Bivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.154

Größe: px
Ab Seite anzeigen:

Download "Bivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.154"

Transkript

1 Bivariate lineare Regression Statistik für SozialwissenschaftlerInnen II p.154

2 Grundidee und Typen der Regression Die Regressionsanalyse dient zur Quantifizierung des Zusammenhangs und der statistisch kausalen Verbindung zwischen metrischen Variablen. Grundidee der Regression: Die Ausprägung abhängigen Variablen lässt sich durch eine mathematische Funktion der unabhängige(n) Variablen ausdrücken: y = f(x) Allgemein lassen sich zwei Grundtypen der Regression unterscheiden: Die lineare Regression, bei der ein linearer Zusammenhang unterstellt wird: y = a + b x Die nicht-lineare Regression, bei der nicht-lineare (z.b. gemischt-quadratische) Funktionen zur Beschreibung des Zusammenhangs genutzt werden. Statistik für SozialwissenschaftlerInnen II p.155

3 Beispiel: Regressionsgerade CDU: Anteil an gueltigen Stimmen Katholiken'87: Anteil an Bevoelkerung Zusammenhang zwischen CDU-Wähleranteil und Katholikenrate (Rheinland-Pfalz) ŷ = 33, , 194 x Statistik für SozialwissenschaftlerInnen II p.156

4 Interpretation der Koeffizienten Die Konstante a Entspricht mathematisch dem y-achsenabschnitt. Sie kann beliebige Werte annehmen und lässt sich als unabhängiger, konstanter Grundwert interpretieren. Der Regressionskoeffizient b Entspricht mathematisch der Steigung der Geraden und kann zwischen und + schwanken. 0 bedeutet keinen Einfluss der Unabhängigen, negative Werte einen negativen Einfluss und positive Werte einen positiven Einfluss Statistik für SozialwissenschaftlerInnen II p.157

5 Beispiel: Schätzfehler Wie hoch schätzen wir das Wahlergebnis im WK Kaiserslautern? Der Katholikenanteil liegt bei 34,89 %. Schätzung des Wahlergebnisses: Schätzwert: ŷ = 40, 06 % 33, , , 89 = 40, 06 Tatsächlicher Anteil der CDU in Kaiserslautern: y = 37, 68 Schätzfehler (Residuum): e = 2, 38 Statistik für SozialwissenschaftlerInnen II p.158

6 Schätzfehler Residuen Wie das Beispiel des WK Kaiserslauern zeigt, kann es bei der Schätzung von y-werten anhand einer Regression zu Fehlern kommen. Nahezu alle Schätzungen sind mit Fehlern behaftet Je stärker die empirische Verteilung der y-werte von einer Geraden abweicht, desto größer ist die (quadrierte) Summe der Residuen Legt man eine Gerade durch einen Punkteschwarm, gibt es Geraden, die den Punkteschwarm besser (geringe Residuen) oder auch schlechter (hohe Residuen) repräsentieren Berechnung der Residuen: e = y i ŷ i Statistik für SozialwissenschaftlerInnen II p.159

7 Die Ermittlung der Regressionsgeraden Üblicherweise ist die Regressionsgerade, also die Werte für a und b, unbekannt und soll anhand der Daten geschätzt werden. Kriterium für die Schätzung der Regressionsgeraden: Möglichst geringe Schätzfehler Gesucht ist also die Gerade, zu der alle Punkte den geringstmöglichen (quadrierten) Abstand besitzen Methode der kleinsten Quadrate : n (y i ŷ i ) 2 = min! Statistik für SozialwissenschaftlerInnen II p.160

8 Berechnung der Regressionskoeffizienten Durch partielles Ableiten der Gleichung nach a und b kann berechnet werden, welche Werte von a und b die Beziehung (y ŷ) 2 minimieren. Es ergeben sich folgende Berechnungsformeln: a = ȳ b x mit s xy = 1 n 1 s 2 x = 1 n 1 b = s xy s 2 x = n (x i x)(y i ȳ) n (x i x) 2 Kovarianz xy Varianz x Statistik für SozialwissenschaftlerInnen II p.161

9 Beispiel: Regressionskoeffizienten Wahlkreis x y x i x (x i x) 2 y i ȳ (x i x) (y i ȳ) Neuwied 55,55 44,21 0,56 0,31 0,25 0,14 Ahrweiler 81,99 50, ,17 166,59 Koblenz 73,14 46,6 18,15 329,42 2,64 47,92 Cochem 70,78 50,94 15,79 249,32 6,98 110,21 Kreuznach 32,6 39,1 22,39 501,31 4,86 108,82 Bitburg 91,4 52,68 36, ,68 8,72 317,50 Trier 87,97 44,82 32, ,68 0,86 28,36 Montabaur 50,76 43,42 4,23 17,89 0,54 2,28 Mainz 51,36 40,86 3,63 13,18 3,1 11,25 Worms 32,81 37,99 22,18 491,95 5,97 132,41 Frankenthal 31,98 39,71 23,01 529,46 4,25 97,79 Ludwigshafen 38,01 40,86 16,98 288,32 3,1 52,64 Neustadt - Sp 45,61 46,48 9,38 87,98 2,52 23,64 Kaiserslautern 34,89 37,68 20,1 404,01 6,28 126,23 Pirmasens 45,98 42,79 9,01 81,18 1,17 10,54 Südpfalz 55,07 45,09 0,08 0,01 1,13 0,09 879,9 703, , ,14 x = 54, 99 ȳ = 43, 96 a = ȳ b x = 43, 96 0, , 99 = 33, 29 b = s xy s = 1189,14/15 = 0, x 6136,72/15 Statistik für SozialwissenschaftlerInnen II p.162

10 Der Determinationskoeffizient R 2 Gibt Auskunft darüber, wwelcher Anteil der Streuung der abhängigen Variable durch die Regression erklärt wird Ausgangspunkt ist eine Varianzanalyse: SAQ ges = SAQ erklärt + SAQ unerklärt Die erklärte Streuung ist die Abweichung der Schätzwerte vom Mittelwert, die nicht-erklärte Streuung die Abweichung der empirischen Werte von den Schätzwerten: (yi ȳ) 2 = (ŷ i ȳ) 2 + (y i ŷ i ) 2 R 2 ist das Verhältnis der erklärten Streuung zur Gesamtstreuung: R 2 = erklärte Streuung Gesamtstreuung = n (ŷ i ȳ) 2 n (y i ȳ) 2 Statistik für SozialwissenschaftlerInnen II p.163

11 Beispiel R 2 Wahlkreis y i (y i ȳ) (y i ȳ) 2 ŷ i (ŷ i ȳ) (ŷ i ȳ) 2 Neuwied 44,21 0,25 0,06 44,07 0,11 0,01 Ahrweiler 50,13 6,17 38,07 49,19 5,23 27,36 Koblenz 46,6 2,64 6,97 47,48 3,52 12,36 Cochem 50,94 6,98 48,72 47,02 3,06 9,36 Kreuznach 39,1 4,86 23,62 39,62 4,34 18,83 Bitburg 52,68 8,72 76,04 51,01 7,05 49,77 Trier 44,82 0,86 0,74 50,35 6,39 40,83 Montabaur 43,42 0,54 0,29 43,14 0,82 0,67 Mainz 40,86 3,1 9,61 43,26 0,70 0,50 Worms 37,99 5,97 35,64 39,66 4,30 18,47 Frankenthal 39,71 4,25 18,06 39,50 4,46 19,88 Ludwigshafen 40,86 3,1 9,61 40,67 3,29 10,83 Neustadt - Sp 46,48 2,52 6,35 42,14 1,82 3,30 Kaiserslautern 37,68 6,28 39,44 40,06 3,90 15,17 Pirmasens 42,79 1,17 1,37 42,21 1,75 3,05 Südpfalz 45,09 1,13 1,28 43,98 0,02 0,00 703,36 315,87 230,40 43,96 R 2 = n (ŷ i ȳ) 2 n (y i ȳ) 2 = 230,40 315,87 = 0, 73 Statistik für SozialwissenschaftlerInnen II p.164

12 Signifikanztest der Regression Überprüft, ob sich der Regressionskoeffizient β in der Grundgesamtheit von 0 unterscheidet: H 0 : β = 0 ; H 1 : β 0 (ungerichtet) H 0 : β 0 ; H 1 : β > 0 (positiv gerichtet) Die Hypothese wird mit folgender t-verteilter Prüfgröße berechnet (mit k =Anzahl der unabhängigen Variablen; hier 1): t emp = b s b mit df = n k 1 wobei der Standardfehler des Regressionskoeffizienten s b n (y i ŷ i ) 2 n 2 s b = n (x i x) 2 Statistik für SozialwissenschaftlerInnen II p.165

13 Beispiel Signifikanztest Hypothese: Je höher der Anteil der Katholiken in einerm Landkreis, desto besser das Wahlergebnis der CDU. Berechnung von t emp : H 1 : β > 0 ; H 0 : β 0 t = b s b Alle zur Werte, die zur Berechnung des Standardfehlers notwendig sind, wurden bereits berechnet: n (y i ŷ i ) 2 230,40 n 2 s b = n (x i x) = 14 = 0, , 72 und damit t emp = 0,194 /0,00518 = 37, 45 Da t krit = 1, 76 und t emp > t krit, kann die H 0 verworfen werden. Statistik für SozialwissenschaftlerInnen II p.166

Multivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.167

Multivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.167 Multivariate lineare Regression Statistik für SozialwissenschaftlerInnen II p.167 Multivariate Regression Verfahren zur Prüfung des gemeinsamen linearen Einflusses mehrerer unabhängiger Variablen auf eine

Mehr

TEIL 13: DIE LINEARE REGRESSION

TEIL 13: DIE LINEARE REGRESSION TEIL 13: DIE LINEARE REGRESSION Dozent: Dawid Bekalarczyk GLIEDERUNG Dozent: Dawid Bekalarczyk Lineare Regression Grundlagen Prognosen / Schätzungen Verbindung zwischen Prognose und Zusammenhang zwischen

Mehr

TEIL 13: DIE EINFACHE LINEARE REGRESSION

TEIL 13: DIE EINFACHE LINEARE REGRESSION TEIL 13: DIE EINFACHE LINEARE REGRESSION Die einfache lineare Regression Grundlagen Die einfache lineare Regression ist ebenfalls den bivariaten Verfahren für metrische Daten zuzuordnen 1 Sie hat einen

Mehr

Lösung Aufgabe 1 (Regression) Es wurden in einer Befragung zwei metrische Merkmale X und Y erhoben. Betrachten Sie dazu die

Lösung Aufgabe 1 (Regression) Es wurden in einer Befragung zwei metrische Merkmale X und Y erhoben. Betrachten Sie dazu die Statistik für Kommunikationswissenschaftler Wintersemester 2010/2011 Vorlesung Prof. Dr. Nicole Krämer Übung Nicole Krämer, Cornelia Oberhauser, Monia Mahling Lösung Thema 9 Homepage zur Veranstaltung:

Mehr

Regression I. Statistik I. Sommersemester Lineare Regression Zusammenhang und Modell Ein Beispiel: Armut und Gewaltverbrechen Zusammenfassung

Regression I. Statistik I. Sommersemester Lineare Regression Zusammenhang und Modell Ein Beispiel: Armut und Gewaltverbrechen Zusammenfassung Sommersemester 2009 Ein Beispiel: Armut und Gewaltverbrechen Rechtswahl 15 10 5 0 5 10 Arbeitslosigkeit Zum Nachlesen Agresti: 9.1-9.4 Gehring/Weins: 8 Schumann: 8.1-8.2 Was ist ein Zusammenhang? Gemeinsame

Mehr

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO 4. Dezember 2001 Generalisierung der aus Stichprobendaten berechneten Regressionsgeraden Voraussetzungen für die Generalisierung

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 15. Mai 2009 15. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Überblick 1. Korrelation vs. Regression 2. Ziele der Regressionsanalyse 3. Syntax für

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Das lineare Regressionsmodell Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Die Korrelation von Merkmalen

Die Korrelation von Merkmalen Die Korrelation von Merkmalen In der Analse von Datenmaterial ist eines der Hauptziele der Statistik eine Abhängigkeit bzw. einen Zusammenhang zwischen Merkmalen zu erkennen. Die Korrelation ermittelt

Mehr

ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II

ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II 1.1 Durch welche Elemente lässt sich laut der Formel für die multiple Regression der Wert einer Person auf einer bestimmten abhängigen Variable Y vorhersagen? a)

Mehr

Analytische Statistik II

Analytische Statistik II Analytische Statistik II Institut für Geographie 1 Schätz- und Teststatistik 2 Grundproblem Generell sind wir nur selten in der Geographie in der Lage, Daten über die Grundgesamtheit zur Verfügung zu haben.

Mehr

Formelsammlung für das Modul. Statistik 2. Bachelor. Sven Garbade

Formelsammlung für das Modul. Statistik 2. Bachelor. Sven Garbade Version 2015 Formelsammlung für das Modul Statistik 2 Bachelor Sven Garbade Prof. Dr. phil. Dipl.-Psych. Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de

Mehr

Korrelation und Regression

Korrelation und Regression FB 1 W. Ludwig-Mayerhofer und 1 und FB 1 W. Ludwig-Mayerhofer und 2 Mit s- und sanalyse werden Zusammenhänge zwischen zwei metrischen Variablen analysiert. Wenn man nur einen Zusammenhang quantifizieren

Mehr

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate Regression ein kleiner Rückblick Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate 05.11.2009 Gliederung 1. Stochastische Abhängigkeit 2. Definition Zufallsvariable 3. Kennwerte 3.1 für

Mehr

Statistik für SozialwissenschaftlerInnen II p.85

Statistik für SozialwissenschaftlerInnen II p.85 Schätzverfahren Statistik für SozialwissenschaftlerInnen II p.85 Schätzverfahren Ziel von Schätzverfahren: Ausgehend von Stichproben Aussagen über Populationskennwerte machen Kenntnis der Abweichung des

Mehr

Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 27

Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 27 Statistik II II. Univariates lineares Regressionsmodell Martin Huber 1 / 27 Übersicht Definitionen (Wooldridge 2.1) Schätzmethode - Kleinste Quadrate Schätzer / Ordinary Least Squares (Wooldridge 2.2)

Mehr

Institut für Soziologie Christian Ganser. Methoden 2. Regressionsanalyse I: Lineare Regression

Institut für Soziologie Christian Ganser. Methoden 2. Regressionsanalyse I: Lineare Regression Institut für Soziologie Methoden 2 Regressionsanalyse I: Lineare Regression Inhalt 1. Grundidee und Vorgehen 2. Güte eines Regressionsmodells 3. Regressionskoeffizienten Signifikanz und Interpretation

Mehr

Methodik der multiplen linearen Regression

Methodik der multiplen linearen Regression Methodik der multiplen linearen Regression Sibel Aydemir Statistisches Amt, Direktorium Landeshauptstadt München Name, Stadt Regressionsanalyse: Schritt für Schritt Schritt 1 Schritt 2 Schritt 3 Schritt

Mehr

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell Kapitel 8 Einfache Regression Josef Leydold c 2006 Mathematische Methoden VIII Einfache Regression 1 / 21 Lernziele Lineares Regressionsmodell Anpassen des linearen Regressionsmodells, OLS Eigenschaften

Mehr

Konfidenzintervall für den Anteilswert θ. Konfidenzintervalle. Jost Reinecke. Universität Bielefeld. 13. Juni 2005

Konfidenzintervall für den Anteilswert θ. Konfidenzintervalle. Jost Reinecke. Universität Bielefeld. 13. Juni 2005 Universität Bielefeld 13. Juni 2005 Einführung Einführung Wie kann die Kenntnis der Wahrscheinlichkeitsverteilung der Parameter einer Stichprobe dazu verhelfen auf die wahren Werte der Grundgesamtheit

Mehr

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen.

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen. Modul G.1 WS 07/08: Statistik 17.01.2008 1 Wiederholung Kovarianz und Korrelation Kovarianz = Maß für den linearen Zusammenhang zwischen zwei Variablen x und y Korrelation Die Korrelation ist ein standardisiertes

Mehr

Tutorial: Regression Output von R

Tutorial: Regression Output von R Tutorial: Regression Output von R Eine Firma erzeugt Autositze. Ihr Chef ist besorgt über die Anzahl und die Kosten von Maschinenausfällen. Das Problem ist, dass die Maschinen schon alt sind und deswegen

Mehr

2. Korrelation, lineare Regression und multiple Regression

2. Korrelation, lineare Regression und multiple Regression 2., Linear 2., lineare multiple 2., lineare 2.1 2.2 Lineare 2.1 2.2 Lineare 2.7 Partielle 2.7 Partielle 1 / 149 2., Linear 2., lineare 2.1 2.2 Lineare 2.1 2.7 Partielle 2 / 149 2.1 Beispiel: Arbeitsmotivation

Mehr

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Christian Peukert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2010

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt Methodenlehre Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-06 Dr. Malte Persike persike@uni-mainz.de

Mehr

Wiederholung Qualitätssicherung Drittvariablen. Regression II. Statistik I. Sommersemester Statistik I Regression II (1/33) Wiederholung

Wiederholung Qualitätssicherung Drittvariablen. Regression II. Statistik I. Sommersemester Statistik I Regression II (1/33) Wiederholung Regression II Statistik I Sommersemester 2009 Statistik I Regression II (1/33) R 2 Root Mean Squared Error Statistik I Regression II (2/33) Zum Nachlesen Agresti: 9.1-9.4 Gehring/Weins: 8 Schumann: 8.1-8.2

Mehr

Einführung in die Induktive Statistik: Varianzanalyse

Einführung in die Induktive Statistik: Varianzanalyse Einführung in die Induktive Statistik: Varianzanalyse Jörg Drechsler LMU München Wintersemester 2011/2012 Varianzanalyse bisher: Vergleich der Erwartungswerte für zwei normalverteilte Variablen durch t-test

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

Inferenzstatistik (=schließende Statistik)

Inferenzstatistik (=schließende Statistik) Inferenzstatistik (=schließende Statistik) Grundproblem der Inferenzstatistik: Wie kann man von einer Stichprobe einen gültigen Schluß auf di Grundgesamtheit ziehen Bzw.: Wie groß sind die Fehler, die

Mehr

Wiederholung Drittvariablen Nicht-lineare Effekte Zusammenfassung. Regression III. Statistik I. Sommersemester 2009. Statistik I Regression III (1/36)

Wiederholung Drittvariablen Nicht-lineare Effekte Zusammenfassung. Regression III. Statistik I. Sommersemester 2009. Statistik I Regression III (1/36) Regression III Statistik I Sommersemester 2009 Statistik I Regression III (1/36) Wiederholung Zuwandererquote FN 2004 10 15 20 25 5 10 15 20 Statistik I Regression III (2/36) Zum Nachlesen Agresti/Finlay

Mehr

Herzlich willkommen zur Vorlesung Statistik

Herzlich willkommen zur Vorlesung Statistik FB 1 W. Ludwig-Mayerhofer Statistik 1 Herzlich willkommen zur Vorlesung Statistik Zusammenhänge zwischen nominalen (und/oder ordinalen) Merkmalen: analyse und II: Signifikanztests und Maße der Assoziation

Mehr

Multiple Regression II: Signifikanztests, Gewichtung, Multikollinearität und Kohortenanalyse. Statistik II

Multiple Regression II: Signifikanztests, Gewichtung, Multikollinearität und Kohortenanalyse. Statistik II Multiple Regression II: Signifikanztests,, Multikollinearität und Kohortenanalyse Statistik II Übersicht Wiederholung Literatur Kausalität und Regression Inferenz und standardisierte Koeffizienten Statistik

Mehr

Mittelwertvergleiche, Teil II: Varianzanalyse

Mittelwertvergleiche, Teil II: Varianzanalyse FB 1 W. Ludwig-Mayerhofer Statistik II 1 Herzlich willkommen zur Vorlesung Mittelwertvergleiche, Teil II: FB 1 W. Ludwig-Mayerhofer Statistik II 2 : Wichtigste Eigenschaften Anwendbar auch bei mehr als

Mehr

Statistik II (Sozialwissenschaften)

Statistik II (Sozialwissenschaften) Dr. Hans-Otfried Müller Institut für Mathematische Stochastik Fachrichtung Mathematik Technische Universität Dresden http://www.math.tu-dresden.de/sto/mueller/ Statistik II (Sozialwissenschaften) 2. Konsultationsübung,

Mehr

Formale Methoden der Ökonomik: Einführung in die empirische Wirtschaftsforschung

Formale Methoden der Ökonomik: Einführung in die empirische Wirtschaftsforschung Übung Formale Methoden der Ökonomik: Einführung in die empirische Wirtschaftsforschung BACHELOR FT 2013 (HSU) Übung Emp. WiFo FT 2013 1 / 1 Maßzahlen für den Zusammenhang zwischen Merkmalen Kontingenztabelle:

Mehr

Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression. Dipl.-Ing. Robin Ristl Wintersemester 2012/13

Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression. Dipl.-Ing. Robin Ristl Wintersemester 2012/13 Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression Dipl.-Ing. Robin Ristl Wintersemester 2012/13 1 Grundidee: Eine abhängige Variable soll als Linearkombination mehrerer unabhängiger

Mehr

Multiple Regression. Statistik II

Multiple Regression. Statistik II Statistik II Übersicht Wiederholung Literatur Regression Assoziation und Kausalität Statistische Kontrolle Multivariate Beziehungen Inferenz Das Multivariate Modell Beispiel: Bildung und Verbrechen Fit

Mehr

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Hypothese: Die Beschäftigung mit Kunst ist vom Bildungsgrad abhängig. 1. Annahmen Messniveau: Modell: Die Skala zur Erfassung der

Mehr

Literatur: Glantz, S.A. (2002). Primer of Biostatistics. New York: McGraw-Hill.

Literatur: Glantz, S.A. (2002). Primer of Biostatistics. New York: McGraw-Hill. Statistik Literatur: Glantz, S.A. (2002). Primer of Biostatistics. New York: McGraw-Hill. Maxwell, S.E. & Delaney, H.D. (2000). Designing Experiments and Analyzing Data. Mahwah, NJ: Erlbaum. Das Grundproblem

Mehr

Multivariate Regression

Multivariate Regression Multivariate Regression Ziel: Man will überprüfen, welche Variablen wieviel Varianz einer Zielvariable erlären und ob die durch die einzelnen Variablen wegerlärte Varianz signifiant von 0 verschieden ist

Mehr

Brückenkurs Statistik für Wirtschaftswissenschaften

Brückenkurs Statistik für Wirtschaftswissenschaften Peter von der Lippe Brückenkurs Statistik für Wirtschaftswissenschaften Weitere Übungsfragen UVK Verlagsgesellschaft mbh Konstanz Mit UVK/Lucius München UVK Verlagsgesellschaft mbh Konstanz und München

Mehr

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren)

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Multiple Regression 1 Was ist multiple lineare Regression? Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Annahme: Der Zusammenhang

Mehr

Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient

Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient Georg Bol bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Agenda 1. Untersuchung der Abhängigkeit 2.

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

Branchenmonitoring Gesundheitsfachberufe Rheinland-Pfalz

Branchenmonitoring Gesundheitsfachberufe Rheinland-Pfalz Branchenmonitoring Gesundheitsfachberufe Rheinland-Pfalz Eine Untersuchung des Instituts für Wirtschaft, Arbeit und Kultur (IWAK), Zentrum der Goethe-Universität Frankfurt am Main, im Auftrag des Ministeriums

Mehr

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1 Inhaltsverzeichnis Regressionsanalyse... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-8)... 2 1. Allgemeine Beziehungen... 3 2. 'Best Fit'... 3 3. 'Ordinary Least Squares'... 4 4. Formel der Regressionskoeffizienten...

Mehr

Anhang B. Regression

Anhang B. Regression Anhang B Regression Dieser Anhang rekapituliert die in der Analysis und Statistik wohlbekannte Methode der kleinsten Quadrate, auch Regression genannt, zur Bestimmung von Ausgleichsgeraden Regressionsgeraden

Mehr

Behörde: Anschrift: Telefonnummer: Parkstraße Altenkirchen. Läufstraße Andernach. Insel Silberau Bad Ems

Behörde: Anschrift: Telefonnummer: Parkstraße Altenkirchen. Läufstraße Andernach. Insel Silberau Bad Ems Kreisverwaltung Altenkirchen Kreisverwaltung Alzey-Worms Abteilung 5 Jugend und Familie Stadtverwaltung Andernach Kreisverwaltung Bad Dürkheim Kreisverwaltung Rhein-Lahn-Kreis Kreisverwaltung Bad Kreuznach

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike persike@uni-mainz.de

Mehr

Das klassische Regressionsmodell: Ein Beispiel

Das klassische Regressionsmodell: Ein Beispiel 1 / 43 Das klassische Regressionsmodell: Ein Beispiel Kapitel 2 Ökonometrie I Michael Hauser 2 / 43 Inhalt Ein Beispiel für das klassische, bivariate Regressionsmodell: Okun s Gesetz Das bivariate, lineare

Mehr

VS PLUS

VS PLUS VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen Inferenzstatistik 2 [Übungsaufgaben und Lösungenn - Inferenzstatistik 2] ÜBUNGSAUFGABEN

Mehr

Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert

Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße Wofür? Lageparameter Modus/ Modalwert Zentrum Median Zentralwert Im Datensatz stehende Informationen auf wenige Kenngrößen verdichten ermöglicht

Mehr

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz R.Oldenbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL I GRUNDLAGEN

Mehr

6 Bei der Landtagswahl am 27. März 2011 erhielt die SPD mit 35,7 Prozent den höchsten Stimmenanteil.

6 Bei der Landtagswahl am 27. März 2011 erhielt die SPD mit 35,7 Prozent den höchsten Stimmenanteil. . Wahlen 6 Bei der Landtagswahl am 2. März 2011 erhielt die SPD mit 35, Prozent den höchsten Stimmenanteil. 6 Von den 622 Abgeordneten im 1. Deutschen Bundestag stammen 32 aus Rheinland-Pfalz. 6 Bei der

Mehr

Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil 1-

Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil 1- SPSSinteraktiv Signifikanztests (Teil ) - - Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil - t-test bei einer Stichprobe - SPSS-Output Der t-test bei einer Stichprobe wird

Mehr

Versuchsplanung. Teil 2 Varianzanalyse (ANOVA) Dr. Tobias Kiesling

Versuchsplanung. Teil 2 Varianzanalyse (ANOVA) Dr. Tobias Kiesling Versuchsplanung Teil 2 Varianzanalyse (ANOVA) Dr. Tobias Kiesling Gliederung Grundlagen der Varianzanalyse Streuungszerlegung und Modellschätzer Modellannahmen und Transformationen

Mehr

STATISTIK II. Hans-Otfried Müller Institut für Mathematische Stochastik.

STATISTIK II. Hans-Otfried Müller Institut für Mathematische Stochastik. STATISTIK II Hans-Otfried Müller Institut für Mathematische Stochastik http://www.math.tu-dresden.de/sto/mueller 1 Ausgewählte Verfahren der multivariaten Datenanalyse und Statistik Werden bei einer Analyse

Mehr

Lösungen zur Klausur Statistik II Dr. Andreas Voß Sommersemester 2005

Lösungen zur Klausur Statistik II Dr. Andreas Voß Sommersemester 2005 Lösungen zur Klausur Statistik II Dr. Andreas Voß Sommersemester 2005 Name: Mat.Nr.: Bearbeitungshinweise: Insgesamt können 40 Punkte erreicht werden. Die Klausur gilt als bestanden, wenn Sie mindestens

Mehr

Arbeitsloseninitiativen in Rheinland-Pfalz. ARGE Stellen in Rheinland-Pfalz

Arbeitsloseninitiativen in Rheinland-Pfalz. ARGE Stellen in Rheinland-Pfalz Arbeitsloseninitiativen in Rheinland-Pfalz AG von Erwerbsloseninitiativen und Eingliederungsbetrieben Rheinland Pfalz (AGIB) AGIB e.v Internet: www.agib-ev.de Kontaktadresse: AGIB e.v., c/o Best ggmbh,

Mehr

Soziale Beratungsstellen in Rheinland-Pfalz

Soziale Beratungsstellen in Rheinland-Pfalz Soziale Beratungsstellen in Rheinland-Pfalz (Stand: Mai 2014) Anschriften Diakonisches Werk Ahrweiler Peter-Jansen-Str. 20 53474 Ahrweiler Telefon 02641 3283 Telefax 02641 34026 schuldnerberatung-ahrweiler@web.de

Mehr

Wahrscheinlichkeitsrechnung mathematische Statistik und statistische Qualitätskontrolle

Wahrscheinlichkeitsrechnung mathematische Statistik und statistische Qualitätskontrolle Wahrscheinlichkeitsrechnung mathematische Statistik und statistische Qualitätskontrolle Dr. rer. nat. Regina Storm 5., verbesserte Auflage 72 Bilder, 21 Tafeln und einer Beilage VEB Fachbuchverlag Leipzig

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 15. Mai 2009 15. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Überblick 1. Korrelationsanalysen Kovariation und Kovarianz Korrelation: - Interpretation

Mehr

Lineare Regressionsanalyse

Lineare Regressionsanalyse Lineare Regressionsanalyse BIVARIATE REGRESSION. Beispiel: Übungsaufgabe I. (Skript, Anhang, S.) 3.. Darstellung der Regressionsgeraden im Streudiagramm 3.. Durchführung der Regression 4. Beispiel: Scherhorn-Studie

Mehr

Inhaltsverzeichnis. Korrelationsanalyse. - Stand vom: 20.1.2010 1

Inhaltsverzeichnis. Korrelationsanalyse.  - Stand vom: 20.1.2010 1 Inhaltsverzeichnis Korrelationsanalyse... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-8)... 2 1. Produktmoment-Korrelationskoeffizient... 3 2. Verteilung von Daten... 3 3. Berechnung des Produktmoment-Korrelationskoeffizienten

Mehr

Kapitel 4: Merkmalszusammenhänge

Kapitel 4: Merkmalszusammenhänge Kapitel 4: Merkmalszusammenhänge Streudiagramme SPSS bietet die Möglichkeit, verschiedene Arten von Streudiagrammen zu zeichnen. Gehen Sie auf Grafiken Streu-/Punkt-Diagramm und wählen Sie die Option Einfaches

Mehr

Regression. Leonardo da Vinci (1452-1519) formulierte folgende Zusammenhänge:

Regression. Leonardo da Vinci (1452-1519) formulierte folgende Zusammenhänge: Regression Leonardo da Vinci (142-119) formulierte folgende Zusammenhänge: 1. Die Körpergröße ist gleich der Spannweite der Arme. 2. Die Höhe einer knienden Person ist 3 4 der Körpergröße. 3. Die Handlänge

Mehr

Kenngrößen von Zufallsvariablen

Kenngrößen von Zufallsvariablen Kenngrößen von Zufallsvariablen Die Wahrscheinlichkeitsverteilung kann durch die sogenannten Kenngrößen beschrieben werden, sie charakterisieren sozusagen die Verteilung. Der Erwartungswert Der Erwartungswert

Mehr

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden.

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Teil III: Statistik Alle Fragen sind zu beantworten. Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Wird

Mehr

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren Hypothesenprüfung Teil der Inferenzstatistik Befaßt sich mit der Frage, wie Hypothesen über eine (in der Regel unbekannte) Grundgesamtheit an einer Stichprobe überprüft werden können Behandelt werden drei

Mehr

1. Lineare Regression (Ausgleichsgerade)

1. Lineare Regression (Ausgleichsgerade) Carl-Engler-Schule Karlsruhe Lineare Regression 1 (6) 1. Lineare Regression (Ausgleichsgerade) 1.1 Was ist eine Ausgleichsgerade? Die Ausgleichsgerade ist ein Ausgleichs-Verfahren zur Kurvenanpassung (Approximation).

Mehr

3.2 Streuungsmaße. 3 Lage- und Streuungsmaße 133. mittlere Variabilität. geringe Variabilität. große Variabilität 0.0 0.1 0.2 0.3 0.4 0.

3.2 Streuungsmaße. 3 Lage- und Streuungsmaße 133. mittlere Variabilität. geringe Variabilität. große Variabilität 0.0 0.1 0.2 0.3 0.4 0. Eine Verteilung ist durch die Angabe von einem oder mehreren Mittelwerten nur unzureichend beschrieben. Beispiel: Häufigkeitsverteilungen mit gleicher zentraler Tendenz: geringe Variabilität mittlere Variabilität

Mehr

Gerichtliche Ehelösungen im Jahr 2008

Gerichtliche Ehelösungen im Jahr 2008 Kennziffer: A II/B VI j/08 Bestellnr.: A2023 200800 April 2009 Gerichtliche Ehelösungen im Jahr 2008 Ehelösungen 1999 bis 2008 Urteil 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 Rechtskräftige Urteile

Mehr

Deskriptive Statistik Lösungen zu Blatt 5 Christian Heumann, Susanne Konrath SS Lösung Aufgabe 27. f X Y (a i b j ) = f i j = f ij f j

Deskriptive Statistik Lösungen zu Blatt 5 Christian Heumann, Susanne Konrath SS Lösung Aufgabe 27. f X Y (a i b j ) = f i j = f ij f j 1 Deskriptive Statistik Lösungen zu Blatt 5 Christian Heumann, Susanne Konrath SS 2011 Lösung Aufgabe 27 (a) Notation: X: Rauchen, Y : chronische Bronchitis S X {ja, nein} {a 1, a 2 }, S Y {ja, nein} {b

Mehr

Kapitel 1: Einführung

Kapitel 1: Einführung Kapitel 1: Einführung 1. Inferenzstatistik... 1 2. Zufallsvariable... 1 3. Parameter... 1 4. Prinzip der Informationsreduzierung... 2 5. Von den Stichprobenkennwerte auf die Parameter... 4 5.1. Ebenen

Mehr

Statistik II für Betriebswirte Vorlesung 12

Statistik II für Betriebswirte Vorlesung 12 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 12 11. Januar 2013 7.3. Multiple parameterlineare Regression Im Folgenden soll die

Mehr

1.3 Das Testen von Hypothesen am Beispiel des Einstichproben t-tests

1.3 Das Testen von Hypothesen am Beispiel des Einstichproben t-tests 1.3 Das Testen von Hypothesen am Beispiel des Einstichproben t-tests Statistische Tests dienen dem Testen von Vermutungen, so genannten Hypothesen, über Eigenschaften der Gesamtheit aller Daten ( Grundgesamtheit

Mehr

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst.

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst. Aufgabe 1 (2 + 4 + 2 + 1 Punkte) Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen X und Y : { 2x + 2y für 0.5 x 0.5, 1 y 2 f(x, y) = 3 0 sonst. a) Berechnen

Mehr

Übungsklausur zur Vorlesung "Statistik I" (WiSe 2003/2004)

Übungsklausur zur Vorlesung Statistik I (WiSe 2003/2004) Universität Siegen, FB 1 Prof. W. Ludwig-Mayerhofer/ Dipl.Soz. Uta Liebeskind Übungsklausur zur Vorlesung "Statistik I" (WiSe 2003/2004) 1. Bitte vermerken Sie hinter dem jeweiligen Merkmal das Skalenniveau.

Mehr

2. Korrelation, lineare Regression und multiple Regression

2. Korrelation, lineare Regression und multiple Regression multiple 2.2 Lineare 2.2 Lineare 1 / 130 2.2 Lineare 2 / 130 2.1 Beispiel: Arbeitsmotivation Untersuchung zur Motivation am Arbeitsplatz in einem Chemie-Konzern 25 Personen werden durch Arbeitsplatz zufällig

Mehr

Multivariate Analysis

Multivariate Analysis Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle

Mehr

Jost Reinecke. 7. Juni 2005

Jost Reinecke. 7. Juni 2005 Universität Bielefeld 7. Juni 2005 Testtheorie Test für unabhängige Stichproben Test für abhängige Stichproben Testtheorie Die Testtheorie beinhaltet eine Reihe von Testverfahren, die sich mit der Überprüfung

Mehr

a) Wie hoch ist die Wahrscheinlichkeit, dass Vokale vorkommen, die länger als 140 ms sind?

a) Wie hoch ist die Wahrscheinlichkeit, dass Vokale vorkommen, die länger als 140 ms sind? Modul G 20.12.2007 Zur Hausaufgabe 3 Erkläre die folgenden Plots und Berechnungen zu Wahrscheinlichkeiten aus technischer und statistischer Sicht. a) Wie hoch ist die Wahrscheinlichkeit, dass Vokale vorkommen,

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte

Mehr

Herzlich willkommen zum Thema SPSS

Herzlich willkommen zum Thema SPSS Herzlich willkommen zum Thema SPSS (SUPERIOR PERFORMING SOFTWARE SYSTEM) Qualitative und quantitative Forschungsmethoden Qualitative Methoden: Qualitative Verfahren werden oft benutzt, wenn der Forschungsgegenstand

Mehr

Die neue Bedarfsplanung in RLP. Torsten Erb, Abteilungsleiter Sicherstellung, KV RLP

Die neue Bedarfsplanung in RLP. Torsten Erb, Abteilungsleiter Sicherstellung, KV RLP Kassenärztliche Vereinigung Rheinland-Pfalz 28 Die neue Bedarfsplanung in RLP Torsten Erb, Abteilungsleiter Sicherstellung, KV RLP Ziele der neuen Bedarfsplanung Kassenärztliche Vereinigung Rheinland-Pfalz

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 05. Dezember 2012 1 Datenpaare Korrelation 2 Lineare Regression Problemstellung Beispiel Bleibelastung 3 Regression

Mehr

Kapitel 4: Merkmalszusammenhänge

Kapitel 4: Merkmalszusammenhänge Kapitel 4: Merkmalszusammenhänge Streudiagramme 1 Korrelationen 3 Lineare Regression 6 Zusammenhang zwischen Korrelation, Regression und t-test 8 Streudiagramme SPSS bietet die Möglichkeit, verschiedene

Mehr

STROM aus erneuerbaren Energien in Rheinland-Pfalz

STROM aus erneuerbaren Energien in Rheinland-Pfalz STROM aus erneuerbaren Energien in Rheinland-Pfalz Stromeinspeisung aus erneuerbaren Energien Stromnetzbetreiber veröffentlichen eingespeiste und geförderte Strommengen aus erneuerbaren Energien im Internet

Mehr

Schulden des Landes steigen Schulden des Landes und der Flächenländer 2000 bis 2009 Belastung je Einwohner am 31. Dezember in Euro 8.000 7.000 6.000 5.000 4.000 4.698 3.739 4.989 3.968 5.287 4.211 5.585

Mehr

Bachelorprüfung. Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname. Matrikelnr. E-Mail. Studiengang.

Bachelorprüfung. Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname. Matrikelnr. E-Mail. Studiengang. Lehrstuhl für Statistik und empirische Wirtschaftsforschung ach: Prüfer: Bachelorprüfung Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname Matrikelnr. E-Mail Studiengang

Mehr

Brückenkurs Statistik für Wirtschaftswissenschaften

Brückenkurs Statistik für Wirtschaftswissenschaften Peter von der Lippe Brückenkurs tatistik für Wirtschaftswissenschaften Lösungen UVK Verlagsgesellschaft mbh Konstanz mit UVK/Lucius München Brückenkurs tatistik für Wirtschaftswissenschaften: Lösungen

Mehr

Univariate Lineare Regression. (eine unabhängige Variable)

Univariate Lineare Regression. (eine unabhängige Variable) Univariate Lineare Regression (eine unabhängige Variable) Lineare Regression y=a+bx Präzise lineare Beziehung a.. Intercept b..anstieg y..abhängige Variable x..unabhängige Variable Lineare Regression y=a+bx+e

Mehr

1.8 Kolmogorov-Smirnov-Test auf Normalverteilung

1.8 Kolmogorov-Smirnov-Test auf Normalverteilung 1.8 Kolmogorov-Smirnov-Test auf Normalverteilung Der Kolmogorov-Smirnov-Test ist einer der klassischen Tests zum Überprüfen von Verteilungsvoraussetzungen. Der Test vergleicht die Abweichungen der empirischen

Mehr

6. Übung Statistische Tests Teil 1 (t-tests)

6. Übung Statistische Tests Teil 1 (t-tests) Querschnittsbereich 1: Epidemiologie, Medizinische iometrie und Medizinische Informatik - Übungsmaterial - Erstellt von Mitarbeitern des IMISE und des ZKS Leipzig 6. Übung Statistische Tests Teil 1 (t-tests)

Mehr

Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt 6 Gerhard Tutz, Jan Ulbricht WS 05/06.

Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt 6 Gerhard Tutz, Jan Ulbricht WS 05/06. Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt Gerhard Tutz, Jan Ulbricht WS 05/0 Lösung Aufgabe 4 Notation: X: Rauchen, Y : chronische Bronchitis S X {ja, nein} {a 1, a },

Mehr

Analysen politikwissenschaftlicher Datensätze mit Stata. Sitzung 5: Lineare Regression

Analysen politikwissenschaftlicher Datensätze mit Stata. Sitzung 5: Lineare Regression Analysen politikwissenschaftlicher Datensätze mit Stata Sitzung 5: Lineare Regression 1 Vorbereitung Stata durch z:\profile.do starten Datensatz z:\daten\rpstrukt laden Achtung: Ab dieser Sitzung werden

Mehr

Kapitel 6: Zweifaktorielle Varianzanalyse

Kapitel 6: Zweifaktorielle Varianzanalyse Kapitel 6: Zweifaktorielle Varianzanalyse Durchführung einer zweifaktoriellen Varianzanalyse ohne Messwiederholung Dieser Abschnitt zeigt die Durchführung der in Kapitel 6 behandelten zweifaktoriellen

Mehr

Übersicht über verschiedene Signifikanztests und ihre Voraussetzungen

Übersicht über verschiedene Signifikanztests und ihre Voraussetzungen SPSSinteraktiv von Signifikanztests - 1 - Übersicht über verschiedene Signifikanztests und ihre Verfahren zur Überprüfung von Unterschieden in der zentralen Tendenz Unterschieden werden können Testsituationen

Mehr

Inhaltsverzeichnis. II. Statistische Modelle und sozialwissenschaftliche Meßniveaus 16

Inhaltsverzeichnis. II. Statistische Modelle und sozialwissenschaftliche Meßniveaus 16 Vorwort 1 1. Kapitel: Der Stellenwert der Statistik für die sozialwissenschaflliche Forschung 1 1. Zur Logik (sozial-)wissenschaftlicher Forschung 1 1. Alltagswissen und wissenschaftliches Wissen 1 2.

Mehr