übungsblatt Mengen Aufgabe : Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: A = {x N 0 0 < x

Mehr

Vorkurs: Mathematik für Informatiker. Wintersemester 2013/14 Lösungen

Vorkurs: Mathematik für Informatiker. Wintersemester 2013/14 Lösungen Vorkurs: Mathematik für Informatiker Wintersemester 2013/14 Lösungen Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de Jennifer Maier jennifer.maier@math.uni-hamburg.de Marcel Morisse morisse@informatik.uni-hamburg.de

Mehr