Tutorium: Diskrete Mathematik. Matrizen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Tutorium: Diskrete Mathematik. Matrizen"

Transkript

1 Tutorium: Diskrete Mathematik Matrizen

2 Steven Köhler mathe.stevenkoehler.de

3 Definition I Eine Matrix ist eine rechteckige Anordnung (Tabelle) von Elementen, mit denen man in bestimmter Weise rechnen kann. Matrizen sind ein SchlÄusselkonzept der linearen Algebra und tauchen in vielen Gebieten der Mathematik auf. Matrizen stellen ZusammenhÄange, in denen Linearkombinationen eine Rolle spielen, Äubersichtlich dar und erleichtern damit Rechen- und GedankenvorgÄange. Sie werden insbesondere dazu benutzt, lineare Abbildungen darzustellen und lineare Gleichungssysteme zu beschreiben.

4 Definition II Matrizen werden dargestellt durch eine tabellarische Au istung der Werte, die durch ein gro¼es Klammerpaar umgeben ist. Die Form der Klammern ist dabei nicht fest vorgegeben, typisch sind aber runde oder eckige Klammern. 0 1 a 11 ::: a 1m B A = (a ij ) C. A a n1 ::: a nm a 11 ::: a 1m 6 A = [a ij ] = a n1 ::: a nm 4

5 Addition von Matrizen Ebenso wie Vektoren werden Matrizen elementweise addiert und subtrahiert. A + B = 4 a 11 a 1 a 1 a 1 a a b 11 b 1 b 1 b 1 b b 5 a 1 a a b 1 b b a 11 + b 11 a 1 + b 1 a 1 + b 1 = 4a 1 + b 1 a + b a + b 5 a 1 + b 1 a + b a + b 5

6 Subtraktion von Matrizen Ebenso wie Vektoren werden Matrizen elementweise addiert und subtrahiert. A B = 4 a 11 a 1 a 1 a 1 a a 5 4 b 11 b 1 b 1 b 1 b b 5 a 1 a a b 1 b b = 4 a 11 b 11 a 1 b 1 a 1 b 1 a 1 b 1 a b a b 5 a 1 b 1 a b a b 6

7 Skalare Multiplikation Eine Matrix kann mit einen konstanten Faktor R multipliziert werden. Den Wert nennt man ein Skalar. a 11 a 1 a 1 a 11 a 1 a 1 A = 4a 1 a a 5 = 4 a 1 a a 5 a 1 a a a 1 a a 7

8 Multiplikation von Matrizen I Neben der skalaren Multiplikation gibt es noch eine weitere Multiplikation fäur Matrizen. Dabei werden Matrizen miteinander mutlipliziert. Die folgende Formel zeigt dies exemplarisch fäur zwei -Matrizen: A B = a 11 a 1 a 1 a 1 a a a 1 a a b 11 b 1 b 1 b 1 b b b 1 b b = a 11 b 11 + a 1 b 1 + a 1 b 1 a 11 b 1 + a 1 b + a 1 b a 11 b 1 + a 1 b + a 1 b a 1 b 11 + a b 1 + a b 1 a 1 b 1 + a b + a b a 1 b 1 + a b + a b a 1 b 11 + a b 1 + a b 1 a 1 b 1 + a b + a b a 1 b 1 + a b + a b 8

9 Multiplikation von Matrizen II Die EintrÄage der Ergebnismatrix C sind o enbar die Skalarprodukte der Zeilenvektoren der Matrix A mit den Spaltenvektoren der Matrix B. Daraus läasst sich leicht eine Aussage Äuber eine essentielle Voraussetzung der Matrizenmultiplikation tre en. Damit man zwei Matrizen multiplizieren kann, mäussen die Anzahl der Spalten der ersten Matrix und die Anzahl der Zeilen der zweiten Matrix Äubereinstimmen. 9

10 Multiplikation von Matrizen III Gegeben seien sei Matrizen A R m n und B = R n p. Das Produkt C der beiden Matrizen A und B ist dann eine m p -Matrix und läasst sich allgemein durch die folgende Formel darstellen: C = A B = a ij bij = c ij mit cij = nx a ik b kj k=1 10

11 Multiplikation von Matrizen IV Aufgabe Es seien A = 1 4 und B = Berechne A + B, A B und A B. gegeben. 11

12 Multiplikation von Matrizen V LÄosung Es ergeben sich die folgenden Matrizen: 0 7 A + B = 7 A B = A B = 7 1

13 Falksches Schema I Das Falksche Schema (1951 von Sigurd Falk vorgeschlagen) ist eine einfache Methode, Matrizenmultiplikation Äubersichtlicher darzustellen. Dazu werden die Matrizen A und B sowie deren Produkt C in eine bestimmte tabellarische Form gebracht, die vor allem eine optische Hilfe bietet. 1

14 Falksches Schema II Gegeben seien die Matrizen A R und B R. Darstellung der Matrizenmultiplikation mit dem Falkschen Schema: b 11 b 1 b 1 4b 1 b b 5 (= B) b 1 b b a 11 a 1 a 1 (A =) 4a 1 a a 5 a 1 a a c 11 c 1 c 1 4c 1 c c 5 (= C) c 1 c c Die Werte fäur c ij berechnen sich wie zuvor durch c ij = P k=1 a ik b kj. 14

15 Aufgaben Aufgabe 1 Gegeben seien die Matrizen A = ;B= ;C= 1 ;D= : Entscheide, ob die folgenden Produkte de niert sind und berechnen diese, falls sie existieren: AB, BA, AC, AD, AA, BB, CD, DC. 15

16 Aufgaben Aufgabe Gegeben seien die Matrizen A = und B = : Berechne das Element, das in AB in der dritten Zeile und zweiten Spalte steht. Berechne au¼erdem die vierte Spalte von AB. 16

17 Aufgaben Aufgabe Entscheide, welche der folgenden Aussagen wahr und welche falsch sind. BegrÄunde deine Meinung! a) Die Addition von Matrizen ist nicht assoziativ. b) Die Multiplikation von Matrizen ist fäur alle Matrizen kommutativ. c) Die Multiplikation von Matrizen ist niemals kommutativ. d) FÄur - Matrizen gilt das Distributivgesetz (A + B) C = AC + BC: 17

18 Elementare Zeilenumformungen Man darf Matrizen durch elementare Zeilenumformungen in eine andere Matrix ÄuberfÄuhren. Diese Umformungen sind: ² Vertauschen von zwei Zeilen; ² Multiplikation einer Zeile mit einer von Null verschiedenen Konstanten; ² Addition eines Vielfachen einer Zeile zu einer anderen Zeile. Diese Operationen däurfen beliebig kombiniert und beliebig oft wiederholt werden. 18

19 Elementare Spaltenumformungen I Ebenso wie durch elementare Zeilenumformungen darf man eine Matrix durch elementare Spaltenumformungen in eine andere Matrix ÄuberfÄuhren. Diese Umformungen sind: ² Vertauschen von zwei Spalten; ² Multiplikation einer Spalte mit einer von Null verschiedenen Konstanten; ² Addition eines Vielfachen einer Spalte zu einer anderen Spalte. Diese Operationen däurfen ebenfalls beliebig kombiniert und beliebig oft wiederholt werden. 19

20 Elementare Spaltenumformungen II Generell sollten elementare Zeilen- und Spaltenumformungen nicht vermischt werden, da dies meist mehr Chaos als Nutzen bringt. Wir werden uns im Folgenden ausschlie¼lich mit elementaren Zeilenumformungen beschäaftigen. Sollten einmal Umformungen der Spalten notwendig sein, werden wir die zugehäorige Matrix zunäachst transponieren und anschlie¼end die Zeilen der transponierten Matrix umformen. 0

21 Zeilenstufenform I Durch elementare Zeilenumformungen kann man jede Matrix in die sogenannte Zeilenstufenform bringen. Diese erfäullt die folgenden Eigenschaften (vgl. Gramlich): ² Alle Zeilen, die nur Nullen enthalten, stehen in der Matrix ganz unten. ² Wenn eine Zeile nicht nur aus Nullen besteht, so ist die erste von Null verschiedene Zahl eine Eins. Sie wird als fäuhrende Eins bezeichnet. ² In zwei aufeinanderfolgenden Zeilen, die von Null verschiedene Elemente besitzen, steht die fäuhrende Eins in der unteren Zeile stets weiter rechts als in der oberen Zeile. 1

22 Zeilenstufenform II Besitzt die Matrix Zeilenstufenform und gilt zusäatzlich noch ² Eine Spalte, die eine fäuhrende Eins enthäalt, hat keine weiteren von Null verschiedenen EintrÄage, dann liegt die Matrix in reduzierter Zeilenstufenform vor.

23 Zeilenstufenform III Beispiel Es sei A = 8. 5 Bringe die Matrix A in Zeilenstufenform!

24 Zeilenstufenform IV ZunÄachst wird die 1. Zeile mit 1 multipliziert: 1 4 : 5 Anschlie¼end wird das ( )-fache der 1. Zeile zur. Zeile addiert: 1 4 : 0 7 Abschlie¼endwirddie.Zeilemit 1 7 multipliziert: 1 4 : 0 1 4

25 Zeilenstufenform V Aufgabe 4 ÄUberfÄuhre die folgende Matrix in Zeilenstufenform!

26 Einheitsmatrizen I Als Einheitsmatrix wird die spezielle quadratische Matrix E n R n n bezeichnet, deren Hauptdiagonalenelemente 1 sind; alle anderen EintrÄage sind ::: ::: 0 0 E n = ::: ::: 0 1 6

27 Einheitsmatrizen II Die Einheitsmatrix ist das neutrale Element bezäuglich der Matrizenmultiplikation, d.h., fäur alle Matrizen A (passende Dimensionen vorausgesetzt) gilt A E = E A = A: 7

28 Diagonalmatrizen Diagonalmatrizen sind spezielle quadratische Matrizen, die lediglich auf der Hauptdiagonalen von 0 verschiedene Elemente besitzen: d 1 0 ::: d ::: 0 0 D = : ::: d n ::: 0 d n Die Einheitsmatrizen E n sind spezielle Diagonalmatrizen. 8

29 Skalarmatrizen I Skalarmatrizen sind spezielle Diagonalmatrizen, besitzen also ebenfalls nur auf der Hauptdiagonalen von 0 verschiedene Elemente; zusäatzlich haben alle Hauptdiagonalenelemente denselben Wert: 0 ::: ::: 0 0 S = : ::: ::: 0 9

30 Skalarmatrizen II Wie man leicht sieht, ist die Skalarmatrix lediglich ein skalares Vielfaches der Einheitsmatrix: 0 ::: ::: 0 0 S = = E 7 n : 40 0 ::: ::: 0 0

31 Dreiecksmatrizen I Dreiecksmatrizen sind eine weitere spezielle Art von Matrizen. Sie werden unterschieden in obere und untere Dreiecksmatrizen. unter- Sie zeichnen sich dadurch aus, dass sie Äuber- bzw. halb der Hauptdiagonalen nur Nullen besitzen. 1

32 Dreiecksmatrizen II O = a 1? :::?? 0 a :::?? ::: a n 1? ::: 0 a n U = a 1 0 ::: 0 0? a ::: ?? ::: a n 1 0 5?? :::? a n

33 Transponierte Matrix I Aus einer Matrix A erhäalt man die transponierte Matrix A T dadurch, dass man die Zeilen der Matrix A mit den Spalten der Matrix A vertauscht. Mit anderen Worten: Die Matrix A wird an der Hauptdiagonalen " gespiegelt\. Gegentlich wird die transponierte Matrix auch gestäurzte Matrix genannt.

34 Transponierte Matrix II Es sei A R n m gegeben durch: a 11 ::: a 1m 6 A = : a n1 ::: a nm Durch Vertauschen der Zeilen und Spalten erhäalt man die transponierte Matrix A T R m n : a 11 ::: a n1 A T 6 = : a 1m ::: a nm 4

35 Symmetrische Matrizen Eine quadratische Matrix A R n n hei¼t symmetrisch, wenn fäur alle i; j N (1 i n und 1 j n) Folgendes gilt: a ij = a ji : FÄur symmetrische Matrizen gilt au¼erdem A = A T : 5

36 Inverse Matrix I Eine quadratische Matrix A hei¼t invertierbar, fallseseinematrix A 1 gibt, fäur die gilt: A A 1 = A 1 A = E: Nicht jede quadratische Matrix ist invertierbar. Falls eine Matrix invertierbar ist, so ist ihr Inverses allerdings eindeutig bestimmt. 6

37 Inverse Matrix II Frage: Woher wei¼ man, ob eine quadratische Matrix invertierbar ist oder nicht? Wenn man wei¼, dass eine Matrix invertierbar ist, wie kann man die inverse Matrix bestimmen? 7

38 Inverse Matrix III Antwort: Man wendet den Gau¼-Jordan-Algorithmus an. ² Ist die Matrix invertierbar, liefert dieser garantiert die inverse Matrix. ² Ist die Matrix nicht invertierbar, wird dies durch das Verfahren zweifelsfrei festgestellt. 8

39 Gauß-Jordan-Algorithmus I Der Gau¼-Jordan-Algorithmus besteht aus den folgenden einfachen Schritten, mit deren Hilfe man die inverse Matrix bestimmen kann, falls sie existiert. Vorbereitung Man erstellt die folgende Blockmatrix: h A i E : A ist die zu invertierende Matrix, E ist eine entsprechend dimensionierte Einheitsmatrix. 9

40 Gauß-Jordan-Algorithmus II 1. Schritt Man wäahlt die erste Spalte, die noch nicht in der richtigen Form vorliegt (1 auf der Hauptdiagonalen, sonst nur Nullen).. Schritt Ist das Hauptdiagonalenelement der Spalte eine Null, so vertauscht man die Zeilen der Matrix auf geeignete Art, um ein von Null verschiedenes Element in die Hauptdiagonale zu bekommen.. Schritt Durch Multiplikation mit einem geeigneten Faktor macht man das Hauptdiagonalenelement der Spalte zu einer 1. 40

41 Gauß-Jordan-Algorithmus III 4. Schritt Durch Addition geeigneter Vielfacher der gerade multiplizierten Zeile bringt man alle anderen Elemente in der aktuellen Spalte auf Null. 5. Schritt Man wiederholt dieses Vorgehen, bis alle Spalten der Matrix A die richtige Form haben oder bis ein weiteres Umformen nicht mehr mäoglich ist. 41

42 Gauß-Jordan-Algorithmus IV Beispiel Gesucht ist das Inverse der Matrix A = LÄosung ZunÄachst stellen wir die entsprechende Blockmatrix auf

43 Gauß-Jordan-Algorithmus V Zuerst bringen wir das Hauptdiagonalenelement der ersten Spalte in die richtige Form, indem wir die erste Zeile mit 1 multiplizieren Um den Rest der ersten Spalte in die richtige Form zu bringen, addieren wir das ( 4)-fache der ersten Zeile zur dritten Zeile

44 Gauß-Jordan-Algorithmus VI Weiter mit Spalte. dritte Zeile. 4 ZunÄachst vertauschen wir die zweite und Durch Multiplikation mit 1 bringen wir das Hauptdiagonalenelement von Zeile in die richtige Form

45 Gauß-Jordan-Algorithmus VII Durch Addition des doppelten der zweiten Zeile zur ersten Zeile bringen wir die zweite Spalte in die richtige Form Weiter mit Spalte. Multiplikation der dritten Zeile mit 1 ergibt:

46 Gauß-Jordan-Algorithmus VII Addition geeigneter Vielfacher zu den ersten beiden Zeilen bringt schlie¼lich die dritte Spalte in die richtige Form Wir haben also die inverse Matrix zu A gefunden A 1 =

47 Gauß-Jordan-Algorithmus VIII Ist die Matrix A nicht invertierbar, so läasst sie sich mit dem Gau¼-Jordan-Algorithmus nicht zur Einheitsmatrix E umformen. Im Gegenzug kann die Matrix A immer genau dann zur Einheitsmatrix E umgeformt werden, wenn sie invertierbar ist. 47

48 Aufgaben Aufgabe 5 a) Es sei A R gegeben durch A = Berechne A 1 mit Hilfe des Gau¼-Jordan-Algorithmus. ÄUberprÄufe dein Ergebnis auf Richtigkeit! b) Zeige, dass die folgende Matrix B R nicht invertierbar ist: 1 B = :

49 Aufgaben Aufgabe 6 Zeige anhand der Matrix A = Eigenschaft gilt: A T 1 = A 1 T : 1, dass die folgende 7 49

50 Anwendungen für Matrizen Matrizen haben eine Vielzahl von Anwendungsgebieten: ² Wachstumsmatrizen ² Populationsmatrizen ² Kosten-Preis-Kalkulationen ² LÄosenvonlinearenGleichungssystemen ² Darstellung von linearen Abbildungen ² Anwendungen in der Computergra k (Rotation, Translation, etc.) 50

Basiswissen Matrizen

Basiswissen Matrizen Basiswissen Matrizen Mathematik GK 32 Definition (Die Matrix) Eine Matrix A mit m Zeilen und n Spalten heißt m x n Matrix: a a 2 a 4 A a 2 a 22 a 24 a 4 a 42 a 44 Definition 2 (Die Addition von Matrizen)

Mehr

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte Mathematik I Matrizen In diesem Kapitel werden wir lernen was Matrizen sind und wie man mit Matrizen rechnet. Matrizen ermöglichen eine kompakte Darstellungsform vieler mathematischer Strukturen. Zum Darstellung

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Universität Basel Wirtschaftswissenschaftliches Zentrum Vektoren und Matrizen Dr. Thomas Zehrt Inhalt: 1. Vektoren (a) Einführung (b) Linearkombinationen (c) Länge eines Vektors (d) Skalarprodukt (e) Geraden

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2.

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2. Definition Die rechteckige Anordnung von m n Elementen a ij in m Zeilen und n Spalten heißt m n- Matrix. Gewöhnlich handelt es sich bei den Elementen a ij der Matrix um reelle Zahlen. Man nennt das Paar

Mehr

36 2 Lineare Algebra

36 2 Lineare Algebra 6 Lineare Algebra Quadratische Matrizen a a n sei jetzt n m, A, a ij R, i, j,, n a n a nn Definition Eine quadratische Matrix A heißt invertierbar genau dann, wenn es eine quadratische Matrix B gibt, so

Mehr

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya Inverse Matrix -E Ma Lubov Vassilevskaya Inverse Matrix Eine n-reihige, quadratische Matrix heißt regulär, wenn ihre Determinante einen von Null verschiedenen Wert besitzt. Anderenfalls heißt sie singulär.

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49 Kapitel 2 Matrixalgebra Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49 Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS.

Mehr

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49 Kapitel 2 Matrixalgebra Josef Leydold Mathematik für VW WS 207/8 2 Matrixalgebra / 49 Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS.

Mehr

Matrixalgebra. Kapitel 2. Ein sehr einfaches Leontief-Modell. Matrix. Ein sehr einfaches Leontief-Modell. Vektor. Spezielle Matrizen I

Matrixalgebra. Kapitel 2. Ein sehr einfaches Leontief-Modell. Matrix. Ein sehr einfaches Leontief-Modell. Vektor. Spezielle Matrizen I Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS Kapitel 2 Matrixalgebra Technologiematrix und wöchentliche Nachfrage (in Werteinheiten):

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor)

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor) Matrizenrechnung. Matrizen Matrizen sind bereits im Kapitel Lineare Gleichungssysteme aufgetreten. Unter einer (m n) -Matrix A verstehen wir ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Der.

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Definition I Eine Gerade oder gerade Linie ist ein Element der Geometrie. Anschaulich kann man sich darunter

Mehr

Matrizen Definition: Typ einer Matrix

Matrizen Definition: Typ einer Matrix Matrizen Definition: Eine Matrix ist ein rechteckiges Zahlenschema. Die Matrix (Mehrzahl: Matrizen) besteht aus waagerecht verlaufenden Zeilen und senkrecht verlaufenden Spalten. Verdeutlichung am Beispiel:

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Definition I Im allgemeinen Sinn versteht man in der linearen Algebra unter einem Vektor ein Element eines Vektorraums,

Mehr

Matrix: Eine rechteckige Anordnung reeller Zahlen a ij (i = 1,..., n i ; j = 1,..., m) in Zeilen und Spalten. Die a ij heiÿen Elemente von A.

Matrix: Eine rechteckige Anordnung reeller Zahlen a ij (i = 1,..., n i ; j = 1,..., m) in Zeilen und Spalten. Die a ij heiÿen Elemente von A. Matrizenrechnung Matrix: Eine rechteckige Anordnung reeller Zahlen a ij i = 1,..., n i ; j = 1,..., m in Zeilen und Spalten. Die a ij heiÿen Elemente von A. a 11 a 12... a ij... a 1m a 21 a 22.........

Mehr

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v.

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v. Teil I Lineare Algebra I Vorlesung Sommersemester 2011 Olga Holtz MA 378 Sprechstunde Fr 14-16 und nv holtz@mathtu-berlinde Sadegh Jokar MA 373 Sprechstunde, Do 12-14 und nv jokar@mathtu-berlinde Kapitel

Mehr

Tutorium: Diskrete Mathematik. Vektoren

Tutorium: Diskrete Mathematik. Vektoren Tutorium: Diskrete Mathematik Vektoren Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Definition I Im allgemeinen Sinn versteht man in der linearen Algebra unter einem Vektor ein Element

Mehr

Tutorium: Diskrete Mathematik. Ebenen

Tutorium: Diskrete Mathematik. Ebenen Tutorium: Diskrete Mathematik Ebenen Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Definition Die Ebene ist ein Grundbegri der Geometrie. Allgemein handelt es sich um ein unbegrenzt ausgedehntes,

Mehr

LINEARE ALGEBRA II. FÜR PHYSIKER

LINEARE ALGEBRA II. FÜR PHYSIKER LINEARE ALGEBRA II FÜR PHYSIKER BÁLINT FARKAS 4 Rechnen mit Matrizen In diesem Kapitel werden wir zunächst die so genannten elementaren Umformungen studieren, die es ermöglichen eine Matrix auf besonders

Mehr

Lineare Gleichungssysteme und Matrizen

Lineare Gleichungssysteme und Matrizen Kapitel 11 Lineare Gleichungssysteme und Matrizen Ein lineares Gleichungssystem (lgs) mit m linearen Gleichungen in den n Unbekannten x 1, x 2,..., x n hat die Gestalt: Mit a 11 x 1 + a 12 x 2 + a 13 x

Mehr

MATRIZEN. Eine Matrix ist eine rechteckige Anordnung von Zahlen, als ein Schema betrachtet. a 11 a a 1n a 21. a a 2n A = a m1 a m2...

MATRIZEN. Eine Matrix ist eine rechteckige Anordnung von Zahlen, als ein Schema betrachtet. a 11 a a 1n a 21. a a 2n A = a m1 a m2... MATRIZEN Eine Matrix ist eine rechteckige Anordnung von Zahlen, als ein Schema betrachtet A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn A ist eine m n Matrix, dh: A hat m Zeilen und n Spalten A besitzt

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Timo Stöcker Erstsemestereinführung Informatik TU Dortmund 22. März 2011 Heute Themen Lineare Gleichungssysteme Matrizen Timo Stöcker https://fsinfo.cs.tu-dortmund.de/studis/ese/vorkurse/mathe

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

3 Matrizen und Lineare Gleichungssysteme

3 Matrizen und Lineare Gleichungssysteme 3 Matrizen und LGS Pink: Lineare Algebra HS 2014 Seite 38 3 Matrizen und Lineare Gleichungssysteme 3.1 Definitionen Sei K ein Körper, und seien m,n,l natürliche Zahlen. Definition: Eine Matrix mit m Zeilen

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 I Eine algebraische Struktur ist ein Paar A; (f i ) ; bestehend aus einer nichtleeren Menge A, der TrÄagermenge

Mehr

Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle

Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle 2. Matrixalgebra Warum Beschäftigung mit Matrixalgebra? Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle bequeme mathematische

Mehr

1 Matrizenrechnung zweiter Teil

1 Matrizenrechnung zweiter Teil MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten

Mehr

A = ( a 1,..., a n ) ii) Zwei Matrizen sind gleich, wenn die Einträge an den gleichen Positionen übereinstimmen. so heißt die n n Matrix

A = ( a 1,..., a n ) ii) Zwei Matrizen sind gleich, wenn die Einträge an den gleichen Positionen übereinstimmen. so heißt die n n Matrix Matrizen Definition: i Eine m n Matrix A ist ein rechteckiges Schema aus Zahlen, mit m Zeilen und n Spalten: a a 2 a n a 2 a 22 a 2n a m a m2 a mn Die Spaltenvektoren dieser Matrix seien mit a,, a n bezeichnet

Mehr

Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n

Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n Universität Stuttgart Physik und ihre Didaktik PD Dr Holger Cartarius Matrizen Matrizen: Ein rechteckiges Zahlenschema der Form a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A a m,1 a m,2 a m,n (a) nennt man eine

Mehr

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Inhaltsverzeichnis Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Auf dieser Seite werden Matrizen und Vektoren fett gedruckt, um sie von Zahlen zu unterscheiden. Betrachtet wird das

Mehr

5.2 Rechnen mit Matrizen

5.2 Rechnen mit Matrizen 52 Rechnen mit Matrizen 52 Rechnen mit Matrizen 97 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij

Mehr

7 Matrizen über R und C

7 Matrizen über R und C Mathematik für Physiker I, WS 06/07 Montag 9 $Id: matrixtex,v 7 06//9 :58: hk Exp $ 7 Matrizen über R und C 7 Addition und Multiplikation von Matrizen In der letzten Sitzung haben wir begonnen uns mit

Mehr

Beispiele 1. Gegeben ist das lineare System. x+4y +3z = 1 2x+5y +9z = 14 x 3y 2z = 5. Die erweiterte Matrix ist

Beispiele 1. Gegeben ist das lineare System. x+4y +3z = 1 2x+5y +9z = 14 x 3y 2z = 5. Die erweiterte Matrix ist 127 Die Schritte des Gauß-Algorithmus sind nun die Folgenden: 1. Wir bestimmen die am weitesten links stehende Spalte, die Einträge 0 enthält. 2. Ist die oberste Zahl der in Schritt 1 gefundenen Spalte

Mehr

2 Matrizenrechnung und Lineare Gleichungssysteme

2 Matrizenrechnung und Lineare Gleichungssysteme Technische Universität München Florian Ettlinger Ferienkurs Lineare Algebra Vorlesung Dienstag WS 2011/12 2 Matrizenrechnung und Lineare Gleichungssysteme 2.1 Matrizenrechnung 2.1.1 Einführung Vor der

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

MLAN1 1 MATRIZEN 1 0 = A T =

MLAN1 1 MATRIZEN 1 0 = A T = MLAN1 1 MATRIZEN 1 1 Matrizen Eine m n Matrix ein rechteckiges Zahlenschema a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n a m1 a m2 a m3 amn mit m Zeilen und n Spalten bestehend aus m n Zahlen Die Matrixelemente

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Matrizen und Determinanten, Aufgaben

Matrizen und Determinanten, Aufgaben Matrizen und Determinanten, Aufgaben Inhaltsverzeichnis 1 Multiplikation von Matrizen 1 11 Lösungen 3 2 Determinanten 6 21 Lösungen 7 3 Inverse Matrix 8 31 Lösungen 9 4 Matrizengleichungen 11 41 Lösungen

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof Dr Erich Walter Farkas Kapitel 7: Lineare Algebra 71 Reelle Matrizen Prof Dr Erich Walter Farkas Mathematik I+II, 71 Reelle Matrizen 1 / 31 1 2 3 4 Prof Dr Erich

Mehr

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 81 Reelle Matrizen Prof Dr Erich Walter Farkas http://wwwmathethzch/ farkas 1 / 31 1 2 3 4 2 / 31 Transponierte einer Matrix 1 Transponierte

Mehr

35 Matrixschreibweise für lineare Abbildungen

35 Matrixschreibweise für lineare Abbildungen 35 Matrixschreibweise für lineare Abbildungen 35 Motivation Wir haben gesehen, dass lineare Abbildungen sich durch ihre Wirkung auf die Basisvektoren ausdrücken lassen Mithilfe von Matrizen können wir

Mehr

mit "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor"

mit Skalarprodukt aus i-tem Zeilenvektor und j-tem Spaltenvektor Zusammenfassung Matrizen Transponierte: Addition: mit Skalare Multiplikation: Matrixmultiplikation: m x p m x n n x p mit ES "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor" "Determinante"

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 5 Aufgabe 5.1 Kommutierende Matrizen In der Vorlesung und vergangenen

Mehr

6.2 Rechnen mit Matrizen

6.2 Rechnen mit Matrizen 62 Rechnen mit Matrizen 62 Rechnen mit Matrizen 103 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij

Mehr

4. Übungsblatt zur Mathematik II für Inf, WInf

4. Übungsblatt zur Mathematik II für Inf, WInf Fachbereich Mathematik Prof Dr Streicher Dr Sergiy Nesenenko Pavol Safarik SS 010 11 15 Mai 4 Übungsblatt zur Mathematik II für Inf, WInf Gruppenübung Aufgabe G13 (Basistransformation) ( ) 15 05 Die lineare

Mehr

Serie 8: Fakultativer Online-Test

Serie 8: Fakultativer Online-Test Prof Norbert Hungerbühler Lineare Algebra I Serie 8: Fakultativer Online-Test ETH Zürich - D-MAVT HS 215 1 Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen Die Nachbesprechung

Mehr

2.3 Lineare Abbildungen und Matrizen

2.3 Lineare Abbildungen und Matrizen 2.3. LINEARE ABBILDUNGEN UND MATRIZEN 89 Bemerkung Wir sehen, dass die Matrix à eindeutig ist, wenn x 1,...,x r eine Basis ist. Allgemeiner kann man zeigen, dass sich jede Matrix mittels elementarer Zeilenumformungen

Mehr

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen y1 = a11x1+ a12x2 + a13x3 y2 = a21x1+ a22x2 + a23x3... Koeffizienten a ij i - te Gleichung (Zeile), i

Mehr

Kapitel 3 Lineare Algebra

Kapitel 3 Lineare Algebra Kapitel 3 Lineare Algebra Inhaltsverzeichnis VEKTOREN... 3 VEKTORRÄUME... 3 LINEARE UNABHÄNGIGKEIT UND BASEN... 4 MATRIZEN... 6 RECHNEN MIT MATRIZEN... 6 INVERTIERBARE MATRIZEN... 6 RANG EINER MATRIX UND

Mehr

Lineare Algebra. Beni Keller SJ 16/17

Lineare Algebra. Beni Keller SJ 16/17 Lineare Algebra Beni Keller SJ 16/17 Matritzen Einführendes Beispiel Ein Betrieb braucht zur Herstellung von 5 Zwischenprodukten 4 verschiedene Rohstoffe und zwar in folgenden Mengen: Z 1 Z 2 Z Z 4 Z 5

Mehr

Chr.Nelius: Lineare Algebra (SS 2008) 1. 4: Matrizenrechnung. c ik := a ik + b ik. A := ( a ik ). A B := A + ( B). ist A =

Chr.Nelius: Lineare Algebra (SS 2008) 1. 4: Matrizenrechnung. c ik := a ik + b ik. A := ( a ik ). A B := A + ( B). ist A = Chr.Nelius: Lineare Algebra SS 28 4: Matrizenrechnung 4. DEF: a Die Summe A + B zweier m n Matrizen A a ik und B b ik ist definiert als m n Matrix C c ik, wobei c ik : a ik + b ik für alle i, 2,..., m

Mehr

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Einführung in die Matrixalgebra

Einführung in die Matrixalgebra Einführung in die Matrixalgebra Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Bachelor S. Garbade (SRH Heidelberg) Matrixalgebra Bachelor

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Ökonometrische Analyse

Ökonometrische Analyse Institut für Statistik und Ökonometrie, Freie Universität Berlin Ökonometrische Analyse Dieter Nautz, Gunda-Alexandra Detmers Rechenregeln für Matrizen Notation und Matrixeigenschaften: Eine Matrix A der

Mehr

ANHANG A. Matrizen. 1. Die Definition von Matrizen

ANHANG A. Matrizen. 1. Die Definition von Matrizen ANHANG A Matrizen 1 Die Definition von Matrizen Wir haben bereits Vektoren kennen gelernt; solche Paare reeller Zahlen haben wir benutzt, um Punkte in der Ebene zu beschreiben In der Geometrie brauchen

Mehr

4 Vorlesung: 21.11. 2005 Matrix und Determinante

4 Vorlesung: 21.11. 2005 Matrix und Determinante 4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 12 Wege entstehen dadurch, dass man sie geht Franz Kafka Invertierbare Matrizen Definition 121 Es sei K ein

Mehr

8 Lineare Abbildungen und Matrizen

8 Lineare Abbildungen und Matrizen 8 Lineare Abbildungen und Matrizen 8.1 Lineare Abbildungen Wir beschäftigen uns nun mit Abbildungen zwischen linearen Räumen. Von besonderem Interesse sind Abbildungen, die die Struktur der linearen Räume

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Matrizen und Vektoren, LGS, Gruppen, Vektorräume 1.1 Multiplikation von Matrizen Gegeben seien die Matrizen A := 1 1 2 0 5 1 8 7 Berechnen Sie alle möglichen

Mehr

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q:

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q: Lineare Algebra D-MATH, HS 214 Prof Richard Pink Serie 5 1 [Aufgabe] Invertieren Sie folgende Matrizen über Q: 1 a) 1 1 1 1 1 2 1 1 1 b) 1 2 1 1 1 1 2 1 1 1 1 2 1 2 3 1 c) 1 3 3 2 2 1 5 3 1 2 6 1 [Lösung]

Mehr

5.2 Rechnen mit Matrizen

5.2 Rechnen mit Matrizen 52 Rechnen mit Matrizen 52 Rechnen mit Matrizen 95 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

Formale Matrizenrechnung

Formale Matrizenrechnung LINEARE ALGEBRA Formale Matrizenrechnung Grundlagen: Formales Rechnen mit Matrizen Datei Nr. 6 Stand 3. September 5 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 6 Matrizenrechnung: Grundlagen

Mehr

3 Determinanten, Eigenwerte, Normalformen

3 Determinanten, Eigenwerte, Normalformen Determinanten, Eigenwerte, Normalformen.1 Determinanten Beispiel. Betrachte folgendes Parallelogramm in der Ebene R 2 : y (a + c, b + d) (c, d) (a, b) x Man rechnet leicht nach, dass die Fläche F dieses

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 5. April 2018 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

Copyright, Page 1 of 5 Die Determinante

Copyright, Page 1 of 5 Die Determinante wwwmathematik-netzde Copyright, Page 1 of 5 Die Determinante Determinanten sind ein äußerst wichtiges Instrument zur Untersuchung von Matrizen und linearen Abbildungen Außerhalb der linearen Algebra ist

Mehr

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching October 2, 207 Erinnerung Definition. Ein Skalarprodukt ist eine Abbildung, : E n E n E, v, w v, w = n k= v

Mehr

IV. Matrizenrechnung. Gliederung. I. Motivation. Lesen mathematischer Symbole. III. Wissenschaftliche Argumentation. i. Rechenoperationen mit Matrizen

IV. Matrizenrechnung. Gliederung. I. Motivation. Lesen mathematischer Symbole. III. Wissenschaftliche Argumentation. i. Rechenoperationen mit Matrizen Gliederung I. Motivation II. Lesen mathematischer Symbole III. Wissenschaftliche Argumentation IV. Matrizenrechnung i. Rechenoperationen mit Matrizen ii. iii. iv. Inverse einer Matrize Determinante Definitheit

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Matrizen und Determinanten 1 Matrizen und Determinanten 1 Einführung in den Matrizenbegriff Zur Beschreibung und Lösung vieler physikalischer Probleme ist die Vektorrechnung vonnöten Durch Verwendung von

Mehr

Kap 5: Rang, Koordinatentransformationen

Kap 5: Rang, Koordinatentransformationen Kap 5: Rang, Koordinatentransformationen Sei F : V W eine lineare Abbildung. Dann ist der Rang von F erklärt durch: rang F =dim ImF. Stets gilt rang F dimv, und ist dimv

Mehr

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09) Vorlesung Mathematik für Ingenieure Wintersemester 8/9 Kapitel 4: Matrizen, lineare Abbildungen und Gleichungssysteme Volker Kaibel Otto-von-Guericke Universität Magdeburg Version vom 5. November 8 Page-Rank

Mehr

Bonusmaterial Matrizen und Determinanten. Reihen und Spalten Elementarmatrizen

Bonusmaterial Matrizen und Determinanten. Reihen und Spalten Elementarmatrizen Bonusmaterial Matrizen und Determinanten Zahlen in Reihen und Spalten 6 6 Elementarmatrizen 3 3 3 Wir betrachten die Matrix A = 3 3 3 R 3 3 3 3 3 Die folgende Multiplikation reeller Matrizen 0 0 3 3 3

Mehr

1 Transponieren, Diagonal- und Dreiecksmatrizen

1 Transponieren, Diagonal- und Dreiecksmatrizen Technische Universität München Thomas Reifenberger Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 2008/09 1 Transponieren, Diagonal- und Dreiecksmatrizen Definition 11 Transponierte Matrix

Mehr

9 Matrizen über R und C

9 Matrizen über R und C Mathematik für Physiker I, WS 00/0 Montag 0 $Id: matrixtex,v 6 0/0/0 :6:7 hk Exp $ $Id: dettex,v 0/0/0 ::59 hk Exp hk $ 9 Matrizen über R und C 9 Transposition von Matrizen Im letzten Abschnitt hatten

Mehr

05. Lineare Gleichungssysteme

05. Lineare Gleichungssysteme 05 Lineare Gleichungssysteme Wir betrachten ein System von m Gleichungen in n Unbestimmten (Unbekannten) x 1,, x n von der Form a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a

Mehr

Serie 8: Online-Test

Serie 8: Online-Test D-MAVT Lineare Algebra I HS 017 Prof Dr N Hungerbühler Serie 8: Online-Test Einsendeschluss: Freitag, der 4 November um 14:00 Uhr Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen

Mehr

Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24

Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Kapitel 4 Determinante Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Was ist eine Determinante? Wir wollen messen, ob n Vektoren im R n linear abhängig sind bzw. wie weit sie davon entfernt

Mehr

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K).

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K). Matrizen - I Definition. Sei K ein Körper. Ein rechteckiges Schema A = a 11 a 12...... a 1n a 21 a 22...... a 2n............ a m1 a m2...... a mn wobei j K heißt Matrix bzw. eine m n Matrix (mit Elementen

Mehr

Kapitel 16. Invertierbare Matrizen

Kapitel 16. Invertierbare Matrizen Kapitel 16. Invertierbare Matrizen Die drei Schritte des Gauß-Algorithmus Bringe erweiterte Matrix [A b] des Gleichungssystems A x auf Zeilenstufenform [A b ]. Das System A x = b ist genau dann lösbar,

Mehr

Dreiecksmatrizen. Die Treppennormalform

Dreiecksmatrizen. Die Treppennormalform Dreiecksmatrizen. Die Treppennormalform Lineare Algebra I Kapitel 4-5 8. Mai 202 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 4-6 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de

Mehr

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit 3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Komplexe Zahlen 5 Lineare Algebra 6 Lineare Programme 5 Lineare Algebra

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

Matrizen und lineare Gleichungssysteme

Matrizen und lineare Gleichungssysteme KAPITEL Matrizen und lineare Gleichungssysteme Matrizen 224 2 Lineare Gleichungssysteme 229 3 Gauß-Algorithmus 23 4 Gauß-Jordan-Algorithmus 238 5 Invertierbare Matrizen 240 6 Anwendungen von linearen Gleichungssystemen

Mehr

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung Kapitel 2: Matrizen 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung 2.1 Matrizen M = n = 3 m = 3 n = m quadratisch M ij : Eintrag von M in i-ter

Mehr

Lineare Algebra I. Probeklausur - Lösungshinweise

Lineare Algebra I. Probeklausur - Lösungshinweise Institut für Mathematik Wintersemester 2012/13 Universität Würzburg 19. Dezember 2012 Prof. Dr. Jörn Steuding Dr. Anna von Heusinger Frederike Rüppel Lineare Algebra I Probeklausur - Lösungshinweise Aufgabe

Mehr

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw.

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw. Kapitel 5 Lineare Algebra 5 Lineare Gleichungssysteme und Matrizen Man begegnet Systemen von linearen Gleichungen in sehr vielen verschiedenen Zusammenhängen, etwa bei Mischungsverhältnissen von Substanzen

Mehr

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A 133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des

Mehr

Matrizen. Spezialfälle. Eine m nmatrix ist ein rechteckiges Zahlenschema mit. m Zeilen und n Spalten der Form. A = (a ij ) =

Matrizen. Spezialfälle. Eine m nmatrix ist ein rechteckiges Zahlenschema mit. m Zeilen und n Spalten der Form. A = (a ij ) = Matrizen Eine m nmatrix ist ein rechteckiges Zahlenschema mit m Zeilen und n Spalten der Form a 11 a 12 a 1n A = a ij = a 21 a 22 a 2n a m1 a m2 a mn Dabei sind m und n natürliche und die Koezienten a

Mehr

6. Vorlesung. Rechnen mit Matrizen.

6. Vorlesung. Rechnen mit Matrizen. 6. Vorlesung. Rechnen mit Matrizen. In dieser Vorlesung betrachten wir lineare Gleichungs System. Wir betrachten lineare Gleichungs Systeme wieder von zwei Gesichtspunkten her: dem angewandten Gesichtspunkt

Mehr

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle.

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle. Nachschlag:Transposition von Matrizen Sei Explizit: Def: "Transponierte v. A": (tausche Zeilen mit Spalten d.h., spiegle in der Diagonale) m Reihen, n Spalten n Reihen, m Spalten z.b. m=2,n=3: Eigenschaft:

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12 Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12 Die Lösungshinweise dienen

Mehr

Zeilenstufenform. Wir beweisen nun den schon früher angekündigten Satz.

Zeilenstufenform. Wir beweisen nun den schon früher angekündigten Satz. Zeilenstufenform Wir beweisen nun den schon früher angekündigten Satz. Satz. Jede m n-matrix A lässt sich durch elementare Zeilenumformungen auf Zeilenstufenform und analog durch elementare Spaltenumformungen

Mehr