Willkommen zur sechsten Saalübung

Größe: px
Ab Seite anzeigen:

Download "Willkommen zur sechsten Saalübung"

Transkript

1 Willkommen zur sechsten Saalübung 1

2 Aufgabe 5.1 a) Kontextfreie Grammatik G = (N, {a, b}, S, P ), so dass L(G) die Sprache aller Palindrome über {a, b} ist.. 2

3 Aufgabe 5.1 a) Kontextfreie Grammatik G = (N, {a, b}, S, P ), so dass L(G) die Sprache aller Palindrome über {a, b} ist. N = {S}, P = {S asa bsb a b ɛ}. 3

4 Aufgabe 5.1 b) Ableitung von baaab aus S. N = {S}, P = {S asa bsb a b ɛ}. 4

5 Aufgabe 5.1 b) Ableitung von baaab aus S. N = {S}, P = {S asa bsb a b ɛ} S bsb basab baaab. 5

6 Aufgabe 5.1 c) Ableitung von abaaaba aus S. N = {S}, P = {S asa bsb a b ɛ}. 6

7 Aufgabe 5.1 c) Ableitung von baaab aus S. N = {S}, P = {S asa bsb a b ɛ} S asa absba abasaba abaaaba. 7

8 Aufgabe 5.1 d) Beweisen, dass G jedes Palindrom erzeugt. N = {S}, P = {S asa bsb a b ɛ}. 8

9 Aufgabe 5.1 d) Beweisen, dass G jedes Palindrom erzeugt. N = {S}, P = {S asa bsb a b ɛ} Induktion: Induktionsanfang: ɛ, a, b sind ableitbar aus S. 9

10 Aufgabe 5.1 d) Beweisen, dass G jedes Palindrom erzeugt. N = {S}, P = {S asa bsb a b ɛ} Induktion: Induktionsannahme: Für festes k sind alle Palindrome der Länge k und k + 1 ableitbar aus S. 10

11 Aufgabe 5.1 d) Beweisen, dass G jedes Palindrom erzeugt. N = {S}, P = {S asa bsb a b ɛ} Induktion: Induktionsschritt: Alle Palindrome der Länge k+1 und k+2 sind ableitbar. Palindrome der Länge k + 1: Gilt nach Induktionsannahme. 11

12 Aufgabe 5.1 d) Beweisen, dass G jedes Palindrom erzeugt. N = {S}, P = {S asa bsb a b ɛ} Palindrome der Länge k + 2: w = aw a oder w = bw b. w ist ebenfalls Palindrom, hat Länge k w ableitbar aus S. 12

13 Aufgabe 5.1 d) Beweisen, dass G jedes Palindrom erzeugt. N = {S}, P = {S asa bsb a b ɛ} Palindrome der Länge k + 2: w = aw a oder w = bw b. S asa aw a S bsb bw b 13

14 Aufgabe 5.2 S asb bsa SS ɛ a) w L(G) N a (w) = N b (w).. 14

15 Aufgabe 5.2 S asb bsa SS ɛ a) w L(G) N a (w) = N b (w). Alle aus S ableitbaren Wörter w erfüllen N a (w) = N b (w). In 0 Schriten abgeleitet: N a (S) = N b (S) = 0. 15

16 Aufgabe 5.2 S asb bsa SS ɛ a) w L(G) N a (w) = N b (w). Induktionsannahme: Alle aus S in k Schritten ableitbaren Wörter w erfüllen N a (w) = N b (w). 16

17 Aufgabe 5.2 S asb bsa SS ɛ a) w L(G) N a (w) = N b (w). In k + 1 Schritten: Stimmt für Ersetzungen S SS ɛ. 17

18 Aufgabe 5.2 S asb bsa SS ɛ a) w L(G) N a (w) = N b (w). In k + 1 Schritten: Stimmt für Ersetzungen S asb bsa. 18

19 Aufgabe 5.2 S asb bsa SS ɛ b) N a (w) = N b (w) w L(G).. 19

20 Aufgabe 5.2 S asb bsa SS ɛ b) N a (w) = N b (w) w L(G). Induktionsanfang: Gilt für ɛ. 20

21 Aufgabe 5.2 S asb bsa SS ɛ b) N a (w) = N b (w) w L(G). Induktionsannahme: Gilt für alle Wörter, die höchstens die Länge k haben. 21

22 Aufgabe 5.2 S asb bsa SS ɛ b) N a (w) = N b (w) w L(G). Induktionsschritt: Gilt dann auch für alle Wörter, die höchstens die Länge k + 1 haben. Einziger interessanter Fall: w = k

23 Aufgabe 5.2 S asb bsa SS ɛ b) N a (w) = N b (w) w L(G). w = bw a oder w = aw b: w nach Induktionsannahme ableitbar. S asb aw b. 23

24 Aufgabe 5.2 S asb bsa SS ɛ b) N a (w) = N b (w) w L(G). w = bw b oder w = aw a: w 1 w 2 : w 1 w 2 = w i {1, 2} : N a (w i ) = N b (w i ). 24

25 Aufgabe 5.2 S asb bsa SS ɛ b) N a (w) = N b (w) w L(G). w 1, w 2 ableitbar nach Induktionsvoraussetzung. S SS w 1 S w 1 w 2 = w. 25

26 Aufgabe 5.3 arb gilt, wenn a ein Teiler von b ist. asb gilt, wenn ggt (a, b) = 1 gilt. a) S R angeben.. 26

27 Aufgabe 5.3 arb gilt, wenn a ein Teiler von b ist. asb gilt, wenn ggt (a, b) = 1 gilt. a) S R angeben. S R = S 27

28 Aufgabe 5.3 arb gilt, wenn a ein Teiler von b ist. asb gilt, wenn ggt (a, b) = 1 gilt. b) S R nachrechnen.. 28

29 Aufgabe 5.3 arb gilt, wenn a ein Teiler von b ist. asb gilt, wenn ggt (a, b) = 1 gilt. b) S R nachrechnen. (a, b) S ggt (a, b) = 1 a teilt a. c = a : (a, c) R (c, b) S (a, b) S R. 29

30 Aufgabe 5.3 arb gilt, wenn a ein Teiler von b ist. asb gilt, wenn ggt (a, b) = 1 gilt. b) S R nachrechnen. (a, b) S R c : ggt (c, b) = 1 a teilt c. Jeder gemeinsame Teiler von a und b ist somit gemeinsamer Teiler von c und b. ggt (a, b) = 1 (a, b) S. 30

31 Aufgabe 5.3 arb gilt, wenn a ein Teiler von b ist. asb gilt, wenn ggt (a, b) = 1 gilt. c) R S angeben.. 31

32 Aufgabe 5.3 arb gilt, wenn a ein Teiler von b ist. asb gilt, wenn ggt (a, b) = 1 gilt. c) R S angeben. R S = N 0 N 0 32

33 Aufgabe 5.3 arb gilt, wenn a ein Teiler von b ist. asb gilt, wenn ggt (a, b) = 1 gilt. d) R S nachrechnen.. 33

34 Aufgabe 5.3 arb gilt, wenn a ein Teiler von b ist. asb gilt, wenn ggt (a, b) = 1 gilt. d) R S nachrechnen. (a, b) N 0 N 0, c = 1: c = 1 : (a, c) S (c, b) R (a, b) R S. 34

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 4. Kellerautomaten und kontextfreie Sprachen (II) 11.06.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Klausur zur Vorlesung Grundbegriffe der Informatik 31. August 2009 mit Lösunsgsvorschlägen

Klausur zur Vorlesung Grundbegriffe der Informatik 31. August 2009 mit Lösunsgsvorschlägen Klausur zur Vorlesung Grundbegriffe der Informatik 31. August 2009 mit Lösunsgsvorschlägen Klausurnummer Vorname: Aufgabe 1 2 3 4 5 6 7 max. Punkte 4 4 6 8 6 8 8 tats. Punkte Gesamtpunktzahl: Note: Aufgabe

Mehr

Grundlagen der theoretischen Informatik

Grundlagen der theoretischen Informatik Grundlagen der theoretischen Informatik Kurt Sieber Fakultät IV, Department ETI Universität Siegen SS 2013 Vorlesung vom 14.05.2013 Analog zu Linksableitungen definiert man Definition 2.45 Ein Ableitungsschritt

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 18. Januar 2018 INSTITUT FÜR THEORETISCHE 0 18.01.2018 Dorothea Wagner - Theoretische Grundlagen der Informatik INSTITUT FÜR THEORETISCHE KIT Die Forschungsuniversität

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2015 22.04.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Terminologie 2. Endliche Automaten und reguläre Sprachen

Mehr

Übung Grundbegriffe der Informatik

Übung Grundbegriffe der Informatik Übung Grundbegriffe der Informatik 15. und letzte Übung Karlsruher Institut für Technologie Matthias Janke, Gebäude 50.34, Raum 249 email: matthias.janke ät kit.edu Matthias Schulz, Gebäude 50.34, Raum

Mehr

Lösungen zum Ergänzungsblatt 2

Lösungen zum Ergänzungsblatt 2 Theoretische Informatik I WS 2018 Carlos Camino en zum Ergänzungsblatt 2 Hinweise: In der Literatur sind zwei verschiedene Definitionen der natürlichen Zahlen gängig. Während in der Mathematik-I-Vorlesung

Mehr

Beweis des Pumping Lemmas

Beweis des Pumping Lemmas Beweis des Pumping Lemmas Die Sprache L sei eine Typ-2 Sprache, d.h. es gibt eine Typ-2 Grammatik G =(V,, P, S) in CNF, so dass L = L(G) gilt. Wir fixieren eine solche Grammatik G und wählen n = 2 V. Nun

Mehr

Definition 78 Ein NPDA = PDA (= Nichtdeterministischer Pushdown-Automat) besteht aus:

Definition 78 Ein NPDA = PDA (= Nichtdeterministischer Pushdown-Automat) besteht aus: 4.7 Kellerautomaten In der Literatur findet man häufig auch die Bezeichnungen Stack-Automat oder Pushdown-Automat. Kellerautomaten sind, wenn nichts anderes gesagt wird, nichtdeterministisch. Definition

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Übung am 4.2.2011 INSTITUT FÜR THEORETISCHE INFORMATIK 0 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Binärbäume und Pfade

Binärbäume und Pfade Binärbäume und Pfade Bevor wir uns dem Pumping Lemma für Typ-2 Sprachen widmen, wollen wir einen einfachen Satz über Binärbäume beweisen. Als Binärbaum bezeichnen wir hier einen Baum, bei dem jeder Knoten,

Mehr

Vollständige Induktion

Vollständige Induktion Seite 1 Klaus Messner, klaus_messner@web.de Seite 2 Problem: Problem Man hat eine Aussage (z.b. eine Formel) und soll zeigen, dass diese Aussage für alle natürlichen Zahlen gilt. Beispiel: Es soll gezeigt

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2016 20.04.2016 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Terminologie 2. Endliche Automaten und reguläre Sprachen

Mehr

R a i n e r N i e u w e n h u i z e n K a p e l l e n s t r G r e v e n T e l / F a x / e

R a i n e r N i e u w e n h u i z e n K a p e l l e n s t r G r e v e n T e l / F a x / e R a i n e r N i e u w e n h u i z e n K a p e l l e n s t r. 5 4 8 6 2 8 G r e v e n T e l. 0 2 5 7 1 / 9 5 2 6 1 0 F a x. 0 2 5 7 1 / 9 5 2 6 1 2 e - m a i l r a i n e r. n i e u w e n h u i z e n @ c

Mehr

F r e i t a g, 3. J u n i

F r e i t a g, 3. J u n i F r e i t a g, 3. J u n i 2 0 1 1 L i n u x w i r d 2 0 J a h r e a l t H o l l a, i c h d a c h t e d i e L i n u x - L e u t e s i n d e i n w e n i g v e r n ü n f t i g, a b e r j e t z t g i b t e

Mehr

S o n n t a g, 5. A u g u s t

S o n n t a g, 5. A u g u s t S o n n t a g, 5. A u g u s t 2 0 1 8 R ü c k b l i c k, A b s c h i e d, v i e l p a s s i e r t u n d k e i n e Z e i t D r e i M o n a t e s i n d v e r g a n g e n, v o l l g e s t o p f t m i t s

Mehr

S o n n t a g, 2 6. N o v e m b e r

S o n n t a g, 2 6. N o v e m b e r S o n n t a g, 2 6. N o v e m b e r 2 0 1 7 A u s f l u g n a c h N e v a d a u n d A r i z o n a D e r g r o ß e S o h n u n d i c h g i n g e n a u f e i n e F a h r t i n R i c h t u n g N e v a d a

Mehr

L 3. L a 3. P a. L a m 3. P a l. L a m a 3. P a l m. P a l m e. P o 4. P o p 4. L a. P o p o 4. L a m. Agnes Klawatsch

L 3. L a 3. P a. L a m 3. P a l. L a m a 3. P a l m. P a l m e. P o 4. P o p 4. L a. P o p o 4. L a m. Agnes Klawatsch 1 L 3 P 1 L a 3 P a 1 L a m 3 P a l 1 L a m a 3 P a l m 2 P 3 P a l m e 2 P o 4 L 2 P o p 4 L a 2 P o p o 4 L a m 4 L a m p 6 N a 4 L a m p e 6 N a m 5 5 A A m 6 6 N a m e N a m e n 5 A m p 7 M 5 A m p

Mehr

Fachwissenschaftliche Grundlagen

Fachwissenschaftliche Grundlagen Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 9. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 9. Vorlesung 1 / 17 Themen

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 4. Kellerautomaten und kontextfreie Sprachen (III) 17.06.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Einführung in die Computerlinguistik Kontextfreie Grammatiken und. Kellerautomaten. Dozentin: Wiebke Petersen

Einführung in die Computerlinguistik Kontextfreie Grammatiken und. Kellerautomaten. Dozentin: Wiebke Petersen Einführung in die Computerlinguistik en und Dozentin: Wiebke Petersen 7.1.2010 Wiebke Petersen Einführung CL (WiSe 09/10) 1 kontextfreie Grammatik Denition Eine Grammatik (N, T, S, P) heiÿt kontextfrei,

Mehr

Vollständige Induktion

Vollständige Induktion 30. September 008 Gliederung 1 3 4 Gliederung 1 3 4 Gliederung 1 3 4 Gliederung 1 3 4 Die Peano Axiome für die Menge der Natürlichen Zahlen N I. 0 ist eine natürliche Zahl, d.h. 0 N. II. Jede natürliche

Mehr

Kellerautomaten u. kontextfr. Spr.

Kellerautomaten u. kontextfr. Spr. Kellerautomaten u. kontextfr. Spr. Ziel: Maschinenmodell für die kontextfreien Sprachen. Überblick Greibach-Normalform für kontextfreie Grammatiken Kellerautomaten Beziehung zwischen Kellerautomaten und

Mehr

Vollständige Induktion

Vollständige Induktion 30. September 008 Gliederung 1 3 4 Die Peano Axiome für die Menge der Natürlichen Zahlen N I. 0 ist eine natürliche Zahl, d.h. 0 N. II. Jede natürliche Zahl hat genau einen Nachfolger d.h. n : (n N! n

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 5: Reguläre Ausdrücke und Grammatiken schulz@eprover.org Software Systems Engineering Reguläre Sprachen Bisher: Charakterisierung von Sprachen über Automaten

Mehr

Eine Chomsky-Grammatik für die Fibonacci-Zahlen

Eine Chomsky-Grammatik für die Fibonacci-Zahlen Eine Chomsky-Grammatik für die Fibonacci-Zahlen FSU Jena 26. Juni 2017 rekursive Berechnung Definition Die Fibonacci-Folge ist rekursiv folgendermaßen definiert: f (0) = 0 f (1) = 1 Beginn der Folge: f

Mehr

Vollständige Induktion

Vollständige Induktion Angenommen, wir wollen zeigen, dass eine Aussage P(n) für alle n N wahr ist. Anders ausgedrückt: Es gilt n N : P(n) Hierzu können wir die Technik der vollständigen Induktion verwenden. Wir zeigen, dass

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 13.01.2011 INSTITUT FÜR THEORETISCHE INFORMATIK 0 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Einführung in die Computerlinguistik Formale Grammatiken rechtslineare und kontextfreie Grammatiken Kellerautomaten

Einführung in die Computerlinguistik Formale Grammatiken rechtslineare und kontextfreie Grammatiken Kellerautomaten Einführung in die Computerlinguistik Formale Grammatiken rechtslineare und kontextfreie Grammatiken Kellerautomaten Dozentin: Wiebke Petersen 13. Foliensatz Wiebke Petersen Einführung CL 1 Formale Grammatik

Mehr

Übungen zu Grundlagen der Theoretischen Informatik

Übungen zu Grundlagen der Theoretischen Informatik Übungen zu Grundlagen der Theoretischen Informatik INSTITUT FÜR INFORMATIK UNIVERSITÄT KOBLENZ-LANDAU SS 2013 Lösungen 02 Aufgabe 1 Geben Sie einen regulären Ausdruck für die Sprache aller Wörter über

Mehr

Themen: Kubische Gleichungen, Ungleichungen, Induktion

Themen: Kubische Gleichungen, Ungleichungen, Induktion Lo sungen zu U bungsblatt Mathematik fu r Ingenieure Maschinenbauer und Sicherheitstechniker), 1. Semester, bei Prof. Dr. G. Herbort im WiSe1/14 Dipl.-Math. T. Pawlaschyk, 05.11.1 Themen: Kubische Gleichungen,

Mehr

Hausaufgaben. zur Vorlesung. Vollständige Induktion. 1. Beweist folgende Formeln (zu beweisen ist nur die Gleichheit mit dem. i=1 (4 + i)!

Hausaufgaben. zur Vorlesung. Vollständige Induktion. 1. Beweist folgende Formeln (zu beweisen ist nur die Gleichheit mit dem. i=1 (4 + i)! WS 015/1 Hausaufgaben zur Vorlesung Vollständige Induktion 1. Beweist folgende Formeln zu beweisen ist nur die Gleichheit mit dem! -Zeichen : a 5 + + 7 + 8 + + 4 + n n 4 + i! nn+9 b 1 + + 9 + + n 1 n 1

Mehr

Dank. 1 Ableitungsbäume. 2 Umformung von Grammatiken. 3 Normalformen. 4 Pumping-Lemma für kontextfreie Sprachen. 5 Pushdown-Automaten (PDAs)

Dank. 1 Ableitungsbäume. 2 Umformung von Grammatiken. 3 Normalformen. 4 Pumping-Lemma für kontextfreie Sprachen. 5 Pushdown-Automaten (PDAs) ank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert iese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Sei Σ ein endliches Alphabet. Eine Sprache L Σ ist genau dann regulär, wenn sie von einem regulären Ausdruck beschrieben werden kann.

Sei Σ ein endliches Alphabet. Eine Sprache L Σ ist genau dann regulär, wenn sie von einem regulären Ausdruck beschrieben werden kann. Der Satz von Kleene Wir haben somit Folgendes bewiesen: Der Satz von Kleene Sei Σ ein endliches Alphabet. Eine Sprache L Σ ist genau dann regulär, wenn sie von einem regulären Ausdruck beschrieben werden

Mehr

Kontextfreie Sprachen Kontextfreie Sprachen und Grammatiken. Satzformen sind die Wörter aus (N T ). Notation: Wir verwenden oft

Kontextfreie Sprachen Kontextfreie Sprachen und Grammatiken. Satzformen sind die Wörter aus (N T ). Notation: Wir verwenden oft und Grammatiken (Folie 119, eite 202 im kript) atzformen sind die Wörter aus (N T ). Notation: Wir verwenden oft a, b, c,... für Terminalsymbole A, B, C,... für Nonterminale u, v, w,... für Terminalwörter

Mehr

Informatik 3 Theoretische Informatik WS 2016/17

Informatik 3 Theoretische Informatik WS 2016/17 Zwischenklausur 2 20. Januar 2017 Informatik 3 Theoretische Informatik WS 2016/17 Prof. Dr. Peter Thiemann Albert-Ludwigs-Universität Freiburg Institut für Informatik Name: Übungsgruppe: Schreiben Sie

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 4 Die Ableitungsbeziehung Definition 4.1. Es sei Γ L V eine Ausdrucksmenge in der Sprache der Aussagenlogik zu einer

Mehr

ist ein regulärer Ausdruck.

ist ein regulärer Ausdruck. Dr. Sebastian Bab WiSe 12/13 Theoretische Grlagen der Informatik für TI Termin: VL 11 vom 22.11.2012 Reguläre Ausdrücke Reguläre Ausdrücke sind eine lesbarere Notation für Sprachen Denition 1 (Regulärer

Mehr

Aufgabe 24 Die Wahrheitswerte von A A B und B sind immer gleich:

Aufgabe 24 Die Wahrheitswerte von A A B und B sind immer gleich: Lösungen zu den Aufgaben von Anfang August Aufgabe 24 Die Wahrheitswerte von A A B und B sind immer gleich: Der Wahrheitswert von A A ist immer wahr, da immer entweder A oder A den Wahrheitswert wahr hat.

Mehr

Grammatiken. Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V. Startsymbol S V. Kurzschreibweise G = (V, Σ, P, S)

Grammatiken. Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V. Startsymbol S V. Kurzschreibweise G = (V, Σ, P, S) Grammatiken Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V Startsymbol S V Produktionen P ( (V Σ) \ Σ ) (V Σ) Kurzschreibweise G = (V, Σ, P, S) Schreibweise für Produktion (α, β) P: α β 67 /

Mehr

Brückenkurs Rechentechniken

Brückenkurs Rechentechniken Brückenkurs Rechentechniken Dr. Jörg Horst Technische Universität Dortmund Fakultät für Mathematik SS 2014 1 Vollständige Induktion Vollständige Induktion 2 Funktionenfolgen Punktweise Konvergenz Gleichmäßige

Mehr

Abgabe: (vor der Vorlesung) Aufgabe 7.1 (P) Binomial Heap

Abgabe: (vor der Vorlesung) Aufgabe 7.1 (P) Binomial Heap TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 7 Prof. Dr. Helmut Seidl, S. Pott,

Mehr

Übungsblatt 7. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17

Übungsblatt 7. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 7 Vorlesung Theoretische Grundlagen der Informatik im W 16/17 Ausgabe 17. Januar 2017 Abgabe 31. Januar 2017, 11:00 Uhr (im

Mehr

2.11 Kontextfreie Grammatiken und Parsebäume

2.11 Kontextfreie Grammatiken und Parsebäume 2.11 Kontextfreie Grammatiken und Parsebäume Beispiel: Beispiel (Teil 3): Beweis für L(G) L: Alle Strings aus L der Länge 0 und 2 sind auch in L(G). Als Induktionsannahme gehen wir davon aus, dass alle

Mehr

Übungsblatt 7. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17

Übungsblatt 7. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 7 Vorlesung Theoretische Grundlagen der Informatik im W 16/17 Ausgabe 17. Januar 2017 Abgabe 31. Januar 2017, 11:00 Uhr (im

Mehr

Beispiel 27 (Beweis durch Widerspruch) Satz 28 3 ist irrational, d. h. Beweis: Widerspruchsannahme: 3 Q.

Beispiel 27 (Beweis durch Widerspruch) Satz 28 3 ist irrational, d. h. Beweis: Widerspruchsannahme: 3 Q. Beispiel 27 (Beweis durch Widerspruch) Wir nehmen an, dass die zu zeigende Aussage falsch ist und führen diese Annahme zu einem Widerspruch. Satz 28 3 ist irrational, d. h. 3 / Q. Beweis: Widerspruchsannahme:

Mehr

Probeklausur zur Vorlesung Grundbegrie der Informatik 22. Januar 2016

Probeklausur zur Vorlesung Grundbegrie der Informatik 22. Januar 2016 Probeklausur zur Vorlesung Grundbegrie der Informatik 22. Januar 26 Hinweis: Diese Probeklausur wurde von Tutoren erstellt. Die An-/Abwesenheit bestimmter Aufgabentypen oder auch deren Schwierigkeit in

Mehr

Fachwissenschaftliche Grundlagen

Fachwissenschaftliche Grundlagen Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 8. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 8. Vorlesung 1 / 25 Themen

Mehr

Grundbegriffe der Informatik Aufgabenblatt 2

Grundbegriffe der Informatik Aufgabenblatt 2 Matr.nr.: Nachname: Vorname: Grundbegriffe der Informatik Aufgabenblatt 2 Tutorium: Nr. Name des Tutors: Ausgabe: 29. Oktober 2014 Abgabe: 7. November 2014, 12:30 Uhr im GBI-Briefkasten im Untergeschoss

Mehr

In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0.

In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0. Kapitel 5: Die Einheitengruppe von Z/Z und Primitivwurzeln modulo In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0. 16

Mehr

(Prüfungs-)Aufgaben zu formale Sprachen

(Prüfungs-)Aufgaben zu formale Sprachen (Prüfungs-)Aufgaben zu formale Sprachen (siehe auch bei den Aufgaben zu endlichen Automaten) 1) Eine Grammatik G sei gegeben durch: N = {S, A}, T = {a, b, c, d}, P = { (S, Sa), (S, ba), (A, ba), (A, c),

Mehr

Musterlösung (Stand ) zur Klausur zur Vorlesung Grundbegriffe der Informatik 4. März 2015

Musterlösung (Stand ) zur Klausur zur Vorlesung Grundbegriffe der Informatik 4. März 2015 Musterlösung (Stand 19.3.2015) zur Klausur zur Vorlesung Grundbegriffe der Informatik 4. März 2015 Klausurnummer Nachname: Vorname: Matr.-Nr.: Diese Klausur ist mein 1. Versuch 2. Versuch in GBI Email-Adr.:

Mehr

Induktive Beweise und rekursive Definitionen

Induktive Beweise und rekursive Definitionen Induktive Beweise und rekursive Definitionen Vorlesung Logik in der Informatik, HU Berlin 1. Übungsstunde Beweis durch vollständige Induktion über N Aufgabe 1 Zeige, dass für alle n N gilt: n 2 i = 2 n+1

Mehr

Ein Fragment von Pascal

Ein Fragment von Pascal Ein Fragment von Pascal Wir beschreiben einen (allerdings sehr kleinen) Ausschnitt von Pascal durch eine kontextfreie Grammatik. Wir benutzen das Alphabet Σ = {a,..., z, ;, :=, begin, end, while, do} und

Mehr

8. Übungsblatt zur Mathematik I für Chemiker

8. Übungsblatt zur Mathematik I für Chemiker Fachbereich Mathematik PD Dr. P. Ne WS 007/008 6.1.007 8. Übungsblatt zur Mathematik I für Chemiker Zur Erinnerung, die Formel für die Taylorreihe um die Stelle x 0 lautet f(x) n0 f (n) (x 0 ) (x x 0 )

Mehr

Klausuraufgaben. 1. Wir betrachten die folgende Sprache über dem Alphabet {a, b}

Klausuraufgaben. 1. Wir betrachten die folgende Sprache über dem Alphabet {a, b} Klausuraufgaben 1. Wir betrachten die folgende Sprache über dem Alphabet {a, b} L = {a n b m n > 0, m > 0, n m} a) Ist L kontextfrei? Wenn ja, geben Sie eine kontextfreie Grammatik für L an. Wenn nein,

Mehr

Übung: Algorithmen und Datenstrukturen SS 2007

Übung: Algorithmen und Datenstrukturen SS 2007 Übung: Algorithmen und Datenstrukturen SS 07 Prof. Lengauer Sven Apel, Michael Claÿen, Christoph Zengler, Christof König Blatt 8 Votierung in der Woche vom 25.06.0729.06.07 Aufgabe 22 AVL-Bäume (a) Geben

Mehr

Formale Grundlagen der Informatik

Formale Grundlagen der Informatik Formale Grundlagen der Informatik / 2015 1 Reguläre Ausdrücke Kommen in der Praxis immer dann vor, wenn standardisierte Eingaben erforderlich sind: Telefonnummern: +Land (0) Ort Anschluß Dateinamen: (A-Z,

Mehr

2.1 Direkter Beweis. Theorie der Informatik. Theorie der Informatik. 2.1 Direkter Beweis. 2.2 Indirekter Beweis

2.1 Direkter Beweis. Theorie der Informatik. Theorie der Informatik. 2.1 Direkter Beweis. 2.2 Indirekter Beweis Theorie der Informatik 18. Februar 2015 2. Beweistechniken Theorie der Informatik 2. Beweistechniken 2.1 Direkter Beweis Malte Helmert Gabriele Röger 2.2 Indirekter Beweis Universität Basel 18. Februar

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 13 Erststufige Peano-Arithmetik - Folgerungen und Ableitungen Die in der zweiten Stufe formulierten Dedekind-Peano-Axiome

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 2. Beweistechniken Malte Helmert Gabriele Röger Universität Basel 18. Februar 2015 Beweis Beweis Ein Beweis leitet die Korrektheit einer mathematischen Aussage aus einer Menge von

Mehr

Indexmengen. Definition. n n n. i=1 A i := A 1... A n

Indexmengen. Definition. n n n. i=1 A i := A 1... A n Indexmengen Definition Es sei n N. Für Zahlen a 1,..., a n, Mengen M 1,..., M n und Aussagen A 1,..., A n definieren wir: n i=1 a i := a 1 +... + a n n i=1 a i := a 1... a n n i=1 M i := M 1... M n n i=1

Mehr

10 Kellerautomaten. Kellerautomaten

10 Kellerautomaten. Kellerautomaten 10 Kellerautomaten Bisher hatten wir kontextfreie Sprachen nur mit Hilfe von Grammatiken charakterisiert. Wir haben gesehen, dass endliche Automaten nicht in der Lage sind, alle kontextfreien Sprachen

Mehr

Kapitel 2: Formale Sprachen Gliederung

Kapitel 2: Formale Sprachen Gliederung Gliederung 0. Motivation und Einordnung 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 2.1. Chomsky-Grammatiken 2.2. Reguläre Sprachen 2.3. 2/5, Folie 1 2017 Prof.

Mehr

kontextfreie Grammatiken Theoretische Informatik kontextfreie Grammatiken kontextfreie Grammatiken Rainer Schrader 14. Juli 2009 Gliederung

kontextfreie Grammatiken Theoretische Informatik kontextfreie Grammatiken kontextfreie Grammatiken Rainer Schrader 14. Juli 2009 Gliederung Theoretische Informatik Rainer Schrader Zentrum für Angewandte Informatik Köln 14. Juli 2009 1 / 40 2 / 40 Beispiele: Aus den bisher gemachten Überlegungen ergibt sich: aus der Chomsky-Hierarchie bleiben

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

Übungsaufgaben zu Formalen Sprachen und Automaten

Übungsaufgaben zu Formalen Sprachen und Automaten Universität Freiburg PD Dr. A. Jakoby Sommer 27 Übungen zum Repetitorium Informatik III Übungsaufgaben zu Formalen Sprachen und Automaten. Untersuchen Sie das folgende Spiel: A B x x 2 x 3 C D Eine Murmel

Mehr

Vollständige Induktion

Vollständige Induktion Vollständige Induktion F. Lemmermeyer. Januar 04 Aussagen, die für alle natürlichen Zahlen gelten, kann man oft mit vollständiger Induktion beweisen. Das Vorgehen ist dabei folgendes:. Man zeigt, dass

Mehr

Übung zur Vorlesung Grundlagen der theoretischen Informatik. Aufgabenblatt 2 Lösungen. Wiederholung: von einer Grammatik erzeugte Sprache

Übung zur Vorlesung Grundlagen der theoretischen Informatik. Aufgabenblatt 2 Lösungen. Wiederholung: von einer Grammatik erzeugte Sprache Prof. Dr. Viorica Sofronie-Stokkermans Universität Koblenz-Landau Fachbereich 4: Informatik Dennis Peuter 27. April 2017 Übung zur Vorlesung Grundlagen der theoretischen Informatik Aufgabenblatt 2 Lösungen

Mehr

(e) E = {(ba n b) n n N 0 }

(e) E = {(ba n b) n n N 0 } Prof. J. Esparza Technische Universität München S. Sickert, J. Krämer KEINE ABGABE Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt 1 Übungsblatt Wir unterscheiden zwischen Übungs-

Mehr

Formale Sprachen. Grammatiken und die Chomsky-Hierarchie. Rudolf FREUND, Marian KOGLER

Formale Sprachen. Grammatiken und die Chomsky-Hierarchie. Rudolf FREUND, Marian KOGLER Formale Sprachen Grammatiken und die Chomsky-Hierarchie Rudolf FREUND, Marian KOGLER Grammatiken Das fundamentale Modell zur Beschreibung von formalen Sprachen durch Erzeugungsmechanismen sind Grammatiken.

Mehr

Übersicht. 3 3 Kontextfreie Sprachen

Übersicht. 3 3 Kontextfreie Sprachen Formale Systeme, Automaten, Prozesse Übersicht 3 3.1 Kontextfreie Sprachen und Grammatiken 3.2 Ableitungsbäume 3.3 Die pre -Operation 3.4 Entscheidungsprobleme für CFGs 3.5 Normalformen für CFGs 3.6 Chomsky-Normalform

Mehr

Musterlösungen zu Grundlagen der theoretischen Informatik (skizziert)

Musterlösungen zu Grundlagen der theoretischen Informatik (skizziert) Musterlösungen zu Grundlagen der theoretischen Informatik (skizziert) (3a) L 2 =(a + ε)(ba) (b + ɛ) oderl 2 = ε + L 2 mit L 2 = a(ba) (b + ε)+b(ab) (a + ε) oder L 2 = a +(a + ε)(ba) b(a + ε) L 3 = ε +

Mehr

Was haben wackelnde Tische mit Chomsky-Grammatiken zu tun?

Was haben wackelnde Tische mit Chomsky-Grammatiken zu tun? mit Chomsky-Grammatiken zu tun? mit Chomsky-Grammatiken zu tun? Wir beginnen mit einem vierbeinigen Tisch mit quadratischer Platte. Wir beginnen mit einem vierbeinigen Tisch mit quadratischer Platte. Er

Mehr

Vorkurs Beweisführung

Vorkurs Beweisführung Vorkurs Beweisführung Fachschaft Mathematik und Informatik 30.08.2013 Agenda 1 Einleitung 2 Direkter Beweis 3 Widerspruchsbeweis 4 Vollständige Induktion 5 Aussagen widerlegen 6 Gleichheit von Mengen 7

Mehr

Induktion und Rekursion

Induktion und Rekursion Induktion und Rekursion Induktion und Rekursion Vorkurs Informatik Theoretischer Teil WS 013/14. Oktober 013 Vorkurs Informatik WS 013/14 1/1 Vollständige Induktion Vorkurs Informatik WS 013/14 /1 Ziel

Mehr

Induktive Beweise und rekursive Definitionen

Induktive Beweise und rekursive Definitionen Induktive Beweise und rekursive Definitionen Vorlesung Logik in der Informatik, HU Berlin 1. Übungsstunde Beweis durch vollständige Induktion über N Aufgabe 1 Zeige, dass für alle n N gilt: n 2 i = 2 n+1

Mehr

Klausur zur Vorlesung Grundbegriffe der Informatik 31. August 2009

Klausur zur Vorlesung Grundbegriffe der Informatik 31. August 2009 Klausur zur Vorlesung Grundbegriffe der Informatik 31. August 2009 Klausurnummer Vorname: Aufgabe 1 2 3 4 5 6 7 max. Punkte 4 4 8 8 6 8 8 tats. Punkte Gesamtpunktzahl: Note: Aufgabe 1 (1+1+2 = 4 Punkte)

Mehr

q 0 q gdw. nicht (q A) (q A) q i+1 q gdw. q i q oder ( a Σ) δ(q, a) i δ(q, a) L = {a n b n : n N} für a, b Σ, a b

q 0 q gdw. nicht (q A) (q A) q i+1 q gdw. q i q oder ( a Σ) δ(q, a) i δ(q, a) L = {a n b n : n N} für a, b Σ, a b Kap. 2: Endliche Automaten Myhill Nerode 2.4 Minimalautomat für reguläre Sprache Abschnitt 2.4.3 L Σ regulär der Äuivalenzklassen-Automat zu L ist ein DFA mit minimaler Zustandszahl (= index( L )) unter

Mehr

1 Automatentheorie und Formale Sprachen

1 Automatentheorie und Formale Sprachen Sanders: TGI October 29, 2015 1 1 Automatentheorie und Formale Sprachen 1.1 Allgemeines Sanders: TGI October 29, 2015 2 Beispiel: Arithmetische Ausdrücke:EXPR Σ={1,a,+,,,(,)} a ist Platzhalter für Konstanten

Mehr

Ogden s Lemma (T6.4.2)

Ogden s Lemma (T6.4.2) Weiteres Beispiel L={a r b s c t d u r=0 s=t=u} Nahe liegende Vermutung: L nicht kontextfrei. Kann man mit dem Pumping-Lemma nicht zeigen. r=0: Pumpen erzeugt Wort aus L. r>0: Pumpen der a s erzeugt Wort

Mehr

Grammatiken. Grammatiken sind regelbasierte Kalküle zur Konstruktion von Systemen und Sprachen Überprüfung von Systemen und Sprachen

Grammatiken. Grammatiken sind regelbasierte Kalküle zur Konstruktion von Systemen und Sprachen Überprüfung von Systemen und Sprachen Grammatiken Grammatiken sind regelbasierte Kalküle zur Konstruktion von Systemen und Sprachen Überprüfung von Systemen und Sprachen Grammatiken eignen sich besonders zur Modellierung beliebig tief geschachtelter,

Mehr

Grundlagen der Informatik II

Grundlagen der Informatik II Grundlagen der Informatik II Tutorium 2 Professor Dr. Hartmut Schmeck Miniaufgabe * bevor es losgeht * Finden Sie die drei Fehler in der Automaten- Definition. δ: A = E, S, δ, γ, s 0, F, E = 0,1, S = s

Mehr

TGI-Übung 3 Besprechung Übungsblatt 2

TGI-Übung 3 Besprechung Übungsblatt 2 TGI-Übung 3 Besprechung Übungsblatt 2 Tobias Nilges European Institute of System Security Institute of Cryptography and Security 1 KIT University of the State of Baden-Wuerttemberg and 14.11.12 National

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München akultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 6 11. Juni 2010 Einführung in die Theoretische

Mehr

2. Symmetrische Gruppen

2. Symmetrische Gruppen 14 Andreas Gathmann 2 Symmetrische Gruppen Im letzten Kapitel haben wir Gruppen eingeführt und ihre elementaren Eigenschaften untersucht Wir wollen nun eine neue wichtige Klasse von Beispielen von Gruppen

Mehr

aus der Bedingung/Annahme A folgt ein Widerspruch ), so ist A falsch!

aus der Bedingung/Annahme A folgt ein Widerspruch ), so ist A falsch! Bemerkungen: 1 Die Bedeutung von (und damit ) ist klar. wird oft, vor allem in Beweisen, auch als geschrieben (im Englischen: iff, if and only if). 2 Für zwei boolesche Aussagen A und B ist A B falsch

Mehr

4.6 Beweistechniken Die meisten mathematischen Behauptungen sind von der Form

4.6 Beweistechniken Die meisten mathematischen Behauptungen sind von der Form 4.6 Beweistechniken Die meisten mathematischen Behauptungen sind von der Form A B bzw. (A 1 A k ) B. Um A B zu beweisen, können wir zeigen: 1 Unter der Annahme A können wir B zeigen (direkter Beweis).

Mehr

Zusammenfassung: Beweisverfahren

Zusammenfassung: Beweisverfahren LGÖ Ks VMa 11 Schuljahr 217/218 Zusammenfassung: Beweisverfahren Inhaltsverzeichnis Teilbarkeitslehre... 1 Mathematische Sätze... 1 Bedingungen für Extremstellen und Wendestellen... 2 Beweisverfahren...

Mehr

Automatentheorie und formale Sprachen

Automatentheorie und formale Sprachen Automatentheorie und formale Sprachen VL 8 Chomsky-Grammatiken Kathrin Hoffmann 23. Mai 2012 Hoffmann (HAW Hamburg) Automatentheorie und formale Sprachen 23.5. 2012 250 Wortproblem Wortproblem ist das

Mehr

Umformung NTM DTM. Charakterisierung rek. aufz. Spr. Chomsky-3-Grammatiken (T5.3) Chomsky-0-Grammatik Rek. Aufz.

Umformung NTM DTM. Charakterisierung rek. aufz. Spr. Chomsky-3-Grammatiken (T5.3) Chomsky-0-Grammatik Rek. Aufz. Chomsky-0-Grammatik Rek. Aufz. Satz T5.2.2: Wenn L durch eine Chomsky-0- Grammatik G beschrieben wird, gibt es eine NTM M, die L akzeptiert. Beweis: Algo von M: Schreibe S auf freie Spur. Iteriere: Führe

Mehr

Spracherkennung (Syntaxanalyse)

Spracherkennung (Syntaxanalyse) Kellerautomaten Kellerautomaten 8 Spracherkennung (Syntaxanalyse) Algorithmus gesucht, der für L T (möglichst schnell) entscheidet, ob w L (Lösung des Wortproblems) Grammatik Automat Aufwand rechtslinear

Mehr

Elementare Beweistechniken

Elementare Beweistechniken Elementare Beweistechniken Beispiel: Satzform (Pythagoras) Voraussetzung: Gegeben sei ein beliebiges rechtwinkeliges Dreieck, die Länge der Hypothenuse sei c und die Längen der anderen Seiten seien a und

Mehr

Technische Informatik für Ingenieure WS 2010/2011 Musterlösung Übungsblatt Nr. 4

Technische Informatik für Ingenieure WS 2010/2011 Musterlösung Übungsblatt Nr. 4 Technische Informatik für Ingenieure WS 2010/2011 Musterlösung Übungsblatt Nr. 4 1. November 2010 Übungsgruppenleiter: Matthias Fischer Mouns Almarrani Rafał Dorociak Michael Feldmann Thomas Gewering Benjamin

Mehr

Klausur zur Vorlesung Grundbegriffe der Informatik 14. September 2015 Lösungsvorschläge

Klausur zur Vorlesung Grundbegriffe der Informatik 14. September 2015 Lösungsvorschläge Klausur zur Vorlesung Grundegriffe der Informatik 14. Septemer 2015 svorschläge Klausurnummer Nachname: Vorname: Matr.-Nr.: Diese Klausur ist mein 1. Versuch 2. Versuch in GBI Email-Adr.: nur falls 2.

Mehr

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2.

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2. Theorie der Informatik 24. Februar 2014 2. Aussagenlogik II Theorie der Informatik 2. Aussagenlogik II 2.1 Äquivalenzen Malte Helmert Gabriele Röger 2.2 Vereinfachte Schreibweise Universität Basel 24.

Mehr

Kapitel 3. Kontextfreie Sprachen. Induktive Charakterisierung der Sprache L der korrekten Klammerausdrücke: (w) L, falls w L vw L, falls v, w L

Kapitel 3. Kontextfreie Sprachen. Induktive Charakterisierung der Sprache L der korrekten Klammerausdrücke: (w) L, falls w L vw L, falls v, w L Kapitel 3 Kontextfreie Sprachen Induktive Charakterisierung der Sprache L der korrekten Klammerausdrücke: s. Übung ε L (w) L, falls w L vw L, falls v, w L (R0) (R1) (R2) Für beliebige w {(, )} kann w L

Mehr

Mathematik I 1. Scheinklausur

Mathematik I 1. Scheinklausur Mathematik I 1. Scheinklausur 2.12.2006 Bitte beachten Sie die folgenden Hinweise: Matrikelnummer: Bearbeitungszeit: 120 Minuten Erlaubte Hilfsmittel: Keine Bei den Aufgaben 1,2,4,5,9,und 10 wird nur die

Mehr

Vorlesung 4. Tilman Bauer. 13. September 2007

Vorlesung 4. Tilman Bauer. 13. September 2007 Vorlesung 4 Universität Münster 13. September 2007 Kartesische Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Definition Seien M und N zwei Mengen. Dann bezeichnen wir mit M N das (kartesische)

Mehr