Das Lineare Regressionsmodell

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Das Lineare Regressionsmodell"

Transkript

1 Das Lineare Regressionsmodell

2 Bivariates Regressionsmodell Verbrauch eines Pkw hängt vom Gewicht des Fahrzeugs ab Hypothese / Theorie: Je schwerer ein Auto, desto mehr wird es verbrauchen Annahme eines linearen Zusammenhangs Stichprobe von 74 Pkw zum Benzinverbrauch und Gewicht Coef. Std. Err. t P>t Gewicht Konstante

3 beobachteter Wert Residuum, Störgröße y i = ^ 0 + ^ 1x i + ^u i modellierter Wert obacht Notation! ein ^ bedeutet Schätzwert ; dieser muss nicht mit dem wahren (aber prinzipiell unbekannten) Wert in der Grundgesamtheit übereinstimmen (bedingter) Erwartungswert für y (bedingt! gegeben x i ) ^y i = ^ 0 + ^ 1x i ist synonym zu bedeutet: Residuum u i als Differenz zwischen ) beobachtetem Wert ) und Erwartungswert ^u i = y i ^y i 3

4 Zeile 4: Verbrauch (y i ) = 11,76 l/100km Gewicht (x i )= 1474,2 kg E(y i jx i = 1474; 2) = ^y i = 0 + 1x i = 1: : :2 = 12:57 4

5 y i = 11:76 versus ^y i = 12:57 beobachtet geschätzt Residuum 5

6 ^y = ^ 0 + ^ 1x y i u i u i ^y i E(Verbrauch Gewicht) Gewicht in kg Verbrauch in l/100 km Fitted values 6

7 Störgröße, Residuum Was verbrigt sich hinter u i? y i = ^ 0 + ^ 1x i + ^u i 1 misst den Effekt des Fahrzeuggewichts auf den Fahrzeugverbrauch Erwartungswert für Verbrauch gegeben Gewicht: E(y x) Störgröße ^u i = y i E(y i jx i ) fängt alle verbrauchsrelevanten Einflüsse auf, die nicht durch das Gewicht des Autos abgebildet werden Luftwiderstand (cw-wert) Übersetzung / Fahrweise Getriebart (Schaltung 7 Automatik) relevante Einflüsse müssen mit modelliert werden ) siehe später multivariates Regressionsmodell 7

8 Das OLS-Prinzip Wie findet man den linearen Zusammenhang mit dem besten Fit? also die Linie, die y à x am besten erklärt? bei der der (über alle Beobachtungen summierte) Fehler am geringsten ist? Finde die Linie, die die quadrierten Abweichungen minimiert! Kleinste Quadrate Regression! ordinary least-squares regression (OLS) y y u i u i u i u i x x 8

9 Das OLS-Prinzip Residuum für eine Beobachtung ^u i = y i ^y i ^u i = y i (^ 0 + ^ 1x) Summe der quadrierten Residuen (sum of squared residuals, SSR) SSR = nx ^u 2 i = i=1 nx i=1 h y i ( ^ 0 + ^ 1x)i 2! min! finde 0 und 1, so dass Summe der quadrierten Residuen minimiert wird 9

10 Das OLS-Prinzip Normalgleichungen für Konstante P i u2 ^ 0 = 2 nx (y i ^ 0 ^ 1x i ) = 0 i=1 für Steigungsparameter P i u2 ^ 1 = 2 nx (y i ^ 0 ^ 1x i )x i = 0 i=1 Lösen der Normalgleichungen nach und ergeben Schätzparameter, mit denen die Residuenquadratsumme RSS (die Summe der quaddrierten Abweichungen) minimiert wird 10

11 Das OLS-Prinzip Lösungen der Normalgleichungen ergeben ^ 0 = ¹y ^ 1¹x ¹y = ^ 0 + ^ 1¹x Regressionslinie geht immer durch den (Schwer-)Punkt (¹x; ¹y). sum gewicht verbrauch Variable Obs Mean Std. Dev. Min Max gewicht verbrauch

12 ¹x = 1369 kg ^y = ^ 0 + ^ 1x ¹y = 11:8 l Gewicht in kg Verbrauch in l/100 km Fitted values ¹y = ^ 0 + ^ 1¹x Regressionslinie geht immer durch den (Schwer-)Punkt (¹x; ¹y) 12

13 Das OLS-Prinzip Lösungen der Normalgleichungen ergeben P i ^ 1 = (y i ¹y)(x i ¹x) P i (x i ¹x) 2 = Cov(x; y) V ar(x) (Cov(x,y) war ein Maß für den Zusammenhang zwischen x und y) zum Vergleich: Korrelationskoeffizient 13

14 Modellgüte

15 Modellgüte R Gewicht in kg Regressionsgerade beschreibt den durchschnittlichen Zusammenhang individuellen Beobachtungen streuen um Regressionsgerade wie gut erklärt das Regressionsmodell / die Regressionsgerade die Daten? 15

16 5 verbrauch in l/100km Modellgüte R 2 Gesamtstreuung der abhängigen Variablen Gewicht in kg individuellen Beobachtungen streuen (zufällig) um ihren Mittelwert die Gesamtvariation in der abhängigen Variable wird bezeichnet als SST ( total sum of squares ) 16

17 Modellgüte R 2 Regressionsmodell kann einen Teil der Abweichung vom Mittelwert erklären vom Modell erklärte Variation ( explained sum of squares ) 17

18 Modellgüte R 2 aber ein Teil an Streuung von y verbleibt, der nicht vom Modell erklärt werden kann unerklärte Streuung /Residuenstreuung ( residual sum of squares ) 18

19 Jede Beobachtung kann geschrieben werden als geschätzter Wert + Abweichung (Residuum) Gesamte Streuung der Abhängigen Durch das Modell erklärt wird Durch das Modell nicht erklärt Je höher der Anteil der erklärten Streuung an der Gesamtstreuung... desto besser ist die Modellgüte 19

20 verbrauch in l/100km kann durch Regressiongerade erklärt werden. regress verbrauch gewicht Source SS df MS Number of obs = F( 1, 72) = Model Prob > F = Residual R-squared = Adj R-squared = Total Root MSE = verbrauch Coef. Std. Err. t P> t [95% Conf. Interval] gewicht _cons etwa 73% der Variation in y Gewicht in kg 20

21 Multivariate Regression

22 Multivariate Regression Neuer Datensatz von 526 Personen person wage educ exper tenure female average hourly earnings (in US$) years of education years potential experience years with current employer =1 if female Frage: Wie ist der Zusammenhang zwischen Bildung (educ) und dem erzielten Stundenlohn (wage) Hypothese: Bildung wirkt sich positiv auf Lohn aus Annahme eines linearen Zusammenhangs 22

23 0 5 wage Coef. Std. Err. t P>t educ Konstante n= 526, R 2 = Interpretation? (jedes zusätzliche Schuljahr ) erhöht Stundenlohn um $) years of education 23

24 Multivariate Regression Modell erklärt ~16% der Variation in y d.h. Bildung erklärt 16% der Variation im Stundenlohn 84% bleiben unerklärt andere Einflüsse jenseits von Bildung nicht berücksichtigt... Loyalität: Jahre im Betrieb Berufserfahrung Talent für Beruf years of education average hourly earnings Fitted values alle relevanten, aber nicht modellierten Einflüsse, gehen in die Störgröße ein y i = ^ 0 + ^ 1 educ + ^u i 24

25 Multivariate Regression Linearer Zusammenhang besteht zwischen der abhängigen Variable y und K erklärenden Variablen y = 0 + 1x 1 + 2x 2 + ::: + Kx K dabei misst der Koeffizient j (j = 1,..., K) die marginale Änderung in y, wenn sich x j um eine Einheit ändert (ceteris paribus) 25

26 Multivariate Regression Folgendes lineare Modell educ: Bildung! Schuljahre exper: Berufserfahrung! Jahre im Beruf tenure: Loyalität! Jahre bei jetzigem Arbeitgeber Untersuchungsgegenstand Welchen Einfluss hat Bildung auf Stundenlohn? Was können Sie über Berufserfahrung sagen? je länger im Unternehmen, desto höher der Lohn? 26

27 Coef. Std. Err. t P>t educ exper tenure _cons n=526, R 2 = marginale Effekte erhöht sich Bildung um 1 Jahr ) Stundenlohn steigt (durchschnittlich) um 0.59 $ pro Stunde exper " um 1 Berufsjahr ) Stundenlohn " um 0.02 $ pro Stunde tenure " um 1 Jahr ) Stundenlohn " um 0.17 $ pro Stunde 27

28 Prognose Welchen Stundenlohn erwarten Sie für eine Person mit 10 Jahre Schulbildung 12 Jahren Berufserfahrung 3 Jahre Betriebszugehörigkeit? Wie würde sich der Stundenlohn ändern, wenn die Person ein weiters Jahr zur Schule gegangen wäre? 28

29 Source SS df MS Number of obs = 526 F( 3, 522) = Model Prob > F = Residual R-squared = Adj R-squared = Total Root MSE = wage Coef. Std. Err. t P> t [95% Conf. Interval] educ exper tenure _cons Problem mit R 2 : Model Fit nimmt nahezu immer zu, wenn man erklärende Variablen hinzufügt Trade-Off zwischen zusätzlichem Erklärungsgüte und sparsamer Spezifikation (parsimony specification) 29

30 Modellgüte korrigiertes R 2 Source SS df MS Number of obs = 526 F( 3, 522) = Model Prob > F = Residual R-squared = Adj R-squared = Total Root MSE = wage Coef. Std. Err. t P> t [95% Conf. Interval] educ exper tenure _cons korrigiertes R 2 : Bestrafung für zusätzliche Parameter adj:r 2 = 1 (1 R 2 ) n 1 n k 1 n = Anzahl Beobachtungen k = Anzahl erklärender Variablen ohne Konstante (1- R 2 ) ) nicht erklärte Streuung zusätzlicher Parameter ) k " ) Bruch wird größer ) nicht erklärte Streuung wird (etwas willkürlich) erhöht es gilt: adj. R 2 R 2 30

Bivariate Zusammenhänge

Bivariate Zusammenhänge Bivariate Zusammenhänge 40 60 80 Bivariater Zusammenhang: Zusammenhang zwischen zwei Variablen weight (kg) Gibt es einen Zusammenhang zwischen Größe & Gewicht? (am Beispieldatensatz) Offensichtlich positiver

Mehr

Statistischer Rückschluss und Testen von Hypothesen

Statistischer Rückschluss und Testen von Hypothesen Statistischer Rückschluss und Testen von Hypothesen Statistischer Rückschluss Lerne von der Stichprobe über Verhältnisse in der Grundgesamtheit Grundgesamtheit Statistischer Rückschluss lerne aus Analyse

Mehr

Kurs Empirische Wirtschaftsforschung

Kurs Empirische Wirtschaftsforschung Kurs Empirische Wirtschaftsforschung 5. Bivariates Regressionsmodell 1 Martin Halla Institut für Volkswirtschaftslehre Johannes Kepler Universität Linz 1 Lehrbuch: Bauer/Fertig/Schmidt (2009), Empirische

Mehr

Annahmen des linearen Modells

Annahmen des linearen Modells Annahmen des linearen Modells Annahmen des linearen Modells zusammengefasst A1: Linearer Zusammenhang: y = 0 + 1x 1 + 2x 2 + + kx k A2: Zufallsstichprobe, keine Korrelation zwischen Beobachtungen A3: Erwartungswert

Mehr

Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 20

Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 20 Statistik II II. Univariates lineares Regressionsmodell Martin Huber 1 / 20 Übersicht Definitionen (Wooldridge 2.1) Schätzmethode - Kleinste Quadrate Schätzer / Ordinary Least Squares (Wooldridge 2.2)

Mehr

FRAGESTUNDE WS 2016/17 QM 2. Dr. Christian Schwarz 1

FRAGESTUNDE WS 2016/17 QM 2. Dr. Christian Schwarz 1 FRAGESTUNDE Dr. Christian Schwarz 1 #2 - Allgemein Q: Müssen wir den Standard Error händisch berechnen können? R: Nein. Q: Hat das Monte Carlo Experiment irgendeine Bedeutung für uns im Hinblick auf die

Mehr

Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 27

Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 27 Statistik II II. Univariates lineares Regressionsmodell Martin Huber 1 / 27 Übersicht Definitionen (Wooldridge 2.1) Schätzmethode - Kleinste Quadrate Schätzer / Ordinary Least Squares (Wooldridge 2.2)

Mehr

Institut für Soziologie Benjamin Gedon. Methoden 2. Kausalanalyse

Institut für Soziologie Benjamin Gedon. Methoden 2. Kausalanalyse Institut für Soziologie Methoden 2 Kausalanalyse Inhalt 1. Kausalanalyse 2. Anwendungsbeispiel 3. Wiederholung 4. Übungsaufgabe # 2 Kausalanalyse Kausalität: Identifizieren von Ursache-Wirkungs-Beziehungen

Mehr

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 8.-10. Januar 2010 BOOTDATA.GDT: 250 Beobachtungen für die Variablen... cm:

Mehr

Multiple Regression. Statistik II

Multiple Regression. Statistik II Statistik II Übersicht Wiederholung Literatur Regression Assoziation und Kausalität Statistische Kontrolle Multivariate Beziehungen Inferenz Das Multivariate Modell Beispiel: Bildung und Verbrechen Fit

Mehr

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell Kapitel 8 Einfache Regression Josef Leydold c 2006 Mathematische Methoden VIII Einfache Regression 1 / 21 Lernziele Lineares Regressionsmodell Anpassen des linearen Regressionsmodells, OLS Eigenschaften

Mehr

P[bk t c se(b k) k bk t c se(b k)] 1 (5.1.3)

P[bk t c se(b k) k bk t c se(b k)] 1 (5.1.3) Kaptel 5: Inferenz m multplen Modell 5 Inferenz m multplen Modell 5. Intervallschätzung m multplen Regressonsmodell Analog zum enfachen Regressonsmodell glt: Dem Intervallschätzer der Parameter legt zugrunde,

Mehr

2. Generieren Sie deskriptive Statistiken (Mittelwert, Standardabweichung) für earny3 und kidsunder6yr3 und kommentieren Sie diese kurz.

2. Generieren Sie deskriptive Statistiken (Mittelwert, Standardabweichung) für earny3 und kidsunder6yr3 und kommentieren Sie diese kurz. Statistik II Übung : Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (6-24 Jahre alt) und der Anzahl der unter

Mehr

Statistik II Übung 1: Einfache lineare Regression

Statistik II Übung 1: Einfache lineare Regression Statistik II Übung 1: Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (16-24 Jahre alt) und der Anzahl der

Mehr

Statistik II Übung 1: Einfache lineare Regression

Statistik II Übung 1: Einfache lineare Regression Statistik II Übung 1: Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (16-24 Jahre alt) und der Anzahl der

Mehr

Übung V Lineares Regressionsmodell

Übung V Lineares Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Michael Alpert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2007 Übung

Mehr

Lineare Modelle in R: Klassische lineare Regression

Lineare Modelle in R: Klassische lineare Regression Lineare Modelle in R: Klassische lineare Regression Achim Zeileis 2009-02-20 1 Das Modell Das klassische lineare Regressionsmodell versucht den Zusammenhang zwischen einer abhängigen Variablen (oder Responsevariablen)

Mehr

Teil: lineare Regression

Teil: lineare Regression Teil: lineare Regression 1 Einführung 2 Prüfung der Regressionsfunktion 3 Die Modellannahmen zur Durchführung einer linearen Regression 4 Dummyvariablen 1 Einführung o Eine statistische Methode um Zusammenhänge

Mehr

Wieviel ist (m)ein Haus wert? - Immobilienbewertung mit Hilfe der Statistik

Wieviel ist (m)ein Haus wert? - Immobilienbewertung mit Hilfe der Statistik Wieviel ist (m)ein Haus wert? - Immobilienbewertung mit Hilfe der Statistik Axel Werwatz und Jens Kolbe Econ Boot Camp 2013 SFB 649 Ökonomisches Risiko Immo ist wichtig 2 Economist, 2002 Krise, 2008 Immo

Mehr

13. Lösung weitere Übungsaufgaben Statistik II WiSe 2016/2017

13. Lösung weitere Übungsaufgaben Statistik II WiSe 2016/2017 13. Lösung weitere Übungsaufgaben Statistik II WiSe 2016/2017 1. Aufgabe: Für 25 der größten Flughäfen wurde die Anzahl der abgefertigten Passagiere in den Jahren 2009 und 2012 erfasst. Aus den Daten (Anzahl

Mehr

Statistik II Übung 2: Multivariate lineare Regression

Statistik II Übung 2: Multivariate lineare Regression Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden

Mehr

Mikro-Ökonometrie, WS 15/16 Musterlösung Aufgabenblatt 3

Mikro-Ökonometrie, WS 15/16 Musterlösung Aufgabenblatt 3 Mikro-Ökonometrie, WS 15/16 Musterlösung Aufgabenblatt 3 Aufgabe 3: Die Datei WAGE2.DTA enthält Daten einer Stichprobe von 935 männlichen US-amerikanischen Arbeitnehmern im Alter von 28 bis 38 Jahren.

Mehr

1 Beispiel zur Methode der kleinsten Quadrate

1 Beispiel zur Methode der kleinsten Quadrate 1 Beispiel zur Methode der kleinsten Quadrate 1.1 Daten des Beispiels t x y x*y x 2 ŷ ˆɛ ˆɛ 2 1 1 3 3 1 2 1 1 2 2 3 6 4 3.5-0.5 0.25 3 3 4 12 9 5-1 1 4 4 6 24 16 6.5-0.5 0.25 5 5 9 45 25 8 1 1 Σ 15 25

Mehr

Einfache Modelle für Paneldaten. Statistik II

Einfache Modelle für Paneldaten. Statistik II Einfache Modelle für daten Statistik II Wiederholung Literatur daten Policy-Analyse II: Statistik II daten (1/18) Literatur Zum Nachlesen Einfache Modelle für daten Wooldridge ch. 13.1-13.4 (im Reader)

Mehr

Statistik II Übung 2: Multivariate lineare Regression

Statistik II Übung 2: Multivariate lineare Regression Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden

Mehr

Das lineare Regressionsmodell

Das lineare Regressionsmodell Universität Ulm 89069 Ulm Germany Prof. Dr. Werner Smolny Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Institutsdirektor Das ökonomische

Mehr

Zeitreihen. Statistik II. Literatur. Zeitreihen-Daten Modelle Probleme Trends und Saisonalität Fehlerstruktur. 1 Wiederholung.

Zeitreihen. Statistik II. Literatur. Zeitreihen-Daten Modelle Probleme Trends und Saisonalität Fehlerstruktur. 1 Wiederholung. Statistik II 1 Literatur 2 -Daten Trends und Saisonalität Fehlerstruktur 3 Statistik II (1/31) Literatur Zum Nachlesen Wooldridge ch 101 & 102 Statistik II (2/31) Literatur Für nächste Woche Einfache für

Mehr

Statistik II Übung 2: Multivariate lineare Regression

Statistik II Übung 2: Multivariate lineare Regression Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden

Mehr

Wieviel ist (m)ein Haus wert? - Immobilienbewertung mit Hilfe der Statistik

Wieviel ist (m)ein Haus wert? - Immobilienbewertung mit Hilfe der Statistik Wieviel ist (m)ein Haus wert? - Immobilienbewertung mit Hilfe der Statistik Axel Werwatz und Martin Wersing Econ Boot Camp 2010 SFB 649 Ökonomisches Risiko Gute Vorsätze: Herz & Kopf & Hand Lernziel: Immotheorie

Mehr

Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Prüfung im Fach Ökonometrie im SS 2012

Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Prüfung im Fach Ökonometrie im SS 2012 Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Prüfung im Fach Ökonometrie im SS 2012 Aufgabe 1 (20 Punkte) Sei y = Xβ + ε ein N 1 Vektor und X eine N K Matrix.

Mehr

Statistik II. Lineare Regressionsrechnung. Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II

Statistik II. Lineare Regressionsrechnung. Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II Statistik II Lineare Regressionsrechnung Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II - 09.06.2006 1 Mit der Kovarianz und dem Korrelationskoeffizienten können wir den statistischen

Mehr

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen)

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) 3 Einfache lineare Regression Einfache lineare Modelle mit R 36 Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) > summary(lm(y~x)) Call: lm(formula =

Mehr

Multiple Regressionsanalyse - Kurzabriss

Multiple Regressionsanalyse - Kurzabriss Multiple Regressionsanalyse - Kurzabriss Ziele: Schätzung eines Kriteriums aus einer Linearkombination von Prädiktoren Meist zu Screening-Untersuchungen, um den Einfluß von vermuteten Ursachenvariablen

Mehr

Seminar zur Energiewirtschaft:

Seminar zur Energiewirtschaft: Seminar zur Energiewirtschaft: Ermittlung der Zahlungsbereitschaft für erneuerbare Energien bzw. bessere Umwelt Vladimir Udalov 1 Modelle mit diskreten abhängigen Variablen 2 - Ausgangssituation Eine Dummy-Variable

Mehr

Analyse von Querschnittsdaten. Signifikanztests I Basics

Analyse von Querschnittsdaten. Signifikanztests I Basics Analyse von Querschnittsdaten Signifikanztests I Basics Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004

Mehr

Wieviel ist (m)ein Haus wert? - Immobilienbewertung mit Hilfe der Statistik. Axel Werwatz Econ Boot Camp 2012 SFB 649 Ökonomisches Risiko

Wieviel ist (m)ein Haus wert? - Immobilienbewertung mit Hilfe der Statistik. Axel Werwatz Econ Boot Camp 2012 SFB 649 Ökonomisches Risiko Wieviel ist (m)ein Haus wert? - Immobilienbewertung mit Hilfe der Statistik Axel Werwatz Econ Boot Camp 2012 SFB 649 Ökonomisches Risiko Gute Vorsätze: Herz & Kopf & Hand Lernziel: Immotheorie + Daten

Mehr

Kategoriale abhängige Variablen:

Kategoriale abhängige Variablen: Kategoriale abhängige Variablen: Logit- und Probit -Modelle Statistik II Literatur Annahmen und Annahmeverletzungen Funktionen Exponenten, Wurzeln usw. Das Problem Das binäre Logit-Modell Statistik II

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers 4. Statistik im multiplen Regressionsmodell In diesem Kapitel wird im Abschnitt 4.1 zusätzlich zu den schon bekannten Standardannahmen noch die Annahme von normalverteilten Residuen hinzugefügt. Auf Basis

Mehr

Statistik Einführung // Lineare Regression 9 p.2/72

Statistik Einführung // Lineare Regression 9 p.2/72 Statistik Einführung Lineare Regression Kapitel 9 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Ledold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // Lineare Regression

Mehr

Panelregression (und Mehrebenenanwendungen)

Panelregression (und Mehrebenenanwendungen) Panelregression (und Mehrebenenanwendungen) Henning Lohmann Universität zu Köln Lehrstuhl für Empirische Sozial- und Wirtschaftsforschung SOEP@Campus 2007, Universität Duisburg-Essen, 11. Oktober 2007

Mehr

Wiederholung Qualitätssicherung Drittvariablen. Regression II. Statistik I. Sommersemester Statistik I Regression II (1/33) Wiederholung

Wiederholung Qualitätssicherung Drittvariablen. Regression II. Statistik I. Sommersemester Statistik I Regression II (1/33) Wiederholung Regression II Statistik I Sommersemester 2009 Statistik I Regression II (1/33) R 2 Root Mean Squared Error Statistik I Regression II (2/33) Zum Nachlesen Agresti: 9.1-9.4 Gehring/Weins: 8 Schumann: 8.1-8.2

Mehr

Masterprüfung SS 2014

Masterprüfung SS 2014 Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Masterprüfung SS 2014 Fach: Ökonometrie Prüfer: Prof. Regina T. Riphahn, Ph.D. Name, Vorname Matrikelnummer E-Mail

Mehr

Analyse von Querschnittsdaten. Heteroskedastizität

Analyse von Querschnittsdaten. Heteroskedastizität Analyse von Querschnittsdaten Heteroskedastizität Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Annahmen gegeben? kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004 03.11.2004

Mehr

Countdata, Postestimation und Modellvergleich

Countdata, Postestimation und Modellvergleich Countdata, Statistik II 1 Literatur 2 3 4 Statistik II Countdata (1/29) Literatur Zum Nachlesen Für heute: Scott/Freese ch. 8 Für nächste Woche: Wooldridge Kapitel 10.1 und 10.2 (im Reader) Statistik II

Mehr

Abschlussklausur zur Vorlesung Empirische Wirtschaftsforschung

Abschlussklausur zur Vorlesung Empirische Wirtschaftsforschung Dr Isabel Schnabel Johannes Gutenberg-Universität Mainz Abschlussklausur zur Vorlesung Empirische Wirtschaftsforschung Sommersemester 2007, 14082007, 16:30 18:30 Uhr Hinweise zur Klausur Die Klausur besteht

Mehr

Bivariate Regressionsanalyse

Bivariate Regressionsanalyse Universität Bielefeld 15. März 2005 Kovarianz, Korrelation und Regression Kovarianz, Korrelation und Regression Ausgangspunkt ist folgende Datenmatrix: Variablen 1 2... NI 1 x 11 x 12... x 1k 2 x 21 x

Mehr

6.2 Lineare Regression

6.2 Lineare Regression 6.2 Lineare Regression Einfache lineare Regression (vgl. Kap. 4.7) Y i = θ 0 + θ 1 X i + ǫ i ǫ i (0, σ 2 ) ˆθ 1 ˆθ 0 = S XY S 2 X = 1 ( Yi n ˆθ ) 1 Xi als Lösung der Minimumaufgabe n (Y i θ 1 X 1 θ 0 )

Mehr

Test von Hypothesen: Signifikanz des Zusammenhangs (F-Test)

Test von Hypothesen: Signifikanz des Zusammenhangs (F-Test) Test von Hyothesen: Signifikanz des Zusammenhangs (F-Test) Die Schätzung der Regressionsfunktion basiert auf Daten einer Stichrobe Inwiefern können die Ergebnisse dieser Schätzung auf die Grundgesamtheit

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Ausgangsdaten Bundesliga 2008/2009 Gegeben: Daten zu den 18 Vereinen der ersten Bundesliga

Mehr

Vorlesung 4: Spezifikation der unabhängigen Variablen

Vorlesung 4: Spezifikation der unabhängigen Variablen Vorlesung 4: Spezifikation der unabhängigen Variablen. Fehlspezifikation der unabhängigen Variablen. Auswirkungen einer Fehlspezifikation a. auf die Erwartungstreue der Schätzung b. auf die Effizienz der

Mehr

Univariate Lineare Regression. (eine unabhängige Variable)

Univariate Lineare Regression. (eine unabhängige Variable) Univariate Lineare Regression (eine unabhängige Variable) Lineare Regression y=a+bx Präzise lineare Beziehung a.. Intercept b..anstieg y..abhängige Variable x..unabhängige Variable Lineare Regression y=a+bx+e

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 15. Mai 2009 15. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Überblick 1. Korrelation vs. Regression 2. Ziele der Regressionsanalyse 3. Syntax für

Mehr

Bivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.154

Bivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.154 Bivariate lineare Regression Statistik für SozialwissenschaftlerInnen II p.154 Grundidee und Typen der Regression Die Regressionsanalyse dient zur Quantifizierung des Zusammenhangs und der statistisch

Mehr

4. Spezifische Fragen der linearen Regressionsanalyse 4.1 Datenskalierung

4. Spezifische Fragen der linearen Regressionsanalyse 4.1 Datenskalierung 4. Spezifische Fragen der linearen Regressionsanalyse 4.1 Datenskalierung Falls abhängige und/oder erklärende Variablen in linearen Regressionsmodellen unterschiedlich skaliert sind (z.b. zur Verminderung

Mehr

Statistik. R. Frühwirth. Statistik. VO Februar R. Frühwirth Statistik 1/536

Statistik. R. Frühwirth. Statistik. VO Februar R. Frühwirth Statistik 1/536 fru@hephy.oeaw.ac.at VO 142.090 http://tinyurl.com/tu142090 Februar 2010 1/536 Übersicht über die Vorlesung Teil 1: Deskriptive Teil 2: Wahrscheinlichkeitsrechnung Teil 3: Zufallsvariable Teil 4: Parameterschätzung

Mehr

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandelt die Verteilung einer Variablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem

Mehr

Musterlösung. Modulklausur Multivariate Verfahren

Musterlösung. Modulklausur Multivariate Verfahren Musterlösung Modulklausur 31821 Multivariate Verfahren 25. September 2015 Aufgabe 1 (15 Punkte) Kennzeichnen Sie die folgenden Aussagen zur Regressionsanalyse mit R für richtig oder F für falsch. F Wenn

Mehr

Multiple Regression II: Signifikanztests, Gewichtung, Multikollinearität und Kohortenanalyse

Multiple Regression II: Signifikanztests, Gewichtung, Multikollinearität und Kohortenanalyse Multiple Regression II: Signifikanztests,, Multikollinearität und Kohortenanalyse Statistik II Übersicht Literatur Kausalität und Regression Inferenz und standardisierte Koeffizienten Statistik II Multiple

Mehr

Diagnostik von Regressionsmodellen (1)

Diagnostik von Regressionsmodellen (1) Diagnostik von Regressionsmodellen (1) Bei Regressionsanalysen sollte immer geprüft werden, ob das Modell angemessen ist und ob die Voraussetzungen eines Regressionsmodells erfüllt sind. Das Modell einer

Mehr

1 Gliederung Zeitreihenökonometrie. Angewandte Ökonometrie (Folien) Zeitreihenökonometrie Universität Basel, FS 09. Dr. Sylvia Kaufmann.

1 Gliederung Zeitreihenökonometrie. Angewandte Ökonometrie (Folien) Zeitreihenökonometrie Universität Basel, FS 09. Dr. Sylvia Kaufmann. Angewandte Ökonometrie (Folien) Zeitreihenökonometrie Universität Basel, FS 09 Dr Sylvia Kaufmann Februar 2009 Angewandte Ökonometrie, Sylvia Kaufmann, FS09 1 1 Gliederung Zeitreihenökonometrie Einführung

Mehr

Lineare Regression mit einem Regressor: Einführung

Lineare Regression mit einem Regressor: Einführung Lineare Regression mit einem Regressor: Einführung Quantifizierung des linearen Zusammenhangs von zwei Variablen Beispiel Zusammenhang Klassengröße und Testergebnis o Wie verändern sich Testergebnisse,

Mehr

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Diese Übung beschäftigt sich mit der Skalierung von Variablen in Regressionsanalysen und mit asymptotischen Eigenschaften von OLS. Verwenden

Mehr

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Christian Peukert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2010

Mehr

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9.

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9. Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9. Januar 2011 BOOTDATA11.GDT: 250 Beobachtungen für die Variablen...

Mehr

Bachelorprüfung. Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname. Matrikelnr. . Studiengang.

Bachelorprüfung. Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname. Matrikelnr.  . Studiengang. Lehrstuhl für Statistik und empirische Wirtschaftsforschung Fach: Prüfer: Bachelorprüfung Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname Matrikelnr. E-Mail Studiengang

Mehr

Inferenz im multiplen Regressionsmodell

Inferenz im multiplen Regressionsmodell 1 / 29 Inferenz im multiplen Regressionsmodell Kapitel 4, Teil 1 Ökonometrie I Michael Hauser 2 / 29 Inhalt Annahme normalverteilter Fehler Stichprobenverteilung des OLS Schätzers t-test und Konfidenzintervall

Mehr

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate Regression ein kleiner Rückblick Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate 05.11.2009 Gliederung 1. Stochastische Abhängigkeit 2. Definition Zufallsvariable 3. Kennwerte 3.1 für

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management für Betriebswirtschaft und internationales Management Sommersemester 2015 Prof. Dr. Stefan Etschberger Hochschule Augsburg Preismesszahl: Misst Preisveränderung eines einzelnen Gutes: Preis zum Zeitpunkt

Mehr

Dynamische Systeme und Zeitreihenanalyse // Beschreiben von Zeitreihen 9 p.2/??

Dynamische Systeme und Zeitreihenanalyse // Beschreiben von Zeitreihen 9 p.2/?? Dynamische Systeme und Zeitreihenanalyse Beschreiben von Zeitreihen Kapitel 9 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Beschreiben von Zeitreihen 9 p.0/??

Mehr

Empirische Wirtschaftsforschung

Empirische Wirtschaftsforschung Empirische Wirtschaftsforschung Organisatorisches Vorlesung Montags 15.45 17.15 Uhr HS I vorwiegend theoretischer Teil Computerübung Montags 17.30 19.00 Uhr Pool 2 HG Umsetzung der Theorie am Computer

Mehr

John Komlos Bernd Süssmuth. Empirische Ökonomie. Eine Einführung in Methoden und Anwendungen. 4y Springer

John Komlos Bernd Süssmuth. Empirische Ökonomie. Eine Einführung in Methoden und Anwendungen. 4y Springer John Komlos Bernd Süssmuth Empirische Ökonomie Eine Einführung in Methoden und Anwendungen 4y Springer 1 Einführung 1 1.1 Ökonometrie 1 2 Vorüberlegungen und Grundbegriffe 7 2.1 Statistik als Grundlage

Mehr

Zeitreihen. Statistik II

Zeitreihen. Statistik II Statistik II Wiederholung Literatur -Daten Trends und Saisonalität Fehlerstruktur Statistik II (1/31) Wiederholung Literatur -Daten Trends und Saisonalität Fehlerstruktur Statistik II (1/31) Zum Nachlesen

Mehr

1 Einführung Ökonometrie... 1

1 Einführung Ökonometrie... 1 Inhalt 1 Einführung... 1 1.1 Ökonometrie... 1 2 Vorüberlegungen und Grundbegriffe... 7 2.1 Statistik als Grundlage der Empirischen Ökonomie... 7 2.2 Abgrenzung und Parallelen zu den Naturwissenschaften...

Mehr

Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen

Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen Breusch-Pagan-Test I Ein weiterer Test ist der Breusch-Pagan-Test. Im Gegensatz zum Goldfeld-Quandt-Test ist es nicht erforderlich, eine (einzelne) Quelle der Heteroskedastizität anzugeben bzw. zu vermuten.

Mehr

Übungen mit dem Applet. by Michael Gärtner

Übungen mit dem Applet. by Michael Gärtner Übungen mit dem Applet by Michael Gärtner Betreuer: Prof. Dr. Wilhelm Kleppmann Abgabe: 20. October 2006 Inhaltsverzeichnis 1 Prinzip der kleinsten Quadrate 4 2 Quadrierte Abweichungen und Bestimmtheitsmaÿ

Mehr

Multiple Regression II: Signifikanztests, Gewichtung, Multikollinearität und Kohortenanalyse. Statistik II

Multiple Regression II: Signifikanztests, Gewichtung, Multikollinearität und Kohortenanalyse. Statistik II Multiple Regression II: Signifikanztests,, Multikollinearität und Kohortenanalyse Statistik II Übersicht Wiederholung Literatur Kausalität und Regression Inferenz und standardisierte Koeffizienten Statistik

Mehr

Nachschreibklausur im Anschluss an das SS 2009

Nachschreibklausur im Anschluss an das SS 2009 Nachschreibklausur im Anschluss an das SS 2009 08. Oktober 2009 Lehrstuhl: Prüfungsfach: Prüfer: Hilfsmittel: Klausurdauer: Wirtschaftspolitik Empirische Wirtschaftsforschung Prof. Dr. K. Kraft Nicht-programmierbarer

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 41 Übersicht Struktur eines Hypothesentests Stichprobenverteilung t-test: Einzelner-Parameter-Test F-Test: Multiple lineare Restriktionen 2 / 41 Struktur

Mehr

Ökonometrische Methoden III: Die lineare Regression

Ökonometrische Methoden III: Die lineare Regression Ökonometrische Methoden III: Die lineare Regression Vorlesung an der Ruprecht-Karls-Universität Heidelberg WS 006/007 Prof. Dr. Lars P. Feld Ruprecht-Karls-Universität Heidelberg, Universität St. Gallen

Mehr

Lineare Regression in R, Teil 1

Lineare Regression in R, Teil 1 Lineare Regression in R, Teil 1 Christian Kleiber Abt. Quantitative Methoden, WWZ, Universität Basel October 6, 2009 1 Vorbereitungen Zur Illustration betrachten wir wieder den Datensatz CASchools aus

Mehr

Vorlesung: Statistik I für Studierende der Statistik, Mathematik & Informatik. Regression. Einfache lineare Regression

Vorlesung: Statistik I für Studierende der Statistik, Mathematik & Informatik. Regression. Einfache lineare Regression Vorlesung: Statistik I für Studierende der Statistik, Mathematik & Informatik Regression Dozent: Fabian Scheipl Material: H. Küchenhoff LMU München 39 Einfache lineare Regression Bestimmung der Regressionsgerade

Mehr

Was ist Regression? Übersicht. Statistik II

Was ist Regression? Übersicht. Statistik II Was ist? Statistik II Übersicht Parameterschätzung für die lineare Literatur Was ist? : Standardmodell der linearen : Wahrscheinlichkeitsverteilungen Parameterschätzung für die lineare Statistik II (1/35)

Mehr

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression Institut für Soziologie Methoden 2 Regressionsanalyse I: Einfache lineare Regression Programm Anwendungsbereich Vorgehensweise Interpretation Annahmen Zusammenfassung Übungsaufgabe Literatur # 2 Anwendungsbereich

Mehr

Aufgabe 1 (8= Punkte) 13 Studenten haben die folgenden Noten (ganze Zahl) in der Statistikklausur erhalten:

Aufgabe 1 (8= Punkte) 13 Studenten haben die folgenden Noten (ganze Zahl) in der Statistikklausur erhalten: Aufgabe 1 (8=2+2+2+2 Punkte) 13 Studenten haben die folgenden Noten (ganze Zahl) in der Statistikklausur erhalten: Die Zufallsvariable X bezeichne die Note. 1443533523253. a) Wie groß ist h(x 5)? Kreuzen

Mehr

Kategoriale abhängige Variablen: Logit- und Probit -Modelle. Statistik II

Kategoriale abhängige Variablen: Logit- und Probit -Modelle. Statistik II Kategoriale abhängige Variablen: Logit- und Probit -Modelle Statistik II Wiederholung Literatur Annahmen und Annahmeverletzungen Funktionen Exponenten, Wurzeln usw. Das Problem Das binäre Logit-Modell

Mehr

Eine Einführung in R: Das Lineare Modell

Eine Einführung in R: Das Lineare Modell Eine Einführung in R: Das Lineare Modell Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig 6. Januar 2009 Bernd Klaus, Verena Zuber

Mehr

Dabei bezeichnet x die Einflussgrösse (Regressor), y die Zielvariable (die eine Folge der Ursache x ist) und die Störung. Die n = 3 Beobachtungen

Dabei bezeichnet x die Einflussgrösse (Regressor), y die Zielvariable (die eine Folge der Ursache x ist) und die Störung. Die n = 3 Beobachtungen Lineare Regression und Matrizen. Einführendes Beispiel Der im Kapitel Skalarprodukt gewählte Lösungsweg für das Problem der linearen Regression kann auch mit Matrizen formuliert werden. Die Idee wird zunächst

Mehr

Prüfung im Fach Ökonometrie im WS 2011/12 Aufgabenteil. Name, Vorname. Matrikelnr. Studiengang. E-Mail-Adresse. Unterschrift

Prüfung im Fach Ökonometrie im WS 2011/12 Aufgabenteil. Name, Vorname. Matrikelnr. Studiengang. E-Mail-Adresse. Unterschrift Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Prüfung im Fach Ökonometrie im WS 2011/12 Aufgabenteil Name, Vorname Matrikelnr. Studiengang E-Mail-Adresse Unterschrift

Mehr

Analyse von Querschnittsdaten. Signifikanztests II Advanced Stuff

Analyse von Querschnittsdaten. Signifikanztests II Advanced Stuff Analyse von Querschnittsdaten Signifikanztests II Advanced Stuff Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum..4..4 7..4..4..4 7..4 4..4..4

Mehr

Forschungspraktikum Gruppenbezogene Menschenfeindlichkeit. 21. Juni 2007: Pfadanalyse und lineare Strukturgleichungsmodelle

Forschungspraktikum Gruppenbezogene Menschenfeindlichkeit. 21. Juni 2007: Pfadanalyse und lineare Strukturgleichungsmodelle Forschungspraktikum Gruppenbezogene Menschenfeindlichkeit 2. Juni 2007: Pfadanalyse und lineare Strukturgleichungsmodelle In vielen Untersuchungen soll eine komplexere Beziehungsstruktur untersucht werden.

Mehr

Regression und Korrelation

Regression und Korrelation Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandeltdie VerteilungeinerVariablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem dagegen

Mehr

Wiederholungsübungen zu den Kapiteln 7 bis 11

Wiederholungsübungen zu den Kapiteln 7 bis 11 Mittelwert-Tests Übung Wiederholungsübungen zu den Kapiteln 7 bis 11 In dieser Übung wird der Datensatz 4 verwendet. In dem (fiktiven) Datensatz sind für 50 Personen vier Variablen erfasst: das Geschlecht,

Mehr

Analyse von Querschnittsdaten. Spezifikation der unabhängigen Variablen

Analyse von Querschnittsdaten. Spezifikation der unabhängigen Variablen Analyse von Querschnittsdaten Spezifikation der unabhängigen Variablen Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Annahmen gegeben? kategoriale Variablen Datum 3.0.004 0.0.004

Mehr

Statistik I. Hinweise zur Bearbeitung. Aufgabe 1

Statistik I. Hinweise zur Bearbeitung. Aufgabe 1 Statistik I, SS 2002, Seite 1 von 8 Statistik I Hinweise zur Bearbeitung Hilfsmittel: - Taschenrechner (ohne Datenbank oder die Möglichkeit diesen zu programmieren) - Formelsammlung im Umfang von einer

Mehr

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell 1 Lineare Regression Parameterschätzung 13 Im einfachen linearen Regressionsmodell sind also neben σ ) insbesondere β 1 und β Parameter, deren Schätzung für die Quantifizierung des linearen Zusammenhangs

Mehr

Statistik II. Regressionsanalyse. Statistik II

Statistik II. Regressionsanalyse. Statistik II Statistik II Regressionsanalyse Statistik II - 23.06.2006 1 Einfachregression Annahmen an die Störterme : 1. sind unabhängige Realisationen der Zufallsvariable, d.h. i.i.d. (unabh.-identisch verteilt)

Mehr

5 Multivariate stationäre Modelle

5 Multivariate stationäre Modelle 5 Multivariate stationäre Modelle 5.1 Autoregressive distributed lag (ADL) 5.1.1 Das Modell und dessen Schätzung Im vorangehenden Kapitel führten wir mit der endogenen verzögerten Variablen, y t 1, als

Mehr

Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Prüfung im Fach Ökonometrie im WS 2011/12 Lösungsskizze

Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Prüfung im Fach Ökonometrie im WS 2011/12 Lösungsskizze Lehrstuhl für Statistik und empirische irtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Prüfung im ach Ökonometrie im S 20/2 Lösungsskizze Aufgabe (.5 Punkte) Sie verfügen über einen Datensatz, der Informationen

Mehr