Tutorium: Diskrete Mathematik. Matrizen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Tutorium: Diskrete Mathematik. Matrizen"

Transkript

1 Tutorium: Diskrete Mathematik Matrizen

2 Steven Köhler mathe.stevenkoehler.de

3 Definition I Eine Matrix ist eine rechteckige Anordnung (Tabelle) von Elementen, mit denen man in bestimmter Weise rechnen kann. Matrizen sind ein SchlÄusselkonzept der linearen Algebra und tauchen in vielen Gebieten der Mathematik auf. Matrizen stellen ZusammenhÄange, in denen Linearkombinationen eine Rolle spielen, Äubersichtlich dar und erleichtern damit Rechen- und GedankenvorgÄange. Sie werden insbesondere dazu benutzt, lineare Abbildungen darzustellen und lineare Gleichungssysteme zu beschreiben.

4 Definition II Matrizen werden dargestellt durch eine tabellarische Au istung der Werte, die durch ein gro¼es Klammerpaar umgeben ist. Die Form der Klammern ist dabei nicht fest vorgegeben, typisch sind aber runde oder eckige Klammern. 0 1 a 11 ::: a 1m B A = (a ij ) C. A a n1 ::: a nm a 11 ::: a 1m 6 A = [a ij ] = a n1 ::: a nm 4

5 Addition von Matrizen Ebenso wie Vektoren werden Matrizen elementweise addiert und subtrahiert. A + B = 4 a 11 a 1 a 1 a 1 a a b 11 b 1 b 1 b 1 b b 5 a 1 a a b 1 b b a 11 + b 11 a 1 + b 1 a 1 + b 1 = 4a 1 + b 1 a + b a + b 5 a 1 + b 1 a + b a + b 5

6 Subtraktion von Matrizen Ebenso wie Vektoren werden Matrizen elementweise addiert und subtrahiert. A B = 4 a 11 a 1 a 1 a 1 a a 5 4 b 11 b 1 b 1 b 1 b b 5 a 1 a a b 1 b b = 4 a 11 b 11 a 1 b 1 a 1 b 1 a 1 b 1 a b a b 5 a 1 b 1 a b a b 6

7 Skalare Multiplikation Eine Matrix kann mit einen konstanten Faktor R multipliziert werden. Den Wert nennt man ein Skalar. a 11 a 1 a 1 a 11 a 1 a 1 A = 4a 1 a a 5 = 4 a 1 a a 5 a 1 a a a 1 a a 7

8 Multiplikation von Matrizen I Neben der skalaren Multiplikation gibt es noch eine weitere Multiplikation fäur Matrizen. Dabei werden Matrizen miteinander mutlipliziert. Die folgende Formel zeigt dies exemplarisch fäur zwei -Matrizen: A B = a 11 a 1 a 1 a 1 a a a 1 a a b 11 b 1 b 1 b 1 b b b 1 b b = a 11 b 11 + a 1 b 1 + a 1 b 1 a 11 b 1 + a 1 b + a 1 b a 11 b 1 + a 1 b + a 1 b a 1 b 11 + a b 1 + a b 1 a 1 b 1 + a b + a b a 1 b 1 + a b + a b a 1 b 11 + a b 1 + a b 1 a 1 b 1 + a b + a b a 1 b 1 + a b + a b 8

9 Multiplikation von Matrizen II Die EintrÄage der Ergebnismatrix C sind o enbar die Skalarprodukte der Zeilenvektoren der Matrix A mit den Spaltenvektoren der Matrix B. Daraus läasst sich leicht eine Aussage Äuber eine essentielle Voraussetzung der Matrizenmultiplikation tre en. Damit man zwei Matrizen multiplizieren kann, mäussen die Anzahl der Spalten der ersten Matrix und die Anzahl der Zeilen der zweiten Matrix Äubereinstimmen. 9

10 Multiplikation von Matrizen III Gegeben seien sei Matrizen A R m n und B = R n p. Das Produkt C der beiden Matrizen A und B ist dann eine m p -Matrix und läasst sich allgemein durch die folgende Formel darstellen: C = A B = a ij bij = c ij mit cij = nx a ik b kj k=1 10

11 Multiplikation von Matrizen IV Aufgabe Es seien A = 1 4 und B = Berechne A + B, A B und A B. gegeben. 11

12 Multiplikation von Matrizen V LÄosung Es ergeben sich die folgenden Matrizen: 0 7 A + B = 7 A B = A B = 7 1

13 Falksches Schema I Das Falksche Schema (1951 von Sigurd Falk vorgeschlagen) ist eine einfache Methode, Matrizenmultiplikation Äubersichtlicher darzustellen. Dazu werden die Matrizen A und B sowie deren Produkt C in eine bestimmte tabellarische Form gebracht, die vor allem eine optische Hilfe bietet. 1

14 Falksches Schema II Gegeben seien die Matrizen A R und B R. Darstellung der Matrizenmultiplikation mit dem Falkschen Schema: b 11 b 1 b 1 4b 1 b b 5 (= B) b 1 b b a 11 a 1 a 1 (A =) 4a 1 a a 5 a 1 a a c 11 c 1 c 1 4c 1 c c 5 (= C) c 1 c c Die Werte fäur c ij berechnen sich wie zuvor durch c ij = P k=1 a ik b kj. 14

15 Aufgaben Aufgabe 1 Gegeben seien die Matrizen A = ;B= ;C= 1 ;D= : Entscheide, ob die folgenden Produkte de niert sind und berechnen diese, falls sie existieren: AB, BA, AC, AD, AA, BB, CD, DC. 15

16 Aufgaben Aufgabe Gegeben seien die Matrizen A = und B = : Berechne das Element, das in AB in der dritten Zeile und zweiten Spalte steht. Berechne au¼erdem die vierte Spalte von AB. 16

17 Aufgaben Aufgabe Entscheide, welche der folgenden Aussagen wahr und welche falsch sind. BegrÄunde deine Meinung! a) Die Addition von Matrizen ist nicht assoziativ. b) Die Multiplikation von Matrizen ist fäur alle Matrizen kommutativ. c) Die Multiplikation von Matrizen ist niemals kommutativ. d) FÄur - Matrizen gilt das Distributivgesetz (A + B) C = AC + BC: 17

18 Elementare Zeilenumformungen Man darf Matrizen durch elementare Zeilenumformungen in eine andere Matrix ÄuberfÄuhren. Diese Umformungen sind: ² Vertauschen von zwei Zeilen; ² Multiplikation einer Zeile mit einer von Null verschiedenen Konstanten; ² Addition eines Vielfachen einer Zeile zu einer anderen Zeile. Diese Operationen däurfen beliebig kombiniert und beliebig oft wiederholt werden. 18

19 Elementare Spaltenumformungen I Ebenso wie durch elementare Zeilenumformungen darf man eine Matrix durch elementare Spaltenumformungen in eine andere Matrix ÄuberfÄuhren. Diese Umformungen sind: ² Vertauschen von zwei Spalten; ² Multiplikation einer Spalte mit einer von Null verschiedenen Konstanten; ² Addition eines Vielfachen einer Spalte zu einer anderen Spalte. Diese Operationen däurfen ebenfalls beliebig kombiniert und beliebig oft wiederholt werden. 19

20 Elementare Spaltenumformungen II Generell sollten elementare Zeilen- und Spaltenumformungen nicht vermischt werden, da dies meist mehr Chaos als Nutzen bringt. Wir werden uns im Folgenden ausschlie¼lich mit elementaren Zeilenumformungen beschäaftigen. Sollten einmal Umformungen der Spalten notwendig sein, werden wir die zugehäorige Matrix zunäachst transponieren und anschlie¼end die Zeilen der transponierten Matrix umformen. 0

21 Zeilenstufenform I Durch elementare Zeilenumformungen kann man jede Matrix in die sogenannte Zeilenstufenform bringen. Diese erfäullt die folgenden Eigenschaften (vgl. Gramlich): ² Alle Zeilen, die nur Nullen enthalten, stehen in der Matrix ganz unten. ² Wenn eine Zeile nicht nur aus Nullen besteht, so ist die erste von Null verschiedene Zahl eine Eins. Sie wird als fäuhrende Eins bezeichnet. ² In zwei aufeinanderfolgenden Zeilen, die von Null verschiedene Elemente besitzen, steht die fäuhrende Eins in der unteren Zeile stets weiter rechts als in der oberen Zeile. 1

22 Zeilenstufenform II Besitzt die Matrix Zeilenstufenform und gilt zusäatzlich noch ² Eine Spalte, die eine fäuhrende Eins enthäalt, hat keine weiteren von Null verschiedenen EintrÄage, dann liegt die Matrix in reduzierter Zeilenstufenform vor.

23 Zeilenstufenform III Beispiel Es sei A = 8. 5 Bringe die Matrix A in Zeilenstufenform!

24 Zeilenstufenform IV ZunÄachst wird die 1. Zeile mit 1 multipliziert: 1 4 : 5 Anschlie¼end wird das ( )-fache der 1. Zeile zur. Zeile addiert: 1 4 : 0 7 Abschlie¼endwirddie.Zeilemit 1 7 multipliziert: 1 4 : 0 1 4

25 Zeilenstufenform V Aufgabe 4 ÄUberfÄuhre die folgende Matrix in Zeilenstufenform!

26 Einheitsmatrizen I Als Einheitsmatrix wird die spezielle quadratische Matrix E n R n n bezeichnet, deren Hauptdiagonalenelemente 1 sind; alle anderen EintrÄage sind ::: ::: 0 0 E n = ::: ::: 0 1 6

27 Einheitsmatrizen II Die Einheitsmatrix ist das neutrale Element bezäuglich der Matrizenmultiplikation, d.h., fäur alle Matrizen A (passende Dimensionen vorausgesetzt) gilt A E = E A = A: 7

28 Diagonalmatrizen Diagonalmatrizen sind spezielle quadratische Matrizen, die lediglich auf der Hauptdiagonalen von 0 verschiedene Elemente besitzen: d 1 0 ::: d ::: 0 0 D = : ::: d n ::: 0 d n Die Einheitsmatrizen E n sind spezielle Diagonalmatrizen. 8

29 Skalarmatrizen I Skalarmatrizen sind spezielle Diagonalmatrizen, besitzen also ebenfalls nur auf der Hauptdiagonalen von 0 verschiedene Elemente; zusäatzlich haben alle Hauptdiagonalenelemente denselben Wert: 0 ::: ::: 0 0 S = : ::: ::: 0 9

30 Skalarmatrizen II Wie man leicht sieht, ist die Skalarmatrix lediglich ein skalares Vielfaches der Einheitsmatrix: 0 ::: ::: 0 0 S = = E 7 n : 40 0 ::: ::: 0 0

31 Dreiecksmatrizen I Dreiecksmatrizen sind eine weitere spezielle Art von Matrizen. Sie werden unterschieden in obere und untere Dreiecksmatrizen. unter- Sie zeichnen sich dadurch aus, dass sie Äuber- bzw. halb der Hauptdiagonalen nur Nullen besitzen. 1

32 Dreiecksmatrizen II O = a 1? :::?? 0 a :::?? ::: a n 1? ::: 0 a n U = a 1 0 ::: 0 0? a ::: ?? ::: a n 1 0 5?? :::? a n

33 Transponierte Matrix I Aus einer Matrix A erhäalt man die transponierte Matrix A T dadurch, dass man die Zeilen der Matrix A mit den Spalten der Matrix A vertauscht. Mit anderen Worten: Die Matrix A wird an der Hauptdiagonalen " gespiegelt\. Gegentlich wird die transponierte Matrix auch gestäurzte Matrix genannt.

34 Transponierte Matrix II Es sei A R n m gegeben durch: a 11 ::: a 1m 6 A = : a n1 ::: a nm Durch Vertauschen der Zeilen und Spalten erhäalt man die transponierte Matrix A T R m n : a 11 ::: a n1 A T 6 = : a 1m ::: a nm 4

35 Symmetrische Matrizen Eine quadratische Matrix A R n n hei¼t symmetrisch, wenn fäur alle i; j N (1 i n und 1 j n) Folgendes gilt: a ij = a ji : FÄur symmetrische Matrizen gilt au¼erdem A = A T : 5

36 Inverse Matrix I Eine quadratische Matrix A hei¼t invertierbar, fallseseinematrix A 1 gibt, fäur die gilt: A A 1 = A 1 A = E: Nicht jede quadratische Matrix ist invertierbar. Falls eine Matrix invertierbar ist, so ist ihr Inverses allerdings eindeutig bestimmt. 6

37 Inverse Matrix II Frage: Woher wei¼ man, ob eine quadratische Matrix invertierbar ist oder nicht? Wenn man wei¼, dass eine Matrix invertierbar ist, wie kann man die inverse Matrix bestimmen? 7

38 Inverse Matrix III Antwort: Man wendet den Gau¼-Jordan-Algorithmus an. ² Ist die Matrix invertierbar, liefert dieser garantiert die inverse Matrix. ² Ist die Matrix nicht invertierbar, wird dies durch das Verfahren zweifelsfrei festgestellt. 8

39 Gauß-Jordan-Algorithmus I Der Gau¼-Jordan-Algorithmus besteht aus den folgenden einfachen Schritten, mit deren Hilfe man die inverse Matrix bestimmen kann, falls sie existiert. Vorbereitung Man erstellt die folgende Blockmatrix: h A i E : A ist die zu invertierende Matrix, E ist eine entsprechend dimensionierte Einheitsmatrix. 9

40 Gauß-Jordan-Algorithmus II 1. Schritt Man wäahlt die erste Spalte, die noch nicht in der richtigen Form vorliegt (1 auf der Hauptdiagonalen, sonst nur Nullen).. Schritt Ist das Hauptdiagonalenelement der Spalte eine Null, so vertauscht man die Zeilen der Matrix auf geeignete Art, um ein von Null verschiedenes Element in die Hauptdiagonale zu bekommen.. Schritt Durch Multiplikation mit einem geeigneten Faktor macht man das Hauptdiagonalenelement der Spalte zu einer 1. 40

41 Gauß-Jordan-Algorithmus III 4. Schritt Durch Addition geeigneter Vielfacher der gerade multiplizierten Zeile bringt man alle anderen Elemente in der aktuellen Spalte auf Null. 5. Schritt Man wiederholt dieses Vorgehen, bis alle Spalten der Matrix A die richtige Form haben oder bis ein weiteres Umformen nicht mehr mäoglich ist. 41

42 Gauß-Jordan-Algorithmus IV Beispiel Gesucht ist das Inverse der Matrix A = LÄosung ZunÄachst stellen wir die entsprechende Blockmatrix auf

43 Gauß-Jordan-Algorithmus V Zuerst bringen wir das Hauptdiagonalenelement der ersten Spalte in die richtige Form, indem wir die erste Zeile mit 1 multiplizieren Um den Rest der ersten Spalte in die richtige Form zu bringen, addieren wir das ( 4)-fache der ersten Zeile zur dritten Zeile

44 Gauß-Jordan-Algorithmus VI Weiter mit Spalte. dritte Zeile. 4 ZunÄachst vertauschen wir die zweite und Durch Multiplikation mit 1 bringen wir das Hauptdiagonalenelement von Zeile in die richtige Form

45 Gauß-Jordan-Algorithmus VII Durch Addition des doppelten der zweiten Zeile zur ersten Zeile bringen wir die zweite Spalte in die richtige Form Weiter mit Spalte. Multiplikation der dritten Zeile mit 1 ergibt:

46 Gauß-Jordan-Algorithmus VII Addition geeigneter Vielfacher zu den ersten beiden Zeilen bringt schlie¼lich die dritte Spalte in die richtige Form Wir haben also die inverse Matrix zu A gefunden A 1 =

47 Gauß-Jordan-Algorithmus VIII Ist die Matrix A nicht invertierbar, so läasst sie sich mit dem Gau¼-Jordan-Algorithmus nicht zur Einheitsmatrix E umformen. Im Gegenzug kann die Matrix A immer genau dann zur Einheitsmatrix E umgeformt werden, wenn sie invertierbar ist. 47

48 Aufgaben Aufgabe 5 a) Es sei A R gegeben durch A = Berechne A 1 mit Hilfe des Gau¼-Jordan-Algorithmus. ÄUberprÄufe dein Ergebnis auf Richtigkeit! b) Zeige, dass die folgende Matrix B R nicht invertierbar ist: 1 B = :

49 Aufgaben Aufgabe 6 Zeige anhand der Matrix A = Eigenschaft gilt: A T 1 = A 1 T : 1, dass die folgende 7 49

50 Anwendungen für Matrizen Matrizen haben eine Vielzahl von Anwendungsgebieten: ² Wachstumsmatrizen ² Populationsmatrizen ² Kosten-Preis-Kalkulationen ² LÄosenvonlinearenGleichungssystemen ² Darstellung von linearen Abbildungen ² Anwendungen in der Computergra k (Rotation, Translation, etc.) 50

4 Vorlesung: 21.11. 2005 Matrix und Determinante

4 Vorlesung: 21.11. 2005 Matrix und Determinante 4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Matrizenrechnung 2 11 Matrixbegri 2 12 Spezielle Matrizen 3 13 Rechnen

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Vektorräume und Rang einer Matrix

Vektorräume und Rang einer Matrix Universität Basel Wirtschaftswissenschaftliches Zentrum Vektorräume und Rang einer Matrix Dr. Thomas Zehrt Inhalt:. Lineare Unabhängigkeit 2. Vektorräume und Basen 3. Basen von R n 4. Der Rang und Rangbestimmung

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Vektoren und Matrizen Einführung: Wie wir gesehen haben, trägt der R 2, also die Menge aller Zahlenpaare, eine Körperstruktur mit der Multiplikation (a + bi(c + di ac bd + (ad + bci Man kann jedoch zeigen,

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

y x x y ( 2x 3y + z x + z

y x x y ( 2x 3y + z x + z Matrizen Aufgabe Sei f R R 3 definiert durch ( ) x 3y x f = x + y y x Berechnen Sie die Matrix Darstellung von f Aufgabe Eine lineare Funktion f hat die Matrix Darstellung A = 0 4 0 0 0 0 0 Berechnen Sie

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme KAPITEL 2 Lineare Gleichungssysteme Lernziele dieses Abschnitts sind: Begrie: Matrix, Vektor spezielle Matrix, transponierte Matrix, inverse Matrix nur fur quadratische Matrizen erklart, Determinante,

Mehr

Lineare Gleichungen mit 2 Variablen

Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen sind sehr eng verwandt mit linearen Funktionen. Die Funktionsgleichung einer linearen Funktion f(x) = m x+q m: Steigung, q: y Achsenabschnitt

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Wiederholung Eine Menge von Vektoren a 1, a 2,, a k heisst linear unabhängig, wenn eine Linearkombination c 1 a 1 + c 2 a 2 + + c k a k = k c i a i (1) i=1 nur dann Null sein

Mehr

A Matrix-Algebra. A.1 Definition und elementare Operationen

A Matrix-Algebra. A.1 Definition und elementare Operationen A Matrix-Algebra In diesem Anhang geben wir eine kompakte Einführung in die Matrizenrechnung bzw Matrix-Algebra Eine leicht lesbare Einführung mit sehr vielen Beispielen bietet die Einführung in die Moderne

Mehr

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya Lineare Abhängigkeit und Unabhängigkeit -E Ma Lubov Vassilevskaya Eindimensionaler Raum Abb. -: Zwei nicht gleiche Vektoren auf der gleichen Gerade Jeden Vektor, der auf einer Geraden liegt, kann man durch

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

Statistische Methoden

Statistische Methoden Statistische Methoden Dr CJ Luchsinger 6 Repetition: Rechnen mit Matrizen für die Statistik Matrizen sind aus zwei Gründen für die Statistik sehr wichtig: Sie ermöglichen uns einerseits eine sehr elegante

Mehr

DEMO für www.mathe-cd.de

DEMO für www.mathe-cd.de (1) Rechnen mit Paaren und Tripeln () Eine Gleichung mit oder 3 Unbekannten (3) Zwei Gleichungen mit 3 Unbekannten Datei Nr. 61 011 Stand 19. Oktober 010 Friedrich W. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Leitfaden Lineare Algebra: Determinanten

Leitfaden Lineare Algebra: Determinanten Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Übersicht Lineare Gleichungssystem mit 2 Variablen 1 Lineare Gleichungssystem mit 2 Variablen Beispiele 2 Fakultät Grundlagen Folie: 2 Beispiel I Lineare

Mehr

Inhaltsverzeichnis 1 Lineare Gleichungssysteme I

Inhaltsverzeichnis 1 Lineare Gleichungssysteme I Inhaltsverzeichnis 1 Lineare Gleichungssysteme I 3 1.1 Mengen und Abbildungen....................................... 3 1.1.1 Mengen und ihre Operationen.............................. 3 1.1.2 Summen- und

Mehr

1.9 Eigenwerte und Eigenvektoren

1.9 Eigenwerte und Eigenvektoren .9. EIGENWERTE UND EIGENVEKTOREN 0.9 Eigenwerte und Eigenvektoren Alles in diesem Abschnitt bezieht sich auf quadratische reelle oder komplexe n n-matrizen. Statt E n (n n-einheitsmatrix) wird kurz E geschrieben..

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

1 Lineare Gleichungssysteme

1 Lineare Gleichungssysteme MLAN1 1 LINEARE GLEICHUNGSSYSTEME 1 Literatur: K Nipp/D Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4 Auflage, 1998, oder neuer 1 Lineare Gleichungssysteme Zu den grundlegenden

Mehr

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen.

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen. Zusätze zum Gelben Rechenbuch LU-Zerlegung Peter Furlan Verlag Martina Furlan Inhaltsverzeichnis Definitionen 2 (Allgemeine) LU-Zerlegung 2 3 Vereinfachte LU-Zerlegung 3 4 Lösung eines linearen Gleichungssystems

Mehr

Rechnen mit rationalen Zahlen

Rechnen mit rationalen Zahlen Rechnen mit rationalen Zahlen a ist die Gegenzahl von a und ( a) a Subtraktionsregel: Statt eine rationale Zahl zu subtrahieren, addiert man ihre Gegenzahl. ( 8) ( ) ( 8) + ( + ) 8 + 7, (,6) 7, + ( +,6)

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung

Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung Artur Trzewik sw562@uni-essen.de v1., 26.3.1998 korrigiert 16. Februar 2 Zusammenfassung Warnung: für die Richtigkeit der Definitionnen

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Ergänzung Eigenwerte und Eigenvektoren Motivation Definitionen Beispiele im IR 2 Beispiele im IR 3 Eigenwerte und Eigenvektoren Motivation Lineare Abbildungen, Ausgangsvektor und Bildvektor Lineare Abbildungen

Mehr

Lineare Gleichungssysteme I (Matrixgleichungen)

Lineare Gleichungssysteme I (Matrixgleichungen) Lineare Gleichungssysteme I (Matrigleichungen) Eine lineare Gleichung mit einer Variable hat bei Zahlen a, b, die Form a b. Falls hierbei der Kehrwert von a gebildet werden darf (a 0), kann eindeutig aufgelöst

Mehr

Installation. Arbeiten mit der MATLAB-Entwicklungsumgebung. MATLAB als Taschenrechner mit Matrix- und Vektorrechnung.

Installation. Arbeiten mit der MATLAB-Entwicklungsumgebung. MATLAB als Taschenrechner mit Matrix- und Vektorrechnung. Installation. Arbeiten mit der MATLAB-Entwicklungsumgebung. MATLAB als Taschenrechner mit Matrix- und Vektorrechnung. Die heutige Sitzung dient dem ersten Kennenlernen von MATLAB. Wir wollen MATLAB zuerst

Mehr

Lineare Gleichungssysteme und Gauß'scher Algorithmus

Lineare Gleichungssysteme und Gauß'scher Algorithmus Zurück Letzter Update 7... Lineare Gleichungssysteme und Gauß'scher Algorithmus In der Mathematik bezeichnet man mit Matrix ein rechteckiges Schema, in dem Zahlen oder Funktionen angeordnet werden. Hier

Mehr

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel Vorlesung 2 22 bzw 23 Januar 204 Lineares Gleichungssystem a a 2 b b 2 = F a a 2 a 3 b b 2 b 3 c c 2 c 3 = V V =< a, b c > c b a b a F V Seite 70 a x + a 2 x 2 + a 3 x 3 b = 0 < a x + a 2 x 2 + a 3 x 3

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Die Top 10 der Algorithmen Der QR-Algorithmus

Die Top 10 der Algorithmen Der QR-Algorithmus Die Top 10 der Algorithmen Der QR-Algorithmus Hans Hansen TU Chemnitz WS 04/05 17. Januar 2005 1 INHALTSVERZEICHNIS 2 Inhaltsverzeichnis 1 Geschichte 3 2 Die Grundidee 3 3 Ähnlichkeitstransformationen

Mehr

Vektorgeometrie - Teil 1

Vektorgeometrie - Teil 1 Vektorgeometrie - Teil 1 MNprofil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 14. März 2016 Inhaltsverzeichnis 1 Einführung & die analytische Darstellung der

Mehr

KAPITEL 0. Einführung

KAPITEL 0. Einführung Lineare Algebra KAPITEL 0 Einführung Dieses Skript zur Vorlesung Lineare Algebra an der Goethe Universität Frankfurt im Sommersemester 2011 befindet sich noch in der Entstehung und wird fortlaufend aktualisiert

Mehr

Inhaltsverzeichnis. Seite 1: Matrizen. Seite 23: Funktionen. Seite 51: Integralrechnung. Seite 69: Binomialverteilung

Inhaltsverzeichnis. Seite 1: Matrizen. Seite 23: Funktionen. Seite 51: Integralrechnung. Seite 69: Binomialverteilung Inhaltsverzeichnis Seite : Matrizen Seite : Funktionen Seite 5: Integralrechnung Seite 69: Binomialverteilung Seite 86: Statistik/Normalverteilung Seite 04: Vektoren Seite 40: Wachstum Lineare Algebra

Mehr

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

Beispiel zur Lösung eines Gleichungssystems : 6 y + z = 15 0 6 1. 15 12 x + 3 y 3 z = 15 12 3 3. 15 2 x 3 y = 4 2 3 0.

Beispiel zur Lösung eines Gleichungssystems : 6 y + z = 15 0 6 1. 15 12 x + 3 y 3 z = 15 12 3 3. 15 2 x 3 y = 4 2 3 0. Beispiel zur Lösung eines Gleichungssystems : 6 y + z = 5 0 6 5 2 x + 3 y 3 z = 5 2 3 3 5 2 x 3 y = 4 2 3 0 4 z2 /3 z : 3 2 x 3 y = 4 2 3 0 4 4 x + y z = 5 4 5 6 y + z = 5 0 6 5 z2 + 2 z 2 x 3 y = 4 2

Mehr

I. II. I. II. III. IV. I. II. III. I. II. III. IV. I. II. III. IV. V. I. II. III. IV. V. VI. I. II. I. II. III. I. II. I. II. I. II. I. II. III. I. II. III. IV. V. VI. VII. VIII.

Mehr

Gleichungen - Aufgabenstellung und Lösungsstrategien

Gleichungen - Aufgabenstellung und Lösungsstrategien Gleichungen - Aufgabenstellung und Lösungsstrategien Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at 18. Juli 2006 1 Einleitung

Mehr

Mathematische Grundlagen 2. Termrechnen

Mathematische Grundlagen 2. Termrechnen Inhaltsverzeichnis: 2. Termrechnen... 2 2.1. Bedeutung von Termen... 2 2.2. Terme mit Variablen... 4 2.3. Vereinfachen von Termen... 5 2.3.1. Zusammenfassen von gleichartigen Termen... 5 2.3.2. Vereinfachen

Mehr

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html

Mehr

Numerisches Programmieren

Numerisches Programmieren Technische Universität München SoSe 213 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Jürgen Bräckle Numerisches Programmieren 2. Programmieraufgabe: Lineare

Mehr

Lineare Algebra II 5. Übungsblatt

Lineare Algebra II 5. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen,

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten!

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten! Mathefritz 5 Terme und Gleichungen Meine Mathe-Seite im Internet kostenlose Matheaufgaben, Skripte, Mathebücher Lernspiele, Lerntipps, Quiz und noch viel mehr http:// www.mathefritz.de Seite 1 Copyright

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra Effiziente Algorithmen und Datenstrukturen I Kapitel 10: Lineare Algebra Christian Scheideler WS 2008 19.02.2009 Kapitel 10 1 Überblick Notation Arithmetik auf großen Zahlen (Addition und Multiplikation)

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Schulmethode zur Multiplikation von n-stelligen Binärzahlen a und b: (evtl. fallen Zeilen weg, wenn das zugehörige Bit des Multiplikators 0 ist).

Schulmethode zur Multiplikation von n-stelligen Binärzahlen a und b: (evtl. fallen Zeilen weg, wenn das zugehörige Bit des Multiplikators 0 ist). 4-1 4. Algorithmen auf Zahlen Themen: Multiplikation von binären Zahlen Matrixmultiplikation 4.1 Multiplikation ganzer Zahlen Schulmethode zur Multiplikation von n-stelligen Binärzahlen a und b: n=8: aaaaaaaa

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

6 Lösung linearer Gleichungssysteme I: LR-Zerlegung und Verwandte

6 Lösung linearer Gleichungssysteme I: LR-Zerlegung und Verwandte Numerik I Version: 240608 40 6 Lösung linearer Gleichungssysteme I: LR-Zerlegung und Verwandte Die zwei wichtigsten Aufgaben der linearen Algebra: Lösung linearer Gleichungssysteme: Ax = b, wobei die n

Mehr

10. Die komplexen Zahlen.

10. Die komplexen Zahlen. 10-1 Funktionen 10 Die kompleen Zahlen Dies ist ein Thema, das unberechtigter Weise als schwer gilt! Die Konstruktion der kompleen Zahlen ist viel einfacher zu verstehen ist, als einige der bisherigen

Mehr

4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung

4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung 4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung In vielen Anwendungen treten lineare Gleichungssysteme auf, die eine unterschiedliche Anzahl von Gleichungen und Unbekannten besitzen: Ax

Mehr

Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung:

Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung: Vektorrechnung eine Einführung Einleitung: Um beispielsweise das Dreieck ABC in der Abbildung an die Position A'B'C' zu verschieben, muss jeder Punkt um sieben Einheiten nach rechts und drei nach oben

Mehr

Kapitel III. Lineare Abbildungen

Kapitel III. Lineare Abbildungen Kapitel III. Lineare Abbildungen Beispiele: 1 Lineare Abbildungen a) Seien c 1,..., c n K vorgegeben. Betrachte die Funktion F (x 1,..., x n ) = c 1 x 1 + c 2 x 2 +... + c n x n in den Variablen x 1,...,

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Algorithmus zur Berechnung der Jordannormalform

Algorithmus zur Berechnung der Jordannormalform Algorithmus zur Berechnung der Jordannormalform Olivier Sète 19. Januar 2011 Inhaltsverzeichnis 1 Motivation 1 2 Algorithmus Wie und warum funktioniert das? 2 2.1 Zutat 1 Für einen Jordanblock.........................

Mehr

2 Rationale und reelle Zahlen

2 Rationale und reelle Zahlen 2 reelle Es gibt Mathematik mit Grenzwert (Analysis) und Mathematik ohne Grenzwert (z.b Algebra). Grenzwerte existieren sicher nur dann, wenn der Zahlbereich vollständig ist, also keine Lücken aufweist

Mehr

2 Matrizen. 2.1 Definition A = a 32... Element in der 3. Zeile und 2. Spalte RP =

2 Matrizen. 2.1 Definition A = a 32... Element in der 3. Zeile und 2. Spalte RP = Matrizen James Joseph Sylvester 97 war ein britischer Mathematiker. Eines seiner vielseitigen Arbeitsgebiete war die Theorie von Matrizen und Determinanten. Die ezeichnung Matrix wurde von ihm eingeführt.

Mehr

Terme, Rechengesetze, Gleichungen

Terme, Rechengesetze, Gleichungen Terme, Rechengesetze, Gleichungen Ein Junge kauft sich eine CD zu 15 und eine DVD zu 23. Er bezahlt mit einem 50 - Schein. Wie viel erhält er zurück? Schüler notieren mögliche Rechenwege: (1) 15 + 23 =

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

7 Die Determinante einer Matrix

7 Die Determinante einer Matrix 7 Die Determinante einer Matrix ( ) a11 a Die Determinante einer 2 2 Matrix A = 12 ist erklärt als a 21 a 22 det A := a 11 a 22 a 12 a 21 Es ist S 2 = { id, τ}, τ = (1, 2) und sign (id) = 1, sign (τ) =

Mehr

5/7/09. 1. Didak(k der Zahlbereichserweiterungen 1.3 Größenbereiche und Skalenbereiche

5/7/09. 1. Didak(k der Zahlbereichserweiterungen 1.3 Größenbereiche und Skalenbereiche 1. Didak(k der Zahlbereichserweiterungen 1.3 Größenbereiche und Skalenbereiche 1. Didak(k der Zahlbereichserweiterungen 1.3 Größenbereiche und Skalenbereiche 1.31 Größenbereiche 1. Didak(k der Zahlbereichserweiterungen

Mehr

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu Herleitung der oppenecker-formel (Wiederholung) Für ein System ẋ Ax + Bu (B habe Höchstrang) wird eine Zustandsregelung u x angesetzt. Der geschlossene egelkreis gehorcht der Zustands-Dgl. ẋ (A B)x. Die

Mehr

Aufgabe 1 (LGS mit Parameter): Bestimmen Sie die Lösungsmengen des folgenden LGS in Abhängigkeit vom Parameter :

Aufgabe 1 (LGS mit Parameter): Bestimmen Sie die Lösungsmengen des folgenden LGS in Abhängigkeit vom Parameter : Mathematik MB Übungsblatt Termin Lösungen Themen: Grundlagen Vektoren und LGS ( Aufgaben) DHBW STUTTGART WS / Termin SEITE VON Aufgabe (LGS mit Parameter): Bestimmen Sie die Lösungsmengen des folgenden

Mehr

Materialverflechtung

Materialverflechtung Materialverflechtung In einem Unternehmen mit mehrstufigem Fertigungsablauf seien die festen Mengenbeziehungen zwischen Rohstoffen, Zwischen- und Endprodukten durch folgenden Graph gegeben: 00 0 6 E E

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

Übungsaufgaben LAAG I. für Lehramtsstudenten GS, MS, BS

Übungsaufgaben LAAG I. für Lehramtsstudenten GS, MS, BS Doz.Dr. Norbert Koksch TU DRESDEN Fachrichtung Mathematik, Institut für Analysis Übungsaufgaben LAAG I für Lehramtsstudenten GS, MS, BS Logik: Übungsaufgabe 1. Begründen Sie, ob es sich um eine Aussage

Mehr

Arithmetik und Algebra

Arithmetik und Algebra Willkommen Gliederung "Hallo Welt!" für Fortgeschrittene Friedrich-Alexander-Universität Erlangen-Nürnberg Institut für Informatik Lehrstuhl 2 7. Juni 2005 Willkommen Gliederung Gliederung 1 Repräsentation

Mehr

Lineare Gleichungen Lineare Gleichungssysteme. Lineare Algebra 5. Ein Trainingsheft für Schüler

Lineare Gleichungen Lineare Gleichungssysteme. Lineare Algebra 5. Ein Trainingsheft für Schüler Lineare Gleichungen Lineare Gleichungssysteme Lineare Algebra Ein Trainingsheft für Schüler Manuelle Lösungen ohne Rechnerhilfen und (hier) ohne Determinanten Datei Nr. 600 Stand 8. September 04 FRIEDRICH

Mehr

Matrizen und Vektoren

Matrizen und Vektoren Kapitel Matrizen und Vektoren Eine Matrix ist ein rechteckiges Schema, in dem Zahlen zusammengefasst werden Matrizen haben vielfältige Anwendungen, etwa bei der Beschreibung von Produktionsprozessen oder

Mehr

Einführung in MATLAB

Einführung in MATLAB Kapitel 4 Einführung in MATLAB 41 Allgemeines MATLAB ist eine kommerzielle mathematische Software zur Lösung mathematischer Probleme und zur graphischen Darstellung der Ergebnisse Die Verfahren in MATLAB

Mehr

4 Einige Grundstrukturen. Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper

4 Einige Grundstrukturen. Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper 4 Einige Grundstrukturen Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper Abbildungen Seien X und Y Mengen. Eine (einstellige) Abbildung f : X Y ordnet jedem x X genau ein Element

Mehr

Matrixalgebra. mit einer Einführung in lineare Modelle. Stefan Lang Institut für Statistik Ludwigstrasse 33 email: lang@stat.uni-muenchen.

Matrixalgebra. mit einer Einführung in lineare Modelle. Stefan Lang Institut für Statistik Ludwigstrasse 33 email: lang@stat.uni-muenchen. Matrixalgebra mit einer Einführung in lineare Modelle Stefan Lang Institut für Statistik Ludwigstrasse 33 email: lang@statuni-muenchende 25 August 24 Vielen Dank an Christiane Belitz, Manuela Hummel und

Mehr

Advanced Encryption Standard. Copyright Stefan Dahler 20. Februar 2010 Version 2.0

Advanced Encryption Standard. Copyright Stefan Dahler 20. Februar 2010 Version 2.0 Advanced Encryption Standard Copyright Stefan Dahler 20. Februar 2010 Version 2.0 Vorwort Diese Präsentation erläutert den Algorithmus AES auf einfachste Art. Mit Hilfe des Wissenschaftlichen Rechners

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis Von der

Mehr

Wie löst man eine Gleichung?

Wie löst man eine Gleichung? Wie löst man eine Gleichung? Eine Gleichung wird gelöst, indem man sie, ohne dass sich die Lösungsmenge ändert, Schritt für Schritt in eine sog. unmittelbar auflösbare Gleichung umwandelt. Unter einer

Mehr

Aufgabensammlung Klasse 8

Aufgabensammlung Klasse 8 Aufgabensammlung Klasse 8 Inhaltsverzeichnis 1 Potenzen mit natürlichen Hochzahlen 3 1.1 Rechenregeln für das Rechnen mit Potenzen..................... 3 1.1.1 Addition und Subtraktion von Potenzen...................

Mehr

8 Lineare Abbildungen

8 Lineare Abbildungen 80 8 Lineare Abbildungen In diesem Kapitel untersuchen wir lineare Abbildungen von R n nach R m wie zum Beispiel Spiegelungen, Drehungen, Streckungen und Orthogonalprojektionen in R 2 und R 3 Man nennt

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Kapitel I. Lineare Gleichungssysteme

Kapitel I. Lineare Gleichungssysteme Kapitel I Lineare Gleichungsssteme Lineare Gleichungen in zwei Unbestimmten Die Grundaufgabe der linearen Algebra ist das Lösen von linearen Gleichungssstemen Beispiel : Gesucht sind alle Lösungen des

Mehr

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64 1/64 VEKTORRECHNUNG Prof. Dr. Dan Eugen Ulmet Hochschule Esslingen März 2011 2/64 Overview Vektoralgebra 1 Vektoralgebra 2 Was sind Vektoren? 3/64 Vektoren werden geometrisch definiert als Pfeilklassen:

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Eigenwerte und Eigenvektoren. asiswechsel.2 Eigenwertgleichung 2.3 Diagonalisierbarkeit 5.4 Trigonalisierung 8.5 Zusatzmaterial 8 Aufgaben 9

Mehr

Repetitionsaufgaben: Lineare Gleichungen

Repetitionsaufgaben: Lineare Gleichungen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Gleichungen Zusammengestellt von Hannes Ernst, KSR Lernziele: - Lineare Gleichungen von Hand auflösen können. - Lineare Gleichungen mit Parametern

Mehr

Einführung in die Tensorrechnung

Einführung in die Tensorrechnung 1. Definition eines Tensors Tensoren sind Grössen, mit deren Hilfe man Skalare, Vektoren und weitere Grössen analoger Struktur in ein einheitliches Schema zur Beschreibung mathematischer und physikalischer

Mehr

Die Lineare Algebra-Methode. Mahir Kilic

Die Lineare Algebra-Methode. Mahir Kilic Die Lineare Algebra-Methode Mahir Kilic 23. Juni 2004 1 Einführung 1.1 Überblick Im Allgemein benutzt man die Lineare Algebra-Methode in der Kombinatorik wie folgt: Für die Bestimmung einer Obergrenze

Mehr

4 Kongruenz und Modulorechnung

4 Kongruenz und Modulorechnung 4 Kongruenz und Modulorechnung 39 4 Kongruenz und Modulorechnung In unserer Zeitrechnung haben wir uns daran gewöhnt, nur mit endlich vielen Zahlen zu rechnen. Es ist gerade 3 Uhr und in 50 Stunden muss

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den

Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Anfangsunterricht V3 02./03.05. Natürliche Zahlen im Anfangsunterricht

Mehr

8. Übungsblatt zur Mathematik I für Maschinenbau

8. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 8. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS / 6..-.. Aufgabe G (Matrixinversion mit Gauß-Algorithmus

Mehr

Didaktik der Zahlbereiche 4. Die Menge der ganzen Zahlen. Mathematikunterricht in der Jahrgangsstufe 7. Zahlbereichserweiterungen in der Hauptschule

Didaktik der Zahlbereiche 4. Die Menge der ganzen Zahlen. Mathematikunterricht in der Jahrgangsstufe 7. Zahlbereichserweiterungen in der Hauptschule Zahlbereichserweiterungen in der Hauptschule Didaktik der Zahlbereiche 4 Dr. Christian Groß Lehrstuhl Didaktik der Mathematik Universität Augsburg Wintersemester 2006/07 Natürliche Zahlen, : Klasse 5 positive

Mehr