9.1. Lineare und nichtlineare Trends. 9. Zeitreihen mit Trend Lineare und nichtlineare Trends Transformation der Daten

Größe: px
Ab Seite anzeigen:

Download "9.1. Lineare und nichtlineare Trends. 9. Zeitreihen mit Trend Lineare und nichtlineare Trends Transformation der Daten"

Transkript

1 9. Zeitreihen mit Trend 9.1. Lineare und nichtlineare Trends In diesem Abschnitt beschäftigen wir uns mit ZR, die einen langfristigen linearen Trend, aber keine saisonalen Schwankungen, enthalten. Das zugrunde liegende Modell ist daher ein Modell das die ZR in eine Niveau-, eine lineare Trendkomponente und eine zufällige Restkomponente zerlegt. hotann 1.0 e e Abbildung 17: Zeitreihenplot Hotel-Daten. Department für Statistik & Mathematik 9-79 Department für Statistik & Mathematik Lineare und nichtlineare Trends Die Hotel-Daten in Abb. 17 zeigen einen deutlichen linearen Trend. Man kann gut eine Gerade als Näherung an die Daten legen. In diesem Abschnitt wird das Holt Verfahren hergeleitet. Es ist ein Verfahren, das Prognosen unter der Annahme eines linearen Trends trifft. Bei Daten, die einen Trend aufweisen, der aber nicht linear ist, kann eine Transformation dieser Daten sinnvoll sein. Wir geben 2 Beispiele: Die Daten in Abb. 18 zeigen einen nahezu quadratischen Trend. In Abb. 19 sehen wir die ZR, die sich als Wurzel aus den ursprünglichen Daten ergibt. Die Daten in Abb. 20 zeigen einen nahezu exponentiellen Trend. In Abb. 21 wurden die Daten logarithmiert. Department für Statistik & Mathematik 9-81 Department für Statistik & Mathematik 9-82

2 population sqrt(population) Abbildung 18: US population. Abbildung 19: Transformation der US population. Department für Statistik & Mathematik 9-83 Department für Statistik & Mathematik 9-83 sales log(sales) Abbildung 20: Verkaufszahlen einer Firma. Abbildung 21: Transformation der Verkaufszahlen. Department für Statistik & Mathematik 9-84 Department für Statistik & Mathematik 9-84

3 Das Verfahren des exponentiellen Glättens wird nun so erweitert, dass auch ZR, die einen langfristigen, linearen Trend enthalten, prognostiziert werden könnnen. ˆx T (h) = â T +1 + ˆb T +1 h, h = 1, 2,... Die Daten setzten sich hier aus einer Niveaukomponente â T +1 und einer linearen Trendkomponente ˆb T +1 h zusammen. Rekursion für t = 3,..., T : â t = αx t 1 + (1 α)(â t 1 + ˆb t 1 ) ˆbt = β(â t â t 1 ) + (1 β)ˆb t 1 Die Einschritt-Vorhersagen zum Zeitpunkt t 1 ergeben sich daher als Summe der Schätzwerte von Trend und Niveau: ˆx t 1 (1) = â t + ˆb t. Department für Statistik & Mathematik 9-85 Department für Statistik & Mathematik 9-86 Startwerte: â 2 = x 1, ˆb 2 = x 2 x 1 Rekursion: â 3 = αx 2 + (1 α)(â 2 + ˆb 2 ) = x 2 ˆb3 = β(â 3 â 2 ) + (1 β)ˆb 2 = x 2 x 1. â T = αx T 1 + (1 α)(â T 1 + ˆb T 1 ) ˆbT = β(â T â T 1 ) + (1 β)ˆb T 1 Holt Verfahren für die Hotel-Daten: Die Hotel-Daten weisen einen Trend auf, der gut durch eine lineare Trendfunktion modelliert werden kann. In Abb. 22 werden die Jahre füer die Prognose von verwendet. Wir sehen, dass die lineare Trendprognose die wahren Daten der Jahre gut approximiert. Prognose f. T+1: â T +1 = αx T + (1 α)(â T + ˆb T ) ˆbT +1 = β(â T +1 â T ) + (1 β)ˆb T Prognose f. T+h: â T +h = â T +1, ˆb T +h = ˆb T +1 h Department für Statistik & Mathematik 9-87 Department für Statistik & Mathematik 9-88

4 Holt Winters filtering Zur Anwendung des Holt Verfahrens: Observed / Fitted 1.0 e e Approximiert eine ZR durch eine Niveau- und eine lineare Trendkomponente. Da die Prognosefunktion eine lineare Funktion in der Zeit ist, können nur ZR, die einen linearen Trend aufweisen, prognostiziert werden. Weder nichtlineare Trends noch saisonale Schwankungen können vorhergesagt werden. Abbildung 22: Holt-Verf. auf Hotel-Daten und Prognose für Die Glättungsparameter α und β liegen zwischen 0 und 1. Department für Statistik & Mathematik 9-89 Department für Statistik & Mathematik 9-90 Für α nahe bei 0 gehen auch länger zurückliegende Beobachtungen noch stärker in die Niveauschätzung ein. Die letzte Beobachtung erhält ein umso größeres Gewicht bei der Niveauschätzung, je näher der Glättungsparameter α an 1 liegt. Die Glättungsparameter können auch wieder durch Minimierung der Fehlerquadratsumme zwischen Einschritt-Vorhersage und wahrem Wert der ZR geschätzt werden. Für β nahe bei 0 geht die länger zurückliegende Trendentwicklung stärker in die aktuelle Trendschätzung ein. Die letzte Trendentwicklung erhält ein umso größeres Gewicht bei der Trendschätzung, je näher der Glättungsparameter β an 1 liegt. Department für Statistik & Mathematik 9-91 Department für Statistik & Mathematik 9-92

5 10. Holt Verfahren in R Um in R das Holt-Verfahren durchzuführen, wird die Funktion HoltWinters verwendet. Die Erklärung zur Anwendung stehen in HoltinR.pdf und können von der LV-Seite heruntergeladen werden. Übungen 3 Lösen Sie die folgenden Beispiele mit Hilfe von R: 1. Folgen Sie der Anleitung in HoltinR.pdf und rechnen Sie das dortige Beispiel nach. 2. Laden Sie die Daten austres in das Arbeitsverzeichnis. (Befehl: data( austres ), ist ein Datensatz, der im Package stats in R enthalten ist. Nähere Informationen können über help( austres ) abgefragt werden.) Gehen Sie wie in Bsp. 1. vor. Die Daten der Jahre sollen verwendet werden um Werte fuer vorherzusagen. Department für Statistik & Mathematik Department für Statistik & Mathematik 0-94 Übungen 3 (Hinweis: past <- window(austres, start=c(1985,1), end = c(1989,4)), future <- window(austres, start = c(1990,1)) ) Wählen Sie die Glättungsparameter α = 0.4 und β = 0.2. Wie lautet Ihre Prognose für das 2. Quartal 1993? 3. Lassen Sie für die Daten aus Bsp. 3. die Glättungsparameter von R optimieren. Welchen Wert bekommen α und β? Wie lautet die Prognose für das 2. Quartal 1993 jetzt? Wie hat sich die Fehlerquadratsumme für verändert? Wie hat sich die mittlere Fehlerquadratsumme für Quartal 1993 verändert? Department für Statistik & Mathematik 0-95

11. Zeitreihen mit Trend und Saisonalität

11. Zeitreihen mit Trend und Saisonalität In diesem Abschnitt geht es um ZR, die in eine Trend-, eine Saisonund eine Restkomponente zerlegt werden können. (Das Niveau sei in der Trendkomponente enthalten.) Beispiele für solche ZR sind in Abb.

Mehr

6. Das klassische Komponentenmodell. 6. Das klassische Komponentenmodell. 6. Das klassische Komponentenmodell. 6. Das klassische Komponentenmodell

6. Das klassische Komponentenmodell. 6. Das klassische Komponentenmodell. 6. Das klassische Komponentenmodell. 6. Das klassische Komponentenmodell 6. Das klassische Komponentenmodell Gegeben sei eine ZR x t für die Zeitpunkte t = 1,..., T. Im additiven klassischen Komponentenmodell wird sie folgendermaßen zerlegt: x t = ˆm t + ŝ t + ε t ˆm t ist

Mehr

SBWL Tourismusanalyse und Freizeitmarketing, Vertiefungskurs 2

SBWL Tourismusanalyse und Freizeitmarketing, Vertiefungskurs 2 SBWL Tourismusanalyse und Freizeitmarketing, Vertiefungskurs 2 1. Teil: Zerlegungsmodelle und naive Prognosemethoden für Zeitreihen Regina Tüchler Department für Statistik & Mathematik Inhalt Einleitung

Mehr

SBWL Tourismusanalyse und Freizeitmarketing, Vertiefungskurs 2

SBWL Tourismusanalyse und Freizeitmarketing, Vertiefungskurs 2 Inhalt 4. Empirische Momente von Zeitreihendaten 4.1. Autokorrelation, Autokorrelogramm 4.2. Stationarität 5. Empirische Momente in R SBWL Tourismusanalyse und Freizeitmarketing, Vertiefungskurs 2 1. Teil:

Mehr

Beispiel in R: ZR mit Trend

Beispiel in R: ZR mit Trend Beispiel in R: ZR mit Trend Regina Tüchler & Thomas Rusch November 2, 2009 Beispiel: Holt Verfahren für die Hotel-Daten : Die Daten hotelts-annual.rda werden geladen. Sie müssen sich dafür im working directory

Mehr

SBWL Tourismusanalyse und Freizeitmarketing, Vertiefungskurs 2

SBWL Tourismusanalyse und Freizeitmarketing, Vertiefungskurs 2 Inhalt SBWL Tourismusanalyse und Freizeitmarketing, Vertiefungskurs 2 1. Teil: Zerlegungsmodelle und naive Prognosemethoden für Zeitreihen Regina Tüchler Einleitung 1. Einführung in das Modellieren von

Mehr

Beispiele in R: Einfacher gleitender Durchschnitt und Exponentielles Glätten

Beispiele in R: Einfacher gleitender Durchschnitt und Exponentielles Glätten Beispiele in R: Einfacher gleitender Durchschnitt und Exponentielles Glätten Regina Tüchler & Thomas Rusch November 2, 2009 Beispiel: Einfacher Gleitender Durchschnitt der Nil-Daten: Wir haben Daten über

Mehr

Beispiel in R: Verfahren zur Modellierung von ZR mit Saison und Trend

Beispiel in R: Verfahren zur Modellierung von ZR mit Saison und Trend Beispiel in R: Verfahren zur Modellierung von ZR mit Saison und Trend Regina Tüchler November 2, 2009 Beispiel: Zeitreihenanalyse der Übernachtungs-Daten: Wir haben Daten mit monatlichen Übernachtungszahlen

Mehr

Zeitreihenanalyse Das Holt-Winters-Verfahren

Zeitreihenanalyse Das Holt-Winters-Verfahren Zeitreihenanalyse Das Holt-Winters-Verfahren Worum geht es in diesem Lernmodul? Einleitung Modellannahmen Die Prognoseformel des Holt-Winters-Verfahren Die Glättungskoeffizienten Die Startwerte Weiterführende

Mehr

Dynamische Systeme und Zeitreihenanalyse // Saisonbereinigung und Glättung 10 p.2/??

Dynamische Systeme und Zeitreihenanalyse // Saisonbereinigung und Glättung 10 p.2/?? Dynamische Systeme und Zeitreihenanalyse Saisonbereinigung und Glättung Kapitel 10 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Saisonbereinigung und Glättung

Mehr

Zerlegung von Zeitreihen

Zerlegung von Zeitreihen Kapitel 7 Zerlegung von Zeitreihen Josef Leydold c 2006 Mathematische Methoden VII Zerlegung von Zeitreihen 1 / 39 Lernziele Klassische Zerlegung von Zeitreihen Saisonbereinigungsverfahren: Gleitende Durchschnitte

Mehr

Explorative Zeitreihenanalyse

Explorative Zeitreihenanalyse Einheit 11 Explorative Zeitreihenanalyse Department of Statistics and Mathematics WU Wien c 2007 Statistik 11 Explorative Zeitreihenanalyse 0 / 53 Inhalt Beschreiben von Zeitreihen Klassische Zeitreihenzerlegung

Mehr

5. Zeitreihenanalyse und Prognoseverfahren

5. Zeitreihenanalyse und Prognoseverfahren 5. Zeitreihenanalyse und Prognoseverfahren Stichwörter: Trend, Saisonalität, Noise, additives Modell, multiplikatives Modell, Trendfunktion, Autokorrelationsfunktion, Korrelogramm, Prognosehorizont, Prognoseintervall,

Mehr

Zeitreihenanalyse. Zerlegung von Zeitreihen Saisonindex, saisonbereinigte Zeitreihe Trend und zyklische Komponente Prognose Autokorrelation

Zeitreihenanalyse. Zerlegung von Zeitreihen Saisonindex, saisonbereinigte Zeitreihe Trend und zyklische Komponente Prognose Autokorrelation Zeitreihenanalyse Zerlegung von Zeitreihen Saisonindex, saisonbereinigte Zeitreihe Trend und zyklische Komponente Prognose Autokorrelation Beispiel für Zeitreihe Zerlegung der Zeitreihe F t Trendkomponente

Mehr

Zeitreihenanalyse. Zerlegung von Zeitreihen Saisonindex, saisonbereinigte Zeitreihe Trend und zyklische Komponente Prognose Autokorrelation

Zeitreihenanalyse. Zerlegung von Zeitreihen Saisonindex, saisonbereinigte Zeitreihe Trend und zyklische Komponente Prognose Autokorrelation Zeitreihenanalyse Zerlegung von Zeitreihen Saisonindex, saisonbereinigte Zeitreihe Trend und zyklische Komponente Prognose Autokorrelation Beispiel für Zeitreihe Andere Anwendungen Inventarmanagment Produktionsplanung

Mehr

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers 4. Statistik im multiplen Regressionsmodell In diesem Kapitel wird im Abschnitt 4.1 zusätzlich zu den schon bekannten Standardannahmen noch die Annahme von normalverteilten Residuen hinzugefügt. Auf Basis

Mehr

Explorative Zeitreihenanalyse

Explorative Zeitreihenanalyse Kapitel 11 Explorative reihenanalyse Department of Statistics and Mathematics WU Wien c 2008 Statistik 11 Explorative reihenanalyse 0 / 66 Inhalt Beschreiben von reihen Klassische reihenzerlegung Trend,

Mehr

Kapitel X - Lineare Regression

Kapitel X - Lineare Regression Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel X - Lineare Regression Deskriptive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh Agenda 1 Untersuchung

Mehr

In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert.

In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert. Konstante Modelle: In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert. Der prognostizierte Wert für die Periode T+i entspricht

Mehr

Zeitreihenanalyse Exponentielles Glätten

Zeitreihenanalyse Exponentielles Glätten Zeitreihenanalyse Exponentielles Glätten Worum geht es in diesem Lernmodul? Einleitung Prognose mit der Methode des exponentiellen Glättens Die Prognoseformel des exponentiellen Glättens Die Wirkung der

Mehr

Zeitreihenökonometrie

Zeitreihenökonometrie Zeitreihenökonometrie Kapitel 11 - Filterverfahren Unterscheidung zwischen Wachstum und Konjunktur Wachstum: langfristige Entwicklung des Bruttoinlandsproduktes bei voller oder normaler Auslastung der

Mehr

Überschrift. Titel Prognosemethoden

Überschrift. Titel Prognosemethoden Überschrift Prognosemethoden Überschrift Inhalt 1. Einleitung 2. Subjektive Planzahlenbestimmung 3. Extrapolierende Verfahren 3.1 Trendanalyse 3.2 Berücksichtigung von Zyklus und Saison 4. Kausale Prognosen

Mehr

Didaktik der Mathematik der Sekundarstufe II

Didaktik der Mathematik der Sekundarstufe II Didaktik der Mathematik der Sekundarstufe II Teil 8: Satz von Rolle - Mittelwertsatz - Monotoniekriterium Humboldt-Universität zu Berlin, Institut für Mathematik Sommersemester 2010/11 Internetseite zur

Mehr

Dynamische Systeme und Zeitreihenanalyse // Zustandsraummodelle und Kalman Filter 15 p.2/??

Dynamische Systeme und Zeitreihenanalyse // Zustandsraummodelle und Kalman Filter 15 p.2/?? Dynamische Systeme und Zeitreihenanalyse Zustandsraummodelle und Kalman Filter Kapitel 15 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Zustandsraummodelle

Mehr

1 Prognoseverfahren F H

1 Prognoseverfahren F H 1 Prognoseverfahren 1.1 Zielsetzung 1.2 Bedarfsverlauf von Verbrauchsfaktoren 1.3 Prognose bei regelmäßigen Bedarf 1.4 Prognosemodelle in Standard-ERP-Software 1.5 Ausblick Herrmann, Frank: Operative Planung

Mehr

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Diese Übung beschäftigt sich mit der Skalierung von Variablen in Regressionsanalysen und mit asymptotischen Eigenschaften von OLS. Verwenden

Mehr

Gütebewertung und Performanceanalyse von Prognosealgorithmen bei unterschiedlichen Signalklassen

Gütebewertung und Performanceanalyse von Prognosealgorithmen bei unterschiedlichen Signalklassen Gütebewertung und Performanceanalyse von Prognosealgorithmen bei unterschiedlichen Signallassen Diplomverteidigung Yongrui Qiao 25. 06. 2009 1/33 Gliederung Motivation und Problemstellung Testverfahren

Mehr

Musterlösung. Modulklausur Multivariate Verfahren

Musterlösung. Modulklausur Multivariate Verfahren Musterlösung Modulklausur 31821 Multivariate Verfahren 25. September 2015 Aufgabe 1 (15 Punkte) Kennzeichnen Sie die folgenden Aussagen zur Regressionsanalyse mit R für richtig oder F für falsch. F Wenn

Mehr

Dynamische Systeme und Zeitreihenanalyse // Beschreiben von Zeitreihen 9 p.2/??

Dynamische Systeme und Zeitreihenanalyse // Beschreiben von Zeitreihen 9 p.2/?? Dynamische Systeme und Zeitreihenanalyse Beschreiben von Zeitreihen Kapitel 9 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Beschreiben von Zeitreihen 9 p.0/??

Mehr

Hauptseminar Technische Informationssysteme

Hauptseminar Technische Informationssysteme Hauptseminar Technische Informationssysteme Residualanalyse zur Fehlerlokalisierung und prädikativen Steuerung Vortragender: Betreuer: Tobias Fechter Dr.-Ing. Heinz-Dieter Ribbecke, Dipl.-Inf. Jakob Krause

Mehr

3 Trend- und Saisonkomponenten

3 Trend- und Saisonkomponenten 3 Trend- und Saisonkomponenten Schritte bei der Analyse von Zeitreihendaten : Plot ; Identifikation von Strukturbrüchen, Ausreißern etc. ; Modellansatz, z.b. klassisches Komponentenmodell X t = m t + s

Mehr

4. Empirische Momente von ZR. 4. Empirische Momente von ZR. 4. Empirische Momente von ZR. 4. Empirische Momente von ZR

4. Empirische Momente von ZR. 4. Empirische Momente von ZR. 4. Empirische Momente von ZR. 4. Empirische Momente von ZR Im Allgemeinen wird sich das Verhalten einer ZR über die Zeit ändern, z.b. Trend, saisonales Verhalten, sich verändernde Variabilität. Eine ZR wird als stationär bezeichnet, wenn sich ihr Verhalten über

Mehr

3 Trend- und Saisonkomponenten

3 Trend- und Saisonkomponenten 3 Trend- und Saisonkomponenten Schritte bei der Analyse von Zeitreihendaten : Plot ; Identifikation von Strukturbrüchen, Ausreißern etc. ; Modellansatz, z.b. klassisches Komponentenmodell X t = m t + s

Mehr

D-CHAB Frühlingssemester 2017 T =

D-CHAB Frühlingssemester 2017 T = D-CHAB Frühlingssemester 17 Grundlagen der Mathematik II Dr Marcel Dettling Lösung 13 1) Die relevanten Parameter sind n = 3, x = 1867, σ x = und µ = 18 (a) Die Teststatistik T = X µ Σ x / n ist nach Annahme

Mehr

Elementare Regressionsrechnung

Elementare Regressionsrechnung Elementare Regressionsrechnung Motivation: Streudiagramm zweier metrisch skalierter Merkmale X und Y Y X Dr. Karsten Webel 107 Ziel: Erfassung des Zusammenhangs zwischen X und Y durch eine Gerade der Form

Mehr

Übungsaufgaben zu Statistik II

Übungsaufgaben zu Statistik II Übungsaufgaben zu Statistik II Prof. Dr. Irene Prof. Dr. Albrecht Ungerer Die Kapitel beziehen sich auf das Buch: /Ungerer (2016): Statistik für Wirtschaftswissenschaftler Springer Gabler 4 Übungsaufgaben

Mehr

Teil: lineare Regression

Teil: lineare Regression Teil: lineare Regression 1 Einführung 2 Prüfung der Regressionsfunktion 3 Die Modellannahmen zur Durchführung einer linearen Regression 4 Dummyvariablen 1 Einführung o Eine statistische Methode um Zusammenhänge

Mehr

Statistik II. Regressionsrechnung+ Regressionsanalyse. Statistik II

Statistik II. Regressionsrechnung+ Regressionsanalyse. Statistik II Statistik II Regressionsrechnung+ Regressionsanalyse Statistik II - 16.06.2006 1 Regressionsrechnung Nichtlineare Ansätze In einigen Situation könnte man einen nichtlinearen Zusammenhang vermuten. Bekannte

Mehr

Problemstellung und Lernziele

Problemstellung und Lernziele Nachfrageprognose Problemstellung und Lernziele Inwiefern können Serviceunternehmen durch Nachfrageprognosen einen Wettbewerbsvorteil erwirtschaften? Nach dieser Veranstaltung sollten Sie, die wichtigsten

Mehr

SBWL Tourismusanalyse und Freizeitmarketing,

SBWL Tourismusanalyse und Freizeitmarketing, SBWL Tourismusanalyse und Freizeitmarketing, Vertiefungskurs 2: Multivariate Verfahren 1 2. Teil: Multiples Regressionsmodell Regina Tüchler Department für Statistik & Mathematik Inhalt Einleitung 1. Einfaches

Mehr

Bestandsmanagement. Prognoseverfahren und Lagerhaltungspolitiken

Bestandsmanagement. Prognoseverfahren und Lagerhaltungspolitiken Bestandsmanagement Prognoseverfahren und Lagerhaltungspolitiken Inhalt Bestandsmanagement in Supply Chains Prognoseverfahren Prognose bei regelmäßigem Bedarf Konstantes Bedarfsniveau Trendförmiges Bedarfsniveau

Mehr

QUANTITATIVE STATISTICAL METHODS: REGRESSION AND FORECASTING JOHANNES LEDOLTER VIENNA UNIVERSITY OF ECONOMICS AND BUSINESS ADMINISTRATION SPRING 2013

QUANTITATIVE STATISTICAL METHODS: REGRESSION AND FORECASTING JOHANNES LEDOLTER VIENNA UNIVERSITY OF ECONOMICS AND BUSINESS ADMINISTRATION SPRING 2013 QUANTITATIVE STATISTICAL METHODS: REGRESSION AND FORECASTING JOHANNES LEDOLTER VIENNA UNIVERSITY OF ECONOMICS AND BUSINESS ADMINISTRATION SPRING 2013 ZEITREIHEN 1 Viele Beobachtungen in den Wirtschaftswissenschaften

Mehr

X =, y In welcher Annahme unterscheidet sich die einfache KQ Methode von der ML Methode?

X =, y In welcher Annahme unterscheidet sich die einfache KQ Methode von der ML Methode? Aufgabe 1 (25 Punkte) Zur Schätzung der Produktionsfunktion des Unternehmens WV wird ein lineares Regressionsmodell der Form angenommen. Dabei ist y t = β 1 + x t2 β 2 + e t, t = 1,..., T (1) y t : x t2

Mehr

Zeitreihenanalyse Differenzenbildung

Zeitreihenanalyse Differenzenbildung Zeitreihenanalyse Differenzenbildung Worum geht es in diesem Lernmodul? Einleitung Verfahren der einfachen Differenzenbildung Verfahren der saisonalen Differenzenbildung Kombination einfacher und saisonaler

Mehr

Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h

Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h 5. Die partielle Autokorrelationsfunktion 5.1 Definition, Berechnung, Schätzung Bisher: Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h ρ X (h) = Corr(X t, X

Mehr

Prognosemethoden angewandt auf Besucherzahlen ausgewählter Ausflugsziele in Niederösterreich: Stift Geras und Kunsthalle Krems

Prognosemethoden angewandt auf Besucherzahlen ausgewählter Ausflugsziele in Niederösterreich: Stift Geras und Kunsthalle Krems Wirtschaftsuniversität Wien Institut für Tourismus und Freizeitwirtschaft Course 2 WS 2002/03 Andreas Zins Prognosemethoden angewandt auf Besucherzahlen ausgewählter Ausflugsziele in Niederösterreich:

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 1 Multivariate Verfahren Diese Selbstkontrollarbeit bezieht sich auf die Kapitel 1 bis 4 der Kurseinheit 1 (Multivariate Statistik) des Kurses Multivariate Verfahren (883). Hinweise:

Mehr

Zeitreihenanalyse mit EViews Klassische Zeitreihenanalyse. 4.1 Empirisches Autokorrelogramm. 4.2 Exponentielle Glättungsverfahren

Zeitreihenanalyse mit EViews Klassische Zeitreihenanalyse. 4.1 Empirisches Autokorrelogramm. 4.2 Exponentielle Glättungsverfahren Zeitreihenanalyse mit EViews 4.1 Unterlagen für LVen des Instituts für Angewandte Statistic (IFAS) Johannes Kepler Universität Linz Stand: 28. April 2005, Redaktion: Wagner 4 Klassische Zeitreihenanalyse

Mehr

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell 1 Lineare Regression Parameterschätzung 13 Im einfachen linearen Regressionsmodell sind also neben σ ) insbesondere β 1 und β Parameter, deren Schätzung für die Quantifizierung des linearen Zusammenhangs

Mehr

[ 1 ] Welche der folgenden Aussagen sind WAHR? Kreuzen Sie sie an.

[ 1 ] Welche der folgenden Aussagen sind WAHR? Kreuzen Sie sie an. 13 Zeitreihenanalyse 1 Kapitel 13: Zeitreihenanalyse A: Übungsaufgaben: [ 1 ] 1 a a) Nach der Formel x t+i berechnet man einen ein f achen gleitenden Durchschnitt. 2a + 1 i= a b) Die Residuale berechnet

Mehr

Übungen mit dem Applet. by Michael Gärtner

Übungen mit dem Applet. by Michael Gärtner Übungen mit dem Applet by Michael Gärtner Betreuer: Prof. Dr. Wilhelm Kleppmann Abgabe: 20. October 2006 Inhaltsverzeichnis 1 Prinzip der kleinsten Quadrate 4 2 Quadrierte Abweichungen und Bestimmtheitsmaÿ

Mehr

Teil XII. Einfache Lineare Regression. Woche 10: Lineare Regression. Lernziele. Zusammenfassung. Patric Müller

Teil XII. Einfache Lineare Regression. Woche 10: Lineare Regression. Lernziele. Zusammenfassung. Patric Müller Woche 10: Lineare Regression Patric Müller Teil XII Einfache Lineare Regression ETHZ WBL 17/19, 03.07.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Wahrscheinlichkeit

Mehr

die täglichen Schlusskurse eines börsengehandelten Wertpapiers,

die täglichen Schlusskurse eines börsengehandelten Wertpapiers, Wirtschaftswissenschaftliches Zentrum 5 Universität Basel Statistik Dr. Thomas Zehrt Zeitreihen Motivation Typische Beispiele für Zeitreihen sind die täglichen Schlusskurse des SMI Nummer 1 2 3 4 5 Datum

Mehr

Lineare Regression 1 Seminar für Statistik

Lineare Regression 1 Seminar für Statistik Lineare Regression 1 Seminar für Statistik Markus Kalisch 17.09.2014 1 Statistik 2: Ziele Konzepte von einer breiten Auswahl von Methoden verstehen Umsetzung mit R: Daten einlesen, Daten analysieren, Grafiken

Mehr

6. Ausgewählte Aufgabenstellungen Mathematik

6. Ausgewählte Aufgabenstellungen Mathematik 6. Ausgewählte Aufgabenstellungen Mathematik Bevölkerungsprognose (Teil-1-Aufgabe) In der angegebenen Tabelle der Statistik Austria ist die Bevölkerungsprognose für die österreichischen Bundesländer bis

Mehr

Modelle und Methoden der Zeitreihenanalyse

Modelle und Methoden der Zeitreihenanalyse Modelle und Methoden der Zeitreihenanalyse Mike Hüftle 31. Juli 2006 Inhaltsverzeichnis 1 Einleitung 2 1.1 Einordnung der Zeitreihenanalyse.................. 2 1.2 Darstellung von Zeitreihen......................

Mehr

Stochastisches Matchen. Klaus Pommerening IMBEI Oberseminar Medizin-Informatik

Stochastisches Matchen. Klaus Pommerening IMBEI Oberseminar Medizin-Informatik Stochastisches Matchen Klaus Pommerening IMBEI Oberseminar Medizin-Informatik 16. 7. 2002 Entscheidungssituation Y = M U disjunkte Zerlegung γ Beobachtungsfunktion Γ Merkmalsraum τ Entscheidungsfunktion

Mehr

Hauptdierentialanalyse

Hauptdierentialanalyse Hauptdierentialanalyse Jan Ditscheid TU Dortmund Seminar funktionale Datenanalyse 19.11.2015 1 / 40 1 Wozu HDA? 2 Denition des Problems 3 HDA am Beispiel 4 Techniken zur HDA 5 Beurteilung der Anpassung

Mehr

Lineare Transformationen und Determinanten. 10-E Ma 1 Lubov Vassilevskaya

Lineare Transformationen und Determinanten. 10-E Ma 1 Lubov Vassilevskaya Lineare Transformationen und Determinanten 10-E Ma 1 Lubov Vassilevskaya Lineare Transformation cc Definition: V und W sind zwei Vektorräume. Eine Funktion T nennt man eine lineare Transformation von V

Mehr

Basiswerkzeuge. Kapitel 6. Lernziele. Zeitreihen-Plot. Beschreiben von Zeitreihen. Graphische Darstellungen. Univariate und bivariate Maßzahlen

Basiswerkzeuge. Kapitel 6. Lernziele. Zeitreihen-Plot. Beschreiben von Zeitreihen. Graphische Darstellungen. Univariate und bivariate Maßzahlen Kapitel 6 Basiswerkzeuge Josef Leydold c 2006 Mathematische Methoden VI Basiswerkzeuge 1 / 29 Lernziele Beschreiben von Zeitreihen Graphische Darstellungen Univariate und bivariate Maßzahlen Transformationen

Mehr

Klausur zu Statistik II

Klausur zu Statistik II GOETHE-UNIVERSITÄT FRANKFURT FB Wirtschaftswissenschaften Statistik und Methoden der Ökonometrie Prof. Dr. Uwe Hassler Wintersemester 03/04 Klausur zu Statistik II Matrikelnummer: Hinweise Hilfsmittel

Mehr

5.6 Empirische Wirtschaftsforschung

5.6 Empirische Wirtschaftsforschung 5.6.0 Vorbemerkungen Literatur Winker, P. (2010): Empirische Wirtschaftsforschung und Ökonometrie. 3. Auflage. Springer. Insbesondere Kapitel 1, 4 und 10. Volltext-Download im Rahmen des LRZ-Netzes. Rinne,

Mehr

1 Einfachregression 1.1In 10 Haushalten wurden Einkommen und Ausgaben für Luxusgüter erfragt:

1 Einfachregression 1.1In 10 Haushalten wurden Einkommen und Ausgaben für Luxusgüter erfragt: Beispiele zum Üben und Wiederholen zu Wirtschaftsstatistik 2 (Kurs 3) 1 Einfachregression 1.1In 10 Haushalten wurden Einkommen und Ausgaben für Luxusgüter erfragt: Haushaltseinkommen 12 24 30 40 80 60

Mehr

Aufgabe 1 (8= Punkte) 13 Studenten haben die folgenden Noten (ganze Zahl) in der Statistikklausur erhalten:

Aufgabe 1 (8= Punkte) 13 Studenten haben die folgenden Noten (ganze Zahl) in der Statistikklausur erhalten: Aufgabe 1 (8=2+2+2+2 Punkte) 13 Studenten haben die folgenden Noten (ganze Zahl) in der Statistikklausur erhalten: Die Zufallsvariable X bezeichne die Note. 1443533523253. a) Wie groß ist h(x 5)? Kreuzen

Mehr

Kapitel 5. Prognose. Zeitreihenanalyse wird aus drei Gründen betrieben: Beschreibung des Verlaufs von Zeitreihen.

Kapitel 5. Prognose. Zeitreihenanalyse wird aus drei Gründen betrieben: Beschreibung des Verlaufs von Zeitreihen. Kapitel 5 Prognose Josef Leydold c 2006 Mathematische Methoden V Prognose 1 / 14 Lernziele Aufgabe der Prognose Problemtypen Ablauf einer Prognoseaufgabe Zeitreihe Josef Leydold c 2006 Mathematische Methoden

Mehr

Datenanalyse für Ingenieure im betriebswirtschaftlichen Umfeld: Gedanken zum Curriculum

Datenanalyse für Ingenieure im betriebswirtschaftlichen Umfeld: Gedanken zum Curriculum GMF-Tagung Zukunft der Lehre in Statistik und Stochastik Zürich, 21. Oktober 2017 Datenanalyse für Ingenieure im betriebswirtschaftlichen Umfeld: Gedanken zum Curriculum Andreas Ruckstuhl Dozent für Statistische

Mehr

Multivariate Verteilungen und Copulas

Multivariate Verteilungen und Copulas Multivariate Verteilungen und Copulas Zufallsvektoren und Modellierung der Abhängigkeiten Ziel: Modellierung der Veränderungen der Risikofaktoren X n = (X n,1, X n,2,..., X n,d ) Annahme: X n,i und X n,j

Mehr

Zeitreihenanalyse Das klassische Komponentenmodell

Zeitreihenanalyse Das klassische Komponentenmodell Zeitreihenanalyse Das klassische Komponentenmodell Worum geht es in diesem Lernmodul? Zeitreihen mit unterschiedlichen Charakteristika Zeitreihen mit regelmäßigen Schwankungen Mittel und Niveau einer Zeitreihe

Mehr

Klausur zu Methoden der Statistik I (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik I (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Sommersemester 2007 Aufgabe 1 25 Schülern einer

Mehr

Wirtschaftliche Trendbetrachtung und Prognosemodelle im Rahmen des kommunalen Objektmanagements

Wirtschaftliche Trendbetrachtung und Prognosemodelle im Rahmen des kommunalen Objektmanagements Wirtschaftliche Trendbetrachtung und Prognosemodelle im Rahmen des kommunalen Objektmanagements Alexander Haß, Denny Megallis, Maik Moser Gliederung 1. Theoretische Einführung in Trendanalysen 2. Beispielhafte

Mehr

Untersuchung von Algorithmen zur Fehlerlokalisation und Prognose in Automatisierungsprozessen. Yongrui Qiao Yongrui Qiao

Untersuchung von Algorithmen zur Fehlerlokalisation und Prognose in Automatisierungsprozessen. Yongrui Qiao Yongrui Qiao Untersuchung von Algorithmen zur Fehlerloalisation und Prognose in Automatisierungsprozessen Yongrui Qiao Yongrui Qiao Übersicht. Motivation und Problemstellung. Theoretische Grundlagen stochastisch-gestörter

Mehr

Die Stochastischen Eigenschaften von OLS

Die Stochastischen Eigenschaften von OLS Die Stochastischen Eigenschaften von OLS Das Bivariate Modell Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Wiederholung

Mehr

Aktienkurs der Wiener Börsekammer (Jänner 1968-Oktober 2004) Forecasts und Evaluation

Aktienkurs der Wiener Börsekammer (Jänner 1968-Oktober 2004) Forecasts und Evaluation Aktienkurs der Wiener Börsekammer (Jänner 1968-Oktober 24) Forecasts und Evaluation 1. Daten...2 2. Dynamische Forecasts...4 2.1 Exponential Smoothing...4 2.1.1 Double Exponential Smoothing...4 2.1.2 Holt-Winters...5

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 1 Multivariate Verfahren Musterlösung Aufgabe 1 (40 Punkte) Auf der dem Kurs beigelegten CD finden Sie im Unterverzeichnis Daten/Excel/ die Datei zahlen.xlsx. Alternativ können Sie

Mehr

Finite Elemente. Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 2015

Finite Elemente. Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 2015 Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 5 Aufgabe 8 (Speichertechniken) Finite Elemente Übung 5 a) Stellen Sie die Matrix

Mehr

11. Übungsblatt zur Vorlesung Ökonometrie SS 2014

11. Übungsblatt zur Vorlesung Ökonometrie SS 2014 Universität des Saarlandes Lehrstab Statistik Dr. Martin Becker Dipl.-Kfm. Andreas Recktenwald 11. Übungsblatt zur Vorlesung Ökonometrie SS 2014 Aufgabe 45 Die in Aufgabe 43 getroffene Annahme heteroskedastischer

Mehr

Einführung in die numerische Mathematik

Einführung in die numerische Mathematik Prof. Dr. M. Günther K. Gausling, M.Sc. C. Hendricks, M.Sc. Sommersemester 014 Bergische Universität Wuppertal Fachbereich C Mathematik und Naturwissenschaften Angewandte Mathematik / Numerische Analysis

Mehr

Zeitreihenanalyse Saisonbereinigung

Zeitreihenanalyse Saisonbereinigung Zeitreihenanalyse Saisonbereinigung Worum geht es in diesem Lernmodul? Einleitung Die starre Saisonfigur Saisonbereinigung für Zeitreihen ohne Trend Saisonbereinigung für Zeitreihen mit Trend Warum müssen

Mehr

Prognose. Kapitel 5. Ökonometrie I Michael Hauser

Prognose. Kapitel 5. Ökonometrie I Michael Hauser 1 / 31 Prognose Kapitel 5 Ökonometrie I Michael Hauser 2 / 31 Inhalt Prognose, allgemein Prognosebeispiel Punktprognose Prognosefehler Intervallprognose Mean square error, Prognosegüte 3 / 31 Prognose

Mehr

Das Lineare Regressionsmodell

Das Lineare Regressionsmodell Das Lineare Regressionsmodell Bivariates Regressionsmodell Verbrauch eines Pkw hängt vom Gewicht des Fahrzeugs ab Hypothese / Theorie: Je schwerer ein Auto, desto mehr wird es verbrauchen Annahme eines

Mehr

T4p: Thermodynamik und Statistische Physik Prof. Dr. H. Ruhl Übungsblatt 3 Lösungsvorschlag

T4p: Thermodynamik und Statistische Physik Prof. Dr. H. Ruhl Übungsblatt 3 Lösungsvorschlag T4p: Thermodynamik und Statistische Physik Prof. Dr. H. Ruhl Übungsblatt 3 Lösungsvorschlag 1. Extremwerte unter Nebenbedingungen In der Vorlesung wurden die mittleren Besetzungszahlen für verschiedene

Mehr

x t2 y t = 160, y = 8, y y = 3400 t=1

x t2 y t = 160, y = 8, y y = 3400 t=1 Aufgabe 1 (25 Punkte) 1. Eine Online Druckerei möchte die Abhängigkeit des Absatzes gedruckter Fotos vom Preis untersuchen. Dazu verwendet die Firma das folgende lineare Regressionsmodell: wobei y t =

Mehr

Prognoseverfahren von Michaela Simon 7.Semester Spezialisierung Finanzwirtschaft

Prognoseverfahren von Michaela Simon 7.Semester Spezialisierung Finanzwirtschaft Prognoseverfahren von Michaela Simon 7.Semester Spezialisierung Finanzwirtschaft Inhaltsverzeichnis I. Allgemeine Aussagen II. Subjektive Planzahlenbestimmung III. Extrapolierende Verfahren 1. Trendanalyse:

Mehr

Schätzung im multiplen linearen Modell VI

Schätzung im multiplen linearen Modell VI Schätzung im multiplen linearen Modell VI Wie im einfachen linearen Regressionsmodell definiert man zu den KQ/OLS-geschätzten Parametern β = ( β 0, β 1,..., β K ) mit ŷ i := β 0 + β 1 x 1i +... β K x Ki,

Mehr

Mathematik III - Statistik für MT(Master)

Mathematik III - Statistik für MT(Master) 3. Regressionsanalyse Fachbereich Grundlagenwissenschaften Prof. Dr. Viola Weiß Wintersemester 0/03 Mathematik III - Statistik für MTMaster 3. Empirische Regressionsgerade Optimalitätskriterium: Die Summe

Mehr

Statistik II für Betriebswirte Vorlesung 11

Statistik II für Betriebswirte Vorlesung 11 Statistik II für Betriebswirte Vorlesung 11 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 08. Januar 2018 Dr. Andreas Wünsche Statistik II für Betriebswirte Vorlesung 11 Version:

Mehr

Varianzkomponentenschätzung

Varianzkomponentenschätzung Qualitas AG Varianzkomponentenschätzung Peter von Rohr Qualitas AG Peter von Rohr Folien ZL I+II LFW C11 October 29, 2015 2 / 23 Multiple Lineare Regression Annahmen Modell y = Xb + e Varianz der Fehler

Mehr

Statistik-Klausur vom

Statistik-Klausur vom Statistik-Klausur vom 09.02.2010 Bearbeitungszeit: 60 Minuten Aufgabe 1 a) Bei einer Umfrage unter FH-Studierenden ergaben sich die folgenden Anreisezeiten (in Min) zur FH: von... bis unter... Anzahl 0-20

Mehr

7.1 Korrelationsanalyse. Statistik. Kovarianz. Pearson-Korrelation. Institut für angewandte Statistik & EDV Universität für Bodenkultur Wien

7.1 Korrelationsanalyse. Statistik. Kovarianz. Pearson-Korrelation. Institut für angewandte Statistik & EDV Universität für Bodenkultur Wien Statistik 7.1 Korrelationsanalyse Institut für angewandte Statistik & EDV Universität für Bodenkultur Wien Sommersemester 2012 7 Regressions- und Korrelationsanalyse Kovarianz Pearson-Korrelation Der (lineare)

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG. Serie 13

Lineare Algebra und Numerische Mathematik für D-BAUG. Serie 13 P. Grohs T. Welti F. Weber Herbstsemester 2015 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Serie 13 Diese letzte Serie des Semesters befasst sich noch einmal mit wichtigen Themen

Mehr

Übung V Lineares Regressionsmodell

Übung V Lineares Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Michael Alpert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2007 Übung

Mehr

Lineare Abbildungen und Orthonormalsysteme

Lineare Abbildungen und Orthonormalsysteme KAPITEL Lineare Abbildungen und Orthonormalsysteme. Lineare Abbildungen und Koordinatendarstellungen.. Lineare Abbildungen und ihre Basisdarstellung. Seien V, W Vektorraume uber R. Mit einer Abbildung

Mehr

Mixed Effects Models: Wachstumskurven

Mixed Effects Models: Wachstumskurven Mixed Effects Models: Wachstumskurven Markus Kalisch 07.10.2014 1 Überblick Wiederholte Messungen (z.b. Wachstumskurven): Korrelierte Beobachtungen Random Intercept Model (RI) Random Intercept and Random

Mehr

EGRESSIONSANALYSE AVID BUCHATZ NIVERSITÄT ZU KÖLN

EGRESSIONSANALYSE AVID BUCHATZ NIVERSITÄT ZU KÖLN 1 EGRESSIONSANALYSE AVID BUCHATZ NIVERSITÄT ZU KÖLN UFBAU 1 Historie 2 Anwendungen / Ziele 3 Lineare Regression/ Beispiel KQ 4 Nichtlineare Regression 5 Eigenschaften der Schätzer istorie früheste Form

Mehr

1 Beispiel zur Methode der kleinsten Quadrate

1 Beispiel zur Methode der kleinsten Quadrate 1 Beispiel zur Methode der kleinsten Quadrate 1.1 Daten des Beispiels t x y x*y x 2 ŷ ˆɛ ˆɛ 2 1 1 3 3 1 2 1 1 2 2 3 6 4 3.5-0.5 0.25 3 3 4 12 9 5-1 1 4 4 6 24 16 6.5-0.5 0.25 5 5 9 45 25 8 1 1 Σ 15 25

Mehr

Teilklausur des Moduls Kurs 42221: Vertiefung der Statistik

Teilklausur des Moduls Kurs 42221: Vertiefung der Statistik Name, Vorname Matrikelnummer Teilklausur des Moduls 32741 Kurs 42221: Vertiefung der Statistik Datum Termin: 21. März 2014, 14.00-16.00 Uhr Prüfer: Univ.-Prof. Dr. H. Singer Vertiefung der Statistik 21.3.2014

Mehr

Kapitel 10. Multikollinearität. Exakte Multikollinearität Beinahe Multikollinearität

Kapitel 10. Multikollinearität. Exakte Multikollinearität Beinahe Multikollinearität Kapitel 0 Multikollinearität Exakte Multikollinearität Beinahe Multikollinearität Exakte Multikollinearität Unser Modell lautet y = Xb + u, Dimension von X: n x k Annahme : rg(x) = k Wenn sich eine oder

Mehr