Bivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.154

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Bivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.154"

Transkript

1 Bivariate lineare Regression Statistik für SozialwissenschaftlerInnen II p.154

2 Grundidee und Typen der Regression Die Regressionsanalyse dient zur Quantifizierung des Zusammenhangs und der statistisch kausalen Verbindung zwischen metrischen Variablen. Grundidee der Regression: Die Ausprägung abhängigen Variablen lässt sich durch eine mathematische Funktion der unabhängige(n) Variablen ausdrücken: y = f(x) Allgemein lassen sich zwei Grundtypen der Regression unterscheiden: Die lineare Regression, bei der ein linearer Zusammenhang unterstellt wird: y = a + b x Die nicht-lineare Regression, bei der nicht-lineare (z.b. gemischt-quadratische) Funktionen zur Beschreibung des Zusammenhangs genutzt werden. Statistik für SozialwissenschaftlerInnen II p.155

3 Beispiel: Regressionsgerade CDU: Anteil an gueltigen Stimmen Katholiken'87: Anteil an Bevoelkerung Zusammenhang zwischen CDU-Wähleranteil und Katholikenrate (Rheinland-Pfalz) ŷ = 33, , 194 x Statistik für SozialwissenschaftlerInnen II p.156

4 Interpretation der Koeffizienten Die Konstante a Entspricht mathematisch dem y-achsenabschnitt. Sie kann beliebige Werte annehmen und lässt sich als unabhängiger, konstanter Grundwert interpretieren. Der Regressionskoeffizient b Entspricht mathematisch der Steigung der Geraden und kann zwischen und + schwanken. 0 bedeutet keinen Einfluss der Unabhängigen, negative Werte einen negativen Einfluss und positive Werte einen positiven Einfluss Statistik für SozialwissenschaftlerInnen II p.157

5 Beispiel: Schätzfehler Wie hoch schätzen wir das Wahlergebnis im WK Kaiserslautern? Der Katholikenanteil liegt bei 34,89 %. Schätzung des Wahlergebnisses: Schätzwert: ŷ = 40, 06 % 33, , , 89 = 40, 06 Tatsächlicher Anteil der CDU in Kaiserslautern: y = 37, 68 Schätzfehler (Residuum): e = 2, 38 Statistik für SozialwissenschaftlerInnen II p.158

6 Schätzfehler Residuen Wie das Beispiel des WK Kaiserslauern zeigt, kann es bei der Schätzung von y-werten anhand einer Regression zu Fehlern kommen. Nahezu alle Schätzungen sind mit Fehlern behaftet Je stärker die empirische Verteilung der y-werte von einer Geraden abweicht, desto größer ist die (quadrierte) Summe der Residuen Legt man eine Gerade durch einen Punkteschwarm, gibt es Geraden, die den Punkteschwarm besser (geringe Residuen) oder auch schlechter (hohe Residuen) repräsentieren Berechnung der Residuen: e = y i ŷ i Statistik für SozialwissenschaftlerInnen II p.159

7 Die Ermittlung der Regressionsgeraden Üblicherweise ist die Regressionsgerade, also die Werte für a und b, unbekannt und soll anhand der Daten geschätzt werden. Kriterium für die Schätzung der Regressionsgeraden: Möglichst geringe Schätzfehler Gesucht ist also die Gerade, zu der alle Punkte den geringstmöglichen (quadrierten) Abstand besitzen Methode der kleinsten Quadrate : n (y i ŷ i ) 2 = min! Statistik für SozialwissenschaftlerInnen II p.160

8 Berechnung der Regressionskoeffizienten Durch partielles Ableiten der Gleichung nach a und b kann berechnet werden, welche Werte von a und b die Beziehung (y ŷ) 2 minimieren. Es ergeben sich folgende Berechnungsformeln: a = ȳ b x mit s xy = 1 n 1 s 2 x = 1 n 1 b = s xy s 2 x = n (x i x)(y i ȳ) n (x i x) 2 Kovarianz xy Varianz x Statistik für SozialwissenschaftlerInnen II p.161

9 Beispiel: Regressionskoeffizienten Wahlkreis x y x i x (x i x) 2 y i ȳ (x i x) (y i ȳ) Neuwied 55,55 44,21 0,56 0,31 0,25 0,14 Ahrweiler 81,99 50, ,17 166,59 Koblenz 73,14 46,6 18,15 329,42 2,64 47,92 Cochem 70,78 50,94 15,79 249,32 6,98 110,21 Kreuznach 32,6 39,1 22,39 501,31 4,86 108,82 Bitburg 91,4 52,68 36, ,68 8,72 317,50 Trier 87,97 44,82 32, ,68 0,86 28,36 Montabaur 50,76 43,42 4,23 17,89 0,54 2,28 Mainz 51,36 40,86 3,63 13,18 3,1 11,25 Worms 32,81 37,99 22,18 491,95 5,97 132,41 Frankenthal 31,98 39,71 23,01 529,46 4,25 97,79 Ludwigshafen 38,01 40,86 16,98 288,32 3,1 52,64 Neustadt - Sp 45,61 46,48 9,38 87,98 2,52 23,64 Kaiserslautern 34,89 37,68 20,1 404,01 6,28 126,23 Pirmasens 45,98 42,79 9,01 81,18 1,17 10,54 Südpfalz 55,07 45,09 0,08 0,01 1,13 0,09 879,9 703, , ,14 x = 54, 99 ȳ = 43, 96 a = ȳ b x = 43, 96 0, , 99 = 33, 29 b = s xy s = 1189,14/15 = 0, x 6136,72/15 Statistik für SozialwissenschaftlerInnen II p.162

10 Der Determinationskoeffizient R 2 Gibt Auskunft darüber, wwelcher Anteil der Streuung der abhängigen Variable durch die Regression erklärt wird Ausgangspunkt ist eine Varianzanalyse: SAQ ges = SAQ erklärt + SAQ unerklärt Die erklärte Streuung ist die Abweichung der Schätzwerte vom Mittelwert, die nicht-erklärte Streuung die Abweichung der empirischen Werte von den Schätzwerten: (yi ȳ) 2 = (ŷ i ȳ) 2 + (y i ŷ i ) 2 R 2 ist das Verhältnis der erklärten Streuung zur Gesamtstreuung: R 2 = erklärte Streuung Gesamtstreuung = n (ŷ i ȳ) 2 n (y i ȳ) 2 Statistik für SozialwissenschaftlerInnen II p.163

11 Beispiel R 2 Wahlkreis y i (y i ȳ) (y i ȳ) 2 ŷ i (ŷ i ȳ) (ŷ i ȳ) 2 Neuwied 44,21 0,25 0,06 44,07 0,11 0,01 Ahrweiler 50,13 6,17 38,07 49,19 5,23 27,36 Koblenz 46,6 2,64 6,97 47,48 3,52 12,36 Cochem 50,94 6,98 48,72 47,02 3,06 9,36 Kreuznach 39,1 4,86 23,62 39,62 4,34 18,83 Bitburg 52,68 8,72 76,04 51,01 7,05 49,77 Trier 44,82 0,86 0,74 50,35 6,39 40,83 Montabaur 43,42 0,54 0,29 43,14 0,82 0,67 Mainz 40,86 3,1 9,61 43,26 0,70 0,50 Worms 37,99 5,97 35,64 39,66 4,30 18,47 Frankenthal 39,71 4,25 18,06 39,50 4,46 19,88 Ludwigshafen 40,86 3,1 9,61 40,67 3,29 10,83 Neustadt - Sp 46,48 2,52 6,35 42,14 1,82 3,30 Kaiserslautern 37,68 6,28 39,44 40,06 3,90 15,17 Pirmasens 42,79 1,17 1,37 42,21 1,75 3,05 Südpfalz 45,09 1,13 1,28 43,98 0,02 0,00 703,36 315,87 230,40 43,96 R 2 = n (ŷ i ȳ) 2 n (y i ȳ) 2 = 230,40 315,87 = 0, 73 Statistik für SozialwissenschaftlerInnen II p.164

12 Signifikanztest der Regression Überprüft, ob sich der Regressionskoeffizient β in der Grundgesamtheit von 0 unterscheidet: H 0 : β = 0 ; H 1 : β 0 (ungerichtet) H 0 : β 0 ; H 1 : β > 0 (positiv gerichtet) Die Hypothese wird mit folgender t-verteilter Prüfgröße berechnet (mit k =Anzahl der unabhängigen Variablen; hier 1): t emp = b s b mit df = n k 1 wobei der Standardfehler des Regressionskoeffizienten s b n (y i ŷ i ) 2 n 2 s b = n (x i x) 2 Statistik für SozialwissenschaftlerInnen II p.165

13 Beispiel Signifikanztest Hypothese: Je höher der Anteil der Katholiken in einerm Landkreis, desto besser das Wahlergebnis der CDU. Berechnung von t emp : H 1 : β > 0 ; H 0 : β 0 t = b s b Alle zur Werte, die zur Berechnung des Standardfehlers notwendig sind, wurden bereits berechnet: n (y i ŷ i ) 2 230,40 n 2 s b = n (x i x) = 14 = 0, , 72 und damit t emp = 0,194 /0,00518 = 37, 45 Da t krit = 1, 76 und t emp > t krit, kann die H 0 verworfen werden. Statistik für SozialwissenschaftlerInnen II p.166

Multivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.167

Multivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.167 Multivariate lineare Regression Statistik für SozialwissenschaftlerInnen II p.167 Multivariate Regression Verfahren zur Prüfung des gemeinsamen linearen Einflusses mehrerer unabhängiger Variablen auf eine

Mehr

TEIL 13: DIE LINEARE REGRESSION

TEIL 13: DIE LINEARE REGRESSION TEIL 13: DIE LINEARE REGRESSION Dozent: Dawid Bekalarczyk GLIEDERUNG Dozent: Dawid Bekalarczyk Lineare Regression Grundlagen Prognosen / Schätzungen Verbindung zwischen Prognose und Zusammenhang zwischen

Mehr

TEIL 13: DIE EINFACHE LINEARE REGRESSION

TEIL 13: DIE EINFACHE LINEARE REGRESSION TEIL 13: DIE EINFACHE LINEARE REGRESSION Die einfache lineare Regression Grundlagen Die einfache lineare Regression ist ebenfalls den bivariaten Verfahren für metrische Daten zuzuordnen 1 Sie hat einen

Mehr

Lineare Korrelation. Statistik für SozialwissenschaftlerInnen II p.143

Lineare Korrelation. Statistik für SozialwissenschaftlerInnen II p.143 Lineare Korrelation Statistik für SozialwissenschaftlerInnen II p.143 Produkt-Moment-Korrelation Der Produkt-Moment-Korrelationskoffizient r von Pearson ist ein Zusammenhangsmaß für metrische Variablen

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Varianzanalyse Statistik

Mehr

Lösung Aufgabe 1 (Regression) Es wurden in einer Befragung zwei metrische Merkmale X und Y erhoben. Betrachten Sie dazu die

Lösung Aufgabe 1 (Regression) Es wurden in einer Befragung zwei metrische Merkmale X und Y erhoben. Betrachten Sie dazu die Statistik für Kommunikationswissenschaftler Wintersemester 2010/2011 Vorlesung Prof. Dr. Nicole Krämer Übung Nicole Krämer, Cornelia Oberhauser, Monia Mahling Lösung Thema 9 Homepage zur Veranstaltung:

Mehr

Teil: lineare Regression

Teil: lineare Regression Teil: lineare Regression 1 Einführung 2 Prüfung der Regressionsfunktion 3 Die Modellannahmen zur Durchführung einer linearen Regression 4 Dummyvariablen 1 Einführung o Eine statistische Methode um Zusammenhänge

Mehr

Drittvariablenkontrolle in der linearen Regression: Trivariate Regression

Drittvariablenkontrolle in der linearen Regression: Trivariate Regression Drittvariablenkontrolle in der linearen Regression: Trivariate Regression 14. Januar 2002 In der Tabellenanalyse wird bei der Drittvariablenkontrolle für jede Ausprägung der Kontrollvariablen eine Partialtabelle

Mehr

1 Beispiel zur Methode der kleinsten Quadrate

1 Beispiel zur Methode der kleinsten Quadrate 1 Beispiel zur Methode der kleinsten Quadrate 1.1 Daten des Beispiels t x y x*y x 2 ŷ ˆɛ ˆɛ 2 1 1 3 3 1 2 1 1 2 2 3 6 4 3.5-0.5 0.25 3 3 4 12 9 5-1 1 4 4 6 24 16 6.5-0.5 0.25 5 5 9 45 25 8 1 1 Σ 15 25

Mehr

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO 4. Dezember 2001 Generalisierung der aus Stichprobendaten berechneten Regressionsgeraden Voraussetzungen für die Generalisierung

Mehr

Die Korrelation von Merkmalen

Die Korrelation von Merkmalen Die Korrelation von Merkmalen In der Analse von Datenmaterial ist eines der Hauptziele der Statistik eine Abhängigkeit bzw. einen Zusammenhang zwischen Merkmalen zu erkennen. Die Korrelation ermittelt

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Das lineare Regressionsmodell Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 15. Mai 2009 15. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Überblick 1. Korrelation vs. Regression 2. Ziele der Regressionsanalyse 3. Syntax für

Mehr

ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II

ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II 1.1 Durch welche Elemente lässt sich laut der Formel für die multiple Regression der Wert einer Person auf einer bestimmten abhängigen Variable Y vorhersagen? a)

Mehr

Regression I. Statistik I. Sommersemester Lineare Regression Zusammenhang und Modell Ein Beispiel: Armut und Gewaltverbrechen Zusammenfassung

Regression I. Statistik I. Sommersemester Lineare Regression Zusammenhang und Modell Ein Beispiel: Armut und Gewaltverbrechen Zusammenfassung Sommersemester 2009 Ein Beispiel: Armut und Gewaltverbrechen Rechtswahl 15 10 5 0 5 10 Arbeitslosigkeit Zum Nachlesen Agresti: 9.1-9.4 Gehring/Weins: 8 Schumann: 8.1-8.2 Was ist ein Zusammenhang? Gemeinsame

Mehr

Institut für Soziologie Christian Ganser. Methoden 2. Regressionsanalyse I: Lineare Regression

Institut für Soziologie Christian Ganser. Methoden 2. Regressionsanalyse I: Lineare Regression Institut für Soziologie Methoden 2 Regressionsanalyse I: Lineare Regression Inhalt 1. Grundidee und Vorgehen 2. Güte eines Regressionsmodells 3. Regressionskoeffizienten Signifikanz und Interpretation

Mehr

Hypothesentests mit SPSS

Hypothesentests mit SPSS Beispiel für eine einfache Regressionsanalyse (mit Überprüfung der Voraussetzungen) Daten: bedrohfb_v07.sav Hypothese: Die Skalenwerte auf der ATB-Skala (Skala zur Erfassung der Angst vor terroristischen

Mehr

Übung V Lineares Regressionsmodell

Übung V Lineares Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Michael Alpert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2007 Übung

Mehr

Methodik der multiplen linearen Regression

Methodik der multiplen linearen Regression Methodik der multiplen linearen Regression Sibel Aydemir Statistisches Amt, Direktorium Landeshauptstadt München Name, Stadt Regressionsanalyse: Schritt für Schritt Schritt 1 Schritt 2 Schritt 3 Schritt

Mehr

Korrelation und Regression

Korrelation und Regression FB 1 W. Ludwig-Mayerhofer und 1 und FB 1 W. Ludwig-Mayerhofer und 2 Mit s- und sanalyse werden Zusammenhänge zwischen zwei metrischen Variablen analysiert. Wenn man nur einen Zusammenhang quantifizieren

Mehr

Formelsammlung für das Modul. Statistik 2. Bachelor. Sven Garbade

Formelsammlung für das Modul. Statistik 2. Bachelor. Sven Garbade Version 2015 Formelsammlung für das Modul Statistik 2 Bachelor Sven Garbade Prof. Dr. phil. Dipl.-Psych. Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de

Mehr

Analytische Statistik II

Analytische Statistik II Analytische Statistik II Institut für Geographie 1 Schätz- und Teststatistik 2 Grundproblem Generell sind wir nur selten in der Geographie in der Lage, Daten über die Grundgesamtheit zur Verfügung zu haben.

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Korrelationsanalysen Kreuztabellen und χ²-test Themen Korrelation oder Lineare Regression? Korrelationsanalysen - Pearson, Spearman-Rang, Kendall s Tau

Mehr

Wiederholung/Einführung Lineare Regression Zusammenfassung. Regression I. Statistik I. Sommersemester 2009

Wiederholung/Einführung Lineare Regression Zusammenfassung. Regression I. Statistik I. Sommersemester 2009 Sommersemester 2009 Wiederholung/Einführung Ein Beispiel: Armut und Gewaltverbrechen Rechtswahl 15 10 5 0 5 10 Arbeitslosigkeit Zum Nachlesen Agresti: 9.1-9.4 Gehring/Weins: 8 Schumann: 8.1-8.2 Was ist

Mehr

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate Regression ein kleiner Rückblick Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate 05.11.2009 Gliederung 1. Stochastische Abhängigkeit 2. Definition Zufallsvariable 3. Kennwerte 3.1 für

Mehr

Statistik für SozialwissenschaftlerInnen II p.85

Statistik für SozialwissenschaftlerInnen II p.85 Schätzverfahren Statistik für SozialwissenschaftlerInnen II p.85 Schätzverfahren Ziel von Schätzverfahren: Ausgehend von Stichproben Aussagen über Populationskennwerte machen Kenntnis der Abweichung des

Mehr

Statistik II. Lineare Regressionsrechnung. Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II

Statistik II. Lineare Regressionsrechnung. Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II Statistik II Lineare Regressionsrechnung Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II - 09.06.2006 1 Mit der Kovarianz und dem Korrelationskoeffizienten können wir den statistischen

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Bivariate Regressionsanalyse

Bivariate Regressionsanalyse Universität Bielefeld 15. März 2005 Kovarianz, Korrelation und Regression Kovarianz, Korrelation und Regression Ausgangspunkt ist folgende Datenmatrix: Variablen 1 2... NI 1 x 11 x 12... x 1k 2 x 21 x

Mehr

Tutorial: Regression Output von R

Tutorial: Regression Output von R Tutorial: Regression Output von R Eine Firma erzeugt Autositze. Ihr Chef ist besorgt über die Anzahl und die Kosten von Maschinenausfällen. Das Problem ist, dass die Maschinen schon alt sind und deswegen

Mehr

Korrelation Regression. Wenn Daten nicht ohne einander können Korrelation

Korrelation Regression. Wenn Daten nicht ohne einander können Korrelation DAS THEMA: KORRELATION UND REGRESSION Korrelation Regression Wenn Daten nicht ohne einander können Korrelation Korrelation Kovarianz Pearson-Korrelation Voraussetzungen für die Berechnung die Höhe der

Mehr

Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 27

Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 27 Statistik II II. Univariates lineares Regressionsmodell Martin Huber 1 / 27 Übersicht Definitionen (Wooldridge 2.1) Schätzmethode - Kleinste Quadrate Schätzer / Ordinary Least Squares (Wooldridge 2.2)

Mehr

Konfidenzintervall für den Anteilswert θ. Konfidenzintervalle. Jost Reinecke. Universität Bielefeld. 13. Juni 2005

Konfidenzintervall für den Anteilswert θ. Konfidenzintervalle. Jost Reinecke. Universität Bielefeld. 13. Juni 2005 Universität Bielefeld 13. Juni 2005 Einführung Einführung Wie kann die Kenntnis der Wahrscheinlichkeitsverteilung der Parameter einer Stichprobe dazu verhelfen auf die wahren Werte der Grundgesamtheit

Mehr

Korrelation und Regression

Korrelation und Regression Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Korrelation und Regression Überblick Kovarianz und Korrelation Korrelation und Kausalität

Mehr

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens in einige Teilbereiche der für Studierende des Wirtschaftsingenieurwesens Sommersemester 2013 Hochschule Augsburg Graphische Repräsentation von Kontingenztabellen Beispiel Autounfälle Verletzung leicht

Mehr

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandelt die Verteilung einer Variablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem

Mehr

Multiple Regressionsanalyse - Kurzabriss

Multiple Regressionsanalyse - Kurzabriss Multiple Regressionsanalyse - Kurzabriss Ziele: Schätzung eines Kriteriums aus einer Linearkombination von Prädiktoren Meist zu Screening-Untersuchungen, um den Einfluß von vermuteten Ursachenvariablen

Mehr

Statistik II Übung 1: Einfache lineare Regression

Statistik II Übung 1: Einfache lineare Regression Statistik II Übung 1: Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (16-24 Jahre alt) und der Anzahl der

Mehr

Herzlich willkommen zur Vorlesung Statistik

Herzlich willkommen zur Vorlesung Statistik FB 1 W. Ludwig-Mayerhofer Statistik 1 Herzlich willkommen zur Vorlesung Statistik Zusammenhänge zwischen nominalen (und/oder ordinalen) Merkmalen: analyse und II: Signifikanztests und Maße der Assoziation

Mehr

Einführung in die Induktive Statistik: Varianzanalyse

Einführung in die Induktive Statistik: Varianzanalyse Einführung in die Induktive Statistik: Varianzanalyse Jörg Drechsler LMU München Wintersemester 2011/2012 Varianzanalyse bisher: Vergleich der Erwartungswerte für zwei normalverteilte Variablen durch t-test

Mehr

Die Funktion f wird als Regressionsfunktion bezeichnet.

Die Funktion f wird als Regressionsfunktion bezeichnet. Regressionsanalyse Mit Hilfe der Techniken der klassischen Regressionsanalyse kann die Abhängigkeit metrischer (intervallskalierter) Zielgrößen von metrischen (intervallskalierten) Einflussgrößen untersucht

Mehr

Regression und Korrelation

Regression und Korrelation Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandeltdie VerteilungeinerVariablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem dagegen

Mehr

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19 Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, 2016 6:34 P.M. Page 11 Inhaltsverzeichnis Über die Übersetzerin 9 Einleitung 19 Was Sie hier finden werden 19 Wie dieses Arbeitsbuch aufgebaut ist

Mehr

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers 4. Statistik im multiplen Regressionsmodell In diesem Kapitel wird im Abschnitt 4.1 zusätzlich zu den schon bekannten Standardannahmen noch die Annahme von normalverteilten Residuen hinzugefügt. Auf Basis

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 3 Anwendungen der Differentialrechnung 3.1 Lokale Maxima und Minima Definition 16: Sei f : D R eine Funktion von n Veränderlichen. Ein Punkt x heißt lokale oder relative Maximalstelle bzw. Minimalstelle

Mehr

Wiederholung Drittvariablen Nicht-lineare Effekte Zusammenfassung. Regression III. Statistik I. Sommersemester 2009. Statistik I Regression III (1/36)

Wiederholung Drittvariablen Nicht-lineare Effekte Zusammenfassung. Regression III. Statistik I. Sommersemester 2009. Statistik I Regression III (1/36) Regression III Statistik I Sommersemester 2009 Statistik I Regression III (1/36) Wiederholung Zuwandererquote FN 2004 10 15 20 25 5 10 15 20 Statistik I Regression III (2/36) Zum Nachlesen Agresti/Finlay

Mehr

Mittelwertvergleiche, Teil II: Varianzanalyse

Mittelwertvergleiche, Teil II: Varianzanalyse FB 1 W. Ludwig-Mayerhofer Statistik II 1 Herzlich willkommen zur Vorlesung Mittelwertvergleiche, Teil II: FB 1 W. Ludwig-Mayerhofer Statistik II 2 : Wichtigste Eigenschaften Anwendbar auch bei mehr als

Mehr

2. Generieren Sie deskriptive Statistiken (Mittelwert, Standardabweichung) für earny3 und kidsunder6yr3 und kommentieren Sie diese kurz.

2. Generieren Sie deskriptive Statistiken (Mittelwert, Standardabweichung) für earny3 und kidsunder6yr3 und kommentieren Sie diese kurz. Statistik II Übung : Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (6-24 Jahre alt) und der Anzahl der unter

Mehr

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Christian Peukert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2010

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt Methodenlehre Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-06 Dr. Malte Persike persike@uni-mainz.de

Mehr

Ziel der linearen Regression

Ziel der linearen Regression Regression 1 Ziel der linearen Regression Bei der linearen Regression wird untersucht, in welcher Weise eine abhängige metrische Variable durch eine oder mehrere unabhängige metrische Variablen durch eine

Mehr

Statistik II Übung 1: Einfache lineare Regression

Statistik II Übung 1: Einfache lineare Regression Statistik II Übung 1: Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (16-24 Jahre alt) und der Anzahl der

Mehr

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell Kapitel 8 Einfache Regression Josef Leydold c 2006 Mathematische Methoden VIII Einfache Regression 1 / 21 Lernziele Lineares Regressionsmodell Anpassen des linearen Regressionsmodells, OLS Eigenschaften

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

Hundesteuer im Jahr 2017

Hundesteuer im Jahr 2017 1. Hund 2. Hund 1 Mainz 186 1 Mainz 216 2 Landau in der Pfalz 120 2 Trier 168 2 Trier 120 3 Bendorf am Rhein 156 3 Koblenz 114 4 Worms 153 4 Worms 108 5 Frankenthal (Pfalz) 152 4 Bad Kreuznach 108 6 Kaiserslautern

Mehr

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Hypothese: Die Beschäftigung mit Kunst ist vom Bildungsgrad abhängig. 1. Annahmen Messniveau: Modell: Die Skala zur Erfassung der

Mehr

Mathematik III - Statistik für MT(Master)

Mathematik III - Statistik für MT(Master) 3. Regressionsanalyse Fachbereich Grundlagenwissenschaften Prof. Dr. Viola Weiß Wintersemester 0/03 Mathematik III - Statistik für MTMaster 3. Empirische Regressionsgerade Optimalitätskriterium: Die Summe

Mehr

Das Lineare Regressionsmodell

Das Lineare Regressionsmodell Das Lineare Regressionsmodell Bivariates Regressionsmodell Verbrauch eines Pkw hängt vom Gewicht des Fahrzeugs ab Hypothese / Theorie: Je schwerer ein Auto, desto mehr wird es verbrauchen Annahme eines

Mehr

Inhaltsverzeichnis. Vorwort

Inhaltsverzeichnis. Vorwort V Vorwort XI 1 Zum Gebrauch dieses Buches 1 1.1 Einführung 1 1.2 Der Text in den Kapiteln 1 1.3 Was Sie bei auftretenden Problemen tun sollten 2 1.4 Wichtig zu wissen 3 1.5 Zahlenbeispiele im Text 3 1.6

Mehr

Multiple Regression II: Signifikanztests, Gewichtung, Multikollinearität und Kohortenanalyse. Statistik II

Multiple Regression II: Signifikanztests, Gewichtung, Multikollinearität und Kohortenanalyse. Statistik II Multiple Regression II: Signifikanztests,, Multikollinearität und Kohortenanalyse Statistik II Übersicht Wiederholung Literatur Kausalität und Regression Inferenz und standardisierte Koeffizienten Statistik

Mehr

9.3 Lineare Regression

9.3 Lineare Regression 9.3 Lineare Regression 115 A B C D E F G H 1 2 Pearsonscher Korrelationskoeffizient 3 4 5 6 x-werte y-werte ANALYSE ASSISTENT 7 2,4-4 8 3,2-1 9 8,3 6,4 Spalte 1 Spalte 2 10 6,4 6 Spalte 1 1 11 7,2 6,3

Mehr

Inferenzstatistik (=schließende Statistik)

Inferenzstatistik (=schließende Statistik) Inferenzstatistik (=schließende Statistik) Grundproblem der Inferenzstatistik: Wie kann man von einer Stichprobe einen gültigen Schluß auf di Grundgesamtheit ziehen Bzw.: Wie groß sind die Fehler, die

Mehr

Statistik II (Sozialwissenschaften)

Statistik II (Sozialwissenschaften) Dr. Hans-Otfried Müller Institut für Mathematische Stochastik Fachrichtung Mathematik Technische Universität Dresden http://www.math.tu-dresden.de/sto/mueller/ Statistik II (Sozialwissenschaften) 2. Konsultationsübung,

Mehr

(f(xi ) y i ) 2. minimal ist: man will also die Summe der quadratischen Abweichungen minimieren ... f(x i ) y i, i=1 (t x i) 2

(f(xi ) y i ) 2. minimal ist: man will also die Summe der quadratischen Abweichungen minimieren ... f(x i ) y i, i=1 (t x i) 2 Mathematik für Biologen, Biotechnologen und Biochemiker Lineare Regression Gegeben seien Datenpaare (, ), (, ),, ( n, n ) Wir stellen die Frage, ob sich die Zahlen i als Werte einer linearen Funktion i

Mehr

Formale Methoden der Ökonomik: Einführung in die empirische Wirtschaftsforschung

Formale Methoden der Ökonomik: Einführung in die empirische Wirtschaftsforschung Übung Formale Methoden der Ökonomik: Einführung in die empirische Wirtschaftsforschung BACHELOR FT 2013 (HSU) Übung Emp. WiFo FT 2013 1 / 1 Maßzahlen für den Zusammenhang zwischen Merkmalen Kontingenztabelle:

Mehr

Test von Hypothesen: Signifikanz des Zusammenhangs (F-Test)

Test von Hypothesen: Signifikanz des Zusammenhangs (F-Test) Test von Hyothesen: Signifikanz des Zusammenhangs (F-Test) Die Schätzung der Regressionsfunktion basiert auf Daten einer Stichrobe Inwiefern können die Ergebnisse dieser Schätzung auf die Grundgesamtheit

Mehr

Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 20

Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 20 Statistik II II. Univariates lineares Regressionsmodell Martin Huber 1 / 20 Übersicht Definitionen (Wooldridge 2.1) Schätzmethode - Kleinste Quadrate Schätzer / Ordinary Least Squares (Wooldridge 2.2)

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 22 Übersicht Weitere Hypothesentests in der Statistik 1-Stichproben-Mittelwert-Tests 1-Stichproben-Varianz-Tests 2-Stichproben-Tests Kolmogorov-Smirnov-Test

Mehr

2. Korrelation, lineare Regression und multiple Regression

2. Korrelation, lineare Regression und multiple Regression 2., Linear 2., lineare multiple 2., lineare 2.1 2.2 Lineare 2.1 2.2 Lineare 2.7 Partielle 2.7 Partielle 1 / 149 2., Linear 2., lineare 2.1 2.2 Lineare 2.1 2.7 Partielle 2 / 149 2.1 Beispiel: Arbeitsmotivation

Mehr

Klausurvorbereitung - Statistik

Klausurvorbereitung - Statistik Aufgabe 1 Klausurvorbereitung - Statistik Studenten der Politikwissenschaft der Johannes Gutenberg-Universität wurden befragt, seit wie vielen Semestern sie eingeschrieben sind. Berechnen Sie für die folgenden

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-06) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike persike@uni-mainz.de

Mehr

Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression. Dipl.-Ing. Robin Ristl Wintersemester 2012/13

Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression. Dipl.-Ing. Robin Ristl Wintersemester 2012/13 Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression Dipl.-Ing. Robin Ristl Wintersemester 2012/13 1 Grundidee: Eine abhängige Variable soll als Linearkombination mehrerer unabhängiger

Mehr

Wiederholung Qualitätssicherung Drittvariablen. Regression II. Statistik I. Sommersemester Statistik I Regression II (1/33) Wiederholung

Wiederholung Qualitätssicherung Drittvariablen. Regression II. Statistik I. Sommersemester Statistik I Regression II (1/33) Wiederholung Regression II Statistik I Sommersemester 2009 Statistik I Regression II (1/33) R 2 Root Mean Squared Error Statistik I Regression II (2/33) Zum Nachlesen Agresti: 9.1-9.4 Gehring/Weins: 8 Schumann: 8.1-8.2

Mehr

Statistik II Übung 2: Multivariate lineare Regression

Statistik II Übung 2: Multivariate lineare Regression Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden

Mehr

Multivariate Regression

Multivariate Regression Multivariate Regression Ziel: Man will überprüfen, welche Variablen wieviel Varianz einer Zielvariable erlären und ob die durch die einzelnen Variablen wegerlärte Varianz signifiant von 0 verschieden ist

Mehr

Einführung in die Korrelationsrechnung

Einführung in die Korrelationsrechnung Einführung in die Korrelationsrechnung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) Korrelationsrechnung

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Ausgangsdaten Bundesliga 2008/2009 Gegeben: Daten zu den 18 Vereinen der ersten Bundesliga

Mehr

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Empirische Softwaretechnik Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 1 Experiment zur Vererbungstiefe Softwaretechnik: die Vererbungstiefe ist kein guter Schätzer für den Wartungsaufwand

Mehr

Musterlösung zur Übungsklausur Statistik

Musterlösung zur Übungsklausur Statistik Musterlösung zur Übungsklausur Statistik WMS15B Oettinger 9/216 Aufgabe 1 (a) Falsch: der Modus ist die am häufigsten auftretende Merkmalsausprägung in einer Stichprobe. (b) Falsch: die beiden Größen sind

Mehr

Multiple Regression. Statistik II

Multiple Regression. Statistik II Statistik II Übersicht Wiederholung Literatur Regression Assoziation und Kausalität Statistische Kontrolle Multivariate Beziehungen Inferenz Das Multivariate Modell Beispiel: Bildung und Verbrechen Fit

Mehr

Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient

Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient Georg Bol bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Agenda 1. Untersuchung der Abhängigkeit 2.

Mehr

Geplante Prüfungen telc Stand: ]

Geplante Prüfungen telc Stand: ] 15.04.16 DTZ kvhs Cochem-Zell 15.04.16 DTZ vhs Mainz 2. Kom. 15.04.16 DTZ vhs Zweibrücken 16.04.16 DTZ kvhs Ahrweiler ausgebucht 16.04.16 DTZ kvhs Südwestpfalz 16.04.16 DTZ vhs Frankenthal 16.04.16 DTZ

Mehr

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell 1 Lineare Regression Parameterschätzung 13 Im einfachen linearen Regressionsmodell sind also neben σ ) insbesondere β 1 und β Parameter, deren Schätzung für die Quantifizierung des linearen Zusammenhangs

Mehr

Branchenmonitoring Gesundheitsfachberufe Rheinland-Pfalz

Branchenmonitoring Gesundheitsfachberufe Rheinland-Pfalz Branchenmonitoring Gesundheitsfachberufe Rheinland-Pfalz Eine Untersuchung des Instituts für Wirtschaft, Arbeit und Kultur (IWAK), Zentrum der Goethe-Universität im Auftrag des Ministeriums für Arbeit,

Mehr

Statistik II Übung 2: Multivariate lineare Regression

Statistik II Übung 2: Multivariate lineare Regression Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden

Mehr

Lineare Regression II

Lineare Regression II Lineare Regression II Varianzanalyse als multiple Regession auf Designvariablen Das lineare Regressionsmodell setzt implizit voraus, dass nicht nur die abhängige, sondern auch die erklärenden Variablen

Mehr

Bivariate Zusammenhänge

Bivariate Zusammenhänge Bivariate Zusammenhänge 40 60 80 Bivariater Zusammenhang: Zusammenhang zwischen zwei Variablen weight (kg) Gibt es einen Zusammenhang zwischen Größe & Gewicht? (am Beispieldatensatz) Offensichtlich positiver

Mehr

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen.

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen. Modul G.1 WS 07/08: Statistik 17.01.2008 1 Wiederholung Kovarianz und Korrelation Kovarianz = Maß für den linearen Zusammenhang zwischen zwei Variablen x und y Korrelation Die Korrelation ist ein standardisiertes

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften t-test Varianzanalyse (ANOVA) Übersicht Vergleich von Mittelwerten 2 Gruppen: t-test einfaktorielle ANOVA > 2 Gruppen: einfaktorielle ANOVA Seeigel und

Mehr

Übungen mit dem Applet. by Michael Gärtner

Übungen mit dem Applet. by Michael Gärtner Übungen mit dem Applet by Michael Gärtner Betreuer: Prof. Dr. Wilhelm Kleppmann Abgabe: 20. October 2006 Inhaltsverzeichnis 1 Prinzip der kleinsten Quadrate 4 2 Quadrierte Abweichungen und Bestimmtheitsmaÿ

Mehr

Literatur: Glantz, S.A. (2002). Primer of Biostatistics. New York: McGraw-Hill.

Literatur: Glantz, S.A. (2002). Primer of Biostatistics. New York: McGraw-Hill. Statistik Literatur: Glantz, S.A. (2002). Primer of Biostatistics. New York: McGraw-Hill. Maxwell, S.E. & Delaney, H.D. (2000). Designing Experiments and Analyzing Data. Mahwah, NJ: Erlbaum. Das Grundproblem

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS Sommersemester 2009, Statistik mit SPSS 28. August 2009 28. August 2009 Statistik Dozentin: mit Anja SPSS Mays 1 Überblick 1. Korrelation vs. Regression 2. Ziel der Regressionsanalyse 3. Syntax für den

Mehr

Lösungsvorschläge zur Klausur Beschreibende Statistik und Wirtschaftsstatistik (Sommersemester 2013)

Lösungsvorschläge zur Klausur Beschreibende Statistik und Wirtschaftsstatistik (Sommersemester 2013) Lösungsvorschläge zur Klausur Beschreibende Statistik und Wirtschaftsstatistik (Sommersemester 203) Aufgabe (9 Punkte) Ein metrisches Merkmal X sei in einer Grundgesamtheit vom Umfang n = 200 diskret klassiert.

Mehr

Inhaltsverzeichnis. 1 Über dieses Buch Zum Inhalt dieses Buches Danksagung Zur Relevanz der Statistik...

Inhaltsverzeichnis. 1 Über dieses Buch Zum Inhalt dieses Buches Danksagung Zur Relevanz der Statistik... Inhaltsverzeichnis 1 Über dieses Buch... 11 1.1 Zum Inhalt dieses Buches... 13 1.2 Danksagung... 15 2 Zur Relevanz der Statistik... 17 2.1 Beispiel 1: Die Wahrscheinlichkeit, krank zu sein, bei einer positiven

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Es können von den Antworten alle, mehrere oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort (ohne Auslassungen

Mehr

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 8.-10. Januar 2010 BOOTDATA.GDT: 250 Beobachtungen für die Variablen... cm:

Mehr

Vorlesung: Statistik I für Studierende der Statistik, Mathematik & Informatik. Regression. Einfache lineare Regression

Vorlesung: Statistik I für Studierende der Statistik, Mathematik & Informatik. Regression. Einfache lineare Regression Vorlesung: Statistik I für Studierende der Statistik, Mathematik & Informatik Regression Dozent: Fabian Scheipl Material: H. Küchenhoff LMU München 39 Einfache lineare Regression Bestimmung der Regressionsgerade

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Analyse und Modellierung von Daten von Prof. Dr. Rainer Schlittgen Universität Hamburg 12., korrigierte Auflage Oldenbourg Verlag München Inhaltsverzeichnis 1 Statistische Daten

Mehr

B. Regressionsanalyse [progdat.sav]

B. Regressionsanalyse [progdat.sav] SPSS-PC-ÜBUNG Seite 9 B. Regressionsanalyse [progdat.sav] Ein Unternehmen möchte den zukünftigen Absatz in Abhängigkeit von den Werbeausgaben und der Anzahl der Filialen prognostizieren. Dazu wurden über

Mehr