Lineare Algebra und Geometrie für Ingenieure

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Lineare Algebra und Geometrie für Ingenieure"

Transkript

1 Lineare Algebra und Geometrie für Ingenieure Eine, anwendungsbezogene Einführung mit Übungen Prof. Dr. Manfred Andrie Dipl.-Ing. Paul Meier 3. Auflage VER^G

2 Inhaltsverzeichnis MENGEN 1 Grundbegriffe Begriff der Menge Teilmengen 15 2 Verknüpfungen von Mengen Durchschnitt von Mengen Vereinigung von Mengen Differenzmenge Komplement Mengenalgebra.* Anwendungen: Geometrisches Modellieren Übungen: Mengenverknüpfungen 24 B ABBILDUNGEN UND RELATIONEN 3 Begriff der Abbildung 26 4 Kartesisches Produkt 27 5 Begriff der Relation 29 6 Anwendungen: Darstellende Geometrie 30 ZAHLEN 7 Menge der reellen Zahlen 32 8 Eigenschaften reeller Zahlen 35 9 Ungleichungen und Beträge Potenzen und Wurzeln Logarithmen Dualsystem und Digitalrechner Anwendungen Graphen von Funktionen und Relationen Physikalische Größen Schaltalgebra Übungen: Dualzahlen, Schaltfunktionen 57

3 Inhaltsverzeichnis TRIGONOMETRIE 15 Winkel als geometrische Größe Trigonometrische Funktionen Zyklometrische Funktionen Sätze der Trigonometrie Sinussatz und Kosinussatz Tangenssatz Additionstheoreme Übungen: Trigonometrie und ihre Anwendung im Vermessungswesen 72 VEKTOREN 20 Begriff des Vektors Addition und Subtraktion von Vektoren Multiplikation eines Vektors mit einem Skalar Winkel zwischen zwei Vektoren Vektoren im kartesischen Koordinatensystem Begriff des Vektorraumes Lineare Abhängigkeit und lineare Unabhängigkeit von Vektoren Komponentendarstellung eines Vektors; Basis und Dimension eines Vektorraumes Der n-dimensionale Vektorraum Übungen: Zusammensetzung und Zerlegung ebener und räumlicher Vektoren Skalares Produkt zweier Vektoren Begriff des skalaren Produktes Skalares Produkt zweier Vektoren aus IR Vektorielles Produkt zweier Vektoren Begriff des vektoriellen Produktes Vektorielles Produkt zweier Vektoren aus IR Anwendungen: Geometrie und Mechanik Sätze zu Parallelogramm und Dreieck 117

4 Inhaltsverzeichnis Sätze der Trigonometrie Flächeninhalt eines n-ecks Drehmoment Statisches Gleichgewicht Zerlegung von Kräften Übungen: Skalarprodukt, Vektorprodukt und Zerlegung von Kräften 132 MATRIZEN 34 Begriff der Matrix Addition und Subtraktion von Matrizen Multiplikation einer Matrix mit einem Skalar Multiplikation von Matrizen Spezielle Matrizen Lineare Abbildungen Anwendungen: Geometrische Abbildungen Übungen: Rechnen mit Matrizen 152 G DETERMINANTEN 42 Determinanten zweiter Ordnung Determinanten dritter Ordnung Determinanten n-ter Ordnung 160 LINEARE GLEICHUNGSSYSTEME 45 Begriff des linearen Gleichungssystems Cramersche Regel Gauß-Algorithmus Anwendung: Berechnung der inversen Matrix nach Gauß-Jordan Übungen: Determinanten, lineare Gleichungssysteme, Cramersche Regel, Gauß-Algorithmus 178

5 10 Inhaltsverzeichnis J GEOMETRIE IN DER EBENE 50 Geraden in der Ebene Geradengleichungen Schnittwinkel zwischen Geraden Abstand eines Punktes von einer Geraden Ebene Koordinatensysteme Kartesische Koordinaten und Polarkoordinaten Geodätische Koordinaten und Richtungswinkel Absolute und relative (inkrementale) Koordinaten Logarithmische Skalen (Skalierung) Abbildungen in der Ebene Parallelverschiebung und Drehung kartesischer Koordinatensysteme Drehstreckung und zentrische Streckung Übungen: Geraden, Schnittpunkte und Schnittwinkel von Geraden 197 K GEOMETRIE IM RAUM 54 Geraden im Raum Ebenen im Raum Abstand zwischen Punkten, Geraden und Ebenen Abstand eines Punktes von einer Ebene Abstand eines Punktes von einer Geraden Abstand zwischen zwei windschiefen Geraden Räumliche Koordinatensysteme Zylinderkoordinaten Kugelkoordinaten Anwendungen: Finite Elemente und natürliche Koordinaten Flächenkoordinaten für Dreieckselemente Volumenkoordinaten für Tetraeder Übungen: Geraden und Ebenen im Raum 219

6 Inhaltsverzeichnis 11 KURVEN ZWEITER ORDNUNG 60 Kreis Koordinaten- und Parameterdarstellung des Kreises Kreis, Tangente und Polare Ellipse Hyperbel Parabel Zusammenhang zwischen den Kegelschnitten Anwendungen: Kreis in der CAD-Geometrie und im Vermessungswesen Ausrunden und Bogenhauptelemente im Vermessungswesen Vollkreis und Kreisbogen in der CAD-Geometrie Übungen: Kreis (Ausrunden), Ellipse, Hyperbel und Parabel Hauptachsentransformation Übungen: Hauptachsentransformation Anwendungen: Trägheitsmomente ebener Flächen 251 M EIGENWERTE UND EIGENVEKTOREN 70 Eigenwerte und Eigenvektoren einer (n,n)-matrix Hauptachsentransformation für Kurven zweiter Ordnung Hauptachsentransformation für Flächen zweiter Ordnung Anwendungen: Flächenträgheitsmomente und Massenträgheitsmomente Hauptflächenträgheitsmomente Massenträgheitsmomente 270 N AUSBLICK 74 Spline- und Bezier-Kurven in der C A D - G e o m e t r i e LÖSUNGEN 277 SYMBOLVERZEICHNIS REGISTER 294

Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie

Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie Regina Gellrich Carsten Gellrich Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie Mit zahlreichen Abbildungen, Aufgaben mit Lösungen und durchgerechneten Beispielen

Mehr

EINFÜHRUNG IN DIE ANALYTISCHE GEOMETRIE UND LINEARE ALGEBRA

EINFÜHRUNG IN DIE ANALYTISCHE GEOMETRIE UND LINEARE ALGEBRA EINFÜHRUNG IN DIE ANALYTISCHE GEOMETRIE UND LINEARE ALGEBRA VON SIEGFRIED BREHMER UND HORST BELKNER MIT 146 A B B I L D U N G E N VEB DEUTSCHER VERLAG DER WISSENSCHAFTEN BERLIN 1966 INHALTSVERZEICHNIS

Mehr

ELEMENTAR-MATHEMATIK

ELEMENTAR-MATHEMATIK WILLERS ELEMENTAR-MATHEMATIK Ein Vorkurs zur Höheren Mathematik 13., durchgesehene Auflage von Dr.-Ing. G. Opitz und Dr. phil. H. Wilson Mit 189 Abbildungen VERLAG THEODOR STEINKOPFF DRESDEN 1968 Inhaltsverzeichnis

Mehr

Inhaltsverzeichnis. Inhalt. Einleitung Vektoralgebra

Inhaltsverzeichnis. Inhalt. Einleitung Vektoralgebra Inhalt 3 Inhaltsverzeichnis Einleitung...9 1 Vektoralgebra 1.1 Geometrische Darstellung von Vektoren... 14 1.1.1 Begriff des Vektors... 14 1.1.2 Inverser Vektor und Nullvektor... 17 1.1.3 Addition von

Mehr

Mathematik für die ersten Semester

Mathematik für die ersten Semester Mathematik für die ersten Semester von Prof. Dr. Wolfgang Mückenheim 2., verbesserte Auflage Oldenbourg Verlag München Inhaltsverzeichnis I Grundlagen 1 1 Logik 3 2 Mengen 7 3 Relationen 15 3.1 Abbildungen

Mehr

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH )

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH ) Grundlegende Bemerkungen : Der Begriff des Vektors wurde in den vergangenen Jahren im Geometrieunterricht eingeführt und das mathematische Modell des Vektors wurde vor allem auch im Physikunterricht schon

Mehr

Mathematik für Ahnungslose

Mathematik für Ahnungslose Mathematik für Ahnungslose Eine Einstiegshilfe für Studierende Von Dipl.-lng. Yära Detert, Rodenberg S. Hirzel Verlag Stuttgart VII Inhaltsverzeichnis Vorwort Verzeichnis mathematischer Symbole V XII 1

Mehr

Lineare Algebra und analytische Geometrie

Lineare Algebra und analytische Geometrie Lineare Algebra und analytische Geometrie von Günther Eisenreich Mit 107 Abbildungen und 2 Tabellen 3., erweiterte und berichtigte Auflage Akademie Verlag Inhaltsverzeichnis A. Allgemeine Vorbemerkungen

Mehr

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth REPETITORIUM DER HÖHEREN MATHEMATIK Gerhard Merziger Thomas Wirth 6 INHALTSVERZEICHNIS Inhaltsverzeichnis Fl Formelsammlung F2 Formelsammlung Alphabete 11 Zeichenindex 12 1 Grundbegriffe 14 1.1 Logische

Mehr

Höhere Mathematik für Ingenieure Band II

Höhere Mathematik für Ingenieure Band II Teubner-Ingenieurmathematik Höhere Mathematik für Ingenieure Band II Lineare Algebra Bearbeitet von Klemens Burg, Herbert Haf, Friedrich Wille, Andreas Meister 1. Auflage 2012. Taschenbuch. xvii, 417 S.

Mehr

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 Mathematik I+II für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 I. Wiederholung Schulwissen 1.1. Zahlbereiche 1.2. Rechnen mit reellen Zahlen 1.2.1. Bruchrechnung 1.2.2. Betrag 1.2.3. Potenzen 1.2.4. Wurzeln

Mehr

Seminar für LAGym/LAB: Analytische Geometrie

Seminar für LAGym/LAB: Analytische Geometrie Seminar für LAGym/LAB: Analytische Geometrie Ingo Runkel und Peter Stender Euklidische Vektorräume und Geometrie E1: Lineare Gleichungssysteme - Affiner Unterraum eines Vektorraumes. Lineare Gleichungssysteme

Mehr

Vektorrechnung. 1. Vektoren im R 2, R 3 Größen in Physik und Technik:

Vektorrechnung. 1. Vektoren im R 2, R 3 Größen in Physik und Technik: Vektorrechnung 1. Vektoren im R 2, R 3 Größen in Physik und Technik: - skalare Größen: Länge [m], Zeit [sec], Masse [kg], Energie [N m], elektr. Spannung [V ],... gekennzeichnet durch: Maßzahl ( R) [Maßeinheit]

Mehr

Inhaltsverzeichnis. I Planimetrie.

Inhaltsverzeichnis. I Planimetrie. Inhaltsverzeichnis I Planimetrie. Winkel 1.1 Einführung 1.1.1 Definition eines Winkels 1 1.1.2 Messung von Winkeln in Grad (Altgrad) 1 1.1.3 Orientierte Winkel 2 1.1.4 Winkelkategorien 2 1.2 Winkel an

Mehr

Mathematik für Ingenieure mit Maple

Mathematik für Ingenieure mit Maple Thomas Westermann Mathematik für Ingenieure mit Maple Band 1: Differential- und Integralrechnung für Funktionen einer Variablen, Vektor- und Matrizenrechnung, Komplexe Zahlen, Funktionenreihen Mit 300

Mehr

Kurven. Mathematik-Repetitorium

Kurven. Mathematik-Repetitorium Kurven 7.1 Vorbemerkungen, Koordinatensysteme 7.2 Gerade 7.3 Kreis 7.4 Parabel 7.5 Ellipse 7.6 Hyperbel 7.7 Allgemeine Gleichung 2. Grades Kurven 1 7. Kurven 7.1 Vorbemerkungen, Koordinatensysteme Koordinatensystem

Mehr

Einleitung 19. Teil I Einführung 23. Kapitel 1 Motivation 25

Einleitung 19. Teil I Einführung 23. Kapitel 1 Motivation 25 Inhaltsverzeichnis Einleitung 19 Konventionen in diesem Buch 19 Törichte Annahmen über den Leser 20 Was Sie in diesem Buch finden 20 Was Sie in diesem Buch nicht finden 20 Wie dieses Buch aufgebaut ist

Mehr

Vorkurs der Ingenieurmathematik

Vorkurs der Ingenieurmathematik Jürgen Wendeler 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Vorkurs der Ingenieurmathematik Mit 249 Aufgaben

Mehr

3vieweg. Mathematik zum Studienbeginn. Arnfried Kemnitz

3vieweg. Mathematik zum Studienbeginn. Arnfried Kemnitz Arnfried Kemnitz Mathematik zum Studienbeginn Grundlagenwissen für alle technischen, mathematisch-naturwissenschaftlichen und wirtschaftswissenschaftlichen Studiengänge 3vieweg Vll Inhaltsverzeichnis 1

Mehr

Ingenieurmathematik mit MATLAB

Ingenieurmathematik mit MATLAB Dieter Schott Ingenieurmathematik mit MATLAB Algebra und Analysis für Ingenieure Mit 179 Abbildungen, zahlreichen Beispielen, Übungsaufgaben und Lernkontrollen Fachbuchverlag Leipzig im Carl Hanser Verlag

Mehr

Otto Rang. Vektoralgebra. Mit 94 Abbildungen und 66 Übungsaufgaben mit Lösungen. Dr. Dietrich Steinkopff Verlag Darmstadt

Otto Rang. Vektoralgebra. Mit 94 Abbildungen und 66 Übungsaufgaben mit Lösungen. Dr. Dietrich Steinkopff Verlag Darmstadt Otto Rang Vektoralgebra Mit 94 Abbildungen und 66 Übungsaufgaben mit Lösungen Dr. Dietrich Steinkopff Verlag Darmstadt Vorwort Inhaltsverzeichnis 1. Die Vektordefinition und einfachere Gesetzmäßigkeiten

Mehr

1 Arithmetik 1 1.1 Mengen 1 1.2 Aussageformen und logische Zeichen 4 1.3 Einteilung der Zahlen 8 1.4 Grundrechenarten 11 1.5 Grundlegende Rechenregeln 12 1.5.1 Buchstabenrechnen 12 1.5.2 Kehrwert, Quersumme

Mehr

Mathematik zum Studienbeginn

Mathematik zum Studienbeginn Arnfried Kemnitz Mathematik zum Studienbeginn Grundlagenwissen für alle technischen, mathematisch-naturwissenschaftlichen und wirtschaftswissenschaftlichen Studiengänge 10., aktualisierte Auflage STUDIUM

Mehr

Mathematik für Ingenieure mit Maple

Mathematik für Ingenieure mit Maple Thomas Westermann Mathematik für Ingenieure mit Maple Band 1: Differential- und Integralrechnung für Funktionen einer Variablen, Vektor- und Matrizenrechnung, Komplexe Zahlen, Funktionenreihen 2. Auflage

Mehr

Inhalt. 1 Rechenoperationen Gleichungen und Ungleichungen... 86

Inhalt. 1 Rechenoperationen Gleichungen und Ungleichungen... 86 Inhalt 1 Rechenoperationen.................................. 13 1.1 Grundbegriffe der Mengenlehre und Logik............................. 13 1.1.0 Vorbemerkung.................................................

Mehr

Mathematik für Ingenieure mit Maple

Mathematik für Ingenieure mit Maple Thomas Westermann Mathematik für Ingenieure mit Maple Bandl: Differential- und Integralrechnung für Funktionen einer Variablen, Vektor- und Matrizenrechnung, Komplexe Zahlen, Funktionenreihen 4., neu bearbeitete

Mehr

12 Übungen zu Gauß-Algorithmus

12 Übungen zu Gauß-Algorithmus Aufgaben zum Vorkurs B S. 2 Übungen zu Gauß-Algorithmus 2x x 2 = 7x +, 5x 2 = 7 Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: 2x x 2 = x +2x 2 = 2 2x x 2 = 7x +, 5x 2 =, 5 x 2x 2 = x +x 2 = 5 2x +x 2 = 4

Mehr

Einführung 17. Teil I Zu den Grundlagen der linearen Algebra 21. Kapitel 1 Schnelleinstieg in die lineare Algebra 23

Einführung 17. Teil I Zu den Grundlagen der linearen Algebra 21. Kapitel 1 Schnelleinstieg in die lineare Algebra 23 Inhaltsverzeichnis Einführung 17 Zu diesem Buch 17 Konventionen in diesem Buch 17 Törichte Annahmen über den Leser 17 Wie dieses Buch aufgebaut ist 18 Teil I: Zu den Grundlagen der linearen Algebra 18

Mehr

Kleine Formelsammlung Mathematik

Kleine Formelsammlung Mathematik Kleine Formelsammlung Mathematik Bearbeitet von Hans-Jochen Bartsch 2. Auflage 2001. Buch. 256 S. Hardcover ISBN 978 3 446 21811 6 Format (B x L): 11,6 x 16,6 cm Gewicht: 229 g schnell und portofrei erhältlich

Mehr

Vektoren, Vektorräume

Vektoren, Vektorräume Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010

Mehr

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015 Vektorrechnung Fakultät Grundlagen Juli 205 Fakultät Grundlagen Vektorrechnung Übersicht Grundsätzliches Grundsätzliches Vektorbegriff Algebraisierung der Vektorrechnung Betrag 2 Skalarprodukt Vektorprodukt

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

Inhaltsverzeichnis. Vorwort 1. I Zahlen 5. II Algebra 29

Inhaltsverzeichnis. Vorwort 1. I Zahlen 5. II Algebra 29 Inhaltsverzeichnis Vorwort 1 I Zahlen 5 1. Rechnen mit ganzen Zahlen 6 Addition, Subtraktion und Multiplikation............. 7 Division mit Rest........................... 7 Teiler und Primzahlen........................

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

0 Einleitung I. 1 Elementarmathematik 1

0 Einleitung I. 1 Elementarmathematik 1 Inhaltsverzeichnis 0 Einleitung I i Das Team ist der Primus............................... II ii Eingangstest...................................... III iii Wolfis Welt.......................................

Mehr

LINEARE ALGEBRA I JÜRGEN HAUSEN

LINEARE ALGEBRA I JÜRGEN HAUSEN LINEARE ALGEBRA I JÜRGEN HAUSEN Anstelle eines Vorwortes... Der vorliegende Text entstand aus einer einführenden Vorlesung Lineare Algebra im Rahmen des Mathematikstudiums. Ich habe mich um knappe Darstellung

Mehr

1 Vorlesungen: und Vektor Rechnung: 1.Teil

1 Vorlesungen: und Vektor Rechnung: 1.Teil 1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg

Mehr

Kapitel I. Grundlagen der ebenen euklidischen Geometrie... 5 Einleitung Affine Ebenen... 7

Kapitel I. Grundlagen der ebenen euklidischen Geometrie... 5 Einleitung Affine Ebenen... 7 Inhaltsverzeichnis Prolog. Die Elemente des Euklid... 1 1. Euklid 2. Axiome 3. Über die Sprache der Geometrie Kapitel I. Grundlagen der ebenen euklidischen Geometrie... 5 Einleitung... 5 1. Affine Ebenen...

Mehr

Inhaltsverzeichnis. Vorwort. I Zahlen 5. II Algebra 29

Inhaltsverzeichnis. Vorwort. I Zahlen 5. II Algebra 29 Inhaltsverzeichnis Vorwort I Zahlen 5 1. Rechnen mit ganzen Zahlen 6 Addition, Subtraktion und Multiplikation 7 Division mit Rest 7 Teiler und Primzahlen 9 Der ggt und das kgv 11 2. Rechnen mit Brüchen

Mehr

Hauscurriculum Q2 Lineare Algebra/Analytische Geometrie Grundkurs März 2017

Hauscurriculum Q2 Lineare Algebra/Analytische Geometrie Grundkurs März 2017 Hauscurriculum Q2 Lineare Algebra/Analytische Geometrie Grundkurs März 2017 Übersicht: Q2.3 im Raum Q2.4 Matrizen zur Beschreibung von Q2.6 Vertiefung der Analytischen Geometrie (nur Grundkurs) verbindlich:

Mehr

Mathematik I. Algebra für Berufsmaturitätsschulen. Hans Marthaler Benno Jakob. Ein Lehr- und Arbeitsbuch für den Unterricht und für das Selbststudium

Mathematik I. Algebra für Berufsmaturitätsschulen. Hans Marthaler Benno Jakob. Ein Lehr- und Arbeitsbuch für den Unterricht und für das Selbststudium Hans Marthaler Benno Jakob Mathematik I Algebra für Berufsmaturitätsschulen Ein Lehr- und Arbeitsbuch für den Unterricht und für das Selbststudium Mit zahlreichen Beispielen aus Naturwissenschaft und Technik

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya Lineare Abhängigkeit und Unabhängigkeit -E Ma Lubov Vassilevskaya Eindimensionaler Raum Abb. -: Zwei nicht gleiche Vektoren auf der gleichen Gerade Jeden Vektor, der auf einer Geraden liegt, kann man durch

Mehr

i) ii) iii) iv) i) ii) iii) iv) v) gilt (Cauchy-Schwarz-Ungleichung): Winkel zwischen zwei Vektoren : - Für schreibt man auch.

i) ii) iii) iv) i) ii) iii) iv) v) gilt (Cauchy-Schwarz-Ungleichung): Winkel zwischen zwei Vektoren : - Für schreibt man auch. Abbildungen Rechnen Matrizen Rechnen Vektoren Äquivalenzrelation Addition: Skalarmultiplikation: Skalarprodukt: Länge eines Vektors: Vektorprodukt (im ): i ii i ii v) gilt (Cauchy-Schwarz-Ungleichung):

Mehr

Mathematik 1. ^A Springer. Albert Fetzer Heiner Fränkel. Lehrbuch für ingenieurwissenschaftliche Studiengänge

Mathematik 1. ^A Springer. Albert Fetzer Heiner Fränkel. Lehrbuch für ingenieurwissenschaftliche Studiengänge Albert Fetzer Heiner Fränkel Mathematik 1 Lehrbuch für ingenieurwissenschaftliche Studiengänge Mit Beiträgen von Akad. Dir. Dr. rer. nat. Dietrich Feldmann Prof. Dr. rer. nat. Albert Fetzer Prof. Dr. rer.

Mehr

Aufgabenskript. Lineare Algebra

Aufgabenskript. Lineare Algebra Dr Udo Hagenbach FH Gießen-Friedberg Sommersemester Aufgabenskript zur Vorlesung Lineare Algebra 7 Vektoren Aufgabe 7 Gegeben sind die Vektoren a =, b =, c = Berechnen Sie die folgenden Vektoren und ihre

Mehr

Lehr- und Übungsbuch Mathematik für Informatiker

Lehr- und Übungsbuch Mathematik für Informatiker Lehr- und Übungsbuch Mathematik für Informatiker Lineare Algebra und Anwendungen Bearbeitet von Wolfgang Preuß, Günter Wenisch 1. Auflage 1996. Buch. 328 S. Hardcover ISBN 978 3 446 18702 3 Format (B x

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Frederick H.Young Grundlagen der Mathematik Eine Einführung in die mathematischen Methoden Verlag Chemie John Wiley& Sons Inhalt 1. Die historische Entwicklung 1 1.1. Die Anfänge 1 1.2. Die antike Geometrie

Mehr

Inhaltsverzeichnis. I Lineare Gleichungssysteme und Matrizen 1. Vorwort

Inhaltsverzeichnis. I Lineare Gleichungssysteme und Matrizen 1. Vorwort Vorwort V I Lineare Gleichungssysteme und Matrizen 1 1 Der Begriff des Körpers 3 1.1 Mengen 3 1.2 Köiperaxiome 3 1.3 Grundlegende Eigenschaften von Körpern 5 1.4 Teilkörper 7 1.5 Aufgaben 8 1.5.1 Grundlegende

Mehr

Einführung in die höhere Mathematik 2

Einführung in die höhere Mathematik 2 Herbert Dallmann und Karl-Heinz Elster Einführung in die höhere Mathematik 2 Lehrbuch für Naturwissenschaftler und Ingenieure ab 1. Semester Mit 153 Bildern Friedr. Vieweg & Sohn Braunschweig /Wiesbaden

Mehr

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64 1/64 VEKTORRECHNUNG Prof. Dr. Dan Eugen Ulmet Hochschule Esslingen März 2011 2/64 Overview Vektoralgebra 1 Vektoralgebra 2 Was sind Vektoren? 3/64 Vektoren werden geometrisch definiert als Pfeilklassen:

Mehr

Hilfsblätter Lineare Algebra

Hilfsblätter Lineare Algebra Hilfsblätter Lineare Algebra Sebastian Suchanek unter Mithilfe von Klaus Flittner Matthias Staab c 2002 by Sebastian Suchanek Printed with L A TEX Inhaltsverzeichnis 1 Vektoren 1 11 Norm 1 12 Addition,

Mehr

Lineare Algebra. Theo de Jong. Higher Education. a part of Pearson plc worldwide

Lineare Algebra. Theo de Jong. Higher Education. a part of Pearson plc worldwide Theo de Jong Lineare Algebra Higher Education München Harlow Amsterdam Madrid Boston San Francisco Don Mills Mexico City Sydney a part of Pearson plc worldwide Lineare Algebra - PDF Inhaltsverzeichnis

Mehr

10 Mathematik I (5-stündig)

10 Mathematik I (5-stündig) 10 Mathematik I (5-stündig) Das mathematische Wissen wird zu einem tragfähigen Fundament für den weiteren schulischen oder beruflichen Weg der Realschulabsolventen ausgebaut. Die Verflechtung von Geometrie

Mehr

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren Kapitel 3 Vektoren 31 Skalare, Vektoren, Tensoren Viele physikalische Größen lassen sich bei bekannter Maßeinheit durch Angabe ihres Betrages als reelle Zahl vollständig angeben Solche Größen nennt man

Mehr

Mathematik für Techniker

Mathematik für Techniker Mathematik für Techniker 5. Auflage mit 468 Bildern, 531 Beispielen und 577 Aufgaben mit Lösungen rs Fachbuchverlag Leipzig im Carl Hanser Verlag Inhaltsverzeichnis 1 Rechenoperationen 15 1.1 Grundbegriffe

Mehr

Einführung 15. Teil I Grundlagen der Algebra 21. Kapitel 1 Die bunte Welt der linearen Algebra 23

Einführung 15. Teil I Grundlagen der Algebra 21. Kapitel 1 Die bunte Welt der linearen Algebra 23 Inhaltsverzeichnis Einführung 15 Zu diesem Buch 15 Konventionen in diesem Buch 16 Was Sie nicht lesen müssen 16 Törichte Annahmen über den Leser 16 Wie dieses Buch aufgebaut ist 16 Teil I: Grundlagen der

Mehr

Passerelle. Beschrieb der Fach-Module. von der Berufsmaturität. zu den universitären Hochschulen

Passerelle. Beschrieb der Fach-Module. von der Berufsmaturität. zu den universitären Hochschulen Passerelle von der Berufsmaturität zu den universitären Hochschulen Beschrieb der Fach-Module Fachbereich Mathematik Teilmodule Teilmodul 1: Analysis (Differential- und Integralrechnung) Teilmodul 2: Vektorgeometrie

Mehr

Mathematik für Ingenieure 1

Mathematik für Ingenieure 1 A. Hoffmann B. Marx W. Vogt Mathematik für Ingenieure 1 Lineare Algebra, Analysts Theorie und Numerik PEARSON Studium ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don

Mehr

Vektorprodukt. Satz: Für a, b, c V 3 und λ IR gilt: = a b + a c (Linearität) (Linearität) b = λ

Vektorprodukt. Satz: Für a, b, c V 3 und λ IR gilt: = a b + a c (Linearität) (Linearität) b = λ Vektorprodukt Satz: Für a, b, c V 3 und λ IR gilt: 1 a b = b a (Anti-Kommutativität) ( ) 2 a b + c ( 3 a λ ) b = λ = a b + a c (Linearität) ( a ) b (Linearität) Satz: Die Koordinatendarstellung des Vektorprodukts

Mehr

Kapitel I: Vektorrechnung 2: Vektoren im Raum

Kapitel I: Vektorrechnung 2: Vektoren im Raum WS 1/14 - Prof Dr Manfred Leitz 2 Vektoren im Raum A Grundbegriffe B Rechnen mit Vektoren C Der euklidische Betrag D Das euklidische Skalarprodukt E Vektorprodukt und Spatprodukt F Geraden und Ebenen im

Mehr

1 ALLGEMEINE HINWEISE Das Fach Mathematik für Wirtschaftswissenschaftler Bisheriger Aufbau der Klausur...

1 ALLGEMEINE HINWEISE Das Fach Mathematik für Wirtschaftswissenschaftler Bisheriger Aufbau der Klausur... Grundlagen Mathe V Inhaltsverzeichnis 1 ALLGEMEINE HINWEISE... 1-1 1.1 Das Fach Mathematik für Wirtschaftswissenschaftler... 1-1 1.2 Bisheriger Aufbau der Klausur... 1-1 1.3 Zugelassene Hilfsmittel und

Mehr

ANALYTISCHE GEOMETRIE, VEKTORRECHNUNG UND INFINITESIMALRECHNUNG

ANALYTISCHE GEOMETRIE, VEKTORRECHNUNG UND INFINITESIMALRECHNUNG ANALYTISCHE GEOMETRIE, VEKTORRECHNUNG UND INFINITESIMALRECHNUNG 21. Auflage Mit 3 74 Bildern und 1080 A ufgaben mit Lösungen A Fachbuchverlag Leipzig Inhaltsverzeichnis Analytische Geometrie 1. Punkte

Mehr

Einführung in das mathematische Arbeiten im SS 2007. Vektoren. Evelina Erlacher 1 9. März 2007. 8 Winkel 5. 11 Ausblick 6

Einführung in das mathematische Arbeiten im SS 2007. Vektoren. Evelina Erlacher 1 9. März 2007. 8 Winkel 5. 11 Ausblick 6 Workshops zur VO Einführung in das mathematische Arbeiten im SS 007 Inhaltsverzeichnis Vektoren Evelina Erlacher 9. März 007 1 Pfeile und Vektoren im R und R 3 1 Der Betrag eines Vektors 3 Die Vektoraddition

Mehr

Ina Kersten Analytische Geometrie und Lineare Algebra 1. L A TEX-Bearbeitung von Stefan Wiedmann

Ina Kersten Analytische Geometrie und Lineare Algebra 1. L A TEX-Bearbeitung von Stefan Wiedmann Ina Kersten Analytische Geometrie und Lineare Algebra 1 L A TEX-Bearbeitung von Stefan Wiedmann Universitätsverlag Göttingen 2005 Voraussetzungen 11 1 Einige Grundbegriffe 12 1.1 Die komplexen Zahlen 12

Mehr

Mit Skalarprodukt und Vektorprodukt lässt sich ein weiteres, kombiniertes Produkt, das Spatprodukt

Mit Skalarprodukt und Vektorprodukt lässt sich ein weiteres, kombiniertes Produkt, das Spatprodukt Mit Skalarprodukt und Vektorprodukt lässt sich ein weiteres, kombiniertes Produkt, das Spatprodukt a ( b c) bilden. Aus der geometrischen Interpretation von Skalarprodukt und Vektorprodukt ist sofort ersichtlich,

Mehr

Mathematik für Ingenieure 1

Mathematik für Ingenieure 1 A. Hoff mann B. Marx W. Vogt Mathematik für Ingenieure 1 Lineare Algebra, Analysis Theorie und Numerik PEARSON btudiurn. ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don

Mehr

Zusammenfassung Mathe III. Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren

Zusammenfassung Mathe III. Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren Zusammenfassung Mathe III Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren Definition: (1) anschaulich: Ein Vektor ist eine direkt gerichtete Verbindung zweier

Mehr

Übungsblatt 5 : Lineare Algebra

Übungsblatt 5 : Lineare Algebra Aufgabe 5.1 Übungsblatt 5 : Lineare Algebra Gegeben sind die folgenden Vektoren: Bestimmen Sie die Komponenten von Aufgabe 5.2 Gegeben seien die Vektoren Berechnen Sie (a) (b) (c) Aufgabe 5.3, d.h. der

Mehr

Analytische Geometrie I

Analytische Geometrie I Analytische Geometrie I Rainer Hauser Januar 202 Einleitung. Geometrie und Algebra Geometrie und Algebra sind historisch zwei unabhängige Teilgebiete der Mathematik und werden bis heute von Laien weitgehend

Mehr

BAYERISCHES STAATSMINISTERIUM FÜR UNTERRICHT UND KULTUS. Lehrplan für Berufsschule Plus

BAYERISCHES STAATSMINISTERIUM FÜR UNTERRICHT UND KULTUS. Lehrplan für Berufsschule Plus BAYERISCHES STAATSMINISTERIUM FÜR UNTERRICHT UND KULTUS Lehrplan für Berufsschule Plus Unterrichtsfach: MATHEMATIK Fachprofil: Die ist heute eine wichtige wissenschaftliche Disziplin, die umfangreiches

Mehr

Einführung 21. Teil I Grundlagen der Algebra 27. Kapitel 1 Die bunte Welt der linearen Algebra 29

Einführung 21. Teil I Grundlagen der Algebra 27. Kapitel 1 Die bunte Welt der linearen Algebra 29 Inhaltsverzeichnis Einführung 21 Zu diesem Buch 21 Konventionen in diesem Buch 21 Was Sie nicht lesen müssen 22 Törichte Annahmen über den Leser 22 Wie dieses Buch aufgebaut ist 22 Teil I: Grundlagen der

Mehr

Mathematischer Einführungskurs für die Physik

Mathematischer Einführungskurs für die Physik Siegfried Großmann Mathematischer Einführungskurs für die Physik 9., überarbeitete und erweiterte Auflage Mit 123 Figuren, über 110 Beispielen und 233 Selbsttests mit Lösungen STUDIUM VIEWEG+ TEUBNER Inhalt

Mehr

INHALTSVERZEICHNIS. Seite 1 VEKTOREN UND EINFACHE GESETZMÄSSIGKEITEN

INHALTSVERZEICHNIS. Seite 1 VEKTOREN UND EINFACHE GESETZMÄSSIGKEITEN I INHALTSVERZEICHNIS Seite 1 VEKTOREN UND EINFACHE GESETZMÄSSIGKEITEN 1 1.1 Skalare und Vektoren 1.2 Art von Vektoren 1.3 Summe und Differenz von Vektoren 1.4 Parallele Vektoren 1.5 Betrag eines Vektors

Mehr

Rechnen mit Vektoren, analytische Geometrie

Rechnen mit Vektoren, analytische Geometrie Dr. Alfred Eisler Rechnen mit Vektoren, analytische Geometrie Themenbereich Vektorrechnung, analytische Geometrie Inhalte Eingabe von Vektoren Rechnen mit Vektoren Normalvektoren im R 2 Vektorielles Produkt

Mehr

Brückenkurs Mathematik. Mittwoch Freitag

Brückenkurs Mathematik. Mittwoch Freitag Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs

Mehr

Mathematik. Lernbaustein 6

Mathematik. Lernbaustein 6 BBS Gerolstein Mathematik Mathematik für die Berufsoberschule II Lernbaustein 6 Modellieren von Realsituationen mit Hilfe der Vektorrechnung www.p-merkelbach.de/bos/mathe/matheskript-bos- Lernbaustein

Mehr

++ + = 0 so erhält man eine quadratische Gleichung mit zwei Variablen dx+ey+f = 0 1.1

++ + = 0 so erhält man eine quadratische Gleichung mit zwei Variablen dx+ey+f = 0 1.1 Hauptachsentransformation. Einleitung Schneidet man den geraden Kreiskegel mit der Gleichung = + und die Ebene ++ + = 0 so erhält man eine quadratische Gleichung mit zwei Variablen +2 + +dx+ey+f = 0. Die

Mehr

Kurt Meyberg Peter Vachenauer. Höhere Mathematik 1. Differential- und Integralrechnung Vektor- und Matrizenrechnung

Kurt Meyberg Peter Vachenauer. Höhere Mathematik 1. Differential- und Integralrechnung Vektor- und Matrizenrechnung Kurt Meyberg Peter Vachenauer Höhere Mathematik 1 Differential- und Integralrechnung Vektor- und Matrizenrechnung Vierte, korrigierte Auflage Mit 450 Abbildungen Springer Inhaltsverzeichnis Kapitel 1.

Mehr

Großes Lehrbuch der Mathematik für Ökonomen

Großes Lehrbuch der Mathematik für Ökonomen Großes Lehrbuch der Mathematik für Ökonomen Von Professor Dr. Karl Bosch o. Professor für angewandte Mathematik und Statistik an der Universität Stuttgart-Hohenheim und Professor Dr. Uwe Jensen R. Oldenbourg

Mehr

Einführung in die Mathematik

Einführung in die Mathematik Helmut Koch Einführung in die Mathematik Hintergründe der Schulmathematik Zweite, korrigierte und erweiterte Auflage Springer Inhaltsverzeichnis Einleitung 1 1 Natürliche Zahlen 11 1.1 Zählen 11 1.2 Die

Mehr

Analytische Geometrie Aufgaben und Lösungen

Analytische Geometrie Aufgaben und Lösungen Analytische Geometrie Aufgaben und Lösungen http://www.fersch.de Klemens Fersch. Januar Inhaltsverzeichnis Punkte:Vektor - Abstand - Steigung - Mittelpunkt. Aufgaben....................................................

Mehr

MATHEMATIK. 1 Stundendotation. 2 Didaktische Hinweise. 4. Klasse. 1. Klasse. 3. Klasse. 5. Klasse. 2. Klasse

MATHEMATIK. 1 Stundendotation. 2 Didaktische Hinweise. 4. Klasse. 1. Klasse. 3. Klasse. 5. Klasse. 2. Klasse MATHEMATIK 1 Stundendotation 1. 2. 3. 4. 5. 6. Arithmetik und Algebra 4 3 Geometrie 2 3 Grundlagenfach 4 4 4 4 Schwerpunktfach Ergänzungsfach Weiteres Fach 2 Didaktische Hinweise Der Unterricht im Grundlagenfach

Mehr

MATHEMATIK. 1 Stundendotation. 2 Didaktische Hinweise G1 G2 G3 G4 G5 G6

MATHEMATIK. 1 Stundendotation. 2 Didaktische Hinweise G1 G2 G3 G4 G5 G6 MATHEMATIK 1 Stundendotation G1 G2 G3 G4 G5 G6 Arithmetik und Algebra 4 3 Geometrie 2 3 Grundlagenfach 4 4 4 4 Schwerpunktfach Ergänzungsfach Weiteres Pflichtfach Weiteres Fach 2 Didaktische Hinweise Der

Mehr

Mathematik für Ingenieure

Mathematik für Ingenieure A. Hoffmann B. Marx W. Vogt Mathematik für Ingenieure Lineare Algebra, Analysis Theorie und Numerik 1. Auflage ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills,

Mehr

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1 2008/2009 Das Wichtigste in Kürze Klasse 3 Lineare Gleichungssysteme und Determinanten Definiton (Lineare Gleichungssysteme: Lineare Gleichungssysteme löst man entweder mit dem Gauß-Algorithmus oder nach

Mehr

Potenzen der Linearen Algebra

Potenzen der Linearen Algebra Potenzen der Linearen Algebra Stufen der Verallgemeinerung und ihre didaktische Umsetzung in der Lehre Fakultät für Ingenieurwissenschaften Prof. Dr. Dieter Schott E-Post: dieter.schott@hs-wismar.de www.et.hs-wismar.de/schott

Mehr

Lineare Algebra. Grundlagen der Vektorrechnung. fsg Verlag

Lineare Algebra. Grundlagen der Vektorrechnung. fsg Verlag Rolf Stahlberger Alexander Golfmann Lineare Algebra Grundlagen der Vektorrechnung fsg Verlag Impressum Herausgeber: FSG Verlag Alexander Golfmann Augustenstr. 58 80333 München info@fsg-verlag.de www.fsg-verlag.de

Mehr

Jürgen Roth Didaktik der Linearen Algebra und Analytischen Geometrie

Jürgen Roth Didaktik der Linearen Algebra und Analytischen Geometrie Jürgen Roth Didaktik der Linearen Algebra und Analytischen Geometrie Modul 12a: Fachdidaktische Bereiche juergen-roth.de/lehre/did_linalg_anageo/ Kapitel 4: Kegelschnitte 4.1 Inhalte Didaktik der Linearen

Mehr

Mathematik für Ingenieure und Naturwissenschaftler Band 1

Mathematik für Ingenieure und Naturwissenschaftler Band 1 Lothar Papula Mathematik für Ingenieure und Naturwissenschaftler Band 1 Ein Lehr- und Arbeitsbuch für das Grundstudium 9., verbesserte Auflage Mit zahlreichen Beispielen aus Naturwissenschaft und Technik,

Mehr

Inhaltsverzeichnis Band 2b Analytische Geometrie. 1. Vektoralgebra

Inhaltsverzeichnis Band 2b Analytische Geometrie. 1. Vektoralgebra Inhaltsverzeichnis Band b Analytische Geometrie Auf der beigefügten CD befinden sich zwei Verzeichnisse: Inhalt_Mathcad und Inhalt_pdf In diesen Verzeichnissen sind alle Mathcad-Dateien (***.xmcd) und

Mehr

Vektorgeometrie - Teil 1

Vektorgeometrie - Teil 1 Vektorgeometrie - Teil 1 MNprofil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 14. März 2016 Inhaltsverzeichnis 1 Einführung & die analytische Darstellung der

Mehr

Vektorrechnung. 10. August Inhaltsverzeichnis. 1 Vektoren 2. 2 Grundlegende Rechenoperationen mit Vektoren 3. 3 Geometrie der Vektoren 5

Vektorrechnung. 10. August Inhaltsverzeichnis. 1 Vektoren 2. 2 Grundlegende Rechenoperationen mit Vektoren 3. 3 Geometrie der Vektoren 5 Vektorrechnung 0. August 07 Inhaltsverzeichnis Vektoren Grundlegende Rechenoperationen mit Vektoren 3 3 Geometrie der Vektoren 5 4 Das Kreuzprodukt 9 Vektoren Die reellen Zahlen R können wir uns als eine

Mehr

ÜBERBLICK ÜBER DAS KURS-ANGEBOT

ÜBERBLICK ÜBER DAS KURS-ANGEBOT ÜBERBLICK ÜBER DAS KURS-ANGEBOT Alle aufgeführten Kurse sind 100 % kostenfrei und können unter http://www.unterricht.de abgerufen werden. ANALYSIS / INFINITESIMALRECHNUNG Nullstellen * Nullstellen einer

Mehr

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte Geometrie Geometrie W. Kuhlisch Brückenkurs 206. Vektorrechnung und analytische Geometrie der Ebene, Kegelschnitte 2. Vektorrechnung und analytische Geometrie des Raumes, Anwendungen in der Geometrie,

Mehr

Technische Universität Berlin. Wolfgang Raack MECHANIK. 13. verbesserte Auflage. ULB Darmstadt. nwuiui i utr IVIOWI IClI'lIK.

Technische Universität Berlin. Wolfgang Raack MECHANIK. 13. verbesserte Auflage. ULB Darmstadt. nwuiui i utr IVIOWI IClI'lIK. Technische Universität Berlin Wolfgang Raack MECHANIK 13. verbesserte Auflage ULB Darmstadt 16015482 nwuiui i utr IVIOWI IClI'lIK Berlin 2004 Inhaltsverzeichnis 1 Einführung 1 1.1 Definition der Mechanik

Mehr

EINFÜHRUNG IN DIE HÖHERE MATHEMATIK

EINFÜHRUNG IN DIE HÖHERE MATHEMATIK v. MANGOLDT/KNOPP EINFÜHRUNG IN DIE HÖHERE MATHEMATIK FÜR STUDIERENDE UND ZUM SELBSTSTUDIUM ERSTER BAND ZAHLEN-FUNKTIONEN-GRENZWERTE ANALYTISCHE GEOMETRIE ALGEBRA- MENGENLEHRE 16. AUFLAGE MIT 116FIGUREN

Mehr

Grundwissen Abitur Geometrie 15. Juli 2012

Grundwissen Abitur Geometrie 15. Juli 2012 Grundwissen Abitur Geometrie 5. Juli 202. Erkläre die Begriffe (a) parallelgleiche Pfeile (b) Vektor (c) Repräsentant eines Vektors (d) Gegenvektor eines Vektors (e) Welcher geometrische Zusammenhang besteht

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Niedersachsen. Übungsbuch für den Grundkurs mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Niedersachsen. Übungsbuch für den Grundkurs mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Niedersachsen Übungsbuch für den Grundkurs mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis Von der Gleichung zur Kurve... 9 Aufstellen

Mehr

Inhaltsverzeichnis VII. Vorwort...

Inhaltsverzeichnis VII. Vorwort... VII Vorwort... V 1 Mathematische Begriffe und Schreibweisen... 1 1.1 Zahlen... 1 1.1.1 Zahlendarstellung auf der Zahlengeraden... 2 1.2 Mengen... 3 1.2.1 Aufzählende Mengenschreibweise... 4 1.2.2 Beschreibende

Mehr