Fehlerfortpflanzung. M. Schlup. 27. Mai 2011

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Fehlerfortpflanzung. M. Schlup. 27. Mai 2011"

Transkript

1 Fehlerfortpflanzung M. Schlup 7. Mai 0 Wird eine nicht direkt messbare physikalische Grösse durch das Messen anderer Grössen ermittelt, so stellt sich die Frage, wie die Unsicherheitsschranke dieser nicht-messbaren Grösse aus den Unsicherheiten der Teilgrössen bestimmt werden kann. Für die hier gemachten Überlegungen sollen die folgenden Annahmen und Festlegungen gelten: Für die aus n Teilgrössen x,..., x n zusammengesetzte Grösse y wird die folgende Funktion als bekannt vorausgesetzt: y f(x, x,..., x n ) () Der indirekt ermittelte Messwert m y von y wird aus den Messwerten m x,..., m xn der Teilgrössen x,..., x n nach derselben Funktion bestimmt: m y f(m x, m x,..., m xn ) () Es wird angenommen, dass die Messwerte m x,..., m xn voneinander unabhängig sind, d. h. ihre zufälligen Werte nicht voneinander abhängen und dass ihre Messunsicherheiten s x,..., s xn als geschätzte Standardabweichungen oder Streuungen 3 gegeben sind. Dabei spielt es keine Rolle welche Dichtefunktionen die Teilgrössen aufweisen, z. B. ob diese gleich- oder normalverteilt sind. Um die Messunsicherheit eines Ergebnisses zu bestimmen, welches aus mehreren fehlerbehafteten Grössen berechnet wird, muss die Empfindlichkeit des Ergebnisses auf die einzelnen Komponenten ermittelt werden. Diese kann bei nicht allzu grossen Fehlertermen durch Linearisierung, d. h. bilden der partiellen Ableitung 4 bestimmt werden. Die geschätzte Streuung Der Messwert einer Teilgrösse wird im Allgemeinen durch den (linearen) Mittelwert der Ergebnisse von mehreren Messungen geschätzt. Dies bedeutet auch, dass die Grössen x,..., x n ebenfalls voneinander unabhängig sein müssen. 3 Die Standardabweichung oder Streuung σ k einer stochastischen Grösse ist ein statistisches Mass für die Unsicherheit dieser Grösse. Im (üblichen) Fall einer Normalverteilung (Gauß-Verteilung) der Zufallsgrösse, beträgt die Wahrscheinlichkeit, dass sich die Zufallsgrösse im Bereich ±σ um deren Mittelwert befindet, ca. 68% (so genannter 68%-Vertrauensbereich). 4 Partiell bedeutet teilweise. Bei einer Funktion von mehreren (unabhängigen) Variablen kann die Ableitung nach jeder dieser Variablen einzeln gebildet werden. Dabei werden die anderen Variablen (nach welchen gerade nicht abgeleitet wird) als konstant angenommen. Die Differentiale werden um dies hervorzuheben mit einem runden geschrieben, anstelle des gewöhnlichen d, wie bei Funktionen mit nur einer Variablen.

2 s y der Unsicherheit der Grösse y berechnet sich aus den Unsicherheiten s x,..., s xn der unabhängigen Grössen x k wie folgt: s y ( x ( ) ( ) s x + s x x + + s x x n (3) n In der folgenden Tabelle sind Empfindlichkeiten für häufig auftretende Funktionen zu finden: Tabelle : Empfindlichkeiten Tabelle der Ableitungen für die gebräuchlichsten Verknüpfungen Funktion y f(x, x, ) x x x 3 Funktionen einer Variablen: y ax a y ax + bx + c ax + b y a 3 x 3 + a x + a x + a 0 3a 3 x + a x + a y a x a x y a x a x Funktionen zweier Variablen: y ax + bx a b y ax + bx x + cx + d ax + bx bx + cx y a x x a x a x x y x x x x x x y x x x +x ( x x +x ( x x +x Funktionen dreier Variablen: y x x x 3 x 3 x 3 x x x 3

3 Beispiel Spannungssumme (Maschensatz) U f(u, U, U 3 ) U + U U 3 s U 3 s U + s U + ( s U 3 s U + s U + s U 3 (4) Das Ergebnis der Gleichung (4) lässt sich als vereinfachte Fehlerfortpflanzungsregel verallgemeinern: Im Fall von Summen oder Differenzen von unabhängigen Grössen, lässt sich die Unsicherheit des Ergebnisses durch das Quadratische Mittel der Unsicherheiten dieser Grössen berechnen. Anders ausgedrückt: Die Varianz 5 des Ergebnisses entspricht der Summe der Varianzen der Bestandteile. Beispiel Leistung (aus Spannungs- und Strommessung) P f(u, I) UI P I m I P I U m U s P m I s U + m U s I (5) Das Ergebnis der Gleichung (5) lässt sich durch Division mit der Leistung m P m I und Quadrieren (optisch) vereinfachen: ( sp ( su ( si + bzw. m P m U m I ( ( su si s P m P + m I (6) Das Ergebnis der Gleichung (6) lässt sich ebenfalls als vereinfachte Fehlerfortpflanzungsregel verallgemeinern: 5 Als Varianz bezeichnet man das Quadrat der Streuung. 3

4 Im Fall von Produkte oder Quotienten von unabhängigen Grössen, lässt sich die relative Unsicherheit des Ergebnisses durch das Quadratische Mittel der relativen Unsicherheiten dieser Grössen berechnen. Anders ausgedrückt: Die relative Varianz des Ergebnisses entspricht der Summe der relativen Varianzen der Bestandteile. Beispiel 3 Umrechnung Widerstand in Leitwert Dieser Fall ist so überrachend wie einfach. Beispiel 4 G f(r) R G R R G R m G s G m G s R m R s R m R m R Kapazität (z. B. bei messtechnischer Bestimmung mit KO) C f(u c,, R m, f) I c ωu c πfr m U c C m C m πfr m U c m Um c πfr m Uc C m C U c m Uc R m πfrmu C m C c R m πf C R m U c f m C s C m C ( s Um m Um m Rm m f ( ( ) ( suc srm sf m Uc m Rm m f Das Ergebnis entspricht hier der selben Fehlerfortpflanznugsregel gemäss dem Beispiel entsprechend der Gleichung (6). Beispiel 5 Blindleistung (kapazitiv, berechnet aus Schein- und Wirkleistung) Q f(s, P ) S P Q S S S P S Q m S Q P P S P P Q m P 4

5 s Q ( ms ( s S + mp s P Hier kann kann offensichtlich keine vereinfachte Regel für die Fehlerfortpflanzung angewendet werden, da die Formel für Q weder aus reinen Produkten und Quotienten noch aus reinen Summen und Differenzen besteht. Beispiel 6 Ersatzwiderstand (Parallelschaltung) R f(r, R ) R R R + R R R ( ) (R + R ) R R ( ) R R ( mr R (R + R R + R R m R R R ( ) (R + R ) R R ( ) R R ( mr R (R + R R + R R m R s R ( mr m R ) 4 ( ) 4 s mr R + s R m R Hier kann kann ebenfalls keine vereinfachte Regel für die Fehlerfortpflanzung angewendet werden. 5

1 Messfehler. 1.1 Systematischer Fehler. 1.2 Statistische Fehler

1 Messfehler. 1.1 Systematischer Fehler. 1.2 Statistische Fehler 1 Messfehler Jede Messung ist ungenau, hat einen Fehler. Wenn Sie zum Beispiel die Schwingungsdauer eines Pendels messen, werden Sie - trotz gleicher experimenteller Anordnungen - unterschiedliche Messwerte

Mehr

Einführung in die Theorie der Messfehler

Einführung in die Theorie der Messfehler Einführung in die Theorie der Messfehler Ziel der Vorlesung: Die Studentinnen/Studenten sollen die Grundlagen der Theorie der Messfehler sowie den Unterschied zwischen Ausgleichsrechnung und statistischer

Mehr

Physikalische Übungen für Pharmazeuten

Physikalische Übungen für Pharmazeuten Helmholtz-Institut für Strahlen- und Kernphysik Seminar Physikalische Übungen für Pharmazeuten Ch. Wendel Max Becker Karsten Koop Dr. Christoph Wendel Übersicht Inhalt des Seminars Praktikum - Vorbereitung

Mehr

Fehler- und Ausgleichsrechnung

Fehler- und Ausgleichsrechnung Fehler- und Ausgleichsrechnung Daniel Gerth Daniel Gerth (JKU) Fehler- und Ausgleichsrechnung 1 / 12 Überblick Fehler- und Ausgleichsrechnung Dieses Kapitel erklärt: Wie man Ausgleichsrechnung betreibt

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

5. Meßfehler. Zufällige Messfehler machen das Ergebnis unsicher - ihre Abschätzung ist nur unter Verwendung statistischer Methoden durchführbar

5. Meßfehler. Zufällige Messfehler machen das Ergebnis unsicher - ihre Abschätzung ist nur unter Verwendung statistischer Methoden durchführbar 5. Meßfehler Man unterscheidet... zufällige Meßfehler systematische Meßfehler Zufällige Messfehler machen das Ergebnis unsicher - ihre Abschätzung ist nur unter Verwendung statistischer Methoden durchführbar

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

Einführungsseminar S1 Elemente der Fehlerrechnung. Physikalisches Praktikum der Fakultät für Physik und Astronomie Ruhr-Universität Bochum

Einführungsseminar S1 Elemente der Fehlerrechnung. Physikalisches Praktikum der Fakultät für Physik und Astronomie Ruhr-Universität Bochum Einführungsseminar S1 Elemente der Fehlerrechnung Physikalisches Praktikum der Fakultät für Physik und Astronomie Ruhr-Universität Bochum Literatur Wolfgang Kamke Der Umgang mit experimentellen Daten,

Mehr

Probleme bei kleinen Stichprobenumfängen und t-verteilung

Probleme bei kleinen Stichprobenumfängen und t-verteilung Probleme bei kleinen Stichprobenumfängen und t-verteilung Fassen wir zusammen: Wir sind bisher von der Frage ausgegangen, mit welcher Wahrscheinlichkeit der Mittelwert einer empirischen Stichprobe vom

Mehr

7.2 Mittelwert einer Stichprobe

7.2 Mittelwert einer Stichprobe 66 7.2 Mittelwert einer Stichprobe Gegeben ist eine normalverteilte Grundgesamtheit. Mit Hilfe einer Stichprobe möchten wir Aussagen über den unbekannten Mittelwert µ dieser Grundgesamtheit machen. Wenn

Mehr

Messen elektrischer Größen (MT I) Elektronische Messtechnik. Klausurvorbereitung

Messen elektrischer Größen (MT I) Elektronische Messtechnik. Klausurvorbereitung Messen elektrischer Größen (MT I) Elektronische Messtechnik Klausurvorbereitung Prof. Dr.-Ing. Clemens Gühmann Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Institut für Energie

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Schnellkurs und Übersicht zur Gröÿtfehlerabschätzung und Fehlerrechnung

Schnellkurs und Übersicht zur Gröÿtfehlerabschätzung und Fehlerrechnung 1 Schnellkurs und Übersicht zur Gröÿtfehlerabschätzung und Fehlerrechnung Zum Messergebnis gehören immer eine Fehlerangabe und nur signikante Stellen 1 Beim Messen arbeiten wir mit Näherungswerten! Selbst

Mehr

Vermessungskunde für Bauingenieure und Geodäten

Vermessungskunde für Bauingenieure und Geodäten Vermessungskunde für Bauingenieure und Geodäten Übung 5: statistische Auswertung gleichgenauer Messungen Milo Hirsch Hendrik Hellmers Florian Schill Institut für Geodäsie Fachbereich 3 Inhaltsverzeichnis

Mehr

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab Enrico Mank. Praktikumsbericht: Galton-Brett

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab Enrico Mank. Praktikumsbericht: Galton-Brett Anfänger-Praktikum I WS 11/12 Michael Seidling Timo Raab Enrico Mank Praktikumsbericht: Galton-Brett Inhaltsverzeichnis Inhaltsverzeichnis I. Theoretische Grundlagen 2 1. Zentraler Grenzwertsatz 2 2. Binomialverteilung

Mehr

Metrologie = Wissenschaft vom Messen. Messunsicherheit von Analysenergebnissen. VU Chemisch Rechnen

Metrologie = Wissenschaft vom Messen. Messunsicherheit von Analysenergebnissen. VU Chemisch Rechnen Metrologie = Wissenschaft vom Messen Messunsicherheit von Analysenergebnissen Wer mißt, mißt Mist!! Metrologie Meteorologie Kräht der Hahn am Mist, Ändert sich das Wetter oder es bleibt, wie es ist!! Inhalt

Mehr

Fehlerabschätzung und Fehlerrechnung

Fehlerabschätzung und Fehlerrechnung Fehlerabschätzung und Fehlerrechnung 4 März 2010 I Fehlerabschätzung I1 Allgemeines Jeder physikalische Messwert ist mit einem Fehler behaftet Man unterscheidet nach systematischen und zufälligen Fehlern

Mehr

Einführung in die Fehlerrechnung und Messdatenauswertung

Einführung in die Fehlerrechnung und Messdatenauswertung Grundpraktikum der Physik Einführung in die Fehlerrechnung und Messdatenauswertung Wolfgang Limmer Institut für Halbleiterphysik 1 Fehlerrechnung 1.1 Motivation Bei einem Experiment soll der Wert einer

Mehr

Signalverarbeitung 2. Volker Stahl - 1 -

Signalverarbeitung 2. Volker Stahl - 1 - - 1 - Überblick Bessere Modelle, die nicht nur den Mittelwert von Referenzvektoren sondern auch deren Varianz berücksichtigen Weniger Fehlklassifikationen Mahalanobis Abstand Besseres Abstandsmaß basierend

Mehr

Praktikum zur Vorlesung Einführung in die Geophysik

Praktikum zur Vorlesung Einführung in die Geophysik Praktikum zur Vorlesung Einführung in die Geophysik Hinweise zum Praktikum: Messunsicherheit und Fehlerrechnung Stefan Wenk, Prof. Thomas Bohlen TU Bergakademie Freiberg Institut für Geophysik www.geophysik.tufreiberg.de/pages/studenten/praktika/nebenfaechlerpraktikum.htm

Mehr

12GE1 - Wiederholung - Verbesserung Praktikum 01

12GE1 - Wiederholung - Verbesserung Praktikum 01 12GE1 - Wiederholung - Verbesserung Praktikum 01 Raymond KNEIP, LYCÉE DES ARTS ET MÉTIERS September 2015 1 Die gleichförmige Bewegung Dritte Reihe der Tabelle: s/t (m/s) (F.I.) 0.5 0.5 0.5 0.5 a. Der Quotient

Mehr

Bivariate Regressionsanalyse

Bivariate Regressionsanalyse Universität Bielefeld 15. März 2005 Kovarianz, Korrelation und Regression Kovarianz, Korrelation und Regression Ausgangspunkt ist folgende Datenmatrix: Variablen 1 2... NI 1 x 11 x 12... x 1k 2 x 21 x

Mehr

Einführung in die Fehlerrechnung

Einführung in die Fehlerrechnung 1 Einführung in die Fehlerrechnung liederung 1. Motivation. Fehlerarten 1. robe Fehler. Systematische Fehler 3. Zufällige Fehler 3. Rechnerische Erfassung der Messabweichungen 1. Fehlerabschätzung einmaliges

Mehr

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007 Mathematik IV für Maschinenbau und Informatik Stochastik Universität Rostock, Institut für Mathematik Sommersemester 007 Prof. Dr. F. Liese Dipl.-Math. M. Helwich Serie Termin: 9. Juni 007 Aufgabe 3 Punkte

Mehr

Versuch 2 Kirchhoff'sche Gesetze (Bilanzgesetze)

Versuch 2 Kirchhoff'sche Gesetze (Bilanzgesetze) 1/6 Lernziele Versuch 2 Kirchhoff'sche Gesetze (Bilanzgesetze) Sie kennen die Kirchhoff'schen Gesetze und können den Maschen- sowie den Knotensatz in ihrer Bedeutung als Bilanzgesetze erläutern. Sie können

Mehr

Elastizität Hooke sches Gesetz

Elastizität Hooke sches Gesetz Elastizität Hooke sches Gesetz Im linearen (elastischen) Bereich gilt: Die Spannung ist proportional zur Dehnung F E A E l l Die Proportionalitätskonstante heißt: Elastizitätsmodul. Das makroskopische

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

1 Dichte- und Verteilungsfunktion

1 Dichte- und Verteilungsfunktion Tutorium Yannick Schrör Klausurvorbereitungsaufgaben Statistik Lösungen Yannick.Schroer@rub.de 9.2.26 ID /455 Dichte- und Verteilungsfunktion Ein tüchtiger Professor lässt jährlich 2 Bücher drucken. Die

Mehr

2. Parallel- und Reihenschaltung. Resonanz

2. Parallel- und Reihenschaltung. Resonanz Themen: Parallel- und Reihenschaltungen RLC Darstellung auf komplexen Ebene Resonanzerscheinungen // Schwingkreise Leistung bei Resonanz Blindleistungskompensation 1 Reihenschaltung R, L, C R L C U L U

Mehr

Einführung Fehlerrechnung

Einführung Fehlerrechnung Einführung Fehlerrechnung Bei jeder Messung, ob Einzelmessung oder Messreihe, muss eine Aussage über die Güte ( Wie groß ist der Fehler? ) des Messergebnisses gemacht werden. Mögliche Fehlerarten 1. Systematische

Mehr

Verteilungen eindimensionaler stetiger Zufallsvariablen Stetige Verteilungen. Chi-Quadrat-Verteilung Studentverteilung Fisher-Verteilung

Verteilungen eindimensionaler stetiger Zufallsvariablen Stetige Verteilungen. Chi-Quadrat-Verteilung Studentverteilung Fisher-Verteilung Verteilungen eindimensionaler stetiger Zufallsvariablen Stetige Verteilungen Chi-Quadrat-Verteilung Studentverteilung Fisher-Verteilung Typisierung der stetigen theoretischen Verteilungen Bibliografie:

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Dominik Faas Stochastik Wintersemester 00/0 Klausur vom 09.06.0 Aufgabe (++4=9 Punkte) Bei einer Umfrage wurden n Personen befragt, an wievielen Tagen

Mehr

Mathematik 2 Probeprüfung 1

Mathematik 2 Probeprüfung 1 WWZ Wirtschaftswissenschaftliche Fakultät der Universität Basel Dr. Thomas Zehrt Bitte in Druckbuchstaben ausfüllen: Name Vorname Mathematik 2 Probeprüfung 1 Zeit: 90 Minuten, Maximale Punktzahl: 72 Zur

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

Aufgabe 1 (8= Punkte) 13 Studenten haben die folgenden Noten (ganze Zahl) in der Statistikklausur erhalten:

Aufgabe 1 (8= Punkte) 13 Studenten haben die folgenden Noten (ganze Zahl) in der Statistikklausur erhalten: Aufgabe 1 (8=2+2+2+2 Punkte) 13 Studenten haben die folgenden Noten (ganze Zahl) in der Statistikklausur erhalten: Die Zufallsvariable X bezeichne die Note. 1443533523253. a) Wie groß ist h(x 5)? Kreuzen

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

Hypothesentests für Erwartungswert und Median. Statistik (Biol./Pharm./HST) FS 2015

Hypothesentests für Erwartungswert und Median. Statistik (Biol./Pharm./HST) FS 2015 Hypothesentests für Erwartungswert und Median Statistik (Biol./Pharm./HST) FS 2015 Normalverteilung X N μ, σ 2 X ist normalverteilt mit Erwartungswert μ und Varianz σ 2 pdf: pdf cdf:??? cdf 1 Zentraler

Mehr

Chi-Quadrat-Verteilung

Chi-Quadrat-Verteilung Chi-Quadrat-Verteilung Wikipedia http://de.wikipedia.org/wiki/chi-quadrat-verteilung 1 von 7 6/18/2009 6:13 PM Chi-Quadrat-Verteilung aus Wikipedia, der freien Enzyklopädie Die Chi-Quadrat-Verteilung ist

Mehr

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 15.01.2009 Numerische Methoden und Algorithmen in der Physik Christian Autermann 1/ 47 Methode der kleinsten Quadrate

Mehr

Statistisches Testen

Statistisches Testen Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall

Mehr

Fehlerrechnung. Einführung. Jede Messung ist fehlerbehaftet! Ursachen:

Fehlerrechnung. Einführung. Jede Messung ist fehlerbehaftet! Ursachen: Fehlerrechnung Einführung Jede Messung ist fehlerbehaftet! Ursachen: Ablesefehler (Parallaxe, Reaktionszeit) begrenzte Genauigkeit der Messgeräte falsche Kalibrierung/Eichung der Messgeräte Digitalisierungs-Fehler

Mehr

Statistik I für Betriebswirte Vorlesung 14

Statistik I für Betriebswirte Vorlesung 14 Statistik I für Betriebswirte Vorlesung 14 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 13. Juli 017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 14 Version: 8. Juli

Mehr

Moderne Methoden der Datenverarbeitung in der Physik I

Moderne Methoden der Datenverarbeitung in der Physik I Moderne Methoden der Datenverarbeitung in der Physik I Prof. Dr. Stefan Schael / Dr. Thomas Kirn I. Physikalisches Institut MAPLE II, Krypthographie Wahrscheinlichkeit Zufallszahlen, Wahrscheinlichkeitsdichten,

Mehr

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandelt die Verteilung einer Variablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Aufgaben zu Messfehlern

Aufgaben zu Messfehlern Aufgaben zu Messfehlern. Aufgabe Ein Spannungsmesser zeigt 35V, das sind 2,5% zuviel. Wie groß ist der absolute Fehler und der wahre Wert? 2. Aufgabe Ein Spannungsmesser zeigt an einer Eichspannungsquelle

Mehr

Maurizio Musso, Universität Salzburg, ver Physikalische Grundlagen der Meßtechnik. Teil 2

Maurizio Musso, Universität Salzburg, ver Physikalische Grundlagen der Meßtechnik. Teil 2 Teil 2 Auswertung von Messungen, zufällige oder statistische Abweichungen Auswertung direkter Messungen Häufigkeitsverteilung, Häufigkeitsfunktion Mittelwert, Standardabweichung der Einzelwerte Standardabweichung

Mehr

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren Hypothesenprüfung Teil der Inferenzstatistik Befaßt sich mit der Frage, wie Hypothesen über eine (in der Regel unbekannte) Grundgesamtheit an einer Stichprobe überprüft werden können Behandelt werden drei

Mehr

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung 0 Einführung 1 Wahrscheinlichkeitsrechnung Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Intervallschätzung Motivation und Hinführung Der wahre Anteil der rot-grün Wähler 009 war genau

Mehr

Übung 1: Wiederholung Wahrscheinlichkeitstheorie

Übung 1: Wiederholung Wahrscheinlichkeitstheorie Übung 1: Wiederholung Wahrscheinlichkeitstheorie Ü1.1 Zufallsvariablen Eine Zufallsvariable ist eine Variable, deren numerischer Wert solange unbekannt ist, bis er beobachtet wird. Der Wert einer Zufallsvariable

Mehr

Messtechnische Grundlagen und Fehlerbetrachtung. (inkl. Fehlerrechnung)

Messtechnische Grundlagen und Fehlerbetrachtung. (inkl. Fehlerrechnung) Messtechnische Grundlagen und Fehlerbetrachtung (inkl. Fehlerrechnung) Länge Masse Zeit Elektrische Stromstärke Thermodynamische Temperatur Lichtstärke Stoffmenge Basisgrößen des SI-Systems Meter (m) Kilogramm

Mehr

5. Seminar Statistik

5. Seminar Statistik Sandra Schlick Seite 1 5. Seminar 5. Seminar Statistik 30 Kurztest 4 45 Testen von Hypothesen inkl. Übungen 45 Test- und Prüfverfahren inkl. Übungen 45 Repetitorium und Prüfungsvorbereitung 15 Kursevaluation

Mehr

2. Übung zur Vorlesung Statistik 2

2. Übung zur Vorlesung Statistik 2 2. Übung zur Vorlesung Statistik 2 Aufgabe 1 Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung? Kreuzen Sie die richtigen Antworten an und begründen

Mehr

Carl-Engler-Schule Karlsruhe Physik-Labor (BS/BK/FS) 1 (5)

Carl-Engler-Schule Karlsruhe Physik-Labor (BS/BK/FS) 1 (5) Carl-Engler-Schule Karlsruhe Physik-Labor (BS/BK/FS) (5) Laborversuch: Bessel-Verfahren. Grundlagen Bei der Bestimmung der Brennweite einer Sammellinse lassen sich die Gegenstands- und Bildweite direkt

Mehr

Methoden der Werkstoffprüfung Kapitel II Statistische Verfahren I. WS 2009/2010 Kapitel 2.0

Methoden der Werkstoffprüfung Kapitel II Statistische Verfahren I. WS 2009/2010 Kapitel 2.0 Methoden der Werkstoffprüfung Kapitel II Statistische Verfahren I WS 009/010 Kapitel.0 Schritt 1: Bestimmen der relevanten Kenngrößen Kennwerte Einflussgrößen Typ A/Typ B einzeln im ersten Schritt werden

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Die n-dimensionale Normalverteilung

Die n-dimensionale Normalverteilung U. Mortensen Die n-dimensionale Normalverteilung Es wird zunächst die -dimensionale Normalverteilung betrachtet. Die zufälligen Veränderlichen X und Y seien normalverteilt. Gesucht ist die gemeinsame Verteilung

Mehr

Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R =

Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R = Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 Versuch zur Ermittlung der Formel für X C In der Erklärung des Ohmschen Gesetzes ergab sich die Formel: R = Durch die Versuche mit einem

Mehr

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

Messunsicherheit und Fehlerrechnung

Messunsicherheit und Fehlerrechnung Messunsicherheit und Fehlerrechnung p. 1/25 Messunsicherheit und Fehlerrechnung Kurzeinführung Peter Riegler p.riegler@fh-wolfenbuettel.de Fachhochschule Braunschweig/Wolfenbüttel Messunsicherheit und

Mehr

LK Lorentzkraft. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2

LK Lorentzkraft. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2 LK Lorentzkraft Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Magnetfeld dünner Leiter und Spulen......... 2 2.2 Lorentzkraft........................

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 31. Mai 2011 4. Methode der kleinsten Quadrate Geschichte: Von Legendre, Gauß und Laplace zu Beginn des 19. Jahrhunderts eingeführt. Die Methode der

Mehr

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist.

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. .3. Stochastik Grundlagen Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. Die RELATIVE HÄUFIGKEIT einer Merkmalsausprägung gibt an mit welchem Anteil

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

Übung V Lineares Regressionsmodell

Übung V Lineares Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Michael Alpert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2007 Übung

Mehr

Regression und Korrelation

Regression und Korrelation Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandeltdie VerteilungeinerVariablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem dagegen

Mehr

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI Lösungen zu Übungsblatt 9 Höhere Mathematik/Stochastik Anpassung von Verteilungen Zu Aufgabe ) a) Zeichnen des Histogranmmes: Um das Histogramm zu zeichnen, benötigen wir die Höhe der Balken. Die Höhe

Mehr

Lösg: a) 0,0548 b) 0,4514 c) 23 Becher d) 234,9 [ml]

Lösg: a) 0,0548 b) 0,4514 c) 23 Becher d) 234,9 [ml] Ein Elektrokonzern stellt Halogenlampen mit einer durchschnittlichen Lebensdauer von 8 Stunden und einer Standardabweichung von 4 Stunden her. Die Lebensdauer sei eine normalverteilte Zufallsvariable.

Mehr

Versuch 11 Einführungsversuch

Versuch 11 Einführungsversuch Versuch 11 Einführungsversuch I Vorbemerkung Ziel der Einführungsveranstaltung ist es Sie mit grundlegenden Techniken des Experimentierens und der Auswertung der Messdaten vertraut zu machen. Diese Grundkenntnisse

Mehr

Übungen zur Vorlesung Statistische Methoden Kapitel 1-2

Übungen zur Vorlesung Statistische Methoden Kapitel 1-2 TECHNISCHE UNIVERSITÄT DORTMUND Sommersemester 2011 FAKULTÄT STATISTIK Dr. M. Arnold Dipl.-Stat. R. Walter Übungen zur Vorlesung Statistische Methoden Kapitel 1-2 Aufgabe 1: Gegeben ist eine diskrete Zufallsvariable

Mehr

Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood

Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood Hauptseminar - Methoden der experimentellen Teilchenphysik WS 2011/2012 Fabian Hoffmann 2. Dezember 2011 Inhaltsverzeichnis 1 Einleitung

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 3 Anwendungen der Differentialrechnung 3.1 Lokale Maxima und Minima Definition 16: Sei f : D R eine Funktion von n Veränderlichen. Ein Punkt x heißt lokale oder relative Maximalstelle bzw. Minimalstelle

Mehr

Inhaltsverzeichnis. 1 Versuchsbeschreibung und Physikalische Grundlagen 1

Inhaltsverzeichnis. 1 Versuchsbeschreibung und Physikalische Grundlagen 1 Inhaltsverzeichnis 1 Versuchsbeschreibung und Physikalische Grundlagen 1 2 Ermittlung der Innenwiderstände und Betriebsgröÿen 1 2.1 Innenwiderstand des Voltmeters und Betriebsspannung..................

Mehr

Normalverteilung. Mathematik 8. Arbeitsblatt A 8-2: Normalverteilung

Normalverteilung. Mathematik 8. Arbeitsblatt A 8-2: Normalverteilung Schule Bundesgymnasiu um für Berufstätige Salzburg Modul Thema Mathematik 8 Arbeitsblatt A 8-2: Normalverteilung Normalverteilung Viele natürlich vorkommende, voneinander unabhängige Größen sind normalverteilt

Mehr

MATHEMATIK 3 STUNDEN

MATHEMATIK 3 STUNDEN EUROPÄISCHES ABITUR 2013 MATHEMATIK 3 STUNDEN DATUM : 10. Juni 2013, Vormittag DAUER DER PRÜFUNG: 2 Stunden (120 Minuten) ERLAUBTES HILFSMITTEL Prüfung mit technologischem Hilfsmittel 1/6 DE AUFGABE B1

Mehr

Eine Zufallsvariable X sei stetig gleichverteilt im Intervall [0,5]. Die Wahrscheinlichkeit P(2< x <4) ist dann

Eine Zufallsvariable X sei stetig gleichverteilt im Intervall [0,5]. Die Wahrscheinlichkeit P(2< x <4) ist dann 4. Übung Themenkomplex: Zufallsvariablen und ihre Verteilung Aufgabe 1 Für eine stetige Zufallsvariable gilt: a) P (x = t) > 0 b) P (x 1) = F (1) c) P (x = 1) = 0 d) P (x 1) = 1 F(1) e) P (x 1) = 1 F(1)

Mehr

Vorlesung: Angewandte Sensorik

Vorlesung: Angewandte Sensorik zhang@informatik.uni-hamburg.de Universität Hamburg AB Technische Aspekte Multimodaler Systeme zhang@informatik.uni-hamburg.de Inhaltsverzeichnis 1. Allgemeine Informationen..................... 3 2. Sensorgrundlagen..........................

Mehr

Protokoll Grundpraktikum I: M3 - Elastizität und Torsion

Protokoll Grundpraktikum I: M3 - Elastizität und Torsion Protokoll Grundpraktikum I: M3 - Elastizität und Torsion Sebastian Pfitzner. Mai 13 Durchführung: Sebastian Pfitzner (553983), Anna Andrle (5577) Arbeitsplatz: Platz 4 Betreuer: Jacob Michael Budau Versuchsdatum:

Mehr

Kalmanfiter (1) Typische Situation für den Einsatz von Kalman-Filtern

Kalmanfiter (1) Typische Situation für den Einsatz von Kalman-Filtern Kalmanfiter (1) Typische Situation für den Einsatz von Kalman-Filtern Vorlesung Robotik SS 016 Kalmanfiter () Kalman-Filter: optimaler rekursiver Datenverarbeitungsalgorithmus optimal hängt vom gewählten

Mehr

Protokoll Grundpraktikum: O1 Dünne Linsen

Protokoll Grundpraktikum: O1 Dünne Linsen Protokoll Grundpraktikum: O1 Dünne Linsen Sebastian Pfitzner 22. Januar 2013 Durchführung: Sebastian Pfitzner (553983), Jannis Schürmer (552892) Arbeitsplatz: 3 Betreuer: A. Ahlrichs Versuchsdatum: 16.01.2013

Mehr

Statistik-Klausur vom

Statistik-Klausur vom Statistik-Klausur vom 27.09.2010 Bearbeitungszeit: 60 Minuten Aufgabe 1 Ein international tätiges Unternehmen mit mehreren Niederlassungen in Deutschland und dem übrigen Europa hat seine überfälligen Forderungen

Mehr

Fehlerfortpflanzung & Extremwertbestimmung. Folie 1

Fehlerfortpflanzung & Extremwertbestimmung. Folie 1 Fehlerfortpflanzung & Etremwertbestimmung Folie 1 Fehlerfortpflanzung Einführung In vielen technischen Zusammenhängen sind die Werte bestimmter Größen nicht genau bekannt sondern mit einer Unsicherheit

Mehr

Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte

Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte Kapitel 8 Parameter multivariater Verteilungen 8.1 Erwartungswerte Wir können auch bei mehrdimensionalen Zufallsvariablen den Erwartungswert betrachten. Dieser ist nichts anderes als der vektor der Erwartungswerte

Mehr

Messtechnische Ermittlung der Größen komplexer Bauelemente

Messtechnische Ermittlung der Größen komplexer Bauelemente TFH Berlin Messtechnik Labor Seite 1 von 9 Messtechnische Ermittlung der Größen komplexer Bauelemente Ort: TFH Berlin Datum: 08.12.03 Uhrzeit: Dozent: Arbeitsgruppe: von 8.00 bis 11.30 Uhr Prof. Dr.-Ing.

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

SBP Mathe Aufbaukurs 1 # 0 by Clifford Wolf. SBP Mathe Aufbaukurs 1

SBP Mathe Aufbaukurs 1 # 0 by Clifford Wolf. SBP Mathe Aufbaukurs 1 SBP Mathe Aufbaukurs 1 # 0 by Clifford Wolf SBP Mathe Aufbaukurs 1 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Das Histogramm ist glockenförmig. Es würde bei mehr als vier Fehlerquellen sich der Glockenform noch besser annähern.

Das Histogramm ist glockenförmig. Es würde bei mehr als vier Fehlerquellen sich der Glockenform noch besser annähern. 10. Stetige Zufallsvariable, Normalverteilung 55 Die in den folgenden Beispielen dargestellten Verteilungen haben ungefähr Glockenform. Sie können durch die sogenannte Normalverteilung oder Gaussverteilung

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

2. Übung zur Vorlesung Statistik 2

2. Übung zur Vorlesung Statistik 2 2. Übung zur Vorlesung Statistik 2 Aufgabe 1 Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung? Kreuzen Sie die richtigen Antworten an und begründen

Mehr

Ziel der linearen Regression

Ziel der linearen Regression Regression 1 Ziel der linearen Regression Bei der linearen Regression wird untersucht, in welcher Weise eine abhängige metrische Variable durch eine oder mehrere unabhängige metrische Variablen durch eine

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte

Mehr

Bestimmung der Linsenbrennweite nach der Bessel schen Methode

Bestimmung der Linsenbrennweite nach der Bessel schen Methode Bestimmung der Linsenbrennweite nach der Bessel schen Methode Tobias Krähling email: Homepage: 18.04.007 Version: 1. Inhaltsverzeichnis 1. Aufgabenstellung............................................................

Mehr

I. Zahlen, Rechenregeln & Kombinatorik

I. Zahlen, Rechenregeln & Kombinatorik XIV. Wiederholung Seite 1 I. Zahlen, Rechenregeln & Kombinatorik 1 Zahlentypen 2 Rechenregeln Brüche, Wurzeln & Potenzen, Logarithmen 3 Prozentrechnung 4 Kombinatorik Möglichkeiten, k Elemente anzuordnen

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Mathe-Leistungskurs-Klausur Stufe 13, Nr. 3

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Mathe-Leistungskurs-Klausur Stufe 13, Nr. 3 Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Mathe-Leistungskurs-Klausur Stufe 13, Nr. 3 Das komplette Material finden Sie hier: School-Scout.de SCHOOL-SCOUT Mathe-LK-Klausur

Mehr

Die Maximum-Likelihood-Methode

Die Maximum-Likelihood-Methode Vorlesung: Computergestützte Datenauswertung Die Maximum-Likelihood-Methode Günter Quast Fakultät für Physik Institut für Experimentelle Kernphysik SS '17 KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Mehr