Zeitreihenanalyse. Zerlegung von Zeitreihen Saisonindex, saisonbereinigte Zeitreihe Trend und zyklische Komponente Prognose Autokorrelation

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Zeitreihenanalyse. Zerlegung von Zeitreihen Saisonindex, saisonbereinigte Zeitreihe Trend und zyklische Komponente Prognose Autokorrelation"

Transkript

1 Zeitreihenanalyse Zerlegung von Zeitreihen Saisonindex, saisonbereinigte Zeitreihe Trend und zyklische Komponente Prognose Autokorrelation

2 Beispiel für Zeitreihe

3 Andere Anwendungen Inventarmanagment Produktionsplanung Finanzierungspläne Beschäftigungsplanung Prozesskontrolle Etc.

4 Typische Zeitreihen Y(t) = b 0 + ε wobei ε ~ N(0,σ)

5 Typische Zeitreihen Y(t) = b 0 + b 1 t + ε, ε ~ N(0,σ)

6 Typische Zeitreihen 3 Y(t) = b 0 + b 1 sin(ω t) + ε, ε ~ N(0,σ)

7 Zerlegung der Zeitreihe F t Trendkomponente S t Saisonale komponente C t Zyklische Variation (längere Perioden als Saison, ev. Keine fixe Periodenlänge) E t Zufallsschwankungen Für die zuvor vorgestellten Beispiele könnte man einfache Regressionsmodelle verwenden (vgl. Kapitel 7 und 8)

8 Zwei Modelle Multiplikative Zeitreihenstruktur X t = F t C t S t E t Additive Struktur X t = F t +C t +S t +E t Exp und Log führen Modelle ineinander über. Zusätzlich zur Regression wird bei Zeitreihen häufig die Methode der gleitenden Mittel verwendet

9 Bsp. 10.1: Verkaufszahlen über 3 Wochen Woche Mo Di Mi Do Fr Frage ob der Wochentag einen Einfluss auf die Verkaufszahlen hat

10 Graphische Darstellung Verkauf Tag

11 Behandlung der saisonalen Komponente (hier: Wochentag) X t = F t C t S t E t Verwende zunächst gleitende Mittel um saisonalen Effekt zu eliminieren (d.h. ich schätze F t C t ) GM 3 = (X 1 + X 2 + X 3 + X 4 + X 5 )/5 GM 4 = (X 2 + X 3 + X 4 + X 5 + X 6 )/5 GM 5 = (X 3 + X 4 + X 5 + X 6 + X 7 )/5 etc. Beachte die ungerade Periodenlänge p=5 (Wochentage) GM 1 und GM 2 werden nicht berechnet (ebenso GM n-1 und GM n

12 Gleitendes Mittel in der Graphik Verkauf Gleitendes Mittel Tag

13 Bereinigte Zeitreihe und saisonaler Index Von Trend und Zyklus bereinigte Zeitreihe: X t (-TC) = S t E t = X t /(F t C t ) Berechnung des saisonalen Index: Ersetze F t C t durch GM t, mittle über alle so erhaltenen Werte des gleichen Wochentags und multipliziere mit 100 Bsp Mittwoch: SI 3 =100(49/ / /46) /3 = Normierter saisonaler Index: NSI j = 100 SI SI j

14 Saisonales Gewicht und saisonbereinigte Zeitreihe Saisonales Gewicht = Saisonindex / Periodenlänge = SI j / p Saisonbereinigte Zeitreihe: X t (-S) = X t 100/SI j wobei SI j der (normierte) Saisonindex des entsprechenden Tages ist! Bemerkung: Zur Berechnung von SI wird manchmal anstelle des Mittelwerts auch der Median verwendet

15 Gleitende Mittel bei gerader Periodenlänge (Bsp 10-2: p=4) Bilde zunächst die Mittel jeweils über die Periodenlänge HM 2,5 = (X 1 + X 2 + X 3 + X 4 )/4 HM 3.5 = (X 2 + X 3 + X 4 + X 5 )/4 HM 4,5 = (X 3 + X 4 + X 5 + X 6 )/4 etc. Verwende diese Hilfsgrößen um die zentrierten gleitenden Mittel zu berechnen GM 2 = (HM 2,5 +HM 3,5 ) GM 3 = (HM 3,5 +HM 4,5 ) etc.

16 Schätzung von Trend und zyklischer Komponente Schätze den Trend F t als linearen Anteil der saisonbereinigten Zeitreihe X t (-S) mittels Regression 2 Möglichkeiten: 1) Regression für die logarithmierte Zeitreihe log X t (-S) lineares Fehlermodell: log X t (-S) ~b 0 + b 1 t = log F t oder: ˆ = b0 b1t Ft e e 2) Regression direkt für X t (-S) ~c 0 + c 1 t = F t Buch S. 271ff, Bsp. 10-4, alles durchgerechnet ^ ^

17 Zyklische Komponente C t Wir haben nun also F t C t mit gleitendem Mittel und F t selbst durch lineare Regression der saisonbereinigten Zeitreihe geschätzt. Zur Bestimmung von C t können wir nun einfach diese beiden Schätzer dividieren (C t = F t C t /F t ) Abgesehen von den zufälligen Schwankungen, die ja prinzipiell nicht berechenbar sind, haben wir die Zeitreihe somit vollständig nach unserem multiplikativen Modell X t = F t C t S t E t zerlegt! Beachte, dass C t schwieriger zu schätzen und auch schwieriger zu interpretieren ist als S t.

18 Prognose

19 Verbrauch von Brennstoffen Wie wird der Verbrauch im Jahr 2010 aussehen?

20 Deutscher Aktienkurs Wo befindet sich der DAX in 3 Monaten?

21 Konjunkturprognose

22 Erstellen von Prognosen Verwende Zerlegung der Zeitreihe! X t = F t C t S t E t Zur Bestimmung von X T verwende: F T c 0 exp (c 1 T) S T passenden saisonalen Index (Tag, Quartal,etc.) C T geeignete Wahl am schwierigsten, erfordert zumeist spezielle Überlegungen, z. Bsp. welcher Teil der Zi ih ihi d V hiählih

23 Bsp Q 2Q 3Q 4Q 1Q 2Q 3Q 4Q 1Q 2Q X t Berechnung der Gleitenden Mittel: Bsp. 3. Quartal 1997: HM 23 = ; HM 34 = GM 3 = 856.2

24 Bsp Saisonindizes 3Q 4Q 1Q 2Q 3Q 4Q 1Q 2Q 3Q X t GM Beispiel 3. Quartal: 1997: 868.5/856.2 = : /927.1 = : 976.8/986.2 = 0.99 SI = 100 ( )/3 = Berechne analog SI für die anderen 3 Quartale und dann NSI

25 Bsp.10-4: Saisonbereinigte Zeitreihe Normiere Saisonindizes 1Q 2Q 3Q 4Q (NSI): Saisonbereinigte Zeitreihe: X t (-S) =X t /NSI 1Q 2Q 3Q 4Q 1Q 2Q 3Q 4Q 1Q 2Q X t X t (-S)

26 Bsp.10-4: Trendschätzung 1) Regression für Y = log(x t (-S) ) liefert: Y ˆ ( t) = t F ˆ ( t) = exp( t) = 821e 0.016t 2) Regression für Y = X t (-S) liefert F ˆ2 ( t) = t Beachte: F ˆ ( t) t + 0.1t 2

27 Bsp.10-4: Zyklische Komponente Berechne C t = GM t F ˆ ( t ) Beispiel 3. Quartal 1998: entspricht t=7 ˆ F(7) = 821e = GM 7 = C7 = 927.1/ Somit Zeitreihe vollständig zerlegt und wir wollen Zerlegung nun zur Prognose verwenden!

28 Prognose für das erste Quartal 2001 Entspricht dem Zeitpunkt T = 17, Prognose verwendet Schätzer für F T,C T und S T ˆ F(17) = 821 e = 1078 S t wird mittels saisonalem Effekt geschätzt Sˆ 17 = NSI1 /100 = Bleibt zyklische Komponente: Mögliche Überlegung C 14 = 1 C 10 Schätze C 17 durch C 13 = Prognose: Fˆ ˆ ˆ 17 S17 C17 =

29 Natürlich gibt es viele weitere Verfahren zur Prognose, die hier nicht besprochen werden können. So wird häufig die Methode der exponentiellen Glättung bevorzugt. Weiterführende Literatur findest Du z.bsp hier: Beachte, dass wir hier nur Informationen aus der Zeitreihe selbst zur Prognose verwendet haben. In der Praxis wird man natürlich auch zusätzliche Informationen heranziehen (z.bsp. Diverse andere Wirtschaftsdaten zur Konjunkturprognose).

30 Autokorrelation Korrelation zwischen Fehlertermen eines Regressionsmodells Schätzung der Koeffizienten ineffizient Unterschätzung der Fehlervarianz s 2 e Auswirkungen auf Tests und Konfidenzintervalle (Wahrscheinlichkeit für Fehler 1. Art steigt) Bei Zeitreihen ist Autokorrelation (AK) ein häufiges Phänomen, und zwar meist positive AK

31 Durbin-Watson Test H 0 : Zeitreihe weist keine Lag 1 Autokorrelation auf H 1 : Es liegt Autokorrelation auf Teststatistik bei T Beobachtungen: D Testentscheidung: T = = ( e t t e ) 2 2 t 1 T 2 e t= 1 t H 0 falls d U < D < 4-d U H 1 falls d L < D < 4-d L Ansonsten keine Entscheidung möglich!

32 Beispiel 10-7 T =n = 16 Residuen gegeben Durbin -Watson Statistik: D = Tabelle 6: d L = 0.98, d U = 1.24 Somit d U < D < 4-d U und wir können H 0 nich verwerfen!

33 Was tun bei Autokorrelation? 1) Hinzufügen weiterer unabhängiger Variablen 2) Transformieren von Variablen Typischerweise bildet man Differenzen oder Quotienten Siehe Bsp im Buch

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Regression: 4 eindimensionale Beispiele Berühmte

Mehr

Kapitel XII - Einführung in die Zeitreihenanalyse

Kapitel XII - Einführung in die Zeitreihenanalyse Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XII - Einführung in die Zeitreihenanalyse Deskriptive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh

Mehr

Zerlegung von Zeitreihen

Zerlegung von Zeitreihen Kapitel 7 Zerlegung von Zeitreihen Josef Leydold c 2006 Mathematische Methoden VII Zerlegung von Zeitreihen 1 / 39 Lernziele Klassische Zerlegung von Zeitreihen Saisonbereinigungsverfahren: Gleitende Durchschnitte

Mehr

Zeitreihenanalyse Das Holt-Winters-Verfahren

Zeitreihenanalyse Das Holt-Winters-Verfahren Zeitreihenanalyse Das Holt-Winters-Verfahren Worum geht es in diesem Lernmodul? Einleitung Modellannahmen Die Prognoseformel des Holt-Winters-Verfahren Die Glättungskoeffizienten Die Startwerte Weiterführende

Mehr

[ 1 ] Welche der folgenden Aussagen sind WAHR? Kreuzen Sie sie an.

[ 1 ] Welche der folgenden Aussagen sind WAHR? Kreuzen Sie sie an. 13 Zeitreihenanalyse 1 Kapitel 13: Zeitreihenanalyse A: Übungsaufgaben: [ 1 ] 1 a a) Nach der Formel x t+i berechnet man einen ein f achen gleitenden Durchschnitt. 2a + 1 i= a b) Die Residuale berechnet

Mehr

5. Zeitreihenanalyse und Prognoseverfahren

5. Zeitreihenanalyse und Prognoseverfahren 5. Zeitreihenanalyse und Prognoseverfahren Stichwörter: Trend, Saisonalität, Noise, additives Modell, multiplikatives Modell, Trendfunktion, Autokorrelationsfunktion, Korrelogramm, Prognosehorizont, Prognoseintervall,

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Seminar zur Energiewirtschaft:

Seminar zur Energiewirtschaft: Seminar zur Energiewirtschaft: Ermittlung der Zahlungsbereitschaft für erneuerbare Energien bzw. bessere Umwelt Vladimir Udalov 1 Modelle mit diskreten abhängigen Variablen 2 - Ausgangssituation Eine Dummy-Variable

Mehr

11. Zeitreihen mit Trend und Saisonalität

11. Zeitreihen mit Trend und Saisonalität In diesem Abschnitt geht es um ZR, die in eine Trend-, eine Saisonund eine Restkomponente zerlegt werden können. (Das Niveau sei in der Trendkomponente enthalten.) Beispiele für solche ZR sind in Abb.

Mehr

5.6 Empirische Wirtschaftsforschung

5.6 Empirische Wirtschaftsforschung 5.6.0 Vorbemerkungen Literatur Winker, P. (2010): Empirische Wirtschaftsforschung und Ökonometrie. 3. Auflage. Springer. Insbesondere Kapitel 1, 4 und 10. Volltext-Download im Rahmen des LRZ-Netzes. Rinne,

Mehr

In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert.

In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert. Konstante Modelle: In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert. Der prognostizierte Wert für die Periode T+i entspricht

Mehr

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg. PROGNOSE II - Vertiefung Aufgaben und Lösungen Sommersemester 2004

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg. PROGNOSE II - Vertiefung Aufgaben und Lösungen Sommersemester 2004 Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg PROGNOSE II - Vertiefung Aufgaben und Lösungen Sommersemester 2004 Aufgabe 1 U t bedeute weißes Rauschen und B den Backshift

Mehr

y t = 30, 2. Benutzen Sie die Beobachtungen bis einschließlich 2002, um den Koeffizientenvektor β mit der KQ-Methode zu schätzen.

y t = 30, 2. Benutzen Sie die Beobachtungen bis einschließlich 2002, um den Koeffizientenvektor β mit der KQ-Methode zu schätzen. Aufgabe 1 (25 Punkte Zur Schätzung des Werbe-Effekts in einem Getränke-Unternehmen wird das folgende lineare Modell aufgestellt: Dabei ist y t = β 1 + x t2 β 2 + e t. y t : x t2 : Umsatz aus Getränkeverkauf

Mehr

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Christian Peukert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2010

Mehr

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell Kapitel 8 Einfache Regression Josef Leydold c 2006 Mathematische Methoden VIII Einfache Regression 1 / 21 Lernziele Lineares Regressionsmodell Anpassen des linearen Regressionsmodells, OLS Eigenschaften

Mehr

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Diese Übung beschäftigt sich mit der Skalierung von Variablen in Regressionsanalysen und mit asymptotischen Eigenschaften von OLS. Verwenden

Mehr

Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h

Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h 5. Die partielle Autokorrelationsfunktion 5.1 Definition, Berechnung, Schätzung Bisher: Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h ρ X (h) = Corr(X t, X

Mehr

Inhalt. I. Deskriptive Statistik Einführung Die Grundgesamtheit Merkmale und Verteilungen Tabellen und Grafiken...

Inhalt. I. Deskriptive Statistik Einführung Die Grundgesamtheit Merkmale und Verteilungen Tabellen und Grafiken... I. Deskriptive Statistik 1 1. Einführung 3 1.1. Die Grundgesamtheit......................... 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................ 10

Mehr

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandelt die Verteilung einer Variablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem

Mehr

Kapitel 1 Beschreibende Statistik

Kapitel 1 Beschreibende Statistik Beispiel 1.25: fiktive Aktienkurse Zeitpunkt i 0 1 2 Aktienkurs x i 100 160 100 Frage: Wie hoch ist die durchschnittliche Wachstumsrate? Dr. Karsten Webel 53 Beispiel 1.25: fiktive Aktienkurse (Fortsetzung)

Mehr

Überschrift. Titel Prognosemethoden

Überschrift. Titel Prognosemethoden Überschrift Prognosemethoden Überschrift Inhalt 1. Einleitung 2. Subjektive Planzahlenbestimmung 3. Extrapolierende Verfahren 3.1 Trendanalyse 3.2 Berücksichtigung von Zyklus und Saison 4. Kausale Prognosen

Mehr

Kapitel 40 Zeitreihen: Autokorrelation und Kreuzkorrelation

Kapitel 40 Zeitreihen: Autokorrelation und Kreuzkorrelation Kapitel 40 Zeitreihen: Autokorrelation und Kreuzkorrelation Bei Zeitreihendaten ist häufig das Phänomen zu beobachten, daß die Werte der Zeitreihe zeitverzögert mit sich selbst korreliert sind. Dies bedeutet,

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

Kointegration. Kapitel 19. Angewandte Ökonometrie / Ökonometrie III Michael Hauser

Kointegration. Kapitel 19. Angewandte Ökonometrie / Ökonometrie III Michael Hauser 1 / 28 Kointegration Kapitel 19 Angewandte Ökonometrie / Ökonometrie III Michael Hauser 2 / 28 Inhalt I(d), Trends, Beispiele Spurious Regression Kointegration, common trends Fehlerkorrektur-Modell Test

Mehr

13. Übungswoche. Kapitel 12: Varianzanalyse (Fortsetzung)

13. Übungswoche. Kapitel 12: Varianzanalyse (Fortsetzung) 1 13. Übungswoche Kapitel 12: Varianzanalyse (Fortsetzung) [ 3 ] Im Vorkurs Mathematik für Wirtschafstwissenschaftler vor Beginn des Sommersemesters 2009 wurde am Anfang und am Ende ein Test geschrieben,

Mehr

Makroökonomie: Übung 1

Makroökonomie: Übung 1 Makroökonomie: Übung 1 3.5.2010 1 Ziele der Übung Umgang mit Daten MS Excel verwenden Ergebnisse interpretieren Konzepte aus der Vorlesung anwenden 2 Aufgabe 2 Logarithmierte Zeitreihen Einen Ordner auf

Mehr

Regression und Korrelation

Regression und Korrelation Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandeltdie VerteilungeinerVariablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem dagegen

Mehr

Vorlage zur Dokumentation der täglichen Arbeitszeit

Vorlage zur Dokumentation der täglichen Arbeitszeit Monat/Jahr: Januar 2016 Fr, 01 0:00 Sa, 02 0:00 So, 03 0:00 Mo, 04 0:00 Di, 05 0:00 Mi, 06 0:00 Do, 07 0:00 Fr, 08 0:00 Sa, 09 0:00 So, 10 0:00 Mo, 11 0:00 Di, 12 0:00 Mi, 13 0:00 Do, 14 0:00 Fr, 15 0:00

Mehr

Grundlagen der Statistik I

Grundlagen der Statistik I NWB-Studienbücher Wirtschaftswissenschaften Grundlagen der Statistik I Beschreibende Verfahren Von Professor Dr. Jochen Schwarze 10. Auflage Verlag Neue Wirtschafts-Briefe Herne/Berlin Inhaltsverzeichnis

Mehr

Empirische Analysen mit dem SOEP

Empirische Analysen mit dem SOEP Empirische Analysen mit dem SOEP Methodisches Lineare Regressionsanalyse & Logit/Probit Modelle Kurs im Wintersemester 2007/08 Dipl.-Volksw. Paul Böhm Dipl.-Volksw. Dominik Hanglberger Dipl.-Volksw. Rafael

Mehr

Lösungsvorschläge zur Klausur Beschreibende Statistik und Wirtschaftsstatistik (Sommersemester 2013)

Lösungsvorschläge zur Klausur Beschreibende Statistik und Wirtschaftsstatistik (Sommersemester 2013) Lösungsvorschläge zur Klausur Beschreibende Statistik und Wirtschaftsstatistik (Sommersemester 203) Aufgabe (9 Punkte) Ein metrisches Merkmal X sei in einer Grundgesamtheit vom Umfang n = 200 diskret klassiert.

Mehr

Regionale Arbeitslosenprognosen: Die Leistungsfähigkeit ausgewählter Zeitreihenverfahren

Regionale Arbeitslosenprognosen: Die Leistungsfähigkeit ausgewählter Zeitreihenverfahren Institut für Arbeitsmarkt- und Berufsforschung Folie 1 Regionale Arbeitslosenprognosen: Die Leistungsfähigkeit ausgewählter Zeitreihenverfahren Katharina Hampel Marcus Kunz Norbert Schanne Antje Weyh Dr.

Mehr

Zeitreihenökonometrie

Zeitreihenökonometrie Zeitreihenökonometrie Kapitel 11 - Filterverfahren Unterscheidung zwischen Wachstum und Konjunktur Wachstum: langfristige Entwicklung des Bruttoinlandsproduktes bei voller oder normaler Auslastung der

Mehr

Analyse von Querschnittsdaten. Signifikanztests I Basics

Analyse von Querschnittsdaten. Signifikanztests I Basics Analyse von Querschnittsdaten Signifikanztests I Basics Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004

Mehr

Vorlage zur Dokumentation der täglichen Arbeitszeit

Vorlage zur Dokumentation der täglichen Arbeitszeit Monat/Jahr: Januar 2015 Do, 01 Fr, 02 Sa, 03 So, 04 Mo, 05 Di, 06 Mi, 07 Do, 08 Fr, 09 Sa, 10 So, 11 Mo, 12 Di, 13 Mi, 14 Do, 15 Fr, 16 Sa, 17 So, 18 Mo, 19 Di, 20 Mi, 21 Do, 22 Fr, 23 Sa, 24 So, 25 Mo,

Mehr

Haushaltsbuch Jänner 2013

Haushaltsbuch Jänner 2013 Haushaltsbuch Jänner 2013 Di 1 Mi 2 Do 3 Fr 4 Sa 5 So 6 Mo 7 Di 8 Mi 9 Do 02 Fr 11 Sa 12 So 13 Mo 14 Di 15 Mi 16 Do 17 Fr 28 Sa 19 So 20 Mo 21 Di 22 Mi 23 Do 24 Fr 25 Sa 26 So 27 Mo28 Di 29 Mi 30 Do 31

Mehr

1. Lösungen zu Kapitel 7

1. Lösungen zu Kapitel 7 1. Lösungen zu Kapitel 7 Übungsaufgabe 7.1 Um zu testen ob die Störterme ε i eine konstante Varianz haben, sprich die Homogenitätsannahme erfüllt ist, sind der Breusch-Pagan-Test und der White- Test zwei

Mehr

Teil: lineare Regression

Teil: lineare Regression Teil: lineare Regression 1 Einführung 2 Prüfung der Regressionsfunktion 3 Die Modellannahmen zur Durchführung einer linearen Regression 4 Dummyvariablen 1 Einführung o Eine statistische Methode um Zusammenhänge

Mehr

Intermediate Macroeconomics: Übungsveranstaltung

Intermediate Macroeconomics: Übungsveranstaltung Ziele der Übungsveranstaltung Umgang mit Daten, insbesondere Zeitreihen Intermediate Macroeconomics: Übungsveranstaltung MS Excel verwenden, einfache Datentransformationen und Berechnungen durchführen

Mehr

Bestandsmanagement. Prognoseverfahren und Lagerhaltungspolitiken

Bestandsmanagement. Prognoseverfahren und Lagerhaltungspolitiken Bestandsmanagement Prognoseverfahren und Lagerhaltungspolitiken Inhalt Bestandsmanagement in Supply Chains Prognoseverfahren Prognose bei regelmäßigem Bedarf Konstantes Bedarfsniveau Trendförmiges Bedarfsniveau

Mehr

Übungsaufgaben zu Statistik II

Übungsaufgaben zu Statistik II Übungsaufgaben zu Statistik II Prof. Dr. Irene Prof. Dr. Albrecht Ungerer Die Kapitel beziehen sich auf das Buch: /Ungerer (2016): Statistik für Wirtschaftswissenschaftler Springer Gabler 4 Übungsaufgaben

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 6 Genzwertsätze Einführung 1 Wahrscheinlichkeit: Definition und Interpretation

Mehr

Auswertung und Lösung

Auswertung und Lösung Dieses Quiz soll Ihnen helfen, Kapitel 4.7 und 4.8 besser zu verstehen. Auswertung und Lösung Abgaben: 71 / 265 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: 0 Durchschnitt: 5.65 Frage 1

Mehr

Wangerooge Fahrplan 2016

Wangerooge Fahrplan 2016 Fahrplan Dezember 2015 Januar Januar Januar Februar Februar März So, 13.12. 10.15 11.00 12.45 12.30 13.45 14.20 Mo, 14.12. 11.30 13.00 15.30 Di, 15.12. 12.30 13.05 14.45 13.30 15.00 Mi, 16.12. 14.45 16.00

Mehr

Fehlerfortpflanzung. M. Schlup. 27. Mai 2011

Fehlerfortpflanzung. M. Schlup. 27. Mai 2011 Fehlerfortpflanzung M. Schlup 7. Mai 0 Wird eine nicht direkt messbare physikalische Grösse durch das Messen anderer Grössen ermittelt, so stellt sich die Frage, wie die Unsicherheitsschranke dieser nicht-messbaren

Mehr

Zeitreihenanalyse Der einfache gleitende Durchschnitt

Zeitreihenanalyse Der einfache gleitende Durchschnitt Zeitreihenanalyse Der einfache gleitende Durchschnitt Worum geht es in diesem Lernmodul? Einleitung Erläuterung der Methode Berechnung des einfachen gleitenden Durchschnitts Der einfache gleitende Durchschnitt

Mehr

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell 1 Lineare Regression Parameterschätzung 13 Im einfachen linearen Regressionsmodell sind also neben σ ) insbesondere β 1 und β Parameter, deren Schätzung für die Quantifizierung des linearen Zusammenhangs

Mehr

Aufgaben zu Kapitel 5:

Aufgaben zu Kapitel 5: Aufgaben zu Kapitel 5: Aufgabe 1: Ein Wissenschaftler untersucht, in wie weit die Reaktionszeit auf bestimmte Stimuli durch finanzielle Belohnung zu steigern ist. Er möchte vier Bedingungen vergleichen:

Mehr

Analyse von Querschnittsdaten. Spezifikation der unabhängigen Variablen

Analyse von Querschnittsdaten. Spezifikation der unabhängigen Variablen Analyse von Querschnittsdaten Spezifikation der unabhängigen Variablen Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Annahmen gegeben? kategoriale Variablen Datum 3.0.004 0.0.004

Mehr

SBWL Tourismusanalyse und Freizeitmarketing, Vertiefungskurs 2

SBWL Tourismusanalyse und Freizeitmarketing, Vertiefungskurs 2 Inhalt SBWL Tourismusanalyse und Freizeitmarketing, Vertiefungskurs 2 1. Teil: Zerlegungsmodelle und naive Prognosemethoden für Zeitreihen Regina Tüchler Einleitung 1. Einführung in das Modellieren von

Mehr

Vorwort Abbildungsverzeichnis Teil I Mathematik 1

Vorwort Abbildungsverzeichnis Teil I Mathematik 1 Inhaltsverzeichnis Vorwort Abbildungsverzeichnis V XIII Teil I Mathematik 1 1 Elementare Grundlagen 3 1.1 Grundzüge der Mengenlehre... 3 1.1.1 Darstellungsmöglichkeiten von Mengen... 4 1.1.2 Mengenverknüpfungen...

Mehr

Statistische Methoden in der Wirtschaftsund Sozialgeographie

Statistische Methoden in der Wirtschaftsund Sozialgeographie Statistische Methoden in der Wirtschaftsund Sozialgeographie Ort: Zeit: Multimediapool Rechenzentrum Mittwoch 10.15-11-45 Uhr Material: http://www.geomodellierung.de Thema: Beschreibung und Analyse Wirtschafts-

Mehr

2 Anwendungen und Probleme

2 Anwendungen und Probleme Universität Ulm 89069 Ulm Germany Prof. Dr. Werner Smolny Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Institutsdirektor 2 Anwendungen

Mehr

Schätzverfahren ML vs. REML & Modellbeurteilung mittels Devianz, AIC und BIC. Referenten: Linda Gräfe & Konstantin Falk

Schätzverfahren ML vs. REML & Modellbeurteilung mittels Devianz, AIC und BIC. Referenten: Linda Gräfe & Konstantin Falk Schätzverfahren ML vs. REML & Modellbeurteilung mittels Devianz, AIC und BIC Referenten: Linda Gräfe & Konstantin Falk 1 Agenda Schätzverfahren ML REML Beispiel in SPSS Modellbeurteilung Devianz AIC BIC

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Es können von den Antworten alle, mehrere oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort (ohne Auslassungen

Mehr

Ökonometrie. Hans Schneeweiß. 3., durchgesehene Auflage. Physica-Verlag Würzburg-Wien 1978 ISBN

Ökonometrie. Hans Schneeweiß. 3., durchgesehene Auflage. Physica-Verlag Würzburg-Wien 1978 ISBN 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Hans Schneeweiß Ökonometrie 3., durchgesehene Auflage Physica-Verlag

Mehr

die täglichen Schlusskurse eines börsengehandelten Wertpapiers,

die täglichen Schlusskurse eines börsengehandelten Wertpapiers, Wirtschaftswissenschaftliches Zentrum 5 Universität Basel Statistik Dr. Thomas Zehrt Zeitreihen Motivation Typische Beispiele für Zeitreihen sind die täglichen Schlusskurse des SMI Nummer 1 2 3 4 5 Datum

Mehr

Zeitreihenanalyse Exponentielles Glätten

Zeitreihenanalyse Exponentielles Glätten Zeitreihenanalyse Exponentielles Glätten Worum geht es in diesem Lernmodul? Einleitung Prognose mit der Methode des exponentiellen Glättens Die Prognoseformel des exponentiellen Glättens Die Wirkung der

Mehr

Drittvariablenkontrolle in der linearen Regression: Trivariate Regression

Drittvariablenkontrolle in der linearen Regression: Trivariate Regression Drittvariablenkontrolle in der linearen Regression: Trivariate Regression 14. Januar 2002 In der Tabellenanalyse wird bei der Drittvariablenkontrolle für jede Ausprägung der Kontrollvariablen eine Partialtabelle

Mehr

Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten

Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 4.1 4. Statistische Entscheidungsverfahren Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten Beispiel:

Mehr

Kapitel 1 Einführung. Angewandte Ökonometrie WS 2012/13. Nikolaus Hautsch Humboldt-Universität zu Berlin

Kapitel 1 Einführung. Angewandte Ökonometrie WS 2012/13. Nikolaus Hautsch Humboldt-Universität zu Berlin Kapitel 1 Einführung Angewandte Ökonometrie WS 2012/13 Nikolaus Hautsch Humboldt-Universität zu Berlin 1. Allgemeine Informationen 2 17 1. Allgemeine Informationen Vorlesung: Mo 12-14, SPA1, 23 Vorlesung

Mehr

Technische Universität München. Prognoseverfahren. Mit PC-Unterstützung Tendenzen und Prognose in der Forstwirtschaft erkennen

Technische Universität München. Prognoseverfahren. Mit PC-Unterstützung Tendenzen und Prognose in der Forstwirtschaft erkennen Prognoseverfahren Mit PC-Unterstützung Tendenzen und Prognose in der Forstwirtschaft erkennen Definition und Fragen Was ist eine Prognose, was ein Trend Wo werden sie angewandt und zu welchem Zweck Relevanz

Mehr

Einführung in die computergestützte Datenanalyse

Einführung in die computergestützte Datenanalyse Karlheinz Zwerenz Statistik Einführung in die computergestützte Datenanalyse 6., überarbeitete Auflage DE GRUYTER OLDENBOURG Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL

Mehr

Wangerooge Fahrplan 2015 Fahrzeit Tidebus 50 Minuten, Schiff und Inselbahn ca. 90 Minuten.

Wangerooge Fahrplan 2015 Fahrzeit Tidebus 50 Minuten, Schiff und Inselbahn ca. 90 Minuten. Fahrplan Dezember 2014 Januar Januar Februar Februar März März Sa, 27.12. 12.30 13.30 11.30 13.30 16.00 14.00 15.45 15.30 16.30 16.50 So, 28.12. 12.30 14.15 12.15 14.30 15.30 16.45 14.45 16.30 17.15 17.35

Mehr

Grundwissen Mathematik Klasse 8

Grundwissen Mathematik Klasse 8 Grundwissen Mathematik Klasse 8 1. Funktionen allgemein (Mathehelfer 2: S.47) Erstellen einer Wertetabelle bei gegebener Funktionsgleichung Zeichnen des Funktionsgraphen Ablesen von Wertepaaren ( x / f(x)

Mehr

Bivariate Zusammenhänge

Bivariate Zusammenhänge Bivariate Zusammenhänge 40 60 80 Bivariater Zusammenhang: Zusammenhang zwischen zwei Variablen weight (kg) Gibt es einen Zusammenhang zwischen Größe & Gewicht? (am Beispieldatensatz) Offensichtlich positiver

Mehr

VU mathematische methoden in der ökologie: räumliche verteilungsmuster 1/5 h.lettner /

VU mathematische methoden in der ökologie: räumliche verteilungsmuster 1/5 h.lettner / VU mathematische methoden in der ökologie: räumliche verteilungsmuster / h.lettner / Analyse räumlicher Muster und Verteilungen Die Analyse räumlicher Verteilungen ist ein zentrales Gebiet der ökologischen

Mehr

Statistik. Datenanalyse mit EXCEL und SPSS. R.01denbourg Verlag München Wien. Von Prof. Dr. Karlheinz Zwerenz. 3., überarbeitete Auflage

Statistik. Datenanalyse mit EXCEL und SPSS. R.01denbourg Verlag München Wien. Von Prof. Dr. Karlheinz Zwerenz. 3., überarbeitete Auflage Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz 3., überarbeitete Auflage R.01denbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Ausgangsdaten Bundesliga 2008/2009 Gegeben: Daten zu den 18 Vereinen der ersten Bundesliga

Mehr

Statistik für Ökonomen

Statistik für Ökonomen Wolfgang Kohn Riza Öztürk Statistik für Ökonomen Datenanalyse mit R und SPSS 2., überarbeitete Auflage 4ü Springer Gabler Inhaltsverzeichnis Teil I Einführung 1 Kleine Einführung in R '! 3 1.1 Installieren

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Basiswissen Mathematik, Statistik. und Operations Research für. Wirtschaftswissenschaftler. von. Prof. Dr. Gert Heinrich DHBW Villingen-Schwenningen

Basiswissen Mathematik, Statistik. und Operations Research für. Wirtschaftswissenschaftler. von. Prof. Dr. Gert Heinrich DHBW Villingen-Schwenningen Basiswissen Mathematik, Statistik und Operations Research für Wirtschaftswissenschaftler von Prof. Dr. Gert Heinrich DHBW Villingen-Schwenningen 5., korrigierte Auflage Oldenbourg Verlag München Inhaltsverzeichnis

Mehr

Gütebewertung und Performanceanalyse von Prognosealgorithmen bei unterschiedlichen Signalklassen

Gütebewertung und Performanceanalyse von Prognosealgorithmen bei unterschiedlichen Signalklassen Gütebewertung und Performanceanalyse von Prognosealgorithmen bei unterschiedlichen Signallassen Diplomverteidigung Yongrui Qiao 25. 06. 2009 1/33 Gliederung Motivation und Problemstellung Testverfahren

Mehr

Bei näherer Betrachtung des Diagramms Nr. 3 fällt folgendes auf:

Bei näherer Betrachtung des Diagramms Nr. 3 fällt folgendes auf: 18 3 Ergebnisse In diesem Kapitel werden nun zunächst die Ergebnisse der Korrelationen dargelegt und anschließend die Bedingungen der Gruppenbildung sowie die Ergebnisse der weiteren Analysen. 3.1 Ergebnisse

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte

Mehr

Problemstellung und Lernziele

Problemstellung und Lernziele Nachfrageprognose Problemstellung und Lernziele Inwiefern können Serviceunternehmen durch Nachfrageprognosen einen Wettbewerbsvorteil erwirtschaften? Nach dieser Veranstaltung sollten Sie, die wichtigsten

Mehr

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz R.Oldenbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL I GRUNDLAGEN

Mehr

Vorbereitung auf 3. Übungsblatt (Präsenzübungen) - Lösungen

Vorbereitung auf 3. Übungsblatt (Präsenzübungen) - Lösungen Prof Dr Rainer Dahlhaus Statistik 1 Wintersemester 2016/2017 Vorbereitung auf Übungsblatt (Präsenzübungen) - Lösungen Aufgabe P9 (Prognosen und Konfidenzellipsoide in der linearen Regression) Wir rekapitulieren

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

Statistik II Übung 1: Einfache lineare Regression

Statistik II Übung 1: Einfache lineare Regression Statistik II Übung 1: Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (16-24 Jahre alt) und der Anzahl der

Mehr

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO 4. Dezember 2001 Generalisierung der aus Stichprobendaten berechneten Regressionsgeraden Voraussetzungen für die Generalisierung

Mehr

Schriftliche Prüfung (90 Minuten)

Schriftliche Prüfung (90 Minuten) Dr. M. Kalisch Probeprüfung Statistik 1 Sommer 2014 Schriftliche Prüfung (90 Minuten) Bemerkungen: Alle schriftlichen Hilfsmittel und ein Taschenrechner sind erlaubt. Mobiltelefone sind auszuschalten!

Mehr

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,

Mehr

Annahmen des linearen Modells

Annahmen des linearen Modells Annahmen des linearen Modells Annahmen des linearen Modells zusammengefasst A1: Linearer Zusammenhang: y = 0 + 1x 1 + 2x 2 + + kx k A2: Zufallsstichprobe, keine Korrelation zwischen Beobachtungen A3: Erwartungswert

Mehr

Übungen (HS-2010): Urteilsfehler. Autor: Siegfried Macho

Übungen (HS-2010): Urteilsfehler. Autor: Siegfried Macho Übungen (HS-2010): Urteilsfehler Autor: Siegfried Macho Inhaltsverzeichnis i Inhaltsverzeichnis 1. Übungen zu Kapitel 2 1 Übungen zu Kontingenz- und Kausalurteile 1 Übung 1-1: 1. Übungen zu Kapitel 2 Gegeben:

Mehr

Statistik. Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz. Der Weg zur Datenanalyse. Springer. Zweite, verbesserte Auflage

Statistik. Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz. Der Weg zur Datenanalyse. Springer. Zweite, verbesserte Auflage Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz Statistik Der Weg zur Datenanalyse Zweite, verbesserte Auflage Mit 165 Abbildungen und 34 Tabellen Springer Inhaltsverzeichnis Vorwort v 1 Einführung

Mehr

Hauptseminar Technische Informationssysteme

Hauptseminar Technische Informationssysteme Hauptseminar Technische Informationssysteme Thema: Vergleich verschiedener Prognosestrategien von Tobias Fochtmann Betreuer: Dr. Ribbecke 24.01.2008 Gliederung I. Einleitung II. Prognose allgemein und

Mehr

Bachelorprüfung WS 2012/13 - MUSTERLÖSUNG

Bachelorprüfung WS 2012/13 - MUSTERLÖSUNG Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Bachelorprüfung WS 2012/13 - MUSTERLÖSUNG Fach: Praxis der empirischen Wirtschaftsforschung Prüfer: Prof. Regina

Mehr

Inhaltsverzeichnis. Vorwort 13. Teil I Beschreibende Statistik 17. Kapitel 1 Statistische Merkmale und Variablen 19

Inhaltsverzeichnis. Vorwort 13. Teil I Beschreibende Statistik 17. Kapitel 1 Statistische Merkmale und Variablen 19 Inhaltsverzeichnis Vorwort 13 Teil I Beschreibende Statistik 17 Kapitel 1 Statistische Merkmale und Variablen 19 1.1 Statistische Einheiten und Grundgesamtheiten 19 1.2 Merkmale und Merkmalsausprägungen

Mehr

Formelsammlung für das Modul. Statistik 2. Bachelor. Sven Garbade

Formelsammlung für das Modul. Statistik 2. Bachelor. Sven Garbade Version 2015 Formelsammlung für das Modul Statistik 2 Bachelor Sven Garbade Prof. Dr. phil. Dipl.-Psych. Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de

Mehr

Statistik II Übung 2: Multivariate lineare Regression

Statistik II Übung 2: Multivariate lineare Regression Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden

Mehr

2.3 Nichtlineare Regressionsfunktion

2.3 Nichtlineare Regressionsfunktion Nichtlineare Regressionsfunktion Bisher: lineares Regressionsmodell o Steigung d. Regressionsgerade ist konstant o Effekt einer Änderung von X auf Y hängt nicht vom Niveau von X oder von anderen Regressoren

Mehr

Statistik II Übung 1: Einfache lineare Regression

Statistik II Übung 1: Einfache lineare Regression Statistik II Übung 1: Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (16-24 Jahre alt) und der Anzahl der

Mehr

unendlich-dimensionalen lästigen Parameter auffassen.

unendlich-dimensionalen lästigen Parameter auffassen. Näherungen mit Bootstrap Werner Stahel, Seminar für Statistik, ETH Zürich, 8. 4. 2009 Dieser Text kann dazu dienen, die Ideen des Bootstrap zusammenzufassen. Es fehlen hier Beispiele. 1 Fragestellung a

Mehr

Statistik I für Wirtschaftswissenschaftler Klausur am ,

Statistik I für Wirtschaftswissenschaftler Klausur am , 1 Statistik I für Wirtschaftswissenschaftler Klausur am.1.1, 13.45 15.45. Bitte unbedingt beachten: a) Gewertet werden alle 9 gestellten Aufgaben. b) Lösungswege sind anzugeben. Die Angabe des Endergebnisses

Mehr

Informationen zur KLAUSUR am

Informationen zur KLAUSUR am Wiederholung und Fragen 1 Informationen zur KLAUSUR am 24.07.2009 Raum: 032, Zeit : 8:00 9:30 Uhr Bitte Lichtbildausweis mitbringen! (wird vor der Klausur kontrolliert) Erlaubte Hilfsmittel: Alle Unterlagen,

Mehr

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief Statistik II Literatur Kategoriale Unabhängige, Interaktion, nicht-lineare Effekte : Schätzung Statistik

Mehr

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief. Statistik II

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief. Statistik II Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief Statistik II Wiederholung Literatur Kategoriale Unabhängige, Interaktion, nicht-lineare Effekte

Mehr

Bachelorprüfung WS 2012/13

Bachelorprüfung WS 2012/13 Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Fach: Praxis der empirischen Wirtschaftsforschung Prüfer: Prof. Regina T. Riphahn, Ph.D. Bachelorprüfung WS 2012/13

Mehr

Stochastische Prozesse und Zeitreihenmodelle

Stochastische Prozesse und Zeitreihenmodelle Kapitel 12 Stochastische Prozesse und Zeitreihenmodelle Department of Statistics and Mathematics WU Wien c 2008 Statistik 12 Stochastische Prozesse und Zeitreihenmodelle 0 / 53 Inhalt Notation Zusammenhang

Mehr