Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen"

Transkript

1 Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 81 Reelle Matrizen Prof Dr Erich Walter Farkas farkas 1 / 31

2 / 31

3 Transponierte einer Matrix 1 Transponierte einer Matrix 2 Diagonalmatrix und Einheitsmatrix Dreiecksmatrix Symmetrische Matrix Schiefsymmetrische Matrix 3 4 Addition und Substraktion von Matrizen Multiplikation einer Matrix mit einem Skalar Multiplikation von Matrizen 3 / 31

4 Transponierte einer Matrix Definition Unter einer reellen Matrix A vom Typ (m, n versteht man ein aus m n reellen Zahlen bestehendes rechteckiges Schema mit m waagerecht angeordneten Zeilen und n senkrecht angeordneten Spalten: a 11 a 12 a 1k a 1n a 21 a 22 a 2k a 2n A = a i1 a i2 a ik a in a m1 a m2 a mk a mn k-te Spalte i-te Zeile 4 / 31

5 Transponierte einer Matrix : Anmerkungen (1/2 Anmerkungen Wir führen weitere Bezeichnungen ein: a ik : Matrixelemente (i = 1, 2,, m; k = 1, 2,, n i : Zeilenindex k : Spaltenindex m : Anzahl der Zeilen (Zeilenzahl n : Anzahl der Spalten (Spaltenzahl Eine reelle Matrix ist ein geordnetes Zahlenschema aus reellen Zahlen und besitzt keinen Zahlenwert (im Gegensatz zu den später noch einzuführenden Determinanten Gebräuchliche Schreibweisen für eine Matrix sind: A, A (m,n, (a i,k, (a i,k (m,n Eine Matrix vom Typ (m, n wird auch kurz als (m, n-matrix bezeichnet 5 / 31

6 Transponierte einer Matrix : Anmerkungen (2/2 Der Platz, den ein Matrixelement a ik innerhalb der Matrix A einnimmt, ist durch die beiden Indizes i und k eindeutig festgelegt (das Indexpaar (i, k kann als Platziffer aufgefasst werden Das Matrixelement a ik befindet sich dabei in der i-ten Zeile und der k-ten Spalte: a 11 a 12 a 1k a 1n a 21 a 22 a 2k a 2n a i1 a i2 a ik a in i-te Zeile a m1 a m2 a mk a mn k-te Spalte Sonderfall m = n: die Matrix enthält gleichviele Zeilen und Spalten und wird daher als n-reihige, quadratische Matrix oder Matrix n-ter Ordnung bezeichnet 6 / 31

7 Transponierte einer Matrix :Beispiele Die Matrix A = ( besitzt 2 Zeilen und 4 Spalten und ist daher vom Typ (2,4 Man hat a 21 = 2 und a 13 = 5 Die Matrix A = ist ein Beispiel für eine 3-reihige, quadratische Matrix 7 / 31

8 Spezielle Matrizen Transponierte einer Matrix Nullmatrix 0: Matrix, deren Elemente sämtlich verschwinden Spaltenmatrix: Matrix mit nur einer Spalte Sie ist vom Typ (m, 1 und besitzt die Form: a 1 a 2 A (m,1 = a m Zeilenmatrix: Matrix mit nur einer Zeile Sie ist vom Typ (1, n und besitzt die Form: A (1,n = ( a 1 a 2 a n 8 / 31

9 Transponierte einer Matrix Zeilenvektoren und Spaltenvektoren (1/3 Die Zeilen einer Matrix werden daher auch als Zeilenvektoren, die Spalten einer Matrix auch als Spaltenvektoren bezeichnet Eine (m, n-matrix enthählt genau m Zeilenvektoren und n Spaltenvektoren: a 11 a 12 a 1k a 1n a 21 a 22 a 2k a 2n a i1 a i2 a ik a in a m1 a m2 a mk a mn ( a 1 a 2 a k a n }{{} Spaltenvektoren a 1 a 2 a i a m Zeilenvektoren 9 / 31

10 Transponierte einer Matrix Zeilenvektoren und Spaltenvektoren (2/3 Zeilenvektor : a i = ( a i1 a i2 a ik a in, i = 1, 2,, m Spaltenvektor: a k = a 1k a 2k a ik a mk, k = 1, 2,, n 10 / 31

11 Transponierte einer Matrix Zeilenvektoren und Spaltenvektoren (3/3 Die (m, n-matrix A lässt sich dann wie folgt durch Zeilen- bzw Spaltenvektoren beschreiben: A = ( a 1 a 2 a k a n (Zeile aus n Spaltenvektoren A = a 1 a 2 a i a m (Spalte aus m Zeilenvektoren 11 / 31

12 Transponierte einer Matrix Zeilenvektoren und Spaltenvektoren: Beispiele Beispiele 0 = ( A = ist eine Nullmatrix vom Typ (2, , B = A und B sind Spaltenmatrizen, dh Spaltenvektoren mit den Dimensionen 4 bzw 3 12 / 31

13 Transponierte einer Matrix Zeilenvektoren und Spaltenvektoren: Beispiele Beispiel Die (2, 4-Matrix A = ( enthält zwei Zeilenvektoren, nämlich a 1 = ( , a 2 = ( und vier Spaltenvektoren, nämlich ( ( ( a 1 =, a 2 2 =, a 0 3 = 1, a 4 = ( / 31

14 Transponierte einer Matrix Transponierte einer Matrix Definition Werden in einer Matrix A Zeilen und Spalten miteinander vertauscht, so erhält man die Transponierte A T der Matrix A Anmerkungen Zwischen den Elementen a ik einer Matrix A und den Elementen a T ik der transponierten Matrix A T besteht der folgende Zusammenhang: (Vertauschen der beiden Indizes a T ik = a ki (für alle i und k Ist A eine Matrix vom Typ (m, n, so ist ihre Transponierte A T vom Typ (n, m Durch 2-maliges Transponieren erhält man wieder die Ausgangsmatrix, dh es gilt stets (A T T = A 14 / 31

15 Transponierte einer Matrix Transponierte einer Matrix: Beispiele Wir transponieren die Matrizen 1 3 A = 4 2, B = , C = und erhalten: A T = ( , B T = , C T = ( Der Spaltenvektor C ist dabei in den Zeilenvektor C T überführt worden 15 / 31

16 Quadratische Matrizen Diagonalmatrix und Einheitsmatrix Dreiecksmatrix Symmetrische Matrix Schiefsymmetrische Matrix Eine n-reihige, quadratische Matrix A = (a ik besitzt die Gestalt a 11 a 12 a 1n a 21 a 22 a 2n a n1 a n2 a nn Anmerkungen Die Hauptdiagonale einer quadratischen Matrix verlaüft von links oben nach recht unten Sie verbindet die Diagonalelemente a ii, i = 1, 2,, n miteinander Die Nebendiagonale verläuft von rechts oben nach links unten Transponieren bedeutet bei einer quadratischen Matrix A: Spiegelung der Elemente von A an der Hauptdiagonalen 16 / 31

17 Diagonalmatrix Diagonalmatrix und Einheitsmatrix Dreiecksmatrix Symmetrische Matrix Schiefsymmetrische Matrix Definition Eine n-reihige, quadratische Matrix A = (a ik heißt Diagonalmatrix, wenn alle ausserhalb der Hauptdiagonalen liegenden Elemente verschwinden: a ik = 0 für i k Eine n-reihige Diagonalmatrix besitzt daher die Gestalt a a a nn 17 / 31

18 Einheitsmatrix Diagonalmatrix und Einheitsmatrix Dreiecksmatrix Symmetrische Matrix Schiefsymmetrische Matrix Definition Eine n-reihige Diagonalmatrix mit den Diagonalelementen a ii = 1 (i = 1, 2,, n heißt n-reihige Einheitsmatrix E Die n-reihige Einheitsmatrix besitzt also die Gestalt / 31

19 Dreiecksmatrix (1/2 Diagonalmatrix und Einheitsmatrix Dreiecksmatrix Symmetrische Matrix Schiefsymmetrische Matrix Definition Eine n-reihige, quadratische Matrix wird als Dreiecksmatrix bezeichnet, wenn alle Elemente ober- oder unterhalb der Hauptdiagonalen verschwinden a a 2 1 a a n 1 1 a n 1 2 a 0 a n 1 a n 2 a n 3 a n n }{{} Untere Dreiecksmatrix 19 / 31

20 Dreiecksmatrix (2/2 Diagonalmatrix und Einheitsmatrix Dreiecksmatrix Symmetrische Matrix Schiefsymmetrische Matrix a 1 1 a 1 2 a 1 n 1 a 1 n 0 a 2 2 a n 1 2 a n 2 a a n 1 n 0 0 a n n }{{} Obere Dreiecksmatrix Anmerkungen Für die Elemente einer unteren bzw oberen Dreiecksmatrix gilt demnach: Untere Dreiecksmatrix: a ik = 0 für i < k Obere Dreiecksmatrix: a ik = 0 für i > k 20 / 31

21 Symmetrische Matrix Diagonalmatrix und Einheitsmatrix Dreiecksmatrix Symmetrische Matrix Schiefsymmetrische Matrix Definition Eine n-reihige, quadratische Matrix A = (a ik heißt symmetrisch, wenn für alle i und k ist (i, k = 1, 2,, n Anmerkung a ik = a ki Bei einer symmetrischen Matrix sind die Elemente spiegelsymmetrisch zur Hauptdiagonalen angeordnet Daher gilt für eine symmetrische Matrix A stets A T = A Beispiele A = / 31

22 Schiefsymmetrische Matrix Diagonalmatrix und Einheitsmatrix Dreiecksmatrix Symmetrische Matrix Schiefsymmetrische Matrix Definition Eine n-reihige, quadratische Matrix A = (a ik heißt schiefsymmetrisch, wenn für alle i und k ist (i, k = 1, 2,, n Anmerkungen Beispiel a ik = a ki Bei einer schiefsymmetrischen Matrix A verschwinden sämtliche Diagonalelemente: a ii = 0, i = 1, 2,, n a ii = a ii 2a ii = 0 a ii = 0 Eine schiefsymmetrische Matrix erfüllt die Bedingung A T = A A = / 31

23 Definition Zwei Matrizen A = (a ik und B = (b ik vom gleichen Typ (m, n heißen gleich, A = B, wenn a ik = b ik für alle i,k ist (i = 1, 2,, m; k = 1, 2,, n Anmerkung Gleiche Matrizen stimmen in ihrem Typ und in sämtlichen einander entsprechenden Elementen überein Beispiele ( ( A = B = A = B aber A C (a 22 c 22 C = ( / 31

24 Addition and Substraktion von Matrizen Addition und Substraktion von Matrizen Multiplikation einer Matrix mit einem Skalar Multiplikation von Matrizen Definition Zum Matrizen A = (a ik und B = (b ik vom gleichen Typ (m, n werden addiert bzw substrahiert, indem man die entsprechenden, dh gleichstelligen Matrixelemente addiert bzw substrahiert Die Matrix heisst die Summe von A und B Die Matrix C = A + B = (c ik mit c ik = a ik + b ik D = A B = (d ik mit d ik = a ik b ik heisst die Differenz von A und B (i = 1, 2, m; k = 1, 2,, n Anmerkung Addition und Substraktion sind nur für Matrizen gleichen Typs erklärt 24 / 31

25 Addition und Substraktion von Matrizen Addition und Substraktion von Matrizen Multiplikation einer Matrix mit einem Skalar Multiplikation von Matrizen Rechengesetze Kommutativgesetz Assoziativgesetz A + B = B + A A + (B + C = (A + B + C Beispiel A = ( B = ( Wir bilden die Summe C = A + B und die Differenz D = A B und erhalten: ( ( (1 + 5 (5 + 1 ( C = = (4 1 (0 + 4 ( ( ( (1 5 (5 1 ( D = = (4 + 1 (0 4 ( / 31

26 Addition und Substraktion von Matrizen Multiplikation einer Matrix mit einem Skalar Multiplikation von Matrizen Multiplikation einer Matrix mit einem Skalar Definition Eine Matrix A = (a ik vom Typ (m, n wird mit einem reellen Skalar (= reelle Zahl λ multipliziert, indem man jedes Matrixelement a ik mit dem Skalar λ multipliziert: λ A = λ (a ik = (λ a ik für alle i und k (i = 1, 2,, m; k = 1, 2,, n Anmerkungen Die Matrix λ A ist das Produkt aus der Matrix A und dem Skalar λ Der Multiplikationspunkt im Produkt λ A wird meist weggelassen: λ A = λa 26 / 31

27 Addition und Substraktion von Matrizen Multiplikation einer Matrix mit einem Skalar Multiplikation von Matrizen Multiplikation einer Matrix mit einem Skalar Rechengesetze λ und µ sind reelle Skalare, A und B Matrizen vom gleichen Typ: Beispiel Assoziativgesetz λ(µa = (λµa Distributivgesetze (λ + µa = λa + µa λ(a + B = λa + λb A = Wir berechnen die Matrix B = 4A: ( B = ( = ( / 31

28 Multiplikation von Matrizen Addition und Substraktion von Matrizen Multiplikation einer Matrix mit einem Skalar Multiplikation von Matrizen Definition A = (a ik sei eine Matrix vom Typ (m, n, B = (b ik eine Matrix vom Typ (n, p Dann heisst die Matrix C = A B = (c ik mit c ik = a i1 b 1k + a i2 b 2k + + a in b nk = n a ij b jk j=1 das Produkt der Matrizen A und B (i = 1, 2,, m ; k = 1, 2,, p Anmerkungen Das Matrizenprodukt A B ist vom Typ (m, p Der Multiplikationspunkt im Matrizenprodukt A B wird meist weggelassen: A B = AB 28 / 31

29 Addition und Substraktion von Matrizen Multiplikation einer Matrix mit einem Skalar Multiplikation von Matrizen Matrix B k-ter Spaltenvektor b 11 b 1k b 1p b 21 b 2k b 2p i-ter Zeilenvektor a 11 a 12 a 1n a i1 a i2 a in a m1 a m2 a mn b n1 b nk b np c 11 c 1p c ik c m1 c mp Matrix A Matrix C = A B c ik :Skalarprodukt aus dem i-ten Zeilenvektor von A und dem k-ten Spaltenvektor von B 29 / 31

30 Multiplikation von Matrizen Addition und Substraktion von Matrizen Multiplikation einer Matrix mit einem Skalar Multiplikation von Matrizen Beispiel Wir berechnen das Produkt C der Matrizen A = ( und B = Dies ergibt C = A B ( = = ( / 31

31 Multiplikation von Matrizen Addition und Substraktion von Matrizen Multiplikation einer Matrix mit einem Skalar Multiplikation von Matrizen Regeln für die Matrizenmultiplikation Bei der Multiplikation zweier Matrizen A und B sind folgende Regeln zu beachten: 1 Die Produktbildung C = A B ist nur möglich, wenn die Spaltenzahl von A mit der Zeilenzahl von B übereinstimmt 2 Das Matrixelement c ik ist das skalare Produkt aus dem i-ten Zeilenvektor von A und dem k-ten Spaltenvektor von B Rechengesetze Assoziativgesetz Distributivgesetz Weitere Gesetze A(BC = (ABC A(B + C = AB + AC (A + BC = AC + BC (AB T = B T A T AE = EA = A 31 / 31

MLAN1 1 MATRIZEN 1 0 = A T =

MLAN1 1 MATRIZEN 1 0 = A T = MLAN1 1 MATRIZEN 1 1 Matrizen Eine m n Matrix ein rechteckiges Zahlenschema a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n a m1 a m2 a m3 amn mit m Zeilen und n Spalten bestehend aus m n Zahlen Die Matrixelemente

Mehr

Matrizen Definition: Typ einer Matrix

Matrizen Definition: Typ einer Matrix Matrizen Definition: Eine Matrix ist ein rechteckiges Zahlenschema. Die Matrix (Mehrzahl: Matrizen) besteht aus waagerecht verlaufenden Zeilen und senkrecht verlaufenden Spalten. Verdeutlichung am Beispiel:

Mehr

Prof. Dr. G. Wagner Ingenieurmathematik Begleittext Seite 1

Prof. Dr. G. Wagner Ingenieurmathematik Begleittext Seite 1 Prof. Dr. G. Wagner Ingenieurmathematik Begleittext Seite 1 Kapitel 3 Lineare Gleichungssysteme 3.1. Einleitung Beispiel 1 3 Kinder haben eingekauft. Franz hat 4 Lakritzen, 2 Schokoriegel und 5 Kaugummis

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Matrizen. Spezialfälle. Eine m nmatrix ist ein rechteckiges Zahlenschema mit. m Zeilen und n Spalten der Form. A = (a ij ) =

Matrizen. Spezialfälle. Eine m nmatrix ist ein rechteckiges Zahlenschema mit. m Zeilen und n Spalten der Form. A = (a ij ) = Matrizen Eine m nmatrix ist ein rechteckiges Zahlenschema mit m Zeilen und n Spalten der Form a 11 a 12 a 1n A = a ij = a 21 a 22 a 2n a m1 a m2 a mn Dabei sind m und n natürliche und die Koezienten a

Mehr

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2.

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2. Definition Die rechteckige Anordnung von m n Elementen a ij in m Zeilen und n Spalten heißt m n- Matrix. Gewöhnlich handelt es sich bei den Elementen a ij der Matrix um reelle Zahlen. Man nennt das Paar

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

Skript zur Vorlesung. Lineare Algebra. Prof. Dr.-Ing. Katina Warendorf. 2. Oktober 2014

Skript zur Vorlesung. Lineare Algebra. Prof. Dr.-Ing. Katina Warendorf. 2. Oktober 2014 Skript zur Vorlesung Prof. Dr.-Ing. Katina Warendorf 2. Oktober 2014 erstellt von Sindy Engel erweitert von Prof. Dr.-Ing. Katina Warendorf Inhaltsverzeichnis 1 Vektoren 4 1.1 Grundbegriffe.................................

Mehr

4 Vorlesung: 21.11. 2005 Matrix und Determinante

4 Vorlesung: 21.11. 2005 Matrix und Determinante 4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer

Mehr

Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015 Matrizenrechnung Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Matrizenrechnung Übersicht Grundsätzliches 1 Grundsätzliches Matrixbegriff Rechenregeln Spezielle Matrizen 2 Matrizenrechnung Determinanten

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Matrizenrechnung 2 11 Matrixbegri 2 12 Spezielle Matrizen 3 13 Rechnen

Mehr

36 2 Lineare Algebra

36 2 Lineare Algebra 6 Lineare Algebra Quadratische Matrizen a a n sei jetzt n m, A, a ij R, i, j,, n a n a nn Definition Eine quadratische Matrix A heißt invertierbar genau dann, wenn es eine quadratische Matrix B gibt, so

Mehr

Zusammenfassung Mathe III. Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren

Zusammenfassung Mathe III. Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren Zusammenfassung Mathe III Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren Definition: (1) anschaulich: Ein Vektor ist eine direkt gerichtete Verbindung zweier

Mehr

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K).

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K). Matrizen - I Definition. Sei K ein Körper. Ein rechteckiges Schema A = a 11 a 12...... a 1n a 21 a 22...... a 2n............ a m1 a m2...... a mn wobei j K heißt Matrix bzw. eine m n Matrix (mit Elementen

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof Dr Erich Walter Farkas Kapitel 7: Lineare Algebra 73 Ergänzungen Prof Dr Erich Walter Farkas Mathematik I+II, 73 Ergänzungen 1 / 17 1 Reguläre Matrizen Prof Dr

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Matrizen und Determinanten 1 Matrizen und Determinanten 1 Einführung in den Matrizenbegriff Zur Beschreibung und Lösung vieler physikalischer Probleme ist die Vektorrechnung vonnöten Durch Verwendung von

Mehr

Spezialgebiet Mathematik(Christian Behon ) 1. Matrizen. Kapitel 1 Definitionen und Herleitung von Matrizen. Kapitel 2 Matrizenoperation

Spezialgebiet Mathematik(Christian Behon ) 1. Matrizen. Kapitel 1 Definitionen und Herleitung von Matrizen. Kapitel 2 Matrizenoperation . Inhaltsverzeichnis.............. Spezialgebiet Mathematik(Christian Behon ) 1 Matrizen Kapitel 1 Definitionen und Herleitung von Matrizen 1.1 Was sind Matrizen 1.2 Arten von Matrizen Kapitel 2 Matrizenoperation

Mehr

Lineare Algebra 1. . a n1 a n2 a n3 a nm

Lineare Algebra 1. . a n1 a n2 a n3 a nm Lineare Algebra 1 Lineare Algebra Hilfreiche Konzepte zur Vereinfachung der Darstellung und Berechnung stellt die lineare Algebra bereit. Auch wenn sie nur an wenigen Stellen des Buches verwendet wurden,

Mehr

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor)

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor) Matrizenrechnung. Matrizen Matrizen sind bereits im Kapitel Lineare Gleichungssysteme aufgetreten. Unter einer (m n) -Matrix A verstehen wir ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Der.

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

(A T ) T = A. Eigenschaft:

(A T ) T = A. Eigenschaft: Elementare Matrizenrechnung m n-matrix von Zahlen A m n a 1,1 a 1,n a m,1 a m,n rechteckige Tabelle m n Dimension der Matrix Sprechweise: m Kreuz n wobei m Anzahl Zeilen, n Anzahl Spalten a i,j Element

Mehr

Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle

Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle 2. Matrixalgebra Warum Beschäftigung mit Matrixalgebra? Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle bequeme mathematische

Mehr

Mathematische Erfrischungen III - Vektoren und Matrizen

Mathematische Erfrischungen III - Vektoren und Matrizen Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen

Mehr

8 Lineare Abbildungen und Matrizen

8 Lineare Abbildungen und Matrizen 8 Lineare Abbildungen und Matrizen 8.1 Lineare Abbildungen Wir beschäftigen uns nun mit Abbildungen zwischen linearen Räumen. Von besonderem Interesse sind Abbildungen, die die Struktur der linearen Räume

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A 133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des

Mehr

3 Matrizen und Determinanten

3 Matrizen und Determinanten 31 Matrizen 311 Matrizen und Gleichungssysteme Grundlegende Begriffe der linearen Algebra und linearen Optimierung sind die Begriffe Matrix, Vektor, Determinante und lineares Gleichungssystem Beispiel

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Lineare Algebra. Teil III. Inhaltsangabe

Lineare Algebra. Teil III. Inhaltsangabe Teil III Lineare Algebra Inhaltsangabe 3 Lineare Algebra 22 3.1 Einführung.......................... 22 3.2 Matrizen und Vektoren.................... 23 3.3 Spezielle Matrizen...................... 24

Mehr

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya Inverse Matrix -E Ma Lubov Vassilevskaya Inverse Matrix Eine n-reihige, quadratische Matrix heißt regulär, wenn ihre Determinante einen von Null verschiedenen Wert besitzt. Anderenfalls heißt sie singulär.

Mehr

mit "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor"

mit Skalarprodukt aus i-tem Zeilenvektor und j-tem Spaltenvektor Zusammenfassung Matrizen Transponierte: Addition: mit Skalare Multiplikation: Matrixmultiplikation: m x p m x n n x p mit ES "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor" "Determinante"

Mehr

Tutorium: Diskrete Mathematik. Matrizen

Tutorium: Diskrete Mathematik. Matrizen Tutorium: Diskrete Mathematik Matrizen Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de Definition I Eine Matrix ist eine rechteckige Anordnung (Tabelle) von Elementen, mit denen man in bestimmter

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

5 Die Allgemeine Lineare Gruppe

5 Die Allgemeine Lineare Gruppe 5 Die Allgemeine Lineare Gruppe Gegeben sei eine nicht leere Menge G und eine Abbildung (Verknüpfung) : G G G, (a, b) a b( a mal b ) Das Bild a b von (a, b) heißt Produkt von a und b. Andere gebräuchliche

Mehr

1 Matrizenrechnung zweiter Teil

1 Matrizenrechnung zweiter Teil MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Lineare Algebra. Gymnasium Immensee SPF PAM. Bettina Bieri

Lineare Algebra. Gymnasium Immensee SPF PAM. Bettina Bieri Lineare Algebra Gymnasium Immensee SPF PAM Bettina Bieri 6. Oktober 2011 Inhaltsverzeichnis 1 Matrizen 1 1.1 Einleitung............................. 1 1.2 Der Begriff Matrix........................ 1 1.2.1

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

1 Transponieren, Diagonal- und Dreiecksmatrizen

1 Transponieren, Diagonal- und Dreiecksmatrizen Technische Universität München Thomas Reifenberger Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 2008/09 1 Transponieren, Diagonal- und Dreiecksmatrizen Definition 11 Transponierte Matrix

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 205/6): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2

Mehr

Einführung in die Matrixalgebra

Einführung in die Matrixalgebra Einführung in die Matrixalgebra Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Bachelor S. Garbade (SRH Heidelberg) Matrixalgebra Bachelor

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Timo Stöcker Erstsemestereinführung Informatik TU Dortmund 22. März 2011 Heute Themen Lineare Gleichungssysteme Matrizen Timo Stöcker https://fsinfo.cs.tu-dortmund.de/studis/ese/vorkurse/mathe

Mehr

Definition, Rechenoperationen, Lineares Gleichungssystem

Definition, Rechenoperationen, Lineares Gleichungssystem Bau und Gestaltung, Mathematik, T. Borer Aufgaben /3 Aufgaben Matrizen Definition, Rechenoperationen, Lineares Gleichungssystem Lernziele - die Bezeichnung der Matrixelemente kennen und verstehen. - den

Mehr

Zusammenfassung zum Thema Vektor- und Matrizenrechnung

Zusammenfassung zum Thema Vektor- und Matrizenrechnung Zusammenfassung zum Thema Vektor- und Matrizenrechnung Mathematischer Vorkurs für Physiker und Naturwissenschaftler WS 2014/2015 Grundbegriffe der Linearen Algebra Viele physikalische Größen (Geschwindigkeit,

Mehr

a 2β... a n ω alle Permutationen von α β γ... ω a 3 γ ( 1) k a 1α

a 2β... a n ω alle Permutationen von α β γ... ω a 3 γ ( 1) k a 1α Mathematik 1 - Übungsblatt 7 Lösungshinweise Tipp: Verwenden Sie zur Kontrolle Scilab, wo immer es möglich ist. Aufgabe 1 (Definitionsformel für Determinanten) Determinanten quadratischer Matrizen sind

Mehr

Theoretische Fragen zu ausgewählten Themen in Lineare Algebra

Theoretische Fragen zu ausgewählten Themen in Lineare Algebra Theoretische Fragen zu ausgewählten Themen in Lineare Algebra { Oren Halvani, Jonathan Weinberger } TU Darmstadt 25. Juni 2009 Inhaltsverzeichnis 1 Determinanten................................................

Mehr

4 Lineare Abbildungen und Matrizen

4 Lineare Abbildungen und Matrizen Mathematik I für inf/swt, Wintersemester /, Seite 8 4 Lineare Abbildungen und Matrizen 4 Kern und Injektivität 4 Definition: Sei : V W linear Kern : {v V : v } ist linearer eilraum von V Ü68 und heißt

Mehr

Homogenität Assoziativgesetz A (B 1 + B 2 ) = A B 1 + A B 2 Distributivgesetz 1 (A 1 + A 2 ) B = A 1 B + A 2 B Distributivgesetz 2

Homogenität Assoziativgesetz A (B 1 + B 2 ) = A B 1 + A B 2 Distributivgesetz 1 (A 1 + A 2 ) B = A 1 B + A 2 B Distributivgesetz 2 1. Formatbedingungen der Matrixoperationen Die Addition (Subtraktion) A ± B verlangt gleiches Format der Operanden A und B. Das Ergebnis hat das Format der Operanden. Skalarmultiplikation λa: Es gibt keine

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

Lineare Gleichungssysteme - Grundlagen

Lineare Gleichungssysteme - Grundlagen Lineare Gleichungssysteme - Grundlagen Betrachtet wird ein System linearer Gleichungen (im deutschen Sprachraum: lineares Gleichungssystem mit m Gleichungen für n Unbekannte, m, n N. Gegeben sind m n Elemente

Mehr

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Inhaltsverzeichnis Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Auf dieser Seite werden Matrizen und Vektoren fett gedruckt, um sie von Zahlen zu unterscheiden. Betrachtet wird das

Mehr

4 Lineare Abbildungen und Matrizen

4 Lineare Abbildungen und Matrizen 4.1 Lineare Abbildungen Definition 4.1. Es seien V, W K-Vektorräume. Eine Abbildung f : V W heißt linear oder Homomorphismus, wenn für alle u, v V und λ K gilt Beispiel 4.2. L1 f(u + v) = f(u) + f(v),

Mehr

Matrizen und Drehungen

Matrizen und Drehungen Matrizen und Drehungen 20. Noember 2003 Diese Ausführungen sind im wesentlichen dem Skript zur Vorlesung Einführung in die Theoretische Physik I und II on PD Dr. Horst Fichtner entnommen. Dieses entstand

Mehr

EINFÜHRUNG IN DIE TENSORRECHNUNG

EINFÜHRUNG IN DIE TENSORRECHNUNG EINFÜHRUNG IN DIE ENSORRECHNUNG eil 1 SIEGFRIED PERY Neufassung vom 7 Juni 2016 I n h a l t 1 Was sind ensoren? 2 2 Multiplikation von Matrizen 21 Multiplikation einer Vektors mit einem ensor 2 Stufe 5

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 Roger Burkhardt roger.burkhardt@fhnw.ch

Mehr

täglich einmal Scilab!

täglich einmal Scilab! Mathematik 1 - Übungsblatt 7 täglich einmal Scilab! Aufgabe 1 (Definitionsformel für Determinanten) Determinanten quadratischer Matrizen sind skalare Größen (=einfache Zahlen im Gegensatz zu vektoriellen

Mehr

Copyright, Page 1 of 5 Die Determinante

Copyright, Page 1 of 5 Die Determinante wwwmathematik-netzde Copyright, Page 1 of 5 Die Determinante Determinanten sind ein äußerst wichtiges Instrument zur Untersuchung von Matrizen und linearen Abbildungen Außerhalb der linearen Algebra ist

Mehr

Mathematik 2 für ET. Vektoren in R n und C n. Addition von Vektoren Multiplikation von Vektor und Skalar. Der Nullvektor 0 =

Mathematik 2 für ET. Vektoren in R n und C n. Addition von Vektoren Multiplikation von Vektor und Skalar. Der Nullvektor 0 = Mathematik 2 für ET # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit Das Lernen mit Lernkarten funktioniert

Mehr

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten Einheitsmatrix Die quadratische Einheitsmatrix I n M n,n ist definiert durch I n = 1 0 0 0 1 0 0 0 1 (Auf der Hauptdiagonalen stehen Einsen, außerhalb Nullen Durch Ausmultiplizieren sieht man I n A = A

Mehr

Definition, Rechenoperationen, Lineares Gleichungssystem

Definition, Rechenoperationen, Lineares Gleichungssystem Bau und Gestaltung, Mathematik, T. Borer Aufgaben / Aufgaben Matrizen Definition, Rechenoperationen, Lineares Gleichungssystem Lernziele - die Bezeichnung der Matrixelemente kennen und verstehen. - den

Mehr

Kapitel 16. Aufgaben. Verständnisfragen. Rechenaufgaben

Kapitel 16. Aufgaben. Verständnisfragen. Rechenaufgaben Kapitel 16 Aufgaben Verständnisfragen Aufgabe 16.1 Ist das Produkt quadratischer oberer bzw. unterer Dreiecksmatrizen wieder eine obere bzw. untere Dreiecksmatrix? Aufgabe 16.2 Bekanntlich gilt im Allgemeinen

Mehr

5 Lineare Algebra (Teil 3): Skalarprodukt

5 Lineare Algebra (Teil 3): Skalarprodukt 5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale

Mehr

Lineare Algebra. Kapitel 5. Grundbegriffe. Das Skalarprodukt. Matrizen. Die Determinante. Lineare Gleichungssysteme. Die Inverse einer Matrix

Lineare Algebra. Kapitel 5. Grundbegriffe. Das Skalarprodukt. Matrizen. Die Determinante. Lineare Gleichungssysteme. Die Inverse einer Matrix Kapitel 5 Lineare Algebra Grundbegriffe Das Skalarprodukt Matrizen Die Determinante Lineare Gleichungssysteme Die Inverse einer Matrix Eigenwerte und Eigenvektoren Anwendungen Lineare Algebra Grundbegriffe

Mehr

A Matrix-Algebra. A.1 Definition und elementare Operationen

A Matrix-Algebra. A.1 Definition und elementare Operationen A Matrix-Algebra In diesem Anhang geben wir eine kompakte Einführung in die Matrizenrechnung bzw Matrix-Algebra Eine leicht lesbare Einführung mit sehr vielen Beispielen bietet die Einführung in die Moderne

Mehr

10. Teil: Elemente der Linearen Algebra

10. Teil: Elemente der Linearen Algebra 0 Teil: Elemente der Linearen Algebra Skalare und Vektoren Manche physikalische Grössen, wie Temperatur T oder Masse m, erfordern zu ihrer Festlegung (oder Messung) nur die Angabe eines Zahlenwertes einer

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

Mathematik LK 12 M1, 4. Kursarbeit Matrizen und Stochastik Lösung )

Mathematik LK 12 M1, 4. Kursarbeit Matrizen und Stochastik Lösung ) Aufgabe 1: Berechne die Determinante und die Transponierte der folgenden Matrizen: 0 1 1.1 M =( 0 4 1 4 det M =0 4 1 4= 4 M T =( 5 3 3 1.2 1 1 3 A=( =( A T 3 0 1 5 1 3 3 1 0 3 3 1 4 4 det M = 5 1 1+3 3

Mehr

II. Lineare Gleichungssysteme. 10 Matrizen und Vektoren. 52 II. Lineare Gleichungssysteme

II. Lineare Gleichungssysteme. 10 Matrizen und Vektoren. 52 II. Lineare Gleichungssysteme 52 II Lineare Gleichungssysteme II Lineare Gleichungssysteme 10 Matrizen und Vektoren 52 11 Der Gaußsche Algorithmus 58 12 Basen, Dimension und Rang 62 13 Reguläre Matrizen 66 14 Determinanten 69 15 Skalarprodukte

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben:

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben: Korrelationsmatrix Bisher wurden nur statistische Bindungen zwischen zwei (skalaren) Zufallsgrößen betrachtet. Für den allgemeineren Fall einer Zufallsgröße mit N Dimensionen bietet sich zweckmäßiger Weise

Mehr

Invertierbarkeit von Matrizen

Invertierbarkeit von Matrizen Invertierbarkeit von Matrizen Lineare Algebra I Kapitel 4 24. April 2013 Logistik Dozent: Olga Holtz, MA 417, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de

Mehr

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

6.3.2 Vektorprodukt. Bemerkung: Die Axiome des Skalarprodukts lauten mit drei Vektoren x, y und z und dem Skalarα: x x 0, insbesondere x x R

6.3.2 Vektorprodukt. Bemerkung: Die Axiome des Skalarprodukts lauten mit drei Vektoren x, y und z und dem Skalarα: x x 0, insbesondere x x R 63 Vektoroperationen Bemerkung: Die Axiome des Skalarprodukts lauten mit drei Vektoren x, y und z und dem Skalarα: x x 0, insbesondere x x R x x =0 x=0 komplex konjugiert αx y = {}}{ α x y x αy = α x y

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG. Serie 6

Lineare Algebra und Numerische Mathematik für D-BAUG. Serie 6 R. Hiptmair S. Pintarelli E. Spindler Herbstsemester 2014 Lineare Algebra und Numerische Mathematik für D-BAUG Serie 6 ETH Zürich D-MATH Einleitung. Diese Serie behandelt nochmals das Rechnen mit Vektoren

Mehr

3.9 Elementarmatrizen

3.9 Elementarmatrizen 90 Kapitel III: Vektorräume und Lineare Abbildungen 3.9 Elementarmatrizen Definition 9.1 Unter einer Elementarmatrix verstehen wir eine Matrix die aus einer n n-einheitsmatrix E n durch eine einzige elementare

Mehr

Rang einer Matrix. 1-E1 Ma 1 Lubov Vassilevskaya

Rang einer Matrix. 1-E1 Ma 1 Lubov Vassilevskaya Rang einer Matrix 1-E1 Ma 1 Lubov Vassilevskaya Unterdeterminante einer nichtquadratischen Matrix M ist eine nichtquadratische 2,3-Matrix: M = 6 2 3 0 5 7 Durch Streichen einer der drei Spalten kann man

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme KAPITEL 2 Lineare Gleichungssysteme Lernziele dieses Abschnitts sind: Begrie: Matrix, Vektor spezielle Matrix, transponierte Matrix, inverse Matrix nur fur quadratische Matrizen erklart, Determinante,

Mehr

Mathematik und Statistik für Raumplaner I

Mathematik und Statistik für Raumplaner I Mathematik und Statistik für Raumplaner I Vektor- und Matrizenrechnung Wintersemester 2010/2011 Leiter und Autor: Ao.Univ.Prof. Dr. Wolfgang Feilmayr Fachbereich Stadt- und Regionalforschung Technische

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

[Nächste Frage: wie wissen wir, ob Spaltenvektoren eine Basis bilden? Siehe L6.1] , enthält eine Basis v. V, nämlich und somit das ganze V.

[Nächste Frage: wie wissen wir, ob Spaltenvektoren eine Basis bilden? Siehe L6.1] , enthält eine Basis v. V, nämlich und somit das ganze V. Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung falls und nur falls ist bijektiv, d.h. ihre Matrix ist invertierbar, (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Vektoren und Matrizen Einführung: Wie wir gesehen haben, trägt der R 2, also die Menge aller Zahlenpaare, eine Körperstruktur mit der Multiplikation (a + bi(c + di ac bd + (ad + bci Man kann jedoch zeigen,

Mehr

Vektorräume und Rang einer Matrix

Vektorräume und Rang einer Matrix Universität Basel Wirtschaftswissenschaftliches Zentrum Vektorräume und Rang einer Matrix Dr. Thomas Zehrt Inhalt:. Lineare Unabhängigkeit 2. Vektorräume und Basen 3. Basen von R n 4. Der Rang und Rangbestimmung

Mehr

Lineare Algebra. Teilgebiet der Mathematik zur Darstellung ökonomischer Probleme

Lineare Algebra. Teilgebiet der Mathematik zur Darstellung ökonomischer Probleme Lineare Algebra Teilgebiet der Mathematik zur Darstellung ökonomischer Probleme Mittels der zur Verfügung stehenden Methoden der Linearen Algebra lassen sich ökonomische Zusammenhänge beschreiben Teilgebiete

Mehr

Euklidische und unitäre Vektorräume

Euklidische und unitäre Vektorräume Kapitel 7 Euklidische und unitäre Vektorräume In diesem Abschnitt ist der Körper K stets R oder C. 7.1 Definitionen, Orthonormalbasen Definition 7.1.1 Sei K = R oder C, und sei V ein K-Vektorraum. Ein

Mehr

8 Lineare Gleichungssysteme

8 Lineare Gleichungssysteme $Id: lgs.tex,v 1.6 2010/12/20 12:57:04 hk Exp $ $Id: matrix.tex,v 1.3 2010/12/20 13:12:44 hk Exp hk $ 8 Lineare Gleichungssysteme In der letzten Sitzung hatten wir mit der Besprechung linearer Gleichungssysteme

Mehr

Wirtschaftswissenschaftliche Bücherei für Schule und Praxis Begründet von Handelsschul-Direktor Dipl.-Hdl. Friedrich Hutkap

Wirtschaftswissenschaftliche Bücherei für Schule und Praxis Begründet von Handelsschul-Direktor Dipl.-Hdl. Friedrich Hutkap Wirtschaftswissenschaftliche Bücherei für Schule und Praxis Begründet von Handelsschul-Direktor Dipl.-Hdl. Friedrich Hutkap Die Verfasser: Kurt Bohner Oberstudienrat Dipl.-Phys. Dr. Peter Ihlenburg Oberstudienrat

Mehr

Lösung (die Geraden laufen parallel) oder unendlich viele Lösungen.

Lösung (die Geraden laufen parallel) oder unendlich viele Lösungen. 1 Albert Ludwigs Universität Freiburg Abteilung Empirische Forschung und Ökonometrie Mathematik für Wirtschaftswissenschaftler Dr. Sevtap Kestel Winter 2008 Kapitel 16 Determinanten und inverse Matrizen

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Arbeitsblatt 16 Die Pausenaufgabe Aufgabe 161 Zeige, dass zu einem K-Vektorraum V mit Dualraum V die Auswertungsabbildung

Mehr

4.4. Rang und Inversion einer Matrix

4.4. Rang und Inversion einer Matrix 44 Rang und Inversion einer Matrix Der Rang einer Matrix ist die Dimension ihres Zeilenraumes also die Maximalzahl linear unabhängiger Zeilen Daß der Rang sich bei elementaren Zeilenumformungen nicht ändert

Mehr

Lineare Algebra (Teil 1) (LinAlg_1.mw)

Lineare Algebra (Teil 1) (LinAlg_1.mw) Lineare Algebra (Teil 1) (LinAlg_1.mw) Neue MAPLE-Befehle: Vector, DotProduct, CrossProduct, Norm, Matrix, Row, Column, Transpose, Rank, Basis, Determinant, MatrixInverse, Eigenvalues, Eigenvectors. Wir

Mehr

HÖHERE MATHEMATIK ERSTER TEIL

HÖHERE MATHEMATIK ERSTER TEIL HÖHERE MATHEMATIK ERSTER TEIL WESSELKA MIHOVA 1. Einführung in die lineare Algebra Die lineare Algebra (auch Vektoralgebra) ist ein Teilgebiet der Mathematik, das sich mit Vektorräumen und linearen Abbildungen

Mehr

4 Lineare Algebra (Teil 2): Quadratische Matrizen

4 Lineare Algebra (Teil 2): Quadratische Matrizen 4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,

Mehr

Kapitel II. Algebraische Grundbegriffe

Kapitel II. Algebraische Grundbegriffe Kapitel II. Algebraische Grundbegriffe 1 Ringe und Körper Für das Rechnen in Z haben wir in Kap. I, 1 Regeln aufgestellt, welche auch in Q und R gelten. Damit werden Z, Q und R zu Ringen im folgenden Sinn:

Mehr

Leitfaden Lineare Algebra: Determinanten

Leitfaden Lineare Algebra: Determinanten Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv

Mehr