Was ist Regression? Übersicht. Statistik II

Größe: px
Ab Seite anzeigen:

Download "Was ist Regression? Übersicht. Statistik II"

Transkript

1 Was ist? Statistik II Übersicht Parameterschätzung für die lineare Literatur Was ist? : Standardmodell der linearen : Wahrscheinlichkeitsverteilungen Parameterschätzung für die lineare Statistik II (1/35)

2 Parameterschätzung für die lineare Literatur Literatur für heute Berk (2004, S , 39-56) und Fox (1997, S , 101, , ) (beides im ReaderPlus) Statistik II (2/35) Parameterschätzung für die lineare Literatur Literatur für nächste Woche Agresti ch. 10 Statistik II (3/35)

3 Parameterschätzung für die lineare Was ist? : Standardmodell der linearen : Wahrscheinlichkeitsverteilungen male female Scores for factor Graphs by gender placement on left right scale Statistik II (4/35) Parameterschätzung für die lineare Was ist? : Standardmodell der linearen : Wahrscheinlichkeitsverteilungen male female placement on left right scale Bewertung Immigranten Mittelwert Graphs by gender Statistik II (5/35)

4 Parameterschätzung für die lineare Was ist? : Standardmodell der linearen : Wahrscheinlichkeitsverteilungen male female placement on left right scale Bewertung Immigranten Verbindung Mittelwerte Mittelwert Graphs by gender Statistik II (6/35) Parameterschätzung für die lineare Was ist? : Standardmodell der linearen : Wahrscheinlichkeitsverteilungen male female placement on left right scale Bewertung Immigranten Fitted values Mittelwert Graphs by gender Statistik II (7/35)

5 Parameterschätzung für die lineare Was ist? : Standardmodell der linearen : Wahrscheinlichkeitsverteilungen Was ist? ist der Oberbegriff für Verfahren,... die die konditionale Verteilung einer Variablen y... in Abhängigkeit von einer oder mehreren anderen Variablen x 1, x 2... x k beschreiben Was ist eine konditionale Verteilung? Verteilung von y (Mittelwert, Streuung etc.)... innerhalb von Subgruppen, die durch x 1, x 2... x k definiert sind Statistik II (8/35) Parameterschätzung für die lineare Was ist? : Standardmodell der linearen : Wahrscheinlichkeitsverteilungen Was ist? Die konditionalen Mittelwerte können durch eine glatte Linie beschrieben werden Übergang zum Modell: Annahmen über die Eigenschaften der Linie kommen von außen Abhängige / unabhängige Variable kommen ebenfalls von außen Das Beispiel zeigt u. a. Mehrere unabhängige Variablen Kategoriale unabhängige Variablen Interaktion Probleme mit der Linearitätsannahme Statistik II (9/35)

6 Parameterschätzung für die lineare Was ist? : Standardmodell der linearen : Wahrscheinlichkeitsverteilungen male female placement on left right scale Bewertung Immigranten Verbindung Mittelwerte Mittelwert Graphs by gender Statistik II (10/35) Parameterschätzung für die lineare Was ist? : Standardmodell der linearen : Wahrscheinlichkeitsverteilungen Wie sieht das Standardmodell aus? y =α + β 1 x 1 + β 2 x 2 + ɛ =β 0 x 0 + β 1 x 1 + β 2 x 2 + ɛ mit x 0 = 1 für alle Einheiten Statistik II (11/35)

7 Parameterschätzung für die lineare Was ist? : Standardmodell der linearen : Wahrscheinlichkeitsverteilungen Welche Symbole werden verwendet? oft wenig einheitlich Grundregeln: 1. y für abhängige Variable, x für unabhängige Variable 2. Variablen, Parameter und Untersuchungseinheiten kann man mit einem Index durchnumerieren: x 1, x 2... x k 3. Lateinische Buchstaben für Variablen und Parameter in der Stichprobe, 4. Griechische Buchstaben für die unbekannten Parameter der Grundgesamtheit 5. Variablen erkannt man am Kursivdruck 6. Für Vektoren verwendet man (griechische oder lateinische) Kleinbuchstaben in Fettdruck 7. Für Matrizen verwendet man (griechische oder lateinische) Großbuchstaben in Fettdruck 8. Ein Dach über einem Parameter (z. B. ˆβ) zeigt an, daß es Statistik II (12/35) sich um eine Schätzung handelt (wird oft weggelassen) Parameterschätzung für die lineare Was ist? : Standardmodell der linearen : Wahrscheinlichkeitsverteilungen Was ist eine Zufallsvariable? Zufallsvariablen Ergebnis von Zufallsexperimenten Zufallsvariablen im smodell Zufällige Einflüsse auf einen Fall Zufällige Variation der Schätzungen bei wiederholter Stichprobenziehung Zufallsexperimente Können theoretisch beliebig oft wiederholt werden Einzelergebnisse hängen vom Zufall ab, Verteilung der Ergebnisse ist aber bekannt Bei häufiger nähert sich die empirische Verteilung der theoretischen Verteilung an Ziehung einer Zufallsstichprobe ist ein Zufallsexperiment Deshalb sind Stichprobenkennwerte und Modellparameter ebenfalls Zufallsvariablen Statistik II (13/35)

8 Parameterschätzung für die lineare Was ist? : Standardmodell der linearen : Wahrscheinlichkeitsverteilungen Was ist eine Zufallsvariable? Im Einzelfall weiß man nicht, welchen Wert die Variable annimmt Aber: Ausprägungen von Zufallsvariablen sind nicht willkürlich, sondern höchst regelmäßig verteilt Die Form der Verteilung der Werte einer Zufallsvariablen ist in der Regel bekannt / wird angenommen Zufallsvariablen (und ihre Verteilungen) können diskret oder stetig sein Einfaches lineares smodell: stetige Zufallsvariablen wichtig Statistik II (14/35) Parameterschätzung für die lineare Was ist? : Standardmodell der linearen : Wahrscheinlichkeitsverteilungen Was ist der konzeptionelle Status eines smodells? To err is human, to forgive divine, but to include errors into your design is statistical (Leslie Kish) All models are wrong. Some are useful (George Box) smodell Hochgradig vereinfachte Nicht unbedingt realistische Mathematisch formalisierte Beschreibung der sozialen Wirklichkeit als Funktion von systematischen und zufälligen Einflüssen Statistik II (15/35)

9 Parameterschätzung für die lineare Was ist? : Standardmodell der linearen : Wahrscheinlichkeitsverteilungen Was will uns Kish sagen? Abhängige Variable kann niemals vollständig durch x 1, x 2... x k erklärt werden Zufällige/als zufällig betrachtete Einflüsse Bestandteil des Modells (im linearen Modell ɛ) Diese Art von Fehlern ist aus Sicht des Modells völlig unproblematisch Statistik II (16/35) Parameterschätzung für die lineare Was ist? : Standardmodell der linearen : Wahrscheinlichkeitsverteilungen Was will uns Box sagen? Modelle niemals eine vollständige Abbildung der Wirklichkeit, sondern immer extreme Vergröberung Z. B. Auswahl unabhängigen Variablen, Linearitätsannahme Ist das Modell dem Forschungsproblem angemessen? Instrumentalismus / Idealisierung (Friedman): Gute Prognosen, Problem: Stabilität der Randbedingungen? Realismus / Abstraktion: Realistische Beschreibung, Problem: Komplexität, Overfitting Statistik II (17/35)

10 Parameterschätzung für die lineare Was ist? : Standardmodell der linearen : Wahrscheinlichkeitsverteilungen Was ist der konzeptionelle Status eines smodells? To err is human, to forgive divine, but to include errors into your design is statistical (Leslie Kish) All models are wrong. Some are useful (George Box) smodell Hochgradig vereinfachte Nicht unbedingt realistische Mathematisch formalisierte Beschreibung der sozialen Wirklichkeit als Funktion von systematischen und zufälligen Einflüssen Statistik II (18/35) Parameterschätzung für die lineare Was ist? : Standardmodell der linearen : Wahrscheinlichkeitsverteilungen Was können wir mit den Parametern eines Modells anfangen? Beschreibung: Modell erfaßt wesentliche Aspekte einer konkreten Verteilung von Datenpunkten Keine weitergehenden Schlüsse, Mittel zur Verdichtung der Information Inferenz: Von den konkreten Daten soll auf etwas anderes geschlossen werden, aber auf was? (Fast völlig) unproblematisch im Fall einer Zufallsstichprobe aus einer großen Grundgesamtheit Klassische Inferenz, Standardfehler, Konfidenzintervalle, Signifikanztests Erfordert Annahmen über Zustandekommen der Daten klassische Inferenz Statistik II (19/35)

11 Parameterschätzung für die lineare Was ist? : Standardmodell der linearen : Wahrscheinlichkeitsverteilungen Was leistet die klassische Inferenz? Rückschlüsse auf die Verteilung der in der Stichprobe errechneten Schätzungen um die wahren Werte in der Grundgesamtheit wenn Stichprobenziehung unter essentiell identischen Bedingungen unendlich oft wiederholt wird Konfidenzintervall Ein Intervall, das nach dieser Regel konstruiert wird, wird in 95 von 100 Stichproben den wahren Wert des Parameters mit einschließen Habe ich eine der 95 glücklichen Stichproben gezogen? Nicht sehr intuitive, aber Statistikklare II Interpretation (20/35) Parameterschätzung für die lineare Was ist? : Standardmodell der linearen : Wahrscheinlichkeitsverteilungen Und wenn ich keine Zufallsstichprobe habe? Schulbezirke, OECD-Staaten, Studierende an einer bestimmten Universität Strategie I: Die Daten werden wie eine Grundgesamtheit behandelt dient nur zur Beschreibung Strategie II (mit Varianten): Annahmen über Natur, Superpopulation,... Standardfehler werden als ob berechnet Innerhalb des klassischen Ansatzes nicht ok Erfordert andere statistische Annahmen Extreme Vorsicht mit Standardfehlern bei Non-Samples Statistik II (21/35)

12 Parameterschätzung für die lineare Wie komme ich zu meinen Schätzungen? Wie lege ich die Gerade durch die Punkte (gute Beschreibung/gute Schätzung)? Standardmethode: Kleinste-Quadrate-Schätzung (Ordinary Least Squares, OLS) Abweichungsquadrate? Welche Koeffizienten minimieren die SAQ? Gute Beschreibung/Anpassung Und (in diesem Fall) auch gute Schätzung für Grundgesamtheit Statistik II (22/35) Parameterschätzung für die lineare Was sind die Abweichungen, die quadriert werden? y x Statistik II (23/35)

13 Parameterschätzung für die lineare Wie komme ich zu meinen Schätzungen? Für alle Datenpunkte i = 1, 2... n Differenz zwischen beobachtetem (y i ) und erwartetem Wert (ŷ i ) bestimmen, quadrieren und aufsummieren SAQ = = n (y i (b 0 + b 1 x 1i )) 2 (1) i=1 n (y i b 0 b 1 x 1i ) 2 (2) i=1 Die SAQ in (1) sind eine Funktion der Daten und der Parameterschätzungen Gesucht sind Parameterschätzungen, die SAQ minimieren Statistik II (24/35) Parameterschätzung für die lineare Wie minimiere ich die SAQ? Möglichkeit I: Durch systematisches Variieren der Parameter Entspricht in etwa den iterativen Verfahren Möglichkeit II: Es existiert eine analytische Lösung Funktion hat globales Minimum Notwendige Bedingung für einen Extremwert: 1. Ableitung gleich 0 (Tangente ist an dieser Stelle flach) Funktion hat zwei Variablen zwei partielle Ableitungen (nach b 0 und b 1 ) betrachten Normalgleichungen Statistik II (25/35)

14 Parameterschätzung für die lineare Wie sehen die Normalgleichungen aus? b 0 n + b 1 x1i + b 2 x2i + b k xki = y i (3) b 0 x1i + b 1 x 2 1i + b 2 x1i x 2i + b k x1i x ki = x 1i y i (4) b 0 xki + b 1 xki x 1i + b 2 xki x 2i + b k x 2 ki = x ki y i (5). Nur zur Illustration, muß nicht auswendig gelernt werden Statistik II (26/35) Parameterschätzung für die lineare Geht das auch etwas übersichtlicher? Schon bei zwei Variablen sehr unübersichtlich Für den multivariaten Fall Darstellung und Berechnung vorzugsweise in Matrix-Schreibweise Matrix: tabellenförmige Darstellung von Zahlen (Elementen der Matrix) A ist eine m n Matrix (m Zeilen, n Spalten): a 11 a 12 a 1n a 21 a 22 a 2n A =..... (6). a m1 a m2... a mn Matrix mit einer Spalte: Spaltenvektor; Matrix mit einer Zeile: Zeilenvektor weiter Statistik II (27/35)

15 Parameterschätzung für die lineare Wie kann man mit Matrizen rechnen? Der Stoff auf den nächsten Folien dient Ihrem Verständnis, ist aber nicht klausurrelevant Matrizen werden elementweise addiert (Rechenbeispiele aus Wikipedia) Setzt gleiche Zahl von Spalten Zeilen voraus ( ) ( ) ( ) = = ( 1 3 ) Statistik II (28/35) Parameterschätzung für die lineare Wie kann man mit Matrizen rechnen? Die Multiplikation mit einem Skalar ist einfach: 2 ( ) = ( ) = ( 2 6 ) Statistik II (29/35)

16 Parameterschätzung für die lineare Wie kann man mit Matrizen rechnen? Die Multiplikation von Matrizen ist spannender Nur möglich, wenn die Spaltenzahl der linken mit der Zeilenzahl der rechten Matrix übereinstimmt A B B A (normalerweise) ( ) = ( ) ( 1) ( 3) = ( 1) ( 3) ( ) Statistik II (30/35) Parameterschätzung für die lineare Was kann man sonst noch machen? Transponieren, d. h. Zeilen und Spalten vertauschen ( ) = Die Inverse suchen (entspricht etwa dem Kehrwert): A A 1 = I I ist die Einheitsmatrix Quadratische Matrix mit Einsen auf der Hauptdiagonale, sonst nur Nullen Inverse ermöglicht es, durch Matrix zu teilen; nicht alle Matrizen sind invertierbar Statistik II (31/35)

17 Parameterschätzung für die lineare Was hilft uns das? Das lineare Modell kann in Matrix-Schreibweise sehr kompakt formuliert werden y = Xβ + ɛ mit y : X : β : ɛ : Spaltenvektor mit Werten der abhängigen Variablen Matrix mit Werten der unabhängigen Variablen Spaltenvektor mit Koeffizienten Spaltenvektor mit zufälligen Einflüssen dabei ist y = y 1.. y n X = 1 x 11 x 1k x n1 x nk β = β 0 β 1.. β k ɛ = ɛ 1.. ɛ n (7) Statistik II (32/35) Parameterschätzung für die lineare Was hilft uns das? OLS-Schätzung: y = Xb + e (e ist der Spaltenvektor der Residuen, b ist der Spaltenvektor der Koeffizienten, X ist die Datenmatrix) Die Summe der quadrierten Residuen ist e e (warum? siehe Matrix-Multiplikation drei Folien vorher) SAQ = e e = (y Xb) (y Xb) (8) = y y y Xb b X y + b X Xb (9) = y y (2y X)b + b (X X)b (10) Muß nicht auswendig gelernt werden, aber Sie sollten es in groben Zügen verstehen Statistik II (33/35)

18 Parameterschätzung für die lineare Was hilft uns das? Die partielle Ableitung der SAQ nach b ist = 2X y + 2X Xb SAQ b Auf null setzen: 2X y + 2X Xb = 0 Vektorform der Normalgleichungen: X Xb = X y Nach b auflösen: b = (X X) 1 X y Muß nicht auswendig gelernt werden, aber Sie sollten es in groben Zügen verstehen Statistik II (34/35) Parameterschätzung für die lineare betrachtet konditionalen Mittelwert einer Variablen Mittelwert folgt in Abhängigkeit von unabhängigen Variablen einem Pfad Im klassischen Modell entspricht dieser Pfad einer Linie/Fläche/Hyperfläche, die die SAQ minimiert Das Gleichungssystem läßt sich analytisch lösen, um die optimalen Parameter zu finden Matrix muß genug unabhängige Informationen enthalten OLS gutes Mittel zur Datenverdichtung auch ein gutes Schätzverfahren? Statistik II (35/35)

Regressionsmodelle für Politikwissenschaftler: Seminarüberblick und Einführung

Regressionsmodelle für Politikwissenschaftler: Seminarüberblick und Einführung Regressionsmodelle für Politikwissenschaftler: Seminarüberblick und Einführung Überblick Formales zum Scheinerwerb Sie beteiligen sich am Seminargespräch. Voraussetzung dafür ist die Lektüre der Pflichttexte,

Mehr

Wiederholung/Einführung Lineare Regression Zusammenfassung. Regression I. Statistik I. Sommersemester 2009

Wiederholung/Einführung Lineare Regression Zusammenfassung. Regression I. Statistik I. Sommersemester 2009 Sommersemester 2009 Wiederholung/Einführung Ein Beispiel: Armut und Gewaltverbrechen Rechtswahl 15 10 5 0 5 10 Arbeitslosigkeit Zum Nachlesen Agresti: 9.1-9.4 Gehring/Weins: 8 Schumann: 8.1-8.2 Was ist

Mehr

Regression I. Statistik I. Sommersemester Lineare Regression Zusammenhang und Modell Ein Beispiel: Armut und Gewaltverbrechen Zusammenfassung

Regression I. Statistik I. Sommersemester Lineare Regression Zusammenhang und Modell Ein Beispiel: Armut und Gewaltverbrechen Zusammenfassung Sommersemester 2009 Ein Beispiel: Armut und Gewaltverbrechen Rechtswahl 15 10 5 0 5 10 Arbeitslosigkeit Zum Nachlesen Agresti: 9.1-9.4 Gehring/Weins: 8 Schumann: 8.1-8.2 Was ist ein Zusammenhang? Gemeinsame

Mehr

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief Statistik II Literatur Kategoriale Unabhängige, Interaktion, nicht-lineare Effekte : Schätzung Statistik

Mehr

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief. Statistik II

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief. Statistik II Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief Statistik II Wiederholung Literatur Kategoriale Unabhängige, Interaktion, nicht-lineare Effekte

Mehr

Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 20

Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 20 Statistik II II. Univariates lineares Regressionsmodell Martin Huber 1 / 20 Übersicht Definitionen (Wooldridge 2.1) Schätzmethode - Kleinste Quadrate Schätzer / Ordinary Least Squares (Wooldridge 2.2)

Mehr

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen)

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) 3 Einfache lineare Regression Einfache lineare Modelle mit R 36 Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) > summary(lm(y~x)) Call: lm(formula =

Mehr

Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 27

Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 27 Statistik II II. Univariates lineares Regressionsmodell Martin Huber 1 / 27 Übersicht Definitionen (Wooldridge 2.1) Schätzmethode - Kleinste Quadrate Schätzer / Ordinary Least Squares (Wooldridge 2.2)

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell Kapitel 8 Einfache Regression Josef Leydold c 2006 Mathematische Methoden VIII Einfache Regression 1 / 21 Lernziele Lineares Regressionsmodell Anpassen des linearen Regressionsmodells, OLS Eigenschaften

Mehr

Wiederholung. Statistik I. Sommersemester 2009

Wiederholung. Statistik I. Sommersemester 2009 Statistik I Sommersemester 2009 Statistik I (1/21) Daten/graphische Darstellungen Lage- und Streuungsmaße Zusammenhangsmaße Lineare Regression Wahrscheinlichkeitsrechnung Zentraler Grenzwertsatz Konfidenzintervalle

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 41 Übersicht Struktur eines Hypothesentests Stichprobenverteilung t-test: Einzelner-Parameter-Test F-Test: Multiple lineare Restriktionen 2 / 41 Struktur

Mehr

1 Beispiel zur Methode der kleinsten Quadrate

1 Beispiel zur Methode der kleinsten Quadrate 1 Beispiel zur Methode der kleinsten Quadrate 1.1 Daten des Beispiels t x y x*y x 2 ŷ ˆɛ ˆɛ 2 1 1 3 3 1 2 1 1 2 2 3 6 4 3.5-0.5 0.25 3 3 4 12 9 5-1 1 4 4 6 24 16 6.5-0.5 0.25 5 5 9 45 25 8 1 1 Σ 15 25

Mehr

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte Mathematik I Matrizen In diesem Kapitel werden wir lernen was Matrizen sind und wie man mit Matrizen rechnet. Matrizen ermöglichen eine kompakte Darstellungsform vieler mathematischer Strukturen. Zum Darstellung

Mehr

Population und Stichprobe Wahrscheinlichkeitstheorie II

Population und Stichprobe Wahrscheinlichkeitstheorie II Population und Stichprobe Wahrscheinlichkeitstheorie II 5. Sitzung 1 S. Peter Schmidt 2003 1 Stichprobenziehung als Zufallsexperiment Definition Stichprobe: Teilmenge der Elemente der Grundgesamtheit bzw.

Mehr

Übung V Lineares Regressionsmodell

Übung V Lineares Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Michael Alpert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2007 Übung

Mehr

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 8.-10. Januar 2010 BOOTDATA.GDT: 250 Beobachtungen für die Variablen... cm:

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor)

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor) Matrizenrechnung. Matrizen Matrizen sind bereits im Kapitel Lineare Gleichungssysteme aufgetreten. Unter einer (m n) -Matrix A verstehen wir ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Der.

Mehr

Das Lineare Regressionsmodell

Das Lineare Regressionsmodell Das Lineare Regressionsmodell Bivariates Regressionsmodell Verbrauch eines Pkw hängt vom Gewicht des Fahrzeugs ab Hypothese / Theorie: Je schwerer ein Auto, desto mehr wird es verbrauchen Annahme eines

Mehr

Korrelation und Regression

Korrelation und Regression FB 1 W. Ludwig-Mayerhofer und 1 und FB 1 W. Ludwig-Mayerhofer und 2 Mit s- und sanalyse werden Zusammenhänge zwischen zwei metrischen Variablen analysiert. Wenn man nur einen Zusammenhang quantifizieren

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Korrelationsanalysen Kreuztabellen und χ²-test Themen Korrelation oder Lineare Regression? Korrelationsanalysen - Pearson, Spearman-Rang, Kendall s Tau

Mehr

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49 Kapitel 2 Matrixalgebra Josef Leydold Mathematik für VW WS 207/8 2 Matrixalgebra / 49 Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS.

Mehr

Matrixalgebra. Kapitel 2. Ein sehr einfaches Leontief-Modell. Matrix. Ein sehr einfaches Leontief-Modell. Vektor. Spezielle Matrizen I

Matrixalgebra. Kapitel 2. Ein sehr einfaches Leontief-Modell. Matrix. Ein sehr einfaches Leontief-Modell. Vektor. Spezielle Matrizen I Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS Kapitel 2 Matrixalgebra Technologiematrix und wöchentliche Nachfrage (in Werteinheiten):

Mehr

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2.

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2. Definition Die rechteckige Anordnung von m n Elementen a ij in m Zeilen und n Spalten heißt m n- Matrix. Gewöhnlich handelt es sich bei den Elementen a ij der Matrix um reelle Zahlen. Man nennt das Paar

Mehr

Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h

Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h 5. Die partielle Autokorrelationsfunktion 5.1 Definition, Berechnung, Schätzung Bisher: Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h ρ X (h) = Corr(X t, X

Mehr

Messunsicherheiten und Matrizenrechnung

Messunsicherheiten und Matrizenrechnung Physikalisch-Technische Bundesanstalt Braunschweig und Berlin Matrix Messunsicherheiten und Matrizenrechnung T. Funck Arbeitsgruppe.13 Wechsel-Gleich-Transfer, Impedanz 60. PTB Seminar am 1. Mai 011 Inhalt

Mehr

Maximum-Likelihood Schätzung

Maximum-Likelihood Schätzung Maximum-Likelihood Schätzung VL Forschungsmethoden 1 Wiederholung Einführung: Schätzung 2 Likelihood-Schätzung und Generalisiertes Lineares Modell Zufallsverteilungen 3 Lernziele 1 Grundzüge der Likelihood-Schätzung

Mehr

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49 Kapitel 2 Matrixalgebra Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49 Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS.

Mehr

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Christian Peukert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2010

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

Lineare Gleichungssysteme und Matrizen

Lineare Gleichungssysteme und Matrizen Kapitel 11 Lineare Gleichungssysteme und Matrizen Ein lineares Gleichungssystem (lgs) mit m linearen Gleichungen in den n Unbekannten x 1, x 2,..., x n hat die Gestalt: Mit a 11 x 1 + a 12 x 2 + a 13 x

Mehr

Zentraler Grenzwertsatz/Konfidenzintervalle

Zentraler Grenzwertsatz/Konfidenzintervalle / Statistik I Sommersemester 2009 Statistik I ZGWS/ (1/37) Kann Ahmadinejad die Wahl gewonnen haben? Im wesentlichen Dreiteilung der polit. Elite 2005: 17.3 Millionen Stimmen (Stichwahl), Wahlbeteiligung

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungen stetiger Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

John Komlos Bernd Süssmuth. Empirische Ökonomie. Eine Einführung in Methoden und Anwendungen. 4y Springer

John Komlos Bernd Süssmuth. Empirische Ökonomie. Eine Einführung in Methoden und Anwendungen. 4y Springer John Komlos Bernd Süssmuth Empirische Ökonomie Eine Einführung in Methoden und Anwendungen 4y Springer 1 Einführung 1 1.1 Ökonometrie 1 2 Vorüberlegungen und Grundbegriffe 7 2.1 Statistik als Grundlage

Mehr

1 Einführung Ökonometrie... 1

1 Einführung Ökonometrie... 1 Inhalt 1 Einführung... 1 1.1 Ökonometrie... 1 2 Vorüberlegungen und Grundbegriffe... 7 2.1 Statistik als Grundlage der Empirischen Ökonomie... 7 2.2 Abgrenzung und Parallelen zu den Naturwissenschaften...

Mehr

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell 1 Lineare Regression Parameterschätzung 13 Im einfachen linearen Regressionsmodell sind also neben σ ) insbesondere β 1 und β Parameter, deren Schätzung für die Quantifizierung des linearen Zusammenhangs

Mehr

Inferenzstatistik (=schließende Statistik)

Inferenzstatistik (=schließende Statistik) Inferenzstatistik (=schließende Statistik) Grundproblem der Inferenzstatistik: Wie kann man von einer Stichprobe einen gültigen Schluß auf di Grundgesamtheit ziehen Bzw.: Wie groß sind die Fehler, die

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 31. Mai 2011 4. Methode der kleinsten Quadrate Geschichte: Von Legendre, Gauß und Laplace zu Beginn des 19. Jahrhunderts eingeführt. Die Methode der

Mehr

Rang einer Matrix. 1-E1 Ma 1 Lubov Vassilevskaya

Rang einer Matrix. 1-E1 Ma 1 Lubov Vassilevskaya Rang einer Matrix 1-E1 Ma 1 Lubov Vassilevskaya Unterdeterminante einer nichtquadratischen Matrix M ist eine nichtquadratische 2,3-Matrix: M = 6 2 3 0 5 7 Durch Streichen einer der drei Spalten kann man

Mehr

Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle

Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle 2. Matrixalgebra Warum Beschäftigung mit Matrixalgebra? Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle bequeme mathematische

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 6 Genzwertsätze Einführung 1 Wahrscheinlichkeit: Definition und Interpretation

Mehr

Bereiche der Statistik

Bereiche der Statistik Bereiche der Statistik Deskriptive / Exploratorische Statistik Schließende Statistik Schließende Statistik Inferenz-Statistik (analytische, schließende oder konfirmatorische Statistik) baut auf der beschreibenden

Mehr

Statistik. R. Frühwirth. Statistik. VO Februar R. Frühwirth Statistik 1/536

Statistik. R. Frühwirth. Statistik. VO Februar R. Frühwirth Statistik 1/536 fru@hephy.oeaw.ac.at VO 142.090 http://tinyurl.com/tu142090 Februar 2010 1/536 Übersicht über die Vorlesung Teil 1: Deskriptive Teil 2: Wahrscheinlichkeitsrechnung Teil 3: Zufallsvariable Teil 4: Parameterschätzung

Mehr

Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015 Matrizenrechnung Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Matrizenrechnung Übersicht Grundsätzliches 1 Grundsätzliches Matrixbegriff Rechenregeln Spezielle Matrizen 2 Matrizenrechnung Determinanten

Mehr

Spezielle Matrixformen

Spezielle Matrixformen Definition B57 (Transposition) Eine einfache aber wichtige Operation auf Matrizen ist die Transposition, die aus einer (m n) Matrix A eine (n m) Matrix B = A T macht Hierbei gilt β i j = α j i, so daß

Mehr

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19 Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, 2016 6:34 P.M. Page 11 Inhaltsverzeichnis Über die Übersetzerin 9 Einleitung 19 Was Sie hier finden werden 19 Wie dieses Arbeitsbuch aufgebaut ist

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Forschungsstatistik I

Forschungsstatistik I Psychologie Prof. Dr. G. Meinhardt 6. Stock, TB II R. 06-206 (Persike) R. 06-321 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

6.2 Lineare Regression

6.2 Lineare Regression 6.2 Lineare Regression Einfache lineare Regression (vgl. Kap. 4.7) Y i = θ 0 + θ 1 X i + ǫ i ǫ i (0, σ 2 ) ˆθ 1 ˆθ 0 = S XY S 2 X = 1 ( Yi n ˆθ ) 1 Xi als Lösung der Minimumaufgabe n (Y i θ 1 X 1 θ 0 )

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Stetige und diskrete Wahrscheinlichkeitsverteilungen Lageparameter Streuungsparameter Diskrete und stetige Zufallsvariablen Eine Variable (oder Merkmal

Mehr

Analyse von Querschnittsdaten. Signifikanztests I Basics

Analyse von Querschnittsdaten. Signifikanztests I Basics Analyse von Querschnittsdaten Signifikanztests I Basics Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 81 Reelle Matrizen Prof Dr Erich Walter Farkas http://wwwmathethzch/ farkas 1 / 31 1 2 3 4 2 / 31 Transponierte einer Matrix 1 Transponierte

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof Dr Erich Walter Farkas Kapitel 7: Lineare Algebra 71 Reelle Matrizen Prof Dr Erich Walter Farkas Mathematik I+II, 71 Reelle Matrizen 1 / 31 1 2 3 4 Prof Dr Erich

Mehr

05. Lineare Gleichungssysteme

05. Lineare Gleichungssysteme 05 Lineare Gleichungssysteme Wir betrachten ein System von m Gleichungen in n Unbestimmten (Unbekannten) x 1,, x n von der Form a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a

Mehr

Kapitel 3 Schließende lineare Regression Einführung. induktiv. Fragestellungen. Modell. Matrixschreibweise. Annahmen.

Kapitel 3 Schließende lineare Regression Einführung. induktiv. Fragestellungen. Modell. Matrixschreibweise. Annahmen. Kapitel 3 Schließende lineare Regression 3.1. Einführung induktiv Fragestellungen Modell Statistisch bewerten, der vorher beschriebenen Zusammenhänge auf der Basis vorliegender Daten, ob die ermittelte

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 5 Aufgabe 5.1 Kommutierende Matrizen In der Vorlesung und vergangenen

Mehr

Chi-Quadrat-Verteilung

Chi-Quadrat-Verteilung Chi-Quadrat-Verteilung Wikipedia http://de.wikipedia.org/wiki/chi-quadrat-verteilung 1 von 7 6/18/2009 6:13 PM Chi-Quadrat-Verteilung aus Wikipedia, der freien Enzyklopädie Die Chi-Quadrat-Verteilung ist

Mehr

2. Stochastische ökonometrische Modelle. - Modelle der ökonomischen Theorie an der Wirklichkeit überprüfen

2. Stochastische ökonometrische Modelle. - Modelle der ökonomischen Theorie an der Wirklichkeit überprüfen .1. Stochastische ökonometrische Modelle.1 Einführung Ziele: - Modelle der ökonomischen Theorie an der Wirklichkeit überprüfen - Numerische Konkretisierung ökonomischer Modelle und deren Analse. . Variierende

Mehr

Stichprobe vs. Vollerhebung

Stichprobe vs. Vollerhebung Stichprobe vs. Vollerhebung Seminar Inferenzstatistik Referent: Hannes Holtermann Dresden, 02.12.2008 Stichprobe vs. Vollerhebung Gliederung 1.Einleitung 2.Grundgesamtheit und Stichprobe 3.Beispiel Lotto

Mehr

Nicht-kontinuierliche abhängige Variablen: Das generalisierte lineare Modell und die Parameterschätzung via Maximum Likelihood

Nicht-kontinuierliche abhängige Variablen: Das generalisierte lineare Modell und die Parameterschätzung via Maximum Likelihood Nicht-kontinuierliche abhängige Variablen: Das generalisierte lineare Modell und die Parameterschätzung via Maximum Likelihood Interaktionseffekte Varianz-Kovarianz-Matrix Interaktionseffekte Varianz-Kovarianz-Matrix

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg 2 R. 06-206 (Persike) R. 06-214 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

MLAN1 1 MATRIZEN 1 0 = A T =

MLAN1 1 MATRIZEN 1 0 = A T = MLAN1 1 MATRIZEN 1 1 Matrizen Eine m n Matrix ein rechteckiges Zahlenschema a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n a m1 a m2 a m3 amn mit m Zeilen und n Spalten bestehend aus m n Zahlen Die Matrixelemente

Mehr

Multiple Regressionsanalyse - Kurzabriss

Multiple Regressionsanalyse - Kurzabriss Multiple Regressionsanalyse - Kurzabriss Ziele: Schätzung eines Kriteriums aus einer Linearkombination von Prädiktoren Meist zu Screening-Untersuchungen, um den Einfluß von vermuteten Ursachenvariablen

Mehr

Matrizen und Determinanten, Aufgaben

Matrizen und Determinanten, Aufgaben Matrizen und Determinanten, Aufgaben Inhaltsverzeichnis 1 Multiplikation von Matrizen 1 11 Lösungen 3 2 Determinanten 6 21 Lösungen 7 3 Inverse Matrix 8 31 Lösungen 9 4 Matrizengleichungen 11 41 Lösungen

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

Test von Hypothesen: Signifikanz des Zusammenhangs (F-Test)

Test von Hypothesen: Signifikanz des Zusammenhangs (F-Test) Test von Hyothesen: Signifikanz des Zusammenhangs (F-Test) Die Schätzung der Regressionsfunktion basiert auf Daten einer Stichrobe Inwiefern können die Ergebnisse dieser Schätzung auf die Grundgesamtheit

Mehr

6. Schätzverfahren für Parameter

6. Schätzverfahren für Parameter 6. Schätzverfahren für Parameter Ausgangssituation: Ein interessierender Zufallsvorgang werde durch die ZV X repräsentiert X habe eine unbekannte Verteilungsfunktion F X (x) Wir interessieren uns für einen

Mehr

Nur Matrizen gleicher Dimension können addiert oder subtrahiert werden. Zur Berechnung werden zwei Matrizen A und B in den Matrix-Editor eingegeben.

Nur Matrizen gleicher Dimension können addiert oder subtrahiert werden. Zur Berechnung werden zwei Matrizen A und B in den Matrix-Editor eingegeben. R. Brinkmann http://brinkmann-du.de Seite 1 14.02.2014 Casio fx-cg20 Operationen mit Matrizen Bei nachfolgend beschriebenen Matrizenoperationen wird davon ausgegangen, dass die Eingabe von Matrizen in

Mehr

Schließende Statistik

Schließende Statistik Schließende Statistik [statistical inference] Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

Tutorium: Diskrete Mathematik. Matrizen

Tutorium: Diskrete Mathematik. Matrizen Tutorium: Diskrete Mathematik Matrizen Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de Definition I Eine Matrix ist eine rechteckige Anordnung (Tabelle) von Elementen, mit denen man in bestimmter

Mehr

Teil: lineare Regression

Teil: lineare Regression Teil: lineare Regression 1 Einführung 2 Prüfung der Regressionsfunktion 3 Die Modellannahmen zur Durchführung einer linearen Regression 4 Dummyvariablen 1 Einführung o Eine statistische Methode um Zusammenhänge

Mehr

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung 0 Einführung 1 Wahrscheinlichkeitsrechnung Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Intervallschätzung Motivation und Hinführung Der wahre Anteil der rot-grün Wähler 009 war genau

Mehr

Einführung in die Matrixalgebra

Einführung in die Matrixalgebra Einführung in die Matrixalgebra Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Bachelor S. Garbade (SRH Heidelberg) Matrixalgebra Bachelor

Mehr

Bivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.154

Bivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.154 Bivariate lineare Regression Statistik für SozialwissenschaftlerInnen II p.154 Grundidee und Typen der Regression Die Regressionsanalyse dient zur Quantifizierung des Zusammenhangs und der statistisch

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Wahrscheinlichkeitsfunktionen

Mehr

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya Inverse Matrix -E Ma Lubov Vassilevskaya Inverse Matrix Eine n-reihige, quadratische Matrix heißt regulär, wenn ihre Determinante einen von Null verschiedenen Wert besitzt. Anderenfalls heißt sie singulär.

Mehr

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte.

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte. Lineare Gleichungssysteme. Einleitung Lineare Gleichungssysteme sind in der Theorie und in den Anwendungen ein wichtiges Thema. Theoretisch werden sie in der Linearen Algebra untersucht. Die Numerische

Mehr

Ökonometrische Analyse

Ökonometrische Analyse Institut für Statistik und Ökonometrie, Freie Universität Berlin Ökonometrische Analyse Dieter Nautz, Gunda-Alexandra Detmers Rechenregeln für Matrizen Notation und Matrixeigenschaften: Eine Matrix A der

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Universität Basel Wirtschaftswissenschaftliches Zentrum Vektoren und Matrizen Dr. Thomas Zehrt Inhalt: 1. Vektoren (a) Einführung (b) Linearkombinationen (c) Länge eines Vektors (d) Skalarprodukt (e) Geraden

Mehr

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit 3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53

Mehr

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend oder eindeutig, wenn keine alternativen Interpretationsmöglichkeiten

Mehr

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler Philipp Sibbertsen Hartmut Lehne Statistik Einführung für Wirtschafts- und Sozialwissenschaftler 2., überarbeitete Auflage 4^ Springer Gabler Inhaltsverzeichnis Teil I Deskriptive Statistik 1 Einführung

Mehr

Konfirmatorische Faktorenanalyse. Regressionsmodelle für Politikwissenschaftler

Konfirmatorische Faktorenanalyse. Regressionsmodelle für Politikwissenschaftler Konfirmatorische Faktorenanalyse Regressionsmodelle für Politikwissenschaftler Was ist ein Faktor? Faktor oder latente Variable Regressionsmodelle für Politikwissenschaftler Konfirmatorische Faktorenanalyse

Mehr

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Lineare : Einführung Beispiele linearer a) b) c) 2x 1 3x 2 = 1 x 1 +

Mehr

Statistik II. Lineare Regressionsrechnung. Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II

Statistik II. Lineare Regressionsrechnung. Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II Statistik II Lineare Regressionsrechnung Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II - 09.06.2006 1 Mit der Kovarianz und dem Korrelationskoeffizienten können wir den statistischen

Mehr

Modellanpassung und Parameterschätzung. A: Übungsaufgaben

Modellanpassung und Parameterschätzung. A: Übungsaufgaben 7 Modellanpassung und Parameterschätzung 1 Kapitel 7: Modellanpassung und Parameterschätzung A: Übungsaufgaben [ 1 ] Bei n unabhängigen Wiederholungen eines Bernoulli-Experiments sei π die Wahrscheinlichkeit

Mehr

Grundgesamtheit und Stichprobe

Grundgesamtheit und Stichprobe Grundgesamtheit und Stichprobe Definition 1 Die Menge der Untersuchungseinheiten {U 1,U 2,...,U N } heißt Grundgesamtheit. Die Anzahl N der Einheiten ist der Umfang der Grundgesamtheit. Jeder Einheit U

Mehr

Empirische Wirtschaftsforschung

Empirische Wirtschaftsforschung Empirische Wirtschaftsforschung Prof. Dr. Bernd Süßmuth Universität Leipzig Institut für Empirische Wirtschaftsforschung Volkswirtschaftslehre, insbesondere Ökonometrie 6.. Herleitung des OLS-Schätzers

Mehr

Wiederholung Qualitätssicherung Drittvariablen. Regression II. Statistik I. Sommersemester Statistik I Regression II (1/33) Wiederholung

Wiederholung Qualitätssicherung Drittvariablen. Regression II. Statistik I. Sommersemester Statistik I Regression II (1/33) Wiederholung Regression II Statistik I Sommersemester 2009 Statistik I Regression II (1/33) R 2 Root Mean Squared Error Statistik I Regression II (2/33) Zum Nachlesen Agresti: 9.1-9.4 Gehring/Weins: 8 Schumann: 8.1-8.2

Mehr

Statistik II Übung 1: Einfache lineare Regression

Statistik II Übung 1: Einfache lineare Regression Statistik II Übung 1: Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (16-24 Jahre alt) und der Anzahl der

Mehr

Kapitel 16. Invertierbare Matrizen

Kapitel 16. Invertierbare Matrizen Kapitel 16. Invertierbare Matrizen Die drei Schritte des Gauß-Algorithmus Bringe erweiterte Matrix [A b] des Gleichungssystems A x auf Zeilenstufenform [A b ]. Das System A x = b ist genau dann lösbar,

Mehr

Kurs Empirische Wirtschaftsforschung

Kurs Empirische Wirtschaftsforschung Kurs Empirische Wirtschaftsforschung 5. Bivariates Regressionsmodell 1 Martin Halla Institut für Volkswirtschaftslehre Johannes Kepler Universität Linz 1 Lehrbuch: Bauer/Fertig/Schmidt (2009), Empirische

Mehr

Musterlösung. Modulklausur Multivariate Verfahren

Musterlösung. Modulklausur Multivariate Verfahren Musterlösung Modulklausur 31821 Multivariate Verfahren 25. September 2015 Aufgabe 1 (15 Punkte) Kennzeichnen Sie die folgenden Aussagen zur Regressionsanalyse mit R für richtig oder F für falsch. F Wenn

Mehr

Schätzverfahren ML vs. REML & Modellbeurteilung mittels Devianz, AIC und BIC. Referenten: Linda Gräfe & Konstantin Falk

Schätzverfahren ML vs. REML & Modellbeurteilung mittels Devianz, AIC und BIC. Referenten: Linda Gräfe & Konstantin Falk Schätzverfahren ML vs. REML & Modellbeurteilung mittels Devianz, AIC und BIC Referenten: Linda Gräfe & Konstantin Falk 1 Agenda Schätzverfahren ML REML Beispiel in SPSS Modellbeurteilung Devianz AIC BIC

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr