ν m n mit Brechungsindex n und m N. (2.2)

Größe: px
Ab Seite anzeigen:

Download "ν m n mit Brechungsindex n und m N. (2.2)"

Transkript

1 2 Resonator Um dem Resonator später als Frequenzlineal nutzen zu können, müssen wir uns zunächst mit seinen Eigenschaften vertraut machen. 2.1 Physik des Resonators Ein Spiegel-Resonator (im Englischen: cavity ) besteht aus zwei auf der optischen Achse liegenden teildurchlässigen Spiegeln S 1 und S 2 im Abstand L. Koppelt man einen Lichtstrahl ein, so kommt es zu konstruktiver Interferenz, wenn der Gangunterschied zwischen hin- und rücklaufendem Strahl ein Vielfaches der Wellenlänge ist. Ein Resonator heißt optisch-stabil, wenn ein paraxialer Lichtstrahl im Resonator auch nach vielen Reflexionen an den Spiegeln den Resonator nicht verlässt. Wir verwenden in diesem Versuch einen konfokalen Resonator, weil er auch bei kleinen Längenänderung stabil bleibt. Die Krümmungsradien R 1 und R 2 der beiden Spiegel entsprechen genau der Länge L des Resonators: R 1 = R 2 = L. Der Gangunterschied zwischen durchlaufendem und reflektiertem Strahl ist beim konfokalen Resonator 4L. 4L = mλ mit λ = c (2.1) ν m = m c 4Ln ν m n mit Brechungsindex n und m N. (2.2) Der Abstand zweier Transmissionslinien heißt freier Spektralbereich ν FSR und beträgt: ν FSR = ν m+1 ν m = c 4Ln (2.3) Diese Transmissionslinien haben aufgrund von Beugungsverlusten und Auskopplung eine endliche Halbwertsbreite δν. Die Finesse F des Resonators ist ein Maß für die Anzahl der Umläufe eines Photons im Resonator und wird über den Quotienten von freiem Spektralbereich und Halbwertsbreite Abbildung 2.1: konfokaler Resonator mit Lichtweg 11

2 2 RESONATOR Abbildung 2.2: Freier Spektralbereich ν und Halbwertsbreite δν berechnet: F = ν FSR (2.4) δν Literaturhinweise: [Mesch] Abschnitt 5.4 Fabry-Perot-Interferometer und Abschnitt 5.5 Optische Resonatoren, [Dem] Abschnitt 5.2 Optische Resonatoren Im Internet findet man einige schöne Java-Applets zum Thema Resonator auf Seite Frequenzmodulation der Laserdiode Das Lichtfeld der Laserdiode lässt sich durch E(t) = E 0 cos(ω 0 t) (2.5) = E 0 2 (eiω 0t + e iω 0t ) (2.6) beschreiben. Die Kreisfrequenz ω 0 ist zum Strom I proportional. Moduliert man den Strom periodisch mit der Modulationsfrequenz ω M : so bewirkt dies eine Frequenzmodulation des Diodenlasers: I(t) = I 0 + I M sin ω M t (2.7) E(t) = E 0 2 ei(ω 0t+M sin ω M t) + c.c. (c.c. = komplex konjugiert) (2.8) Der Modulationsindex M ist eine dimensionslose Größe und hier proportional zu I M. Die momentane Phase ist ψ(t) = ω 0 t+m sin ω M t. Man erhält die Kreisfrequenz durch Ableiten der Phase nach der Zeit: 12 ω(t) = dψ dt = ω 0 + Mω M cos ω M t = ω 0 + β cos ω M t (2.9)

3 2.2 Frequenzmodulation der Laserdiode Abbildung 2.3: Schema des FM-Spektrums bei konstanter Modulationsfrequenz und wachsendem Modulationsindex wobei β = ω M M Frequenzhub heißt. Es gilt wegen (Gleichung 2.13 (siehe Kurzerklärung) mit x = e iω M t und z = M): e im sin ω M t = J n (M)e inω M t n= (2.10) wobei J n die n-te Besselfunktion ist. Man erhält also: E(t) = E 0 2 ei(ω 0t) n= J n (M)e inω M t + c.c. (2.11) Das Lichtfeld setzt sich also aus Komponenten ω 0 ± nω M zusammen. Man nennt J 0 den Träger und J n das Seitenband n-ter Ordnung. Wir interessieren uns für die Intensitäten der einzelnen Frequenzkomponenten, welche zu J 2 n proportional sind. J 2 n ist in Abb aufgetragen. 13

4 2 RESONATOR Abbildung 2.4: Aufbau für die Resonatorexperimente. λ/2: λ/2 Plättchen, PBS: Polarising Beam Splitter, PD: Photodiode Testfragen: Der Resonator Wieso braucht man zwei Spiegel, um den Resonator einzukoppeln? Warum sollte bei einem Resonator die Finesse möglichst groß sein? Welche Wellenlängenänderung ergibt sich aus einer Frequenzänderung von 9, 2 GHz? 2.3 Aufbau Der Strahl ist schon in den Resonator eingekoppelt, wie Abb. 2.4 zeigt. Falls sich der Aufbau des Resonators einmal verstellen sollte, findet ihr in den Kurzerklärungen, wie man den Strahl am besten wieder einkoppelt. Für diesen Versuchsteil benötigen wir maximale Strahlausbeute zum Resonator. An einem Spiegel des Resonators ist ein Piezo-Element befestigt, über das man die Länge des Resonators verändert. Die Länge des Piezo-Elements ist der anliegenden Spannung proportional. Der Piezo darf nur mit positiver Spannung betrieben werden, damit seine Polarität erhalten bleibt. Der Hochvoltverstärker (Abb. 2.5) liefert diese Spannung (Vorsicht Hochspannung!). Über ein offset -Drehpotentiometer wird die Spannung auf ca. +80 V eingestellt (Einstellung 8). Damit stellt man sicher, dass sie auch bei aufmodulierter Span- 14

5 2.3 Aufbau Abbildung 2.5: Hochvoltverstärker nung nicht negativ wird. Man moduliert der Ausgangsspannung des Hochvoltverstärkers über den Frequenzgenerator eine Rampe auf (HV IN), um diese Spannung kontinuierlich und periodisch durchfahren zu können. Das Piezo-Element ist natürlich etwas träge und kann zu schnellen Spannungsänderungen nicht folgen. Daher sollte die Frequenz des aufmodulierten Signals kleiner als 100 Hz sein. Diese Spannungsrampe (HV OUT) wird an das Piezo-Element im Resonator angeschlossen Die Temperaturregelung Über die Temperaturregelung wird der Widerstand des NTCs an der Laserdiode gesteuert. Dabei vergleicht eine Elektronik einen einstellbaren Referenzwiderstand mit dem NTC- Widerstand. An dem Temperaturregelung-Einschub (siehe Abb. 1.3) ist der Referenzwiderstand über eine Grobeinstellung und eine Feineinstellung einzustellen. Bei der Grobeinstellung 12 ist der vorgeschaltete Widerstand Null, bei 11 sind es 5 kω, bei kω, bei 9 15 kω, u.s.w.. Das Drehpotentiometer hat einen Maximalwiderstand von 5 kω, den es bei Einstellung 0,0 annimmt. Bei Einstellung 10,0 ist der Widerstand des Potentiometers 0 kω. Die Abhängigkeit des NTC-Widerstands von der Temperatur ist bekannt (siehe Abb. 2.6 und Abb. 2.7). Bitte lasst die Grobeinstellung auf 8 (entspricht 20 kω), da bei größeren Widerständen (also bei kleinerer Grobeinstellung) die Diode auf Minusgrade gekühlt wird. 15

6 2 RESONATOR Abbildung 2.6: Diagramm NTC-Widerstand gegen Temperatur am NTC Abbildung 2.7: Temperatur gegen Feineinstellung bei Grobeinstellung 8 des Vergleichwiderstandes 16

7 2.4 Durchführung 2.4 Durchführung Aufgaben: Der Resonator 1. Zu bestimmen ist (2.4.1) der freie Spektralbereich ν FSR aus dem freien Spektralbereich die Länge des Resonators die Halbwertsbreite δν als Funktion des Laserstroms die Finesse F des Resonators 2. Miss die Strom-Frequenz-Charakteristik und die Temperatur- Frequenz-Charakteristik der Laserdiode (2.4.2)! 3. Charakterisiere die Frequenzmodulation (2.4.3)! Die Amplitude des aufmodulierten Signals am Frequenzgenerator ist am besten so einzustellen, dass etwa drei Transmissionspeaks zu sehen sind. Man kann die Länge des Resonators ändern, indem man vorsichtig an der Scheibe (hinterer Spiegelhalter) dreht. Wieso werden die Peaks dann kleiner und breiter? Freier Spektralbereich, Halbwertsbreite, Finesse Um den freien Spektralbereich bestimmen zu können, braucht man eine Referenzfrequenz. Die Idee dabei ist, dem Laser eine Radiofrequenz aufzumodulieren. Der Abstand zwischen Träger und n-tem Seitenband entspricht der n-fachen Modulationsfrequenz (siehe 2.2). Erhöhe mit RF-Adj (s. Abb. 2.8) die Leistung des VCO und beobachte am Signal der hinter dem Resonator stehenden Photodiode die Entstehung der Seitenbänder. Diese Transmissionspeaks sind in Abb. 2.9 skizziert. Den Abstand der Seitenbänder benutzen wir zur Eichung der Frequenzachse. Die benötigte Radiofrequenz RF bekommt man über das VCO- System Strom- und Temperatur-Frequenz-Charakteristik Strom-Frequenz-Charakteristik: Wir benutzen nun den Resonator als Spektralanalysator. Verändert man den Strom manuell um I, so kommt es zu einer Frequenzänderung von ν. Diese kann man messen, indem man die Transmissionspeaks abzählt, die eine markierte Stelle passieren. Sind es r Linien, so ist die Frequenzdifferenz ν = r ν FSR. Eleganter ist natürlich, den Strom nicht von Hand zu verändern, sondern ihn zu modulieren und die Transmissionspeaks und die Modulation 17

8 2 RESONATOR Abbildung 2.8: HF-Einschub Abbildung 2.9: Transmissionspeaks mit FM-Modulation 18

9 2.4 Durchführung Max Min Max Min Max Min Max J (1) (0.162) (0.090) (0.062) J (0.339) (0.120) (0.075) J (0.237) (0.089) (0.065) J (0.189) (0.085) 9.76 J (0.160) (0.08) J (0.140) 8.77 Tabelle 2.1: Modulationsindizes für die Minima und Maxima der Intensitäten der Besselfunktionen bis zur 5-ten Ordnung. In Klammern stehen die jeweiligen Amplituden (vgl. Abb. 2.10) mithilfe des Oszilloskops auszumessen. Zu bestimmen ist ν. Um wieviel Prozent kann I man die Laserfrequenz maximal mit dem Strom verändern? Temperatur-Frequenz-Charateristik: Nun wollen wir noch wissen, um wieviel man die Frequenz mit der Temperatur verändern kann. Die Temperatur der Laserdiode wird, wie in 1.1 und beschrieben, über einen NTC geregelt. Man kennt die Abhängigkeit des NTC-Widerstands von der Temperatur (siehe Abb. 2.6, Abb. 2.7 und??) und kann damit die Temperatur-Frequenz-Charakteristik über den freien Spektralbereich des Resonators bestimmen. Nun kann man wieder den Widerstand per Hand am Potentiometerdrehknopf (zur Temperaturfeineinstellung) ändern und damit die Temperatur der Laserdiode. Dadurch verändert man die Frequenz des Laserlichts. Die elegantere Möglichkeit ist (wie bei der Strom-Frequenz-Charakteristik) das Aufmodulieren einer Spannung. Hierbei entspricht eine Spannungsänderung von U = 10V einer Temperaturänderung von T = 0, 39K. Die Modulation sollte langsam erfolgen, damit die Temperaturregelung den Änderungen folgen kann Charakterisierung der Frequenzmodulation Zur Charakterisierung der Frequenzmodulation misst man die Intensitäten des Trägers und der Seitenbänder in Abhängigkeit des Modulationsindexes M (siehe 2.2). Stellt die Amplitude des Frequenzgenerators so ein, dass man nur ein Transmissionssignal beobachtet. An der Einstellung darf während dieser Messung nichts verändert werden. Das VCO-Signal kann man auch direkt am Oszilloskop anschauen und dabei auch die Amplitude verändern. Der Modulationsindex M ist zur Amplitude des VCOs proportional. Ist die Amplitude des VCOs ganz auf Null gedreht, so sieht man einen Peak (man befindet sich beim 1.Maximum der 0.Besselfunktion). Wenn man nun die Amplitude langsam vergrößert, so treten die ersten Seitenbänder hervor und der Peak 0.Ordnung wird kleiner. Der Träger (n = 0) hat sein erstes Maximum bei M = 0, sein 1. Minimum bei M = 2, 405, usw. In Tabelle 2.1 sind die Modulationsindizes für die Minima und Maxima der Intensität der Besselfunktionen angegeben. Vergleicht die Amplituden des VCO s und die jeweiligen Peakhöhen an den ersten 5 chahttp:// 19

10 Abbildung 2.10: Intensitäten der Besselfunktionen rakteristischen Punkten (Minima und Maxima des Trägers und der Seitenbänder) mit den theoretischen Werten aus Tabelle 2.1. (Natürlich muss dazu die Amplitude normiert werden.) Druckt euch ein paar charakteristische Bilder aus. Kurzerklärungen Einkoppeln des Resonators Bevor man den Resonator einkoppelt, sollte der Strahlengang vorjustiert werden, d. h. die Richtung über Strahlteiler und Spiegel einstellen und den Strahl parallel zum optischen Tisch verlaufen lassen, so dass er die Photodiode trifft. Dazu steht eine Justierhilfe zur Verfügung. Dann kann man den Resonator einfügen. Um auf dem Ozilloskop einen Peak zu sehen, muss man natürlich den Resonator scannen. Besselfunktionen Bei der Betrachtung der Besselfunktionen kann man von der Funktion 20 e z 2 (x 1 x ) (2.12) ausgehen. Sie ist für x C\{0} analytisch. Entwickelt man diese Funktion in eine Laurentreihe e z 2 (x 1 x ) = x n J n (z) (2.13) n= so erhält man die Besselfunktionen (Der Faktor 1 2πi J n (z) = 1 2πi dient zur Normierung) z2 x e 4x x n 1 dx (2.14)

11 Kurzerklärungen Eine andere äquivalente Definitionen der Besselfunktion lautet: J n (z) = = { 1 π π 0 1 π π 0 r=0 sin(z sin x) sin nx dx n ungerade cos(z sin x) cos nx dx n gerade ( 1) r ( z 2 )n+2r r!(n + r)! } (2.15) (2.16) Die Besselfunktionen sind symmetrisch für gerades n (J n (M) = J n (M)) und antisymmetrisch für ungerades n (J n (M) = J n (M)). VCO-System Das VCO-System beinhaltet einen spannungsgeregelten Oszillator (Voltage Controlled Oscillator), einen Abschwächer (Attenuator (=ATT)) und einen Richtkoppler (Directional Coupler (DCp)) (Abb. 2.11). Der VCO muss mit +12 V versorgt werden. Dazu gibt es an der Hinterseite mehrerer Einschübe +12 V Anschlüsse. Über CON ist er mit einer Gleichspannung (im RF-Einschub) verbunden, welche die Frequenz des VCOs bestimmt. Man kann über das Drehpotentiometer VCO Tune diese Spannung und somit auch die Frequenz des VCOs verändern. Über den Eingang MOD IN kann dieser Spannung zusätzlich ein Signal aufmoduliert werden (wird hier nicht benötigt). Der Ausgang LO AUX des VCOs ist ein Referenzsignal, das man am VCO Einschub abgreifen und an den Frequenzzähler anschließen kann. Damit kann die Frequenz des VCOs sehr genau eingestellt und abgelesen werden. Die Ausgangsleistung des VCOs wird über einen Abschwächer ATT (im RF-Einschub) mit dem Drehpotentiometer RF Adj (s. Abb. 2.8) eingestellt. Man kann den VCO nicht völlig abschalten, nur die Amplitude verringern. Bevor das RF-Signal der Laserdiode aufmoduliert wird, durchläuft es einen Richtkoppler DCp Ḋieser lässt 99 % der RF- Leistung durch und koppelt zusätzlich über einen Ausgang 1 % ( = -20 db) aus. Das abgezweigte Signal wird nochmal verstärkt und an das Oszilloskop angeschlossen. Abbildung 2.11: VCO-System 21

12 LITERATUR Literatur [Davis] C. C. Davis, Lasers and Electro-Optics: Fundamentals and Engineering, Cambridge University Press (1995). [Dem] W. Demtröder Laserspektroskopie, Springer-Verlag, 4.Auflage (2000). 1.1, 2.1, 3.1 [Dem 3] W. Demtröder Experimentalphysik 3, Atome, Moleküle und Festkörper, Springer- Verlag, 2.Auflage (2000) 1.1, 2.1.3, 3.1 [Gerth] C. Gerthsen, H. Vogel Physik, Springer-Verlag, 18.Auflage (1995) [Hak-Wol] H. Haken, H. C. Wolf Atom- und Quantenphysik, Springer-Verlag, 7. Auflage (2000) 1.1, 2.1.2, 3.1 [Hecht] E. Hecht Optik, Addison-Wesley (1994) [Kneu] F.K. Kneubühl, M.W. Sigrist Laser, Teubner Studienbücher Physik (1999) 1.1 [May-Kuck] T. Mayer-Kuckuk Atomphysik, Teubner Studienbücher Physik (1985) 1.1, [Mesch] D. Meschede Optik, Licht und Laser, Teubner Studienbücher Physik (1999). 1.1, 2.1, [Sieg] Siegmann Laser, University Science Books (1986) [Winn] A. A. Winnacker Physik von Maser und Laser, BI, Mannheim (1984)

Technische Informatik Basispraktikum Sommersemester 2001

Technische Informatik Basispraktikum Sommersemester 2001 Technische Informatik Basispraktikum Sommersemester 2001 Protokoll zum Versuchstag 1 Datum: 17.5.2001 Gruppe: David Eißler/ Autor: Verwendete Messgeräte: - Oszilloskop HM604 (OS8) - Platine (SB2) - Funktionsgenerator

Mehr

Black Box wird. Bitte in dem Kasten nichts verstellen!

Black Box wird. Bitte in dem Kasten nichts verstellen! 1 Laser Wir wollen in diesem Versuch Cäsium spektroskopisch untersuchen. Um Spektroskopieexperimente durchführen zu können, brauchen wir eine Lichtquelle. Dafür ist ein Halbleiterlaser bestens geeignet.

Mehr

Gitterherstellung und Polarisation

Gitterherstellung und Polarisation Versuch 1: Gitterherstellung und Polarisation Bei diesem Versuch wollen wir untersuchen wie man durch Überlagerung von zwei ebenen Wellen Gttterstrukturen erzeugen kann. Im zweiten Teil wird die Sichtbarkeit

Mehr

Praktikum Nr. 3. Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum

Praktikum Nr. 3. Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum Fachhochschule Bielefeld Fachbereich Elektrotechnik Versuchsbericht für das elektronische Praktikum Praktikum Nr. 3 Manuel Schwarz Matrikelnr.: 207XXX Pascal Hahulla Matrikelnr.: 207XXX Thema: Transistorschaltungen

Mehr

Lasertechnik Praktikum. Nd:YAG Laser

Lasertechnik Praktikum. Nd:YAG Laser Lasertechnik Praktikum Nd:YAG Laser SS 2013 Gruppe B1 Arthur Halama Xiaomei Xu 1. Theorie 2. Messung und Auswertung 2.1 Justierung und Beobachtung des Pulssignals am Oszilloskop 2.2 Einfluss der Verstärkerspannung

Mehr

5 Frequenzmodulationsspektroskopie

5 Frequenzmodulationsspektroskopie 5 FREQUENZMODULATIONSSPEKTROSKOPIE 5 Frequenzmodulationsspektroskopie Die Resonanzlinien beschreiben bei der Sättigungsspektroskopie eine Lorentzkurve. Bei Anwenden der Technik der FM-Spektroskopie sehen

Mehr

1. Theorie: Kondensator:

1. Theorie: Kondensator: 1. Theorie: Aufgabe des heutigen Versuchstages war es, die charakteristische Größe eines Kondensators (Kapazität C) und einer Spule (Induktivität L) zu bestimmen, indem man per Oszilloskop Spannung und

Mehr

5.8.8 Michelson-Interferometer ******

5.8.8 Michelson-Interferometer ****** 5.8.8 ****** Motiation Ein wird mit Laser- bzw. mit Glühlampenlicht betrieben. Durch Verschieben eines der beiden Spiegel werden Intensitätsmaxima beobachtet. Experiment S 0 L S S G Abbildung : Aufsicht

Mehr

Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum. Praktikum Nr. 2. Thema: Widerstände und Dioden

Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum. Praktikum Nr. 2. Thema: Widerstände und Dioden Fachhochschule Bielefeld Fachbereich Elektrotechnik Versuchsbericht für das elektronische Praktikum Praktikum Nr. 2 Name: Pascal Hahulla Matrikelnr.: 207XXX Thema: Widerstände und Dioden Versuch durchgeführt

Mehr

Versuch 3. Frequenzgang eines Verstärkers

Versuch 3. Frequenzgang eines Verstärkers Versuch 3 Frequenzgang eines Verstärkers 1. Grundlagen Ein Verstärker ist eine aktive Schaltung, mit der die Amplitude eines Signals vergößert werden kann. Man spricht hier von Verstärkung v und definiert

Mehr

Aufgaben Wechselstromwiderstände

Aufgaben Wechselstromwiderstände Aufgaben Wechselstromwiderstände 69. Eine aus Übersee mitgebrachte Glühlampe (0 V/ 50 ma) soll mithilfe einer geeignet zu wählenden Spule mit vernachlässigbarem ohmschen Widerstand an der Netzsteckdose

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik Projekt 2HEA 2005/06 Formelzettel Elektrotechnik Teilübung: Kondensator im Wechselspannunskreis Gruppenteilnehmer: Jakic, Topka Abgabedatum: 24.02.2006 Jakic, Topka Inhaltsverzeichnis 2HEA INHALTSVERZEICHNIS

Mehr

TP 6: Windenergie. 1 Versuchsaufbau. TP 6: Windenergie -TP 6.1- Zweck der Versuche:...

TP 6: Windenergie. 1 Versuchsaufbau. TP 6: Windenergie -TP 6.1- Zweck der Versuche:... TP 6: Windenergie -TP 6.1- TP 6: Windenergie Zweck der ersuche: 1 ersuchsaufbau Der Aufbau des Windgenerators und des Windkanals (Abb.1) erfolgt mit Hilfe der Klemmreiter auf der Profilschiene. Dabei sind

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

Was meinen die Leute eigentlich mit: Grexit?

Was meinen die Leute eigentlich mit: Grexit? Was meinen die Leute eigentlich mit: Grexit? Grexit sind eigentlich 2 Wörter. 1. Griechenland 2. Exit Exit ist ein englisches Wort. Es bedeutet: Ausgang. Aber was haben diese 2 Sachen mit-einander zu tun?

Mehr

Physik. Lichtgeschwindigkeit

Physik. Lichtgeschwindigkeit hysik Lihtgeshwindigkeit Messung der Lihtgeshwindigkeit in Versuhsaufbau Empfänger s Spiegel Sender l osition 0 d Abb. Versuhsdurhführung Die Spiegel werden auf die osition 0 m geshoben und die hase mit

Mehr

POGGENDORFSCHE KOMPENSATIONSMETHODE

POGGENDORFSCHE KOMPENSATIONSMETHODE Grundpraktikum der Physik Versuch Nr. 23 POGGENDORFSCHE KOMPENSATIONSMETHODE UND WHEATSTONE SCHE BRÜCKENSCHALTUNG Versuchsziel: Stromlose Messung ohmscher Widerstände und kapazitiver Blindwiderstände 1

Mehr

Wärmeleitung und thermoelektrische Effekte Versuch P2-32

Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Vorbereitung Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Iris Conradi und Melanie Hauck Gruppe Mo-02 3. Juni 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Wärmeleitfähigkeit 3 2 Peltier-Kühlblock

Mehr

Physik & Musik. Stimmgabeln. 1 Auftrag

Physik & Musik. Stimmgabeln. 1 Auftrag Physik & Musik 5 Stimmgabeln 1 Auftrag Physik & Musik Stimmgabeln Seite 1 Stimmgabeln Bearbeitungszeit: 30 Minuten Sozialform: Einzel- oder Partnerarbeit Voraussetzung: Posten 1: "Wie funktioniert ein

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Physiklabor 4 Michel Kaltenrieder 10. Februar

Mehr

Aktiver Bandpass. Inhalt: Einleitung

Aktiver Bandpass. Inhalt: Einleitung Aktiver Bandpass Inhalt: Einleitung Aufgabenstellung Aufbau der Schaltung Aktiver Bandpass Aufnahme des Frequenzgangs von 00 Hz bis 00 KHz Aufnahme deer max. Verstärkung Darstellung der gemessenen Werte

Mehr

Lichtbrechung an Linsen

Lichtbrechung an Linsen Sammellinsen Lichtbrechung an Linsen Fällt ein paralleles Lichtbündel auf eine Sammellinse, so werden die Lichtstrahlen so gebrochen, dass sie durch einen Brennpunkt der Linse verlaufen. Der Abstand zwischen

Mehr

PO Doppelbrechung und elliptisch polarisiertes Licht

PO Doppelbrechung und elliptisch polarisiertes Licht PO Doppelbrechung und elliptisch polarisiertes Licht Blockpraktikum Herbst 27 (Gruppe 2b) 24. Oktober 27 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Polarisation.................................. 2 1.2 Brechung...................................

Mehr

Magnetische Induktion

Magnetische Induktion Magnetische Induktion 5.3.2.10 In einer langen Spule wird ein Magnetfeld mit variabler Frequenz und veränderlicher Stärke erzeugt. Dünne Spulen werden in der langen Feldspule positioniert. Die dabei in

Mehr

file://c:\documents and Settings\kfzhans.BUERO1\Local Settings\Temp\39801700-e...

file://c:\documents and Settings\kfzhans.BUERO1\Local Settings\Temp\39801700-e... Page 1 of 5 Komponentennummer 31 Identifikation Die Funktionsweise dieser Sensoren ist normalerweise überall gleich, obwohl sie sich je nach Anwendung oder Hersteller in der Konstruktion unterscheiden

Mehr

Geneboost Best.- Nr. 2004011. 1. Aufbau Der Stromverstärker ist in ein Isoliergehäuse eingebaut. Er wird vom Netz (230 V/50 Hz, ohne Erdung) gespeist.

Geneboost Best.- Nr. 2004011. 1. Aufbau Der Stromverstärker ist in ein Isoliergehäuse eingebaut. Er wird vom Netz (230 V/50 Hz, ohne Erdung) gespeist. Geneboost Best.- Nr. 2004011 1. Aufbau Der Stromverstärker ist in ein Isoliergehäuse eingebaut. Er wird vom Netz (230 V/50 Hz, ohne Erdung) gespeist. An den BNC-Ausgangsbuchsen lässt sich mit einem störungsfreien

Mehr

Messtechnik-Praktikum. Spektrumanalyse. Silvio Fuchs & Simon Stützer. c) Berechnen Sie mit FFT (z.b. ORIGIN) das entsprechende Frequenzspektrum.

Messtechnik-Praktikum. Spektrumanalyse. Silvio Fuchs & Simon Stützer. c) Berechnen Sie mit FFT (z.b. ORIGIN) das entsprechende Frequenzspektrum. Messtechnik-Praktikum 10.06.08 Spektrumanalyse Silvio Fuchs & Simon Stützer 1 Augabenstellung 1. a) Bauen Sie die Schaltung für eine Einweggleichrichtung entsprechend Abbildung 1 auf. Benutzen Sie dazu

Mehr

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der

Mehr

Praktikum GEE Grundlagen der Elektrotechnik Teil 3

Praktikum GEE Grundlagen der Elektrotechnik Teil 3 Grundlagen der Elektrotechnik Teil 3 Jede Gruppe benötigt zur Durchführung dieses Versuchs einen USB-Speicherstick! max. 2GB, FAT32 Name: Studienrichtung: Versuch 11 Bedienung des Oszilloskops Versuch

Mehr

EO Oszilloskop. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April 2007. 1 Einführung 2

EO Oszilloskop. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April 2007. 1 Einführung 2 EO Oszilloskop Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Oszilloskop........................ 2 2.2 Auf- und Entladevorgang

Mehr

Physik 4, Übung 8, Prof. Förster

Physik 4, Übung 8, Prof. Förster Physik 4, Übung 8, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

Halbleiterbauelemente

Halbleiterbauelemente Mathias Arbeiter 20. April 2006 Betreuer: Herr Bojarski Halbleiterbauelemente Statische und dynamische Eigenschaften von Dioden Untersuchung von Gleichrichterschaltungen Inhaltsverzeichnis 1 Schaltverhalten

Mehr

1 mm 20mm ) =2.86 Damit ist NA = sin α = 0.05. α=arctan ( 1.22 633 nm 0.05. 1) Berechnung eines beugungslimitierten Flecks

1 mm 20mm ) =2.86 Damit ist NA = sin α = 0.05. α=arctan ( 1.22 633 nm 0.05. 1) Berechnung eines beugungslimitierten Flecks 1) Berechnung eines beugungslimitierten Flecks a) Berechnen Sie die Größe eines beugungslimitierten Flecks, der durch Fokussieren des Strahls eines He-Ne Lasers (633 nm) mit 2 mm Durchmesser entsteht.

Mehr

Bedienungsanleitung für das Tektronix Oszilloskop TDS 2002B

Bedienungsanleitung für das Tektronix Oszilloskop TDS 2002B Bedienungsanleitung für das Tektronix Oszilloskop TDS 2002B 1.0 Darstellen von Spannungsverläufen periodischer Signale Um das Gerät in Betrieb zu nehmen, schalten Sie es zunächst mit dem Netzschalter,

Mehr

Aufgaben. 2.1. Leiten Sie die Formeln (9) und (10) her! Vorbetrachtungen. Der High-Fall

Aufgaben. 2.1. Leiten Sie die Formeln (9) und (10) her! Vorbetrachtungen. Der High-Fall Aufgaben 2.1. Leiten Sie die Formeln (9) und (10) her! Vorbetrachtungen I. Die open-collector-gatter auf der "in"-seite dürfen erst einen High erkennen, wenn alle open-collector-gatter der "out"-seite

Mehr

Elektrischer Widerstand

Elektrischer Widerstand In diesem Versuch sollen Sie die Grundbegriffe und Grundlagen der Elektrizitätslehre wiederholen und anwenden. Sie werden unterschiedlichen Verfahren zur Messung ohmscher Widerstände kennen lernen, ihren

Mehr

Übungsaufgaben zum 2. Versuch. Elektronik 1 - UT-Labor

Übungsaufgaben zum 2. Versuch. Elektronik 1 - UT-Labor Übungsaufgaben zum 2. Versuch Elektronik 1 - UT-Labor Bild 2: Bild 1: Bild 4: Bild 3: 1 Elektronik 1 - UT-Labor Übungsaufgaben zum 2. Versuch Bild 6: Bild 5: Bild 8: Bild 7: 2 Übungsaufgaben zum 2. Versuch

Mehr

Das Oszilloskop dient zur Messung von Spannungen die sich mit der Zeit verändern. Elektronenstrahl. Vertikalablenkplatten

Das Oszilloskop dient zur Messung von Spannungen die sich mit der Zeit verändern. Elektronenstrahl. Vertikalablenkplatten Das Oszilloskop dient zur Messung von Spannungen die sich mit der Zeit verändern. 14.1 Aufbau und Funktionsweise Aufbau: Vakuumröhre Elektronenstrahl Bildschirm Bildpunkt Elektronenstrahlquelle Horizontalablenkplatten

Mehr

Physik III - Anfängerpraktikum- Versuch 302

Physik III - Anfängerpraktikum- Versuch 302 Physik III - Anfängerpraktikum- Versuch 302 Sebastian Rollke (103095) und Daniel Brenner (105292) 15. November 2004 Inhaltsverzeichnis 1 Theorie 2 1.1 Beschreibung spezieller Widerstandsmessbrücken...........

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

Simulation LIF5000. Abbildung 1

Simulation LIF5000. Abbildung 1 Simulation LIF5000 Abbildung 1 Zur Simulation von analogen Schaltungen verwende ich Ltspice/SwitcherCAD III. Dieses Programm ist sehr leistungsfähig und wenn man weis wie, dann kann man damit fast alles

Mehr

Erstellen einer Collage. Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu])

Erstellen einer Collage. Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu]) 3.7 Erstellen einer Collage Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu]) Dann Größe des Dokuments festlegen beispielsweise A4 (weitere

Mehr

Anleitung über den Umgang mit Schildern

Anleitung über den Umgang mit Schildern Anleitung über den Umgang mit Schildern -Vorwort -Wo bekommt man Schilder? -Wo und wie speichert man die Schilder? -Wie füge ich die Schilder in meinen Track ein? -Welche Bauteile kann man noch für Schilder

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

O10 PhysikalischesGrundpraktikum

O10 PhysikalischesGrundpraktikum O10 PhysikalischesGrundpraktikum Abteilung Optik Michelson-Interferometer 1 Lernziele Aufbau und Funktionsweise von Interferometern, Räumliche und zeitliche Kohärenz, Kohärenzeigenschaften verschiedener

Mehr

Info zum Zusammenhang von Auflösung und Genauigkeit

Info zum Zusammenhang von Auflösung und Genauigkeit Da es oft Nachfragen und Verständnisprobleme mit den oben genannten Begriffen gibt, möchten wir hier versuchen etwas Licht ins Dunkel zu bringen. Nehmen wir mal an, Sie haben ein Stück Wasserrohr mit der

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)

Mehr

7.3 Anwendungsbeispiele aus Physik und Technik

7.3 Anwendungsbeispiele aus Physik und Technik 262 7. Differenzialrechnung 7.3 7.3 Anwendungsbeispiele aus Physik und Technik 7.3.1 Kinematik Bewegungsabläufe lassen sich durch das Weg-Zeit-Gesetz s = s (t) beschreiben. Die Momentangeschwindigkeit

Mehr

31-1. R.W. Pohl, Bd. III (Optik) Mayer-Kuckuck, Atomphysik Lasertechnik, eine Einführung (Physik-Bibliothek).

31-1. R.W. Pohl, Bd. III (Optik) Mayer-Kuckuck, Atomphysik Lasertechnik, eine Einführung (Physik-Bibliothek). 31-1 MICHELSON-INTERFEROMETER Vorbereitung Michelson-Interferometer, Michelson-Experiment zur Äthertheorie und Konsequenzen, Wechselwirkung von sichtbarem Licht mit Materie (qualitativ: spontane und stimulierte

Mehr

UserManual. Handbuch zur Konfiguration einer FRITZ!Box. Autor: Version: Hansruedi Steiner 2.0, November 2014

UserManual. Handbuch zur Konfiguration einer FRITZ!Box. Autor: Version: Hansruedi Steiner 2.0, November 2014 UserManual Handbuch zur Konfiguration einer FRITZ!Box Autor: Version: Hansruedi Steiner 2.0, November 2014 (CHF 2.50/Min) Administration Phone Fax Webseite +41 56 470 46 26 +41 56 470 46 27 www.winet.ch

Mehr

Festigkeit von FDM-3D-Druckteilen

Festigkeit von FDM-3D-Druckteilen Festigkeit von FDM-3D-Druckteilen Häufig werden bei 3D-Druck-Filamenten die Kunststoff-Festigkeit und physikalischen Eigenschaften diskutiert ohne die Einflüsse der Geometrie und der Verschweißung der

Mehr

Aufbau und Bestückung der UHU-Servocontrollerplatine

Aufbau und Bestückung der UHU-Servocontrollerplatine Aufbau und Bestückung der UHU-Servocontrollerplatine Hier im ersten Bild ist die unbestückte Platine zu sehen, die Bestückung der Bauteile sollte in der Reihenfolge der Höhe der Bauteile geschehen, also

Mehr

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 TECHNISCHE UNIVERSITÄT MÜNCHEN Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 Patrick Christ und Daniel Biedermann 16.10.2009 1. INHALTSVERZEICHNIS 1. INHALTSVERZEICHNIS... 2 2. AUFGABE 1...

Mehr

Physikalische Analytik

Physikalische Analytik Labor im Lehrfach Physikalische Analytik Studiengang Applied Life Sciences Versuch IR-Spektroskopie Standort Zweibrücken Gruppe: Teilnehmer: Verfasser: Semester: Versuchsdatum: Bemerkungen: Inhalt 1. Einführung

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein abgegebener Übungszettel aus dem Modul physik2. Dieser Übungszettel wurde nicht korrigiert. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle Übungszettel

Mehr

Messung der Ausgangsspannung an einem FU

Messung der Ausgangsspannung an einem FU Messung der Ausgangsspannung an einem FU Referent: Werner Käsmann Fluke Deutschland GmbH w.kaesmann@fluke.com D 79286 Glottertal Leider gibt es heute noch Motoren, welche ohne Drehzahlregelung betrieben

Mehr

L10N-Manager 3. Netzwerktreffen der Hochschulübersetzer/i nnen Mannheim 10. Mai 2016

L10N-Manager 3. Netzwerktreffen der Hochschulübersetzer/i nnen Mannheim 10. Mai 2016 L10N-Manager 3. Netzwerktreffen der Hochschulübersetzer/i nnen Mannheim 10. Mai 2016 Referentin: Dr. Kelly Neudorfer Universität Hohenheim Was wir jetzt besprechen werden ist eine Frage, mit denen viele

Mehr

Seite 2 E 1. sin t, 2 T. Abb. 1 U R U L. 1 C P Idt 1C # I 0 cos t X C I 0 cos t (1) cos t X L

Seite 2 E 1. sin t, 2 T. Abb. 1 U R U L. 1 C P Idt 1C # I 0 cos t X C I 0 cos t (1) cos t X L Versuch E 1: PHASENVERSCHIEBUNG IM WECHSELSTROMKREIS Stichworte: Elektronenstrahloszillograph Komplexer Widerstand einer Spule und eines Kondensators Kirchhoffsche Gesetze Gleichungen für induktiven und

Mehr

Michelson-Interferometer. Jannik Ehlert, Marko Nonho

Michelson-Interferometer. Jannik Ehlert, Marko Nonho Michelson-Interferometer Jannik Ehlert, Marko Nonho 4. Juni 2014 Inhaltsverzeichnis 1 Einführung 1 2 Auswertung 2 2.1 Thermische Ausdehnung... 2 2.2 Magnetostriktion... 3 2.2.1 Beobachtung mit dem Auge...

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

Oszilloskope. Fachhochschule Dortmund Informations- und Elektrotechnik. Versuch 3: Oszilloskope - Einführung

Oszilloskope. Fachhochschule Dortmund Informations- und Elektrotechnik. Versuch 3: Oszilloskope - Einführung Oszilloskope Oszilloskope sind für den Elektroniker die wichtigsten und am vielseitigsten einsetzbaren Meßgeräte. Ihr besonderer Vorteil gegenüber anderen üblichen Meßgeräten liegt darin, daß der zeitliche

Mehr

Das sogenannte Beamen ist auch in EEP möglich ohne das Zusatzprogramm Beamer. Zwar etwas umständlicher aber es funktioniert

Das sogenannte Beamen ist auch in EEP möglich ohne das Zusatzprogramm Beamer. Zwar etwas umständlicher aber es funktioniert Beamen in EEP Das sogenannte Beamen ist auch in EEP möglich ohne das Zusatzprogramm Beamer. Zwar etwas umständlicher aber es funktioniert Zuerst musst du dir 2 Programme besorgen und zwar: Albert, das

Mehr

Messung elektrischer Größen Bestimmung von ohmschen Widerständen

Messung elektrischer Größen Bestimmung von ohmschen Widerständen Messtechnik-Praktikum 22.04.08 Messung elektrischer Größen Bestimmung von ohmschen Widerständen Silvio Fuchs & Simon Stützer 1 Augabenstellung 1. Bestimmen Sie die Größen von zwei ohmschen Widerständen

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Alle gehören dazu. Vorwort

Alle gehören dazu. Vorwort Alle gehören dazu Alle sollen zusammen Sport machen können. In diesem Text steht: Wie wir dafür sorgen wollen. Wir sind: Der Deutsche Olympische Sport-Bund und die Deutsche Sport-Jugend. Zu uns gehören

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Ausarbeitung zum Versuch Wechselstromwiderstände Versuch 9 des physikalischen Grundpraktikums Kurs I, Teil II an der Universität Würzburg Sommersemester 005 (Blockkurs) Autor: Moritz Lenz Praktikumspartner:

Mehr

Optik II (Beugungsphänomene)

Optik II (Beugungsphänomene) Optik II (Beugungsphänomene) 1 Wellenoptik 2 1 Interferenz von Wellen, Interferenzversuche 3 Überlagerung von Wellen 4 2 Konstruktive und destruktive Interferenz 5 Beugungsphänomene 6 Bei der Interferenz

Mehr

Erstellen von x-y-diagrammen in OpenOffice.calc

Erstellen von x-y-diagrammen in OpenOffice.calc Erstellen von x-y-diagrammen in OpenOffice.calc In dieser kleinen Anleitung geht es nur darum, aus einer bestehenden Tabelle ein x-y-diagramm zu erzeugen. D.h. es müssen in der Tabelle mindestens zwei

Mehr

IU3. Modul Universalkonstanten. Lichtgeschwindigkeit

IU3. Modul Universalkonstanten. Lichtgeschwindigkeit IU3 Modul Universalkonstanten Lichtgeschwindigkeit Die Vakuumlichtgeschwindigkeit beträgt etwa c 3.0 10 8 m/s. Sie ist eine Naturkonstante und soll in diesem Versuch bestimmt werden. Weiterhin wollen wir

Mehr

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W Sie haben für diesen 50 Minuten Zeit. Die zu vergebenen Punkte sind an den Aufgaben angemerkt. Die Gesamtzahl beträgt 20 P + 1 Formpunkt. Bei einer Rechnung wird auf die korrekte Verwendung der Einheiten

Mehr

1 C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R

1 C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R L Ö S U N G E N Seite 7 n Wenn vier Menschen auf einem Quadratmeter stehen, dann hat jeder eine Fläche von 50 mal 50 Zentimeter

Mehr

Grundlagenpraktikum Elektrotechnik Teil 1 Versuch 4: Reihenschwingkreis

Grundlagenpraktikum Elektrotechnik Teil 1 Versuch 4: Reihenschwingkreis ehrstuhl ür Elektromagnetische Felder Friedrich-Alexander-Universität Erlangen-Nürnberg Vorstand: Pro. Dr.-Ing. Manred Albach Grundlagenpraktikum Elektrotechnik Teil Versuch 4: eihenschwingkreis Datum:

Mehr

Michelson Interferometer: Aufbau und Anwendungen. 21. Mai 2015

Michelson Interferometer: Aufbau und Anwendungen. 21. Mai 2015 Michelson Interferometer: Aufbau und Anwendungen 1. Mai 015 1 Prinzipieller Aufbau eines Michelson Interferometers Interferenz zweier ebener elektromagnetischer Wellen gleicher Frequenz, aber unterschiedlicher

Mehr

Praktikum Physik. Protokoll zum Versuch: Kennlinien. Durchgeführt am 15.12.2011. Gruppe X. Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.

Praktikum Physik. Protokoll zum Versuch: Kennlinien. Durchgeführt am 15.12.2011. Gruppe X. Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm. Praktikum Physik Protokoll zum Versuch: Kennlinien Durchgeführt am 15.12.2011 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

Der Kalender im ipad

Der Kalender im ipad Der Kalender im ipad Wir haben im ipad, dem ipod Touch und dem iphone, sowie auf dem PC in der Cloud einen Kalender. Die App ist voreingestellt, man braucht sie nicht laden. So macht es das ipad leicht,

Mehr

Arbeitspunkt einer Diode

Arbeitspunkt einer Diode Arbeitspunkt einer Diode Liegt eine Diode mit einem Widerstand R in Reihe an einer Spannung U 0, so müssen sich die beiden diese Spannung teilen. Vom Widerstand wissen wir, dass er bei einer Spannung von

Mehr

1.1 Auflösungsvermögen von Spektralapparaten

1.1 Auflösungsvermögen von Spektralapparaten Physikalisches Praktikum für Anfänger - Teil Gruppe Optik. Auflösungsvermögen von Spektralapparaten Einleitung - Motivation Die Untersuchung der Lichtemission bzw. Lichtabsorption von Molekülen und Atomen

Mehr

Wie oft soll ich essen?

Wie oft soll ich essen? Wie oft soll ich essen? Wie sollen Sie sich als Diabetiker am besten ernähren? Gesunde Ernährung für Menschen mit Diabetes unterscheidet sich nicht von gesunder Ernährung für andere Menschen. Es gibt nichts,

Mehr

11. Das RSA Verfahren und andere Verfahren

11. Das RSA Verfahren und andere Verfahren Chr.Nelius: Kryptographie (SS 2011) 31 11. Das RSA Verfahren und andere Verfahren Eine konkrete Realisierung eines Public Key Kryptosystems ist das sog. RSA Verfahren, das im Jahre 1978 von den drei Wissenschaftlern

Mehr

3.2 Spiegelungen an zwei Spiegeln

3.2 Spiegelungen an zwei Spiegeln 3 Die Theorie des Spiegelbuches 45 sehen, wenn die Person uns direkt gegenüber steht. Denn dann hat sie eine Drehung um die senkrechte Achse gemacht und dabei links und rechts vertauscht. 3.2 Spiegelungen

Mehr

mysql - Clients MySQL - Abfragen eine serverbasierenden Datenbank

mysql - Clients MySQL - Abfragen eine serverbasierenden Datenbank mysql - Clients MySQL - Abfragen eine serverbasierenden Datenbank In den ersten beiden Abschnitten (rbanken1.pdf und rbanken2.pdf) haben wir uns mit am Ende mysql beschäftigt und kennengelernt, wie man

Mehr

EM-Wellen. david vajda 3. Februar 2016. Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören:

EM-Wellen. david vajda 3. Februar 2016. Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören: david vajda 3. Februar 2016 Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören: Elektrische Stromstärke I Elektrische Spannung U Elektrischer Widerstand R Ladung Q Probeladung q Zeit t Arbeit

Mehr

Experiment 4.1: Übertragungsfunktion eines Bandpasses

Experiment 4.1: Übertragungsfunktion eines Bandpasses Experiment 4.1: Übertragungsfunktion eines Bandpasses Schaltung: Bandpass auf Steckbrett realisieren Signalgenerator an den Eingang des Filters anschließen (50 Ω-Ausgang verwenden!) Eingangs- und Ausgangssignal

Mehr

= i (V) = d 2. v = d! p! n da v 1 = v 2 gilt auch d 1 ÿ p ÿ n 1 = d 2 ÿ p ÿ n 2 (III) p kürzen (Division durch p) d 1 ÿ n 1 = d 2 ÿ n 2 (IV) oder

= i (V) = d 2. v = d! p! n da v 1 = v 2 gilt auch d 1 ÿ p ÿ n 1 = d 2 ÿ p ÿ n 2 (III) p kürzen (Division durch p) d 1 ÿ n 1 = d 2 ÿ n 2 (IV) oder v = d! p! n da v 1 = v 2 (I) (II) gilt auch d 1 ÿ p ÿ n 1 = d 2 ÿ p ÿ n 2 (III) p kürzen (Division durch p) d 1 ÿ n 1 = d 2 ÿ n 2 (IV) oder i = Übersetzungsverhältnis n 1 n 2 = d 2 d 1 = i (V) Beispiel

Mehr

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend

Mehr

Theoretische Grundlagen der Informatik WS 09/10

Theoretische Grundlagen der Informatik WS 09/10 Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3

Mehr

Wir machen neue Politik für Baden-Württemberg

Wir machen neue Politik für Baden-Württemberg Wir machen neue Politik für Baden-Württemberg Am 27. März 2011 haben die Menschen in Baden-Württemberg gewählt. Sie wollten eine andere Politik als vorher. Die Menschen haben die GRÜNEN und die SPD in

Mehr

Summenbildung in Bauteiltabellen mit If Then Abfrage

Summenbildung in Bauteiltabellen mit If Then Abfrage Summenbildung in Bauteiltabellen mit If Then Abfrage Die in Bauteiltabellen ausgelesenen Werte lassen sich in jeder Spalte als Summe berechnen. So können selbstverständlich die Flächen der in der Tabelle

Mehr

Das Experimentierbrettchen (Aufbau, Messpunkte): A B + 9V

Das Experimentierbrettchen (Aufbau, Messpunkte): A B + 9V Kojak-Sirene: Experimente zur Funktionsweise 1. astabile Kippstufe 2. astabile Kippstufe Die Schaltung der Kojak-Sirene besteht aus zwei miteinander verbundenen astabilen Kippstufen (Anhang) und einem

Mehr

10.1 Auflösung, Drucken und Scannen

10.1 Auflösung, Drucken und Scannen Um einige technische Erläuterungen kommen wir auch in diesem Buch nicht herum. Für Ihre Bildergebnisse sind diese technischen Zusammenhänge sehr wichtig, nehmen Sie sich also etwas Zeit und lesen Sie dieses

Mehr

3. Halbleiter und Elektronik

3. Halbleiter und Elektronik 3. Halbleiter und Elektronik Halbleiter sind Stoe, welche die Eigenschaften von Leitern sowie Nichtleitern miteinander vereinen. Prinzipiell sind die Elektronen in einem Kristallgitter fest eingebunden

Mehr

Das Leitbild vom Verein WIR

Das Leitbild vom Verein WIR Das Leitbild vom Verein WIR Dieses Zeichen ist ein Gütesiegel. Texte mit diesem Gütesiegel sind leicht verständlich. Leicht Lesen gibt es in drei Stufen. B1: leicht verständlich A2: noch leichter verständlich

Mehr

Labor Optische Messtechnik

Labor Optische Messtechnik Fachbereich MN Fachhochschule Darmstadt Studiengang Optotechnik und Bildverarbeitung Labor Optische Messtechnik Versuch: Michelson Interferometer durchgeführt am: 30. April 003 Gruppe: Tobias Crößmann,

Mehr

Michelson-Interferometer & photoelektrischer Effekt

Michelson-Interferometer & photoelektrischer Effekt Michelson-Interferometer & photoelektrischer Effekt Branche: TP: Autoren: Klasse: Physik / Physique Michelson-Interferometer & photoelektrischer Effekt Cedric Rey David Schneider 2T Datum: 01.04.2008 &

Mehr

Strom - Spannungscharakteristiken

Strom - Spannungscharakteristiken Strom - Spannungscharakteristiken 1. Einführung Legt man an ein elektrisches Bauelement eine Spannung an, so fließt ein Strom. Den Zusammenhang zwischen beiden Größen beschreibt die Strom Spannungscharakteristik.

Mehr