Übungsblatt 7. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Übungsblatt 7. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17"

Transkript

1 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 7 Vorlesung Theoretische Grundlagen der Informatik im W 16/17 Ausgabe 17. Januar 2017 Abgabe 31. Januar 2017, 11:00 Uhr (im Kasten im UG von Gebäude 50.34) Bitte nutzen ie den WebIncribe Deckblattgenerator und heften ie das Deckblatt an Ihr Übungsblatt. Aufgabe 1 (2 + 2 = 4 Punkte) Zeigen ie, dass folgende prachen nicht kontextfrei sind: (a) L 1 = {w {a, b, c} : w a = w b = w c }, wobei w x angibt, wie oft x in w vorkommt. (b) L 2 = { a i b i c j i j }. (a) Idee: widerlege die Annahme, dass L 1 kontextfrei ist, mit dem Pumpinglemma. Nehme also an, dass L 1 kontextfrei ist. Dann existiert nach dem Pumpinglemma ein n N, so dass für jedes Wort z mit z n eine Zerlegung z = uvwxy mit vx 1 und vwx n, so dass uv i wx i y L 1 für alle i 0. Wegen vwx n kann vx kann nicht gleichzeitig a s und c s enthalten. Das Wort uv 2 wx 2 y enthält also nicht gleich viele a s und c s, liegt also nicht in L 1, was ein Widerspruch zur Annahme ist, dass L 1 kontextfrei ist. (b) Idee: widerlege die Annahme, dass L 2 kontextfrei ist, mit Ogdens Lemma. Wähle n als Konstante aus Ogdens Lemma. Betrachte z = a n+1 b n+1 c n+1 L 2 und markiere alle b s. Betrachte Zerlegung z = uvwxy gemäß Ogdens Lemma. Dann muss mindestens ein b zu vx gehören. Da höchstens n markierte Buchstaben zu vwx gehören dürfen, kann vx nicht gleichzeitig a s und c s enthalten. Das Wort uv 0 wx 0 y enthält dann entweder zu viele c s, oder zu viele b s und ist deswegen nicht in L 2 enthalten. Widerspruch. Aufgabe 2 ( = 4 Punkte)

2 Über dem Alphabet Σ = {a, b} sei der reguläre Ausdruck r := (a (ab(b) ba)) gegeben. Gebe eine Typ-k Grammatik mit maximalem k an, die L(r) erzeugt. Die prache L(r) ist regulär und kann somit von einer Typ-3 Grammatik erzeugt werden. Σ = {a, b}, Variablen {, B 1, B 2, B 3, A, T }, tartsymbol a ab 1 ɛ B 1 bb 2 bb 3 B 2 bb 2 bb 3 B 3 ba A at a T ɛ Konstruiere eine Typ-1-Grammatik, welche die prache L = {a n b 2n c n : n 1} erzeugt. Σ = {a, b, c}, Variablen {, A, T, C, U, V }, tartsymbol AT C (1) T AT C (2) T UV (3) AU au b (4) Aa aa (5) V C bv c (6) cc Cc (7) U ɛ (8) V ɛ (9) Konstruiere eine Typ-2-Grammatik, welche die prache L = {w {0, 1} : w 0 = w 1 } erzeugt. Zeigen ie, dass Ihre Grammatik tatsächlich die prache L erzeugt. Die folgende Grammatik G = (Σ, V,, R) mit Alphabet Σ = {0, 1}, Variablen V = {}, tartsymbol, Produktionen R = { ɛ} ist vom Typ 2. Noch zu Zeigen: L(G) = L

3 L(G) L. Gilt weil jede Regel entweder kein Element aus Σ oder genau eine 0 und genau eine 1 erzeugt. L(G) L. ei w ein Wort aus L. Wir beweisen durch strukturelle Induktion, dass w aus durch Produktionen aus R erzeugt werden kann. Induktionshypothese: Alle Wörter aus L mit Länge maximal n sind aus durch die Produktionen R erzeugbar. Induktionsschluss: Alle Wörter aus L mit Länge maximal n + 2 sind aus durch die Produktionen R erzeugbar. ei w L mit Länge n Fall w = 0 w1 bzw w = 1 w0 für ein w. Dann wende die Regel 01 bzw 10 an. Wegen der Induktionshypothese ist w erzeugbar und die Behauptung gilt 2. Fall w = 0 w0. Wegen w 0 = w 1 gilt w = w 1. Deswegen gibt es eine Zerlegung w = uv, u ɛ, v ɛ mit u 0 = u 1 und v 0 = v 1. Finde eine solche Zerlegung (geht in linearer Zeit), wende die Regel and. Mit der Induktionshypothese folgt die Behauptung. 3. Fall w = 1 w1. Geht analog zum 2. Fall. Aufgabe 3 (2+2 = 4 Punkte) ind die prachen von Typ 0 abgeschlossen unter (a) Vereinigung, Durchschnitt, Komplementbildung, (b) Konkatenation? (a) Aus VL bekannt: Chomsky-Typ-0 entspricht genau den semientscheidbaren prachen. Aus Übungsblatt bekannt: emi-entscheidbare prachen sind abgeschlossen unter, aber nicht abgeschossen unter Komplement (b) Chomsky-Typ-0 prachen sind abgeschlossen unter Konkatenation. eien G 1 = (Σ 1, V 1, 1, P 1 ) und G 2 = (Σ 2, V 2, 2, P 2 ) Typ-0 Grammatiken. O.B.d.A seine Σ 1, V 1, Σ 2, V 2 disjunkt. Die Grammatik G = (Σ 1 Σ 2, V 1 V 2,, P 1 P 2 { 1 2 }) erzeugt G 1 G 2. Falls Σ 1, V 1, Σ 2, V 2 nicht disjunkt sind, mache diese disjunkt durch Umbenennung und füge Produktionen in G ein, die die Umbenennung zu Ende rückgängig machen. Aufgabe 4 (4 Punkte)

4 ei G = (Σ, V,, R) die CH-2-Grammatik mit Σ = {a, b}, V = {A, B, C, D, E, } und der folgenden Regelmenge R: A aaa bbb ε A C a B C b C CDE ε D A B ab E Bestimme eine Grammatik G für L(G) in Chomsky-Normalform. 1. chritt: Alle Regeln enthalten auf der rechten eite nur ymbole aus V oder nur ein ymbol aus Σ. A Y a AY a Y b BY b ε A C a B C b C CDE ε D A B ab E Y a Y a Y b Y b 2. chritt: Alle rechten eiten haben Länge 2. A Y a C 1 Y b C 2 ε A C a B C b C CC 3 ε D A B ab E C 1 AY a C 2 BY b C 3 DE

5 3. chritt: Es kommen keine Regeln A ε vor. Berechne V = {A V A ε} = {, C, A, B, D}. A Y a C 1 Y b C 2 A C a B C b C CC 3 C 3 D A B Y a Y b E C 1 AY a Y a C 2 BY b Y b C 3 DE E 4. chritt: Ersetzung aller Kettenregeln A B. Der Abhängigkeitsgraph aller an Kettenregeln beteiligten Variablen ist gegeben durch:... Es gibt nur einen Kreis A C C 3 E mit beteiligten Kettenregeln A, A C, C C 3, C 3 E. Diese Regeln werden gelöscht und alle Vorkommen von, A, C, C 3, E in allen Regeln werden durch ersetzt. Wir erhalten die Regelmenge: Y a C 1 Y b C 2 a B b D Y a Y b C 1 Y a Y a C 2 BY b Y b D Nach Löschen aller Regeln der Form erhalten wir dann: Y a C 1 Y b C 2 a D B b D Y a Y b C 1 Y a Y a C 2 BY b Y b Der Abhängigkeitsgraph aller an Kettenregeln beteiligten Variablen ist nun azyklisch und kann topologisch geordnet werden. Eine mögliche Ordnung ist gegeben durch B, D,, C 1, Y a, C 2, Y b. Wir

6 verarbeiten die Regeln in umgekehrter Reihenfolge und ersetzen Kettenregeln. Y a C 1 Y b C 2 a D B Y a C 1 Y b C 2 a D b D Y a C 1 Y b C 2 a D Y a Y b C 1 Y a a C 2 BY b b Diese Regelmenge ist in Chomsky-Normalform. Zum chluß müssen wir die Grammatik noch ergänzen durch die Regeln ε und für ein neues tartsymbol, da die ursprüngliche Grammatik die Ableitung ε zuläßt. Aufgabe 5 ( ,5 + 1,5 + 1 = 5 Punkte) (a) Bestimme eine möglichst kurze Grammatik G R für reguläre Ausdrücke über dem Alphabet Σ = {0, 1} mit maximalem Chomsky-Typ. (b) Bestimme einen Ableitungsbaum für das Wort (1 0) 1. (c) Ist die Grammatik eindeutig? (d) Bringen ie G R in Chomsky-Normalform. (e) Überprüfen ie die Zugehörigkeit des Worts (1 0) 1 zu L(G R ) mit dem CYK-Algorithmus. (a) Grammatik G R für reguläre Ausdrücke: (b) Ableitungsbaum () ε () 0 1 (c) Es gibt mehrere Wege das Wort 1 (bilde auf ε1 ab oder umgekehrt) aus der Grammatik herzuleiten, daher ist die Grammatik mehrdeutig. (d) Normalisierung: 1. chritt: Alle Regeln enthalten auf der rechten eite nur ymbole aus V oder nur ein ymbol aus Σ. Y Y Y ( Y ) ε 0 1 Y Y Y ( ( Y ) )

7 2. chritt: Alle rechten eiten haben Länge 2. Y C 1 Y ( C 2 ε 0 1 C 1 Y C 2 Y ) Y Y Y ( ( Y ) ) Grammatik ist schon in Chomsky-Normalform. (e) CYK-Tabelle: C 2 C 1 C 2 Y ( Y Y ) Y ( 1 0 ) 1 Aufgabe 6 (1 + 4 = 5 Punkte) Gegeben sei die Grammatik G 1 = (Σ, V,, R) mit Σ = {a, b}, V = {, A, B} und der Regelmenge R: aa ε A a bb B bb ba. (a) Welchen Chomsky-Typ hat G 1? (b) Konstruiere einen nichtdeterministischen endlichen Automaten für L(G) mithilfe des Verfahrens aus dem kript. (a) G 1 ist eine CH-2-Grammatik.

8 (b) 1. chritt: Alle Regeln enthalten auf der rechten eite nur ymbole aus V oder nur ein ymbol aus Σ. A Y a B Y a C A B C Y c AY d B BY a ε D Y d Y d DD 2. chritt: Alle rechten eiten haben Länge 2. A Y a B Y a C A B C Y c C 1 B BY a ε D Y d Y d C 2 C 1 AY d 3. chritt: Es kommen keine Regeln A ε vor. Berechne V = {A V A ε} = {A, B}. Wir streichen die Regel B ε und führen als neue Regeln Y a, B Y a, C 1 Y d ein. A Y a B Y a C Y a A B C Y c C 1 B BY a Y a D Y d Y d C 2 C 1 AY d Y d 4. chritt: Ersetzung aller Kettenregeln A B. Es gibt nur einen Kreis: A B mit beteiligten Regeln A, A B, B. Diese Regeln werden gelöscht und alle Vorkommen

9 von, A, B in allen Regeln werden durch ersetzt. Wir erhalten die Regelmenge: Y a Y a C Y a C Y c C 1 Y a Y a D Y d Y d C 2 C 1 Y d Y d Nach Löschen aller Regeln der Form erhalten wir dann: Y a Y a C Y a C Y c C 1 Y a D Y d Y d C 2 C 1 Y d Y d Topologisches ortieren der verbleibenden an Kettenregeln beteiligten Variablen liefert z.b. die Reihenfolge der Variablen, C, Y a, D, C 1, Y c, Y d. Wir verarbeiten die Regeln in umgekehrter Reihenfolge und ersetzen Kettenregeln. Y a Y a C a d Y d C 2 c Y c C 1 Y a C d Y d C 2 c D d Y d C 2 C 1 Y d d Diese Regelmenge ist in Chomsky-Normalform. Zum chluß müssen wir die Grammatik noch ergänzen durch die Regeln ε und für ein neues tartsymbol, da die ursprüngliche Grammatik die Ableitung ε zuläßt.

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 15.01.2015 INSTITUT FÜR THEORETISCHE 0 KIT 15.01.2015 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 6 Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Ausgabe 10. Januar 2018 Abgabe 23. Januar 2018, 11:00 Uhr (im

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 17. Januar 2012 INSTITUT FÜR THEORETISCHE 0 KIT 18.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien Automaten und formale prachen Notizen zu den Folien 10 Kontextfreie Grammatiken Beispiele für kontextfreien Grammatiken ei Σ = {a, b}. Beispiel 1 (Folie 211, oben) Geben ie eine kontextfreie Grammatik

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien Automaten und formale prachen Notizen zu den Folien 10 Kontextfreie Grammatiken Beispiele für kontextfreien Grammatiken ei Σ = {a, b}. Beispiel 1 (Folie 233, oben) Geben ie eine kontextfreie Grammatik

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 4. Kellerautomaten und kontextfreie Sprachen (III) 17.06.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 12.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

Übungen zur Vorlesung Einführung in die Theoretische Informatik, Blatt 12 LÖSUNGEN

Übungen zur Vorlesung Einführung in die Theoretische Informatik, Blatt 12 LÖSUNGEN Universität Heidelberg / Institut für Informatik 7. Juli 24 Prof. Dr. Klaus Ambos-Spies Nadine Losert Übungen zur Vorlesung Einführung in die Theoretische Informatik, Blatt 2 LÖSUNGEN Aufgabe Verwenden

Mehr

Tutoraufgabe 1 (ɛ-produktionen):

Tutoraufgabe 1 (ɛ-produktionen): Prof aa Dr J Giesl Formale Systeme, Automaten, Prozesse SS 2010 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Hausaufgaben sollen in Gruppen von je 2 Studierenden aus dem gleichen Tutorium

Mehr

1. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004. Mit Lösung!

1. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004. Mit Lösung! Universität Karlsruhe Theoretische Informatik Fakultät für Informatik WS 23/4 ILKD Prof. Dr. D. Wagner 2. Februar 24. Klausur zur Vorlesung Informatik III Wintersemester 23/24 Mit Lösung! Beachten Sie:

Mehr

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 7

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 7 Prof. J. Esparza Technische Universität München S. Sickert, J. Krämer KEINE ABGABE Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt 7 Übungsblatt Wir unterscheiden zwischen Übungs-

Mehr

Beschreibungskomplexität von Grammatiken Definitionen

Beschreibungskomplexität von Grammatiken Definitionen Beschreibungskomplexität von Grammatiken Definitionen Für eine Grammatik G = (N, T, P, S) führen wir die folgenden drei Komplexitätsmaße ein: Var(G) = #(N), Prod(G) = #(P ), Symb(G) = ( α + β + 1). α β

Mehr

Algorithmen und Datenstrukturen (EI)

Algorithmen und Datenstrukturen (EI) Algorithmen und Datenstrukturen (EI) ADS Zentralübung Stefan Schmid 4. Februar 2009 Einturnen... Ein heutiger Computer aus dem Saturn ist im Prinzip eine Turing Maschine? Nein. Zum Beispiel Sprache L =

Mehr

Übungsblatt 7. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18

Übungsblatt 7. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 7 Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Ausgabe 24. Januar 2018 Abgabe 6. Februar 2018, 11:00 Uhr (im

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik 1 Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Wintersemester 2014/15 2 Kontextfreie Grammatiken Definition: Eine Grammatik G

Mehr

Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14

Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14 Kapitel: Die Chomsky Hierarchie Die Chomsky Hierarchie 1 / 14 Allgemeine Grammatiken Definition Eine Grammatik G = (Σ, V, S, P) besteht aus: einem endlichen Alphabet Σ, einer endlichen Menge V von Variablen

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Übung am 02.02.2012 INSTITUT FÜR THEORETISCHE 0 KIT 06.02.2012 Universität des Andrea Landes Schumm Baden-Württemberg - Theoretische und Grundlagen der Informatik

Mehr

Musterlösung Informatik-III-Klausur

Musterlösung Informatik-III-Klausur Musterlösung Informatik-III-Klausur Aufgabe 1 (1+4+3+4 Punkte) (a) 01010 wird nicht akzeptiert: s q 0 q 1 q 2 f q 2 10101 wird akzeptiert: s q 2 q 2 f q 2 f (b) ε: {s, q 0, q 1, q 2 }, {f} 0: {s, q 0,

Mehr

Aufgabe Mögliche Punkte Erreichte Punkte a b c d Σ a b c d Σ x1 13

Aufgabe Mögliche Punkte Erreichte Punkte a b c d Σ a b c d Σ x1 13 Universität Karlsruhe Theoretische Informatik Fakultät für Informatik WS 2003/04 ILKD Prof. Dr. D. Wagner 14. April 2004 2. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004 Hier Aufkleber

Mehr

Kontextfreie Sprachen

Kontextfreie Sprachen Kontextfreie Sprachen Bedeutung: Programmiersprachen (Compilerbau) Syntaxbäume Chomsky-Normalform effiziente Lösung des Wortproblems (CYK-Algorithmus) Grenzen kontextfreier Sprachen (Pumping Lemma) Charakterisierung

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 18. Januar 2018 INSTITUT FÜR THEORETISCHE 0 18.01.2018 Dorothea Wagner - Theoretische Grundlagen der Informatik INSTITUT FÜR THEORETISCHE KIT Die Forschungsuniversität

Mehr

Automatentheorie und formale Sprachen

Automatentheorie und formale Sprachen Automatentheorie und formale Sprachen VL 8 Chomsky-Grammatiken Kathrin Hoffmann 23. Mai 2012 Hoffmann (HAW Hamburg) Automatentheorie und formale Sprachen 23.5. 2012 250 Wortproblem Wortproblem ist das

Mehr

I.5. Kontextfreie Sprachen

I.5. Kontextfreie Sprachen I.5. Kontextfreie prachen Zieht man in Betracht, dass BNF-yteme gerade so beschaffen sind, dass auf der linken eite immer genau ein Nichtterminal steht, so sind das also gerade die Ableitungsregeln einer

Mehr

Übung zur Vorlesung Grundlagen der theoretischen Informatik. Aufgabenblatt 7 Lösungen. Wiederholung: Pumping-Lemma für kontextfreie Sprachen

Übung zur Vorlesung Grundlagen der theoretischen Informatik. Aufgabenblatt 7 Lösungen. Wiederholung: Pumping-Lemma für kontextfreie Sprachen Prof. Dr. Viorica Sofronie-Stokkermans Universität Koblenz-Landau Fachbereich 4: Informatik Dennis Peuter 01. Juni 2017 Übung zur Vorlesung Grundlagen der theoretischen Informatik Aufgabenblatt 7 Lösungen

Mehr

Übungsblatt Nr. 3. Lösungsvorschlag

Übungsblatt Nr. 3. Lösungsvorschlag Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Dirk Achenbach Tobias Nilges Vorlesung Theoretische Grundlagen der Informatik Übungsblatt Nr. 3 Aufgabe 1: Karlsruhe ist nicht genug

Mehr

Kontextfreie Sprachen

Kontextfreie Sprachen Kontextfreie Sprachen besitzen große Bedeutung im Compilerbau Chomsky-Normalform effiziente Lösung des Wortproblems (CYK-Algorithmus) Grenzen kontextfreier Sprachen (Pumping Lemma) Charakterisierung durch

Mehr

Klammersprache Definiere

Klammersprache Definiere Klammersprache w=w 1...w n {(,)}* heißt korrekt geklammert, falls die Anzahl ( ist gleich der Anzahl ). in jedem Anfangsstück w 1,...,w i (i n) ist die Anzahl ( nicht kleiner als die Anzahl ). Definiere

Mehr

Hochschule Bonn-Rhein-Sieg University of Applied Sciences Grantham-Allee Sankt Augustin

Hochschule Bonn-Rhein-Sieg University of Applied Sciences Grantham-Allee Sankt Augustin Hochschule Bonn-Rhein-Sieg Uniersity of Applied Sciences Grantham-Allee 20 53757 Sankt Augustin Director b-it Applied Science Institute Fachbereich Informatik Prof. Dr. Kurt-Ulrich Witt Mathematische und

Mehr

Definition 4 (Operationen auf Sprachen) Beispiel 5. Seien A, B Σ zwei (formale) Sprachen. Konkatenation: AB = {uv ; u A, v B} A + = n 1 An

Definition 4 (Operationen auf Sprachen) Beispiel 5. Seien A, B Σ zwei (formale) Sprachen. Konkatenation: AB = {uv ; u A, v B} A + = n 1 An Definition 4 (Operationen auf Sprachen) Seien A, B Σ zwei (formale) Sprachen. Konkatenation: AB = {uv ; u A, v B} A 0 = {ɛ}, A n+1 = AA n A = n 0 An A + = n 1 An Beispiel 5 {ab, b}{a, bb} = {aba, abbb,

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik im WiSe 2003/2004

Lösung zur Klausur. Grundlagen der Theoretischen Informatik im WiSe 2003/2004 Lösung zur Klausur Grundlagen der Theoretischen Informatik im WiSe 2003/2004 1. Geben Sie einen deterministischen endlichen Automaten an, der die Sprache aller Wörter über dem Alphabet {0, 1} akzeptiert,

Mehr

2. Teilklausur zur Vorlesung Grundlagen der Theoretischen Informatik

2. Teilklausur zur Vorlesung Grundlagen der Theoretischen Informatik 2. Teilklausur zur Vorlesung Grundlagen der Theoretischen Informatik Ulrich Furbach Claudia Schon Christian Schwarz Arbeitsgruppe Künstliche Intelligenz Fachbereich Informatik, Universität Koblenz-Landau

Mehr

Motivation natürliche Sprachen

Motivation natürliche Sprachen Motivation natürliche Sprachen (Satz) (Substantivphrase)(Verbphrase) (Satz) (Substantivphrase)(Verbphrase)(Objektphrase) (Substantivphrase) (Artikel)(Substantiv) (Verbphrase) (Verb)(Adverb) (Substantiv)

Mehr

Pumping-Lemma. Beispiel. Betrachte die kontextsensitive Grammatik G mit den Produktionen. S asbc abc CB HB HB HC HC BC ab ab bb bb bc bc cc cc.

Pumping-Lemma. Beispiel. Betrachte die kontextsensitive Grammatik G mit den Produktionen. S asbc abc CB HB HB HC HC BC ab ab bb bb bc bc cc cc. Pumping-Lemma Beispiel Betrachte die kontextsensitive Grammatik G mit den Produktionen S asbc abc CB HB HB HC HC BC ab ab bb bb bc bc cc cc. Sie erzeugt z.b. das Wort aabbcc: S asbc aabcbc aabhbc aabhcc

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 4. Kellerautomaten und kontextfreie Sprachen (II) 11.06.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Kontextfreie (Typ-2) Sprachen

Kontextfreie (Typ-2) Sprachen Kontextfreie (Typ-2) prachen Bsp.: L 1 = { n 1 n n>} с {,1}* 1 1 L 2 = {w wє{,1}* und w=w rev } с {,1}* 11 1 ε L 3 = {w w hat genausoviele Nullen wie Einsen} с {,1}* B 1 ε 1 B 1 1 BB 1 11 11 11 11B 111

Mehr

Informales Beispiel. Formale Grundlagen der Informatik 1 Kapitel 6 Eigenschaften kontextfreier Sprachen. Grammatiken. Anmerkungen

Informales Beispiel. Formale Grundlagen der Informatik 1 Kapitel 6 Eigenschaften kontextfreier Sprachen. Grammatiken. Anmerkungen Informales Beispiel Formale Grundlagen der Informatik 1 Kapitel 6 Eigenschaften kontextfreier Sprachen Frank Heitmann heitmann@informatik.uni-hamburg.de 22. April 2014 I L IL ID L a b c D 0 1 2 3 4 Eine

Mehr

2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2016/2017

2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2016/2017 2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2016/2017 Hier Aufkleber mit Name und Matrikelnummer anbringen Vorname: Nachname: Matrikelnummer: Beachten Sie: Bringen Sie

Mehr

2. Gegeben sei folgender nichtdeterministischer endlicher Automat mit ɛ-übergängen:

2. Gegeben sei folgender nichtdeterministischer endlicher Automat mit ɛ-übergängen: Probeklausur Automatentheorie & Formale Sprachen WiSe 2012/13, Wiebke Petersen Name: Matrikelnummer: Aufgabe A: Typ3-Sprachen 1. Konstruieren Sie einen endlichen Automaten, der die Sprache aller Wörter

Mehr

Informatik 3 Theoretische Informatik WS 2016/17

Informatik 3 Theoretische Informatik WS 2016/17 Zwischenklausur 2 20. Januar 2017 Informatik 3 Theoretische Informatik WS 2016/17 Prof. Dr. Peter Thiemann Albert-Ludwigs-Universität Freiburg Institut für Informatik Name: Übungsgruppe: Schreiben Sie

Mehr

(Prüfungs-)Aufgaben zu formale Sprachen

(Prüfungs-)Aufgaben zu formale Sprachen (Prüfungs-)Aufgaben zu formale Sprachen (siehe auch bei den Aufgaben zu endlichen Automaten) 1) Eine Grammatik G sei gegeben durch: N = {S, A}, T = {a, b, c, d}, P = { (S, Sa), (S, ba), (A, ba), (A, c),

Mehr

Zentralübung zur Vorlesung Theoretische Informatik

Zentralübung zur Vorlesung Theoretische Informatik SS 2015 Zentralübung zur Vorlesung Theoretische Informatik Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2015ss/theo/uebung/ 7. Mai 2015 ZÜ THEO ZÜ IV Übersicht: 1.

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 4. Kellerautomaten und kontextfreie Sprachen (I) 3.06.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Organisatorisches 1. Teilklausur: Mittwoch,

Mehr

Sei Σ ein endliches Alphabet. Eine Sprache L Σ ist genau dann regulär, wenn sie von einem regulären Ausdruck beschrieben werden kann.

Sei Σ ein endliches Alphabet. Eine Sprache L Σ ist genau dann regulär, wenn sie von einem regulären Ausdruck beschrieben werden kann. Der Satz von Kleene Wir haben somit Folgendes bewiesen: Der Satz von Kleene Sei Σ ein endliches Alphabet. Eine Sprache L Σ ist genau dann regulär, wenn sie von einem regulären Ausdruck beschrieben werden

Mehr

Kontextfreie Sprachen Kontextfreie Sprachen und Grammatiken. Satzformen sind die Wörter aus (N T ). Notation: Wir verwenden oft

Kontextfreie Sprachen Kontextfreie Sprachen und Grammatiken. Satzformen sind die Wörter aus (N T ). Notation: Wir verwenden oft und Grammatiken (Folie 119, eite 202 im kript) atzformen sind die Wörter aus (N T ). Notation: Wir verwenden oft a, b, c,... für Terminalsymbole A, B, C,... für Nonterminale u, v, w,... für Terminalwörter

Mehr

Chomsky-Grammatiken 16. Chomsky-Grammatiken

Chomsky-Grammatiken 16. Chomsky-Grammatiken Chomsky-Grammatiken 16 Chomsky-Grammatiken Ursprünglich von Chomsky in den 1950er Jahren eingeführt zur Beschreibung natürlicher Sprachen. Enge Verwandschaft zu Automaten Grundlage wichtiger Softwarekomponenten

Mehr

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Pumping-Lemma für kontextfreie Sprachen, Abschlußeigenschaften kontextfreier Sprachen und die Komplexität natürlicher Sprachen Dozentin: Wiebke Petersen WS 2004/2005

Mehr

Nachklausur zur Vorlesung Einführung in die Theoretische Informatik

Nachklausur zur Vorlesung Einführung in die Theoretische Informatik Universität Heidelberg 11. Oktober 2012 Institut für Informatik Prof. Dr. Klaus Ambos-Spies Dipl.-Math. Thorsten Kräling Nachklausur zur Vorlesung Einführung in die Theoretische Informatik Musterlösungen

Mehr

Grundlagen der Informatik II Übungsblatt: 1, WS 17/18 mit Lösungen

Grundlagen der Informatik II Übungsblatt: 1, WS 17/18 mit Lösungen PD. Dr. Pradyumn hukla Marlon Braun Micaela Wünsche Dr. Friederike Pfeiffer-Bohnen Dr. Lukas König Institut für Angewandte Informatik und Formale Beschreibungsverfahren Grundlagen der Informatik II Übungsblatt:,

Mehr

Umformung NTM DTM. Charakterisierung rek. aufz. Spr. Chomsky-3-Grammatiken (T5.3) Chomsky-0-Grammatik Rek. Aufz.

Umformung NTM DTM. Charakterisierung rek. aufz. Spr. Chomsky-3-Grammatiken (T5.3) Chomsky-0-Grammatik Rek. Aufz. Chomsky-0-Grammatik Rek. Aufz. Satz T5.2.2: Wenn L durch eine Chomsky-0- Grammatik G beschrieben wird, gibt es eine NTM M, die L akzeptiert. Beweis: Algo von M: Schreibe S auf freie Spur. Iteriere: Führe

Mehr

Formale Sprachen. Script, Kapitel 4. Grammatiken

Formale Sprachen. Script, Kapitel 4. Grammatiken Formale Sprachen Grammatiken Script, Kapitel 4 erzeugen Sprachen eingeführt von Chomsky zur Beschreibung natürlicher Sprache bedeutend für die Syntaxdefinition und -analyse von Programmiersprachen Automaten

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Übung am 3..2 INSTITUT FÜR THEORETISCHE KIT 7..2 Universität des Andrea Landes Schumm Baden-Württemberg - Theoretische und Grundlagen der Informatik INSTITUT FÜR

Mehr

Normalformen für kontextfreie Grammatiken. Noam CHOMSKY, Sheila GREIBACH. Bäume. Ableitungen in kontextfreien Grammatiken. Grammatik G = (N,T,P,S)

Normalformen für kontextfreie Grammatiken. Noam CHOMSKY, Sheila GREIBACH. Bäume. Ableitungen in kontextfreien Grammatiken. Grammatik G = (N,T,P,S) Noam CHOMSKY, Sheila GREIBACH Normalformen für kontextfreie Grammatiken Noam CHOMSKY (*1928 ) Sheila GREIBACH (*1939) Grammatik G = (N,T,P,S) GREIBACH Normalform: A aw, w N* Erweiterte GREIBACH Normalform:

Mehr

Grundlagen der Informatik II

Grundlagen der Informatik II Grundlagen der Informatik II Dr.-Ing. Sven Hellbach S. Hellbach Grundlagen der Informatik II Abbildungen entnommen aus: Dirk W. Hoffmann: Theoretische Informatik; Hanser Verlag 2011, ISBN: 978-3-446-42854-6

Mehr

Theoretische Informatik Mitschrift

Theoretische Informatik Mitschrift Theoretische Informatik Mitschrift 2. Grammatiken und die Chomsky-Hierarchie Beispiel: Syntaxdefinition in BNF :=

Mehr

kontextfreie Grammatiken Theoretische Informatik kontextfreie Grammatiken kontextfreie Grammatiken Rainer Schrader 14. Juli 2009 Gliederung

kontextfreie Grammatiken Theoretische Informatik kontextfreie Grammatiken kontextfreie Grammatiken Rainer Schrader 14. Juli 2009 Gliederung Theoretische Informatik Rainer Schrader Zentrum für Angewandte Informatik Köln 14. Juli 2009 1 / 40 2 / 40 Beispiele: Aus den bisher gemachten Überlegungen ergibt sich: aus der Chomsky-Hierarchie bleiben

Mehr

2. Gegeben sei folgender nichtdeterministischer endlicher Automat mit ɛ-übergängen:

2. Gegeben sei folgender nichtdeterministischer endlicher Automat mit ɛ-übergängen: Probeklausur Automatentheorie & Formale Sprachen WiSe 2012/13, Wiebke Petersen Name: Matrikelnummer: Aufgabe A: Typ3-Sprachen 1. Konstruieren Sie einen endlichen Automaten, der die Sprache aller Wörter

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Sascha Böhme, Lars Noschinski Sommersemester 2 Lösungsblatt 23. Mai 2 Einführung in die Theoretische Informatik Hinweis:

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

Reguläre Sprachen. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer,

Reguläre Sprachen. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer, Reguläre Sprachen Reguläre Sprachen (Typ-3-Sprachen) haben große Bedeutung in Textverarbeitung und Programmierung (z.b. lexikalische Analyse) besitzen für viele Entscheidungsprobleme effiziente Algorithmen

Mehr

Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012

Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012 Hier Aufkleber mit Name und Matrikelnr. anbringen

Mehr

1. Klausur zur Vorlesung Informatik III Wintersemester 2004/2005

1. Klausur zur Vorlesung Informatik III Wintersemester 2004/2005 Universität Karlsruhe Theoretische Informatik Fakultät für Informatik WS 2004/05 ILKD Prof. Dr. D. Wagner 24. Februar 2005 1. Klausur zur Vorlesung Informatik III Wintersemester 2004/2005 Aufkleber Beachten

Mehr

3 kontextfreie Sprachen

3 kontextfreie Sprachen Hans U. Simon Bochum, den 7.10.2008 Annette Ilgen Beispiele zur Vorlesung Theoretische Informatik WS 08/09 Vorbemerkung: Hier findet sich eine Sammlung von Beispielen und Motivationen zur Vorlesung Theoretische

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik echnische Universität München Fakultät für Informatik Prof. obias Nipkow, Ph.D. ascha öhme, Lars Noschinski ommersemester 2011 Lösungsblatt 5 6. Juni 2011 Einführung in die heoretische Informatik Hinweis:

Mehr

Grundlagen der Informatik II

Grundlagen der Informatik II Grundlagen der Informatik II Tutorium 2 Professor Dr. Hartmut Schmeck Miniaufgabe * bevor es losgeht * Finden Sie die drei Fehler in der Automaten- Definition. δ: A = E, S, δ, γ, s 0, F, E = 0,1, S = s

Mehr

Formale Grundlagen der Informatik

Formale Grundlagen der Informatik Formale Grundlagen der Informatik / 2015 1 Reguläre Ausdrücke Kommen in der Praxis immer dann vor, wenn standardisierte Eingaben erforderlich sind: Telefonnummern: +Land (0) Ort Anschluß Dateinamen: (A-Z,

Mehr

4.2 Die Chomsky Normalform

4.2 Die Chomsky Normalform 4.2 Die Chomsky Normalform Für algorithmische Problemstellungen (z.b. das Wortproblem) aber auch für den Nachweis von Eigenschaften kontextfreier Sprachen ist es angenehm, von CFG in Normalformen auszugehen.

Mehr

Berechenbarkeitstheorie 7. Vorlesung

Berechenbarkeitstheorie 7. Vorlesung 1 Berechenbarkeitstheorie Dr. Institut für Mathematische Logik und Grundlagenforschung WWU Münster W 15/16 Alle Folien unter Creative Commons Attribution-NonCommercial 3.0 Unported Lizenz. Das Pumpinglemma

Mehr

1 Die Chomsky-Hirachie

1 Die Chomsky-Hirachie Hans U. imon Bochum, den 7.10.2008 Annette Ilgen Beispiele zur Vorlesung Theoretische Informatik W 09/10 Vorbemerkung: Hier findet sich eine ammlung von Beispielen und Motivationen zur Vorlesung Theoretische

Mehr

A : z z A : z z : ( z, x, z ) δ

A : z z A : z z : ( z, x, z ) δ Informatik IV, SoS2003 1 Definition 1.1 Ein Quintupel A =(X,Z,z 0,δ,Z f )heißt nichtdeterministischer endlicher Automat (NEA): 1. X, Z sind endliche nichtleere Mengen. 2. z 0 Z 4. δ Z X Z Informatik IV,

Mehr

Automaten und formale Sprachen Klausurvorbereitung

Automaten und formale Sprachen Klausurvorbereitung Automaten und formale Sprachen Klausurvorbereitung Rami Swailem Mathematik Naturwissenschaften und Informatik FH-Gießen-Friedberg Inhaltsverzeichnis 1 Definitionen 2 2 Altklausur Jäger 2006 8 1 1 Definitionen

Mehr

Musterlösung der Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2012/13

Musterlösung der Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2012/13 Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Musterlösung der Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 22/3 Vorname Nachname Matrikelnummer

Mehr

Grammatiken. Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V. Startsymbol S V. Kurzschreibweise G = (V, Σ, P, S)

Grammatiken. Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V. Startsymbol S V. Kurzschreibweise G = (V, Σ, P, S) Grammatiken Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V Startsymbol S V Produktionen P ( (V Σ) \ Σ ) (V Σ) Kurzschreibweise G = (V, Σ, P, S) Schreibweise für Produktion (α, β) P: α β 67 /

Mehr

Theorie der Informatik. Theorie der Informatik. 6.1 Einführung. 6.2 Alphabete und formale Sprachen. 6.3 Grammatiken. 6.4 Chomsky-Hierarchie

Theorie der Informatik. Theorie der Informatik. 6.1 Einführung. 6.2 Alphabete und formale Sprachen. 6.3 Grammatiken. 6.4 Chomsky-Hierarchie Theorie der Informatik 17. März 2014 6. Formale Sprachen und Grammatiken Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 6.1 Einführung

Mehr

Kapitel IV Formale Sprachen und Grammatiken

Kapitel IV Formale Sprachen und Grammatiken Kapitel IV Formale Sprachen und Grammatiken 1. Begriffe und Notationen Sei Σ ein (endliches) Alphabet. Dann Definition 42 1 ist Σ das Monoid über Σ, d.h. die Menge aller endlichen Wörter über Σ; 2 ist

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/07 6. Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/07 6. Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 6. Vorlesung 10.11.2006 schindel@informatik.uni-freiburg.de 1 Kapitel IV Kontextfreie Sprachen Kontextfreie Grammatik Informatik III 6. Vorlesung

Mehr

Vorlesung im Sommersemester Informatik IV. Probeklausurtermin: 21. Juni 2016

Vorlesung im Sommersemester Informatik IV. Probeklausurtermin: 21. Juni 2016 Heinrich-Heine-Universität Düsseldorf Institut für Informatik Prof. Dr. J. Rothe Universitätsstr. 1, D-40225 Düsseldorf Gebäude: 25.12, Ebene: O2, Raum: 26 Tel.: +49 211 8112188, Fax: +49 211 8111667 E-Mail:

Mehr

Lösungsvorschläge Blatt 4

Lösungsvorschläge Blatt 4 Theoretische Informatik Departement Informatik Prof. Dr. Juraj Hromkovič http://www.ita.inf.ethz.ch/theoinf16 Lösungsvorschläge Blatt 4 Zürich, 21. Oktober 2016 Lösung zu Aufgabe 10 (a) Wir zeigen mit

Mehr

Nachklausur zur Vorlesung

Nachklausur zur Vorlesung Lehrstuhl für Theoretische Informatik Prof. Dr. Markus Lohrey Grundlagen der Theoretischen Informatik Nachklausur Nachklausur zur Vorlesung Grundlagen der Theoretischen Informatik WS 2016/17 / 27. Februar

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2016 20.04.2016 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Terminologie 2. Endliche Automaten und reguläre Sprachen

Mehr

Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive

Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive Grammatik G mit L(G) = L(G ). Beweis im Beispiel (2.): G = (V,Σ, P, S) : P = {S asbc, S abc, CB BC, ab ab, bb bb, bc bc, cc cc}. (i) G

Mehr

Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie

Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Wintersemester 2005/2006 07.11.2005 5. Vorlesung 1 Überblick: Kontextfreie Sprachen Formale Grammatik Einführung, Beispiele Formale

Mehr

Theoretische Informatik I

Theoretische Informatik I Theoretische Informatik I Rückblick Theoretische Informatik I 1. Mathematische Methoden 2. Reguläre Sprachen 3. Kontextfreie Sprachen Themen der Theoretischen Informatik I & II Mathematische Methodik in

Mehr

Theoretische Informatik: Berechenbarkeit und Formale Sprachen

Theoretische Informatik: Berechenbarkeit und Formale Sprachen Prof. Dr. F. Otto 24.03.2011 Fachbereich Elektrotechnik/Informatik Universität Kassel Klausur zur Vorlesung Theoretische Informatik: Berechenbarkeit und Formale Sprachen WS 2010/2011 Name:................................

Mehr

Formale Sprachen. Grammatiken und die Chomsky-Hierarchie. Rudolf FREUND, Marian KOGLER

Formale Sprachen. Grammatiken und die Chomsky-Hierarchie. Rudolf FREUND, Marian KOGLER Formale Sprachen Grammatiken und die Chomsky-Hierarchie Rudolf FREUND, Marian KOGLER Grammatiken Das fundamentale Modell zur Beschreibung von formalen Sprachen durch Erzeugungsmechanismen sind Grammatiken.

Mehr

Informatik IV Theoretische Informatik: Formale Sprachen und Automaten, Berechenbarkeit und NP-Vollständigkeit. Zugangsnummer: 9201

Informatik IV Theoretische Informatik: Formale Sprachen und Automaten, Berechenbarkeit und NP-Vollständigkeit.  Zugangsnummer: 9201 Informatik IV Theoretische Informatik: Formale Sprachen und Automaten, Berechenbarkeit und NP-Vollständigkeit Wiederholung Kapitel 3 und 4 http://pingo.upb.de Zugangsnummer: 9201 Dozent: Jun.-Prof. Dr.

Mehr

4. Grammatiken. 4.1. Grundlegende Definitionen. Wie lassen sich formale Sprachen beschreiben?

4. Grammatiken. 4.1. Grundlegende Definitionen. Wie lassen sich formale Sprachen beschreiben? 4. Grammatiken 4.1. Grundlegende Definitionen Wie lassen sich formale prachen beschreiben? im endlichen Fall: Aufzählung der Wörter der prache im unendlichen Fall: akzeptierende Automaten, Mengenausdrücke:

Mehr

Dank. 1 Ableitungsbäume. 2 Umformung von Grammatiken. 3 Normalformen. 4 Pumping-Lemma für kontextfreie Sprachen. 5 Pushdown-Automaten (PDAs)

Dank. 1 Ableitungsbäume. 2 Umformung von Grammatiken. 3 Normalformen. 4 Pumping-Lemma für kontextfreie Sprachen. 5 Pushdown-Automaten (PDAs) ank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert iese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

2. Übungsblatt 6.0 VU Theoretische Informatik und Logik

2. Übungsblatt 6.0 VU Theoretische Informatik und Logik 2. Übungsblatt 6.0 VU Theoretische Informatik und Logik 25. September 2013 Aufgabe 1 Geben Sie jeweils eine kontextfreie Grammatik an, welche die folgenden Sprachen erzeugt, sowie einen Ableitungsbaum

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 11. Kontextsensitive und Typ-0-Sprachen Malte Helmert Gabriele Röger Universität Basel 7. April 2014 Kontextsensitive und allgemeine Grammatiken Wiederholung: (kontextsensitive)

Mehr

1 Automatentheorie und Formale Sprachen

1 Automatentheorie und Formale Sprachen Sanders: TGI October 29, 2015 1 1 Automatentheorie und Formale Sprachen 1.1 Allgemeines Sanders: TGI October 29, 2015 2 Beispiel: Arithmetische Ausdrücke:EXPR Σ={1,a,+,,,(,)} a ist Platzhalter für Konstanten

Mehr

Berechenbarkeit und Komplexität

Berechenbarkeit und Komplexität Berechenbarkeit und Komplexität Prof. Dr. Dietrich Kuske FG Theoretische Informatik, TU Ilmenau Wintersemester 2010/11 1 Organisatorisches zur Vorlesung Informationen, aktuelle Version der Folien und Übungsblätter

Mehr

Was bisher geschah Chomsky-Hierarchie für Sprachen: L 0 Menge aller durch (beliebige) Grammatiken beschriebenen Sprachen L 1 Menge aller monotonen

Was bisher geschah Chomsky-Hierarchie für Sprachen: L 0 Menge aller durch (beliebige) Grammatiken beschriebenen Sprachen L 1 Menge aller monotonen Was bisher geschah Chomsky-Hierarchie für Sprachen: L 0 Menge aller durch (beliebige) Grammatiken beschriebenen Sprachen L 1 Menge aller monotonen (Kontextsensitive) Sprachen L 2 Menge aller kontextfreien

Mehr

2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2014/2015

2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2014/2015 2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2014/2015 Hier Aufkleber mit Name und Matrikelnummer anbringen Vorname: Nachname: Matrikelnummer: Beachten Sie: Bringen Sie

Mehr

Kontextfreie Grammatiken. Kontextfreie Grammatiken 1 / 45

Kontextfreie Grammatiken. Kontextfreie Grammatiken 1 / 45 Kontextfreie Grammatiken Kontextfreie Grammatiken 1 / 45 Was kann man mit kontextfreien Grammatiken anfangen? Kontextfreie Grammatiken, kurz: werden zur Modellierung von KFGs beliebig tief geschachtelten

Mehr

Musterlösungen zu Grundlagen der theoretischen Informatik (skizziert)

Musterlösungen zu Grundlagen der theoretischen Informatik (skizziert) Musterlösungen zu Grundlagen der theoretischen Informatik (skizziert) (3a) L 2 =(a + ε)(ba) (b + ɛ) oderl 2 = ε + L 2 mit L 2 = a(ba) (b + ε)+b(ab) (a + ε) oder L 2 = a +(a + ε)(ba) b(a + ε) L 3 = ε +

Mehr

Theoretische Informatik 2 (WS 2006/07) Automatentheorie und Formale Sprachen 19

Theoretische Informatik 2 (WS 2006/07) Automatentheorie und Formale Sprachen 19 Inhalt 1 inführung 2 Automatentheorie und ormale prachen Grammatiken Reguläre prachen und endliche Automaten Kontextfreie prachen und Kellerautomaten Kontextsensitive und yp 0-prachen 3 Berechenbarkeitstheorie

Mehr

Das Postsche Korrespondenzproblem

Das Postsche Korrespondenzproblem Das Postsche Korrespondenzproblem Eine Instanz des PKP ist eine Liste von Paaren aus Σ Σ : (v 1, w 1 ),..., (v n, w n ) Eine Lösung ist eine Folge i 1,..., i k von Indizes 1 i j n mit v i1... v ik = w

Mehr

Falls H die Eingabe verwirft, so wissen wir, dass M bei Eingabe w nicht hält. M hält im verwerfenden Haltezustand. Beweis:

Falls H die Eingabe verwirft, so wissen wir, dass M bei Eingabe w nicht hält. M hält im verwerfenden Haltezustand. Beweis: 1 Unentscheidbarkeit 2 Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Wintersemester 2014/15 #include char *s="include

Mehr

2.1 Allgemeines. Was ist eine Sprache? Beispiele:

2.1 Allgemeines. Was ist eine Sprache? Beispiele: Was ist eine Sprache? Beispiele: (a) Deutsch, Japanisch, Latein, Esperanto,...: Natürliche Sprachen (b) Pascal, C, Java, Aussagenlogik,...: Formale Sprachen Wie beschreibt man eine Sprache? (i) Syntax

Mehr

Maike Buchin 18. Februar 2016 Stef Sijben. Probeklausur. Theoretische Informatik. Bearbeitungszeit: 3 Stunden

Maike Buchin 18. Februar 2016 Stef Sijben. Probeklausur. Theoretische Informatik. Bearbeitungszeit: 3 Stunden Maike Buchin 8. Februar 26 Stef Sijben Probeklausur Theoretische Informatik Bearbeitungszeit: 3 Stunden Name: Matrikelnummer: Studiengang: Geburtsdatum: Hinweise: Schreibe die Lösung jeder Aufgabe direkt

Mehr