Umformung NTM DTM. Charakterisierung rek. aufz. Spr. Chomsky-3-Grammatiken (T5.3) Chomsky-0-Grammatik Rek. Aufz.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Umformung NTM DTM. Charakterisierung rek. aufz. Spr. Chomsky-3-Grammatiken (T5.3) Chomsky-0-Grammatik Rek. Aufz."

Transkript

1 Chomsky-0-Grammatik Rek. Aufz. Satz T5.2.2: Wenn L durch eine Chomsky-0- Grammatik G beschrieben wird, gibt es eine NTM M, die L akzeptiert. Beweis: Algo von M: Schreibe S auf freie Spur. Iteriere: Führe nichtdeterministisch gewählte Ableitungsregel aus Vergleiche hergeleitetes Wort mit Eingabe, akzeptiere bei Gleichheit. 507 Umformung NTM DTM Satz T5.2.3: Wenn L durch eine NTM M akzeptiert wird, ist L rekursiv aufzählbar. Beweis: Konstruktion einer DTM für L: For i:=0 to Sim. alle Rechenwege von M der Länge i. Falls akzeptierende Konfiguration erreicht wird, akzeptiere. 508 Charakterisierung rek. aufz. Spr. Folgerung T5.2.4: Die Menge der rekursiv aufzählbaren Sprachen ist gleich 1. der Menge der von DTMs akzeptierten Sprachen, 2. der Menge der von NTMs akzeptierten Sprachen, 3. der Menge der von Chomsky-0- Grammatiken erzeugten Sprachen. Chomsky-3-Grammatiken (T5.3) Ziel: Äquivalenz von Chomsky-3-Grammatiken und DFAs

2 DFA Chomsky-3-Grammatik Satz T5.3.1: Sei M ein DFA für L. Dann gibt es auch eine rechtslineare Grammatik G für L. Beweis: Idee: Rechnung von M mit einer Grammatik simulieren. V=Q, T =Σ, S=q 0, Ableitungsregeln: q aq, falls δ(q,a)=q, q ε, falls q F. 511 Korrektheit Rechnung des DFA auf einem Wort w 1 w n : Zustandsfolge q 0,q 1,,q n mit δ(q i,w i+1 )=q i+1 und q n F. Rechnung der erzeugten Grammatik: q 0 w 1 q 1 w 1 w 2 q 2 w 1 w n q n w 1 w n q aq, falls δ(q,a)=q, q ε, falls q F. 512 Chomsky-3-Grammatik NFA Satz T5.3.1: Sei G eine rechtslineare Grammatik für L. Dann gibt es auch einen NFA M für L. Beweis: Sei rechtslin. Grammatik für L gegeben. Konstruktion des NFAs: Korrektheit Ableitung von w 1 w n hat die Form S w 1 A 1 w 1 w 2 A 2 w 1 w n A n w 1 w n Mögliche Zustandsfolge des NFAs bei Eingabe w 1,,w n : S A 1 A 2 A n Q=V, q 0 =S, F = {A Regel A ε vorhanden} δ(a,a)={b Regel A ab vorhanden} Q=V, q 0 =S, F = {A Regel A ε vorhanden} 513 δ(a,a)={b Regel A ab vorhanden} 514

3 Charakterisierung d. reg. Sprachen Folgerung: Die Menge der regulären Sprachen ist gleich der Menge der von DFAs oder NFAs erkannten Sprachen, der Menge der Sprachen, die durch reguläre Ausdrücke beschrieben werden, der Menge der Sprachen, die durch Chomsky-3-Grammatiken beschrieben werden. Beobachtung Grammatiken sind ein auf natürliche Weise nichtdeterministisches Konzept. Simulationen von Ableitungen einer Grammatik werden mit Hilfe von nichtdeterministischen Maschinen besonders einfach Kontextfreie Sprachen (Kap. T6) Überblick: Beispiele kontextfreier Sprachen Chomsky-Normalform Wortproblem für kontextfreie Sprachen Pumping-Lemma Mehrdeutigkeit Algorithmen Unentscheidbare Probleme Greibach-Normalform Maschinenmodell für kontextfreie Sprachen 517 Beispiel: L={0 n 1 n n 1} Haben gesehen: L nicht regulär Kontextfreie Grammatik: P={S 01, S 0S1} L kontextfrei (Folien 365 und 373) 518

4 Variante: L={0 i 1 j 1 i j} Kontextfreie Grammatik: P={S 01, S 0S1, S S1} L kontextfrei Bsp: Sprache der Palindrome L={w {0,1}* w=w R } Haben gesehen: L nicht regulär (Folie 375) Kontextfreie Grammatik G: P={S ε, S 0, S 1, S 0S0, S 1S1} Korrektheit: G erzeugt nur Palindrome. L(G) L Alle Palindrome können durch G erzeugt werden. L L(G) G erzeugt nur Palindrome. Alle Palindrome w in G herleitbar. Behauptung: Alle von G erzeugten Wörter w sind Palindrome. Induktion über w : w =0 oder w =1: ε, 0, 1 sind Palindrome. w >1: Die erste angewandte Regel ist S 0S0 oder S 1S1, d.h., w beginnt und endet mit demselben Buchstaben. Nach I.V. ist das Wort dazwischen Palindrom w Palindrom. Induktion über w : w =0 oder w =1: ε, 0, 1 sind herleitbar. w >1: w Palindrom w beginnt und endet mit 0 (bzw. 1); dazwischen befindet sich ein Palindrom w, also w=0w 0 oder w=1w 1. Nach I.V. ist w aus S herleitbar. S 0S0 * 0w 0 = w bzw. S 1S1 * 1w 1 = w. P={S ε, S 0, S 1, S 0S0, S 1S1} 521 P={S ε, S 0, S 1, S 0S0, S 1S1} 522

5 Klammersprache w=w 1...w n {(,)}* heißt korrekt geklammert, falls die Anzahl ( ist gleich der Anzahl ). in jedem Anfangsstück w 1,...,w i (i n) ist die Anzahl ( nicht kleiner als die Anzahl ). Definiere L={w {(,)}* w korrekt geklammert} Nicht regulär Folie 376f. Kontextfreie Grammatik: S SS, S (S), S ε. 523 Bsp: L={w w 0 = w 1 } w 0 : Anzahl Nullen in w, w 1 : Anzahl Einsen in w. Übungsaufgabe: Zeige, dass L nicht regulär. Kontextfreie Grammatik G: V={S}, Σ={0,1} P={S ε, S 0S1S, S 1S0S} Korrektheit: G erzeugt nur Wörter aus L. G erzeugt alle Wörter aus L. L(G) L L L(G) 524 Beispiel Korrektheit: L(G) L Ableitung von S 1S0S 11S0S0S 1100S 11001S0S S 1 S 0 S Syntaxbaum 1 S 0 S 1 S 0 S G erzeugt nur Wörter aus L : folgt, da bei jedem Ableitungsschritt gleichviele Nullen wie Einsen erzeugt werden. ε ε ε ε P={S ε, S 0S1S, S 1S0S} 525 P={S ε, S 0S1S, S 1S0S} 526

6 Korrektheit: L L(G) Induktion über w w =0 w=ε L(G). w >0, o.b.d.a. beginne w mit 0. Sei i>0 kleinste Zahl m. w 1 w i 0 = w 1 w i 1. Dann gilt: w 1 =0, w i =1, w 2 w i-1 0 = w 2 w i-1 1 und w i+1 w n 0 = w i+1 w n 1. Also w 2 w i-1 L und w i+1 w n L und S 0S1S * 0w 2 w i-1 1w i+1 w n. I.V. 527 Syntaxbaum Graphische Darstellung der Ableitung eines Wortes Wurzel: markiert mit S. Blätter: markiert mit Terminalen/Buchstaben oder ε. Innere Knoten: markiert mit Variablen A Nachfolger entsprechen Anwendung einer Ableitungsregel A α 1 α r. 528 Anmerkungen Zu jeder Ableitung gibt es einen Syntaxbaum. Zu einem Syntaxbaum kann es mehrere (äquivalente) Ableitungen geben. Linksableitung: Ableitung, bei der die jeweils linkeste Variable ersetzt wird. Rechtsableitung: Ableitung, bei der die jeweils rechteste Variable ersetzt wird. Eindeutigkeit und Mehrdeutigkeit Definition T6.1.5: Eine kontextfreie Grammatik G heißt eindeutig, wenn es für jedes Wort w L(G) nur einen Syntaxbaum gibt. Eine kontextfreie Sprache heißt eindeutig, wenn es für sie eine eindeutige kontextfreie Grammatik gibt, anderenfalls heißt sie inhärent mehrdeutig

7 Beispiel: Klammersprache Die Grammatik S SS, S (S), S ε ist nicht eindeutig. Beispiel: ()()() Linksableitungen: S SS SSS (S)SS ()SS ()(S)S ()()S ()()(S) ()()() S SS (S)S ()S ()SS ()(S)S ()()S ()()(S) ()()() Eindeutige Grammatik: S (S)S, S ε 531 Weiteres Beispiel S ε, S 0S1S, S 1S0S ist mehrdeutig: das Wort hat die Linksableitungen S 0S1S 01S0S1S 011S0SS0S1S * und S 0S1S 01S 011S0S 0110S 01100S1S * Etwas schwieriger: Konstruktion einer eindeutigen Grammatik. 532 Beispiel Die Grammatik S 01, S 0S1 für L={0 n 1 n n 1} ist eindeutig. Motivation Nahe liegende Vermutung: Syntaxanalyse für eindeutige Grammatiken einfacher. Verschiedene Ableitungsbäume haben bei Programmiersprachen häufig verschiedene Semantiken

8 Chomsky-Normalform Ziel: einfachere Algorithmen für kontextfreie Grammatiken. Definition T6.2.1: Eine kontextfreie Grammatik ist in Chomsky-Normalform, wenn alle Ableitungsregeln von der Form A BC oder A a (mit A,B,C V, a T) sind. Chomsky-Normalform Besonderheit: ε kann nicht erzeugt werden. Im Folgenden Umformung G G Kontextfreie Kontextfreie Grammatik Grammatik in Chomsky-Normalform mit L(G ) = L(G) {ε} Umformung Sei s(g) die Größe (Anzahl der Buchstaben in allen Produktionen) der kontextfreien Grammatik G. Satz T6.2.2: Eine kontextfreie Grammatik G kann in Zeit O(s(G) 2 ) in Chomsky- Normalform umgeformt werden. Beweis: Umformung in 4 Schritten Schritt 1: Separation Ziel: Auf den rechten Seiten der Regeln entweder 1 Terminal oder nur Variablen. Dazu: erzeuge für jedes a T eine neue Variable Y a und die Regel Y a a, Ersetze auf jeder rechten Seite einer Regel a durch Y a

9 Beispiel für Schritt 1 A AbcDeF (mit A,D,F V, b,c,e T) wird ersetzt durch Schritt 2: Lange rechte Seiten A B 1 B m (mit m 3, A,B 1,,B m V) wird ersetzt durch A B 1 C 1 A AY b Y c DY e F, Y b b, Y c c, Y e e C 1 B 2 C 2 C i B i+1 C i+1 C m-2 B m-1 B m (für 1 i m-3) Dabei sind C 1,,C m-2 neue Variablen, die nur für die betrachtete Regel eingeführt werden Resultat der Schritte 1 und 2 Nur noch Regeln der Form: A ε (ε-regeln) A B (Kettenregeln) A BC (o.k.) A a (o.k.) Bisher: Grammatik hat sich nur um konstanten Faktor vergrößert. 541

Teil 4: Grammatiken und Syntaxanalyse. (Kapitel T5-T7)

Teil 4: Grammatiken und Syntaxanalyse. (Kapitel T5-T7) Teil 4: Grammatiken und Syntaxanalyse (Kapitel T5-T7) Grammatiken und die Chomsky- Hierarchie [T5.1] Ziel: Regelsysteme zur Erzeugung von Sprachen. Beispiel: arithmetische Ausdrücke können definiert werden

Mehr

Endliche Sprachen. Folgerung: Alle endlichen Sprachen sind regulär. Beweis: Sei L={w 1,,w n } Σ*. Dann ist w 1 +L+w n ein regulärer Ausdruck für

Endliche Sprachen. Folgerung: Alle endlichen Sprachen sind regulär. Beweis: Sei L={w 1,,w n } Σ*. Dann ist w 1 +L+w n ein regulärer Ausdruck für Endliche Sprachen Folgerung: Alle endlichen Sprachen sind regulär. Beweis: Sei L={w 1,,w n } Σ*. Dann ist w 1 +L+w n ein regulärer Ausdruck für L. 447 Zusammenfassung Beschreibungsformen für reguläre Sprachen:

Mehr

Grammatiken. Einführung

Grammatiken. Einführung Einführung Beispiel: Die arithmetischen Ausdrücke über der Variablen a und den Operationen + und können wie folgt definiert werden: a, a + a und a a sind arithmetische Ausdrücke Wenn A und B arithmetische

Mehr

Automaten und formale Sprachen Klausurvorbereitung

Automaten und formale Sprachen Klausurvorbereitung Automaten und formale Sprachen Klausurvorbereitung Rami Swailem Mathematik Naturwissenschaften und Informatik FH-Gießen-Friedberg Inhaltsverzeichnis 1 Definitionen 2 2 Altklausur Jäger 2006 8 1 1 Definitionen

Mehr

kontextfreie Grammatiken Theoretische Informatik kontextfreie Grammatiken kontextfreie Grammatiken Rainer Schrader 14. Juli 2009 Gliederung

kontextfreie Grammatiken Theoretische Informatik kontextfreie Grammatiken kontextfreie Grammatiken Rainer Schrader 14. Juli 2009 Gliederung Theoretische Informatik Rainer Schrader Zentrum für Angewandte Informatik Köln 14. Juli 2009 1 / 40 2 / 40 Beispiele: Aus den bisher gemachten Überlegungen ergibt sich: aus der Chomsky-Hierarchie bleiben

Mehr

Abschluss gegen Substitution. Wiederholung. Beispiel. Abschluss gegen Substitution

Abschluss gegen Substitution. Wiederholung. Beispiel. Abschluss gegen Substitution Wiederholung Beschreibungsformen für reguläre Sprachen: DFAs NFAs Reguläre Ausdrücke:, {ε}, {a}, und deren Verknüpfung mit + (Vereinigung), (Konkatenation) und * (kleenescher Abschluss) Abschluss gegen

Mehr

I.5. Kontextfreie Sprachen

I.5. Kontextfreie Sprachen I.5. Kontextfreie prachen Zieht man in Betracht, dass BNF-yteme gerade so beschaffen sind, dass auf der linken eite immer genau ein Nichtterminal steht, so sind das also gerade die Ableitungsregeln einer

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 4. Kellerautomaten und kontextfreie Sprachen (I) 3.06.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Organisatorisches 1. Teilklausur: Mittwoch,

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 15.01.2015 INSTITUT FÜR THEORETISCHE 0 KIT 15.01.2015 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

Was bisher geschah Chomsky-Hierarchie für Sprachen: L 0 Menge aller durch (beliebige) Grammatiken beschriebenen Sprachen L 1 Menge aller monotonen

Was bisher geschah Chomsky-Hierarchie für Sprachen: L 0 Menge aller durch (beliebige) Grammatiken beschriebenen Sprachen L 1 Menge aller monotonen Was bisher geschah Chomsky-Hierarchie für Sprachen: L 0 Menge aller durch (beliebige) Grammatiken beschriebenen Sprachen L 1 Menge aller monotonen (Kontextsensitive) Sprachen L 2 Menge aller kontextfreien

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 17. Januar 2012 INSTITUT FÜR THEORETISCHE 0 KIT 18.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Grammatiken. Grammatiken sind regelbasierte Kalküle zur Konstruktion von Systemen und Sprachen Überprüfung von Systemen und Sprachen

Grammatiken. Grammatiken sind regelbasierte Kalküle zur Konstruktion von Systemen und Sprachen Überprüfung von Systemen und Sprachen Grammatiken Grammatiken sind regelbasierte Kalküle zur Konstruktion von Systemen und Sprachen Überprüfung von Systemen und Sprachen Grammatiken eignen sich besonders zur Modellierung beliebig tief geschachtelter,

Mehr

Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive

Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive Grammatik G mit L(G) = L(G ). Beweis im Beispiel (2.): G = (V,Σ, P, S) : P = {S asbc, S abc, CB BC, ab ab, bb bb, bc bc, cc cc}. (i) G

Mehr

Formale Sprachen. Script, Kapitel 4. Grammatiken

Formale Sprachen. Script, Kapitel 4. Grammatiken Formale Sprachen Grammatiken Script, Kapitel 4 erzeugen Sprachen eingeführt von Chomsky zur Beschreibung natürlicher Sprache bedeutend für die Syntaxdefinition und -analyse von Programmiersprachen Automaten

Mehr

Rekursiv aufzählbare Sprachen

Rekursiv aufzählbare Sprachen Kapitel 4 Rekursiv aufzählbare Sprachen 4.1 Grammatiken und die Chomsky-Hierarchie Durch Zulassung komplexer Ableitungsregeln können mit Grammatiken größere Klassen als die kontextfreien Sprachen beschrieben

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 4. Kellerautomaten und kontextfreie Sprachen (III) 17.06.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Mehrdeutige Grammatiken

Mehrdeutige Grammatiken Mehrdeutige Grammatiken Wir haben gesehen, dass es auch mehr als eine Linksableitung, d.h. mehr als einen Syntaxbaum geben kann, um das selbe Terminalwort zu erzeugen. Eine Grammatik, die für mindestens

Mehr

Normalformen für kontextfreie Grammatiken. Noam CHOMSKY, Sheila GREIBACH. Bäume. Ableitungen in kontextfreien Grammatiken. Grammatik G = (N,T,P,S)

Normalformen für kontextfreie Grammatiken. Noam CHOMSKY, Sheila GREIBACH. Bäume. Ableitungen in kontextfreien Grammatiken. Grammatik G = (N,T,P,S) Noam CHOMSKY, Sheila GREIBACH Normalformen für kontextfreie Grammatiken Noam CHOMSKY (*1928 ) Sheila GREIBACH (*1939) Grammatik G = (N,T,P,S) GREIBACH Normalform: A aw, w N* Erweiterte GREIBACH Normalform:

Mehr

5.2 Endliche Automaten

5.2 Endliche Automaten 114 5.2 Endliche Automaten Endliche Automaten sind Turingmaschinen, die nur endlichen Speicher besitzen. Wie wir bereits im Zusammenhang mit Turingmaschinen gesehen haben, kann endlicher Speicher durch

Mehr

Grammatiken und die Chomsky-Hierarchie

Grammatiken und die Chomsky-Hierarchie Grammatiken und die Chomsky-Hierarchie Def.: Eine Grammatik G=(Σ,V,S,R) besteht aus endlichem Alphabet Σ endlicher Variablenmenge V mit V Σ= Startsymbol SєV endlicher Menge R с (V Σ) + x(v Σ)* von Ableitungsregeln

Mehr

FORMALE SYSTEME. 3. Vorlesung: Endliche Automaten. TU Dresden, 17. Oktober Markus Krötzsch

FORMALE SYSTEME. 3. Vorlesung: Endliche Automaten. TU Dresden, 17. Oktober Markus Krötzsch FORMALE SYSTEME 3. Vorlesung: Endliche Automaten Markus Krötzsch TU Dresden, 17. Oktober 2016 Rückblick Markus Krötzsch, 17. Oktober 2016 Formale Systeme Folie 2 von 31 Wiederholung Mit Grammatiken können

Mehr

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 6 Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Ausgabe 10. Januar 2018 Abgabe 23. Januar 2018, 11:00 Uhr (im

Mehr

Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14

Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14 Kapitel: Die Chomsky Hierarchie Die Chomsky Hierarchie 1 / 14 Allgemeine Grammatiken Definition Eine Grammatik G = (Σ, V, S, P) besteht aus: einem endlichen Alphabet Σ, einer endlichen Menge V von Variablen

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 10.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

Kontextfreie (Typ-2) Sprachen

Kontextfreie (Typ-2) Sprachen Kontextfreie (Typ-2) prachen Bsp.: L 1 = { n 1 n n>} с {,1}* 1 1 L 2 = {w wє{,1}* und w=w rev } с {,1}* 11 1 ε L 3 = {w w hat genausoviele Nullen wie Einsen} с {,1}* B 1 ε 1 B 1 1 BB 1 11 11 11 11B 111

Mehr

Kontextfreie Sprachen

Kontextfreie Sprachen Kontextfreie Sprachen besitzen große Bedeutung im Compilerbau Chomsky-Normalform effiziente Lösung des Wortproblems (CYK-Algorithmus) Grenzen kontextfreier Sprachen (Pumping Lemma) Charakterisierung durch

Mehr

Kontextfreie Sprachen

Kontextfreie Sprachen Kontextfreie Sprachen Bedeutung: Programmiersprachen (Compilerbau) Syntaxbäume Chomsky-Normalform effiziente Lösung des Wortproblems (CYK-Algorithmus) Grenzen kontextfreier Sprachen (Pumping Lemma) Charakterisierung

Mehr

q 0 q gdw. nicht (q A) (q A) q i+1 q gdw. q i q oder ( a Σ) δ(q, a) i δ(q, a) L = {a n b n : n N} für a, b Σ, a b

q 0 q gdw. nicht (q A) (q A) q i+1 q gdw. q i q oder ( a Σ) δ(q, a) i δ(q, a) L = {a n b n : n N} für a, b Σ, a b Kap. 2: Endliche Automaten Myhill Nerode 2.4 Minimalautomat für reguläre Sprache Abschnitt 2.4.3 L Σ regulär der Äuivalenzklassen-Automat zu L ist ein DFA mit minimaler Zustandszahl (= index( L )) unter

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/07 5. Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/07 5. Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 5. Vorlesung 09.11.2006 schindel@informatik.uni-freiburg.de 1 Äquivalenzklassen Definition und Beispiel Definition Für eine Sprache L Σ* bezeichnen

Mehr

Suche nach einem solchen Kreis. Endlichkeitstest. Vereinigung und Durchschnitt. Abschlusseigenschaften

Suche nach einem solchen Kreis. Endlichkeitstest. Vereinigung und Durchschnitt. Abschlusseigenschaften Endlichkeitstest Eingabe: DFA/NFA M. Frage: Ist die von M akzeptierte Sprache endlich? Nahe liegende Beobachtung: In einem DFA/NFA, der eine unendliche Sprache akzeptiert, muss es einen Kreis geben, der

Mehr

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 7

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 7 Prof. J. Esparza Technische Universität München S. Sickert, J. Krämer KEINE ABGABE Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt 7 Übungsblatt Wir unterscheiden zwischen Übungs-

Mehr

Lösungen zur 1. Klausur. Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie

Lösungen zur 1. Klausur. Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie Hochschuldozent Dr. Christian Schindelhauer Paderborn, den 21. 2. 2006 Lösungen zur 1. Klausur in Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie Name :................................

Mehr

Automatentheorie und formale Sprachen

Automatentheorie und formale Sprachen Automatentheorie und formale Sprachen VL 8 Chomsky-Grammatiken Kathrin Hoffmann 23. Mai 2012 Hoffmann (HAW Hamburg) Automatentheorie und formale Sprachen 23.5. 2012 250 Wortproblem Wortproblem ist das

Mehr

2.1 Allgemeines. Was ist eine Sprache? Beispiele:

2.1 Allgemeines. Was ist eine Sprache? Beispiele: Was ist eine Sprache? Beispiele: (a) Deutsch, Japanisch, Latein, Esperanto,...: Natürliche Sprachen (b) Pascal, C, Java, Aussagenlogik,...: Formale Sprachen Wie beschreibt man eine Sprache? (i) Syntax

Mehr

2. Übungsblatt 6.0 VU Theoretische Informatik und Logik

2. Übungsblatt 6.0 VU Theoretische Informatik und Logik 2. Übungsblatt 6.0 VU Theoretische Informatik und Logik 25. September 2013 Aufgabe 1 Geben Sie jeweils eine kontextfreie Grammatik an, welche die folgenden Sprachen erzeugt, sowie einen Ableitungsbaum

Mehr

Das Postsche Korrespondenzproblem

Das Postsche Korrespondenzproblem Das Postsche Korrespondenzproblem Eine Instanz des PKP ist eine Liste von Paaren aus Σ Σ : (v 1, w 1 ),..., (v n, w n ) Eine Lösung ist eine Folge i 1,..., i k von Indizes 1 i j n mit v i1... v ik = w

Mehr

Turing: prinzipielle Berechenbarkeit Abschnitt 4.2. Turingmaschinen: DTM Abschnitt 4.2. DTM: Akzeptieren und Entscheiden Abschnitt 4.

Turing: prinzipielle Berechenbarkeit Abschnitt 4.2. Turingmaschinen: DTM Abschnitt 4.2. DTM: Akzeptieren und Entscheiden Abschnitt 4. Kap. 4: Berechnungsmodelle Turingmaschinen 4.2 Turing: prinzipielle Berechenbarkeit Abschnitt 4.2 Kap. 4: Berechnungsmodelle Turingmaschinen 4.2 Turingmaschinen: DTM Abschnitt 4.2 DTM = DFA + unbeschränkter

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

Übungsblatt 7. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17

Übungsblatt 7. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 7 Vorlesung Theoretische Grundlagen der Informatik im W 16/17 Ausgabe 17. Januar 2017 Abgabe 31. Januar 2017, 11:00 Uhr (im

Mehr

Algorithmen und Datenstrukturen I - Exkurs Formale Sprachen -

Algorithmen und Datenstrukturen I - Exkurs Formale Sprachen - Algorithmen und Datenstrukturen I - Exkurs Formale Sprachen - Thies Pfeiffer Technische Fakultät tpfeiffe@techfak.uni-bielefeld.de Vorlesung, Universität Bielefeld, Winter 2012/2013 1 / 1 Exkurs: Formale

Mehr

Formalismen für REG. Formale Grundlagen der Informatik 1 Kapitel 7 Kontextfreie Sprachen. Das Pumping Lemma. Abschlusseigenschaften

Formalismen für REG. Formale Grundlagen der Informatik 1 Kapitel 7 Kontextfreie Sprachen. Das Pumping Lemma. Abschlusseigenschaften Formalismen für RE Formale rundlagen der Informatik 1 Kapitel 7 Kontextfreie Sprachen Frank Heitmann heitmann@informatik.uni-hamburg.de Satz Zu jeder regulären Sprache L gibt es einen DFA A mit L(A) =

Mehr

1 Automatentheorie und Formale Sprachen

1 Automatentheorie und Formale Sprachen Sanders: TGI October 29, 2015 1 1 Automatentheorie und Formale Sprachen 1.1 Allgemeines Sanders: TGI October 29, 2015 2 Beispiel: Arithmetische Ausdrücke:EXPR Σ={1,a,+,,,(,)} a ist Platzhalter für Konstanten

Mehr

Deterministischer Kellerautomat (DPDA)

Deterministischer Kellerautomat (DPDA) Deterministische Kellerautomaten Deterministischer Kellerautomat (DPDA) Definition Ein Septupel M = (Σ,Γ, Z,δ, z 0,#, F) heißt deterministischer Kellerautomat (kurz DPDA), falls gilt: 1 M = (Σ,Γ, Z,δ,

Mehr

Kontextfreie Sprachen Kontextfreie Sprachen und Grammatiken. Satzformen sind die Wörter aus (N T ). Notation: Wir verwenden oft

Kontextfreie Sprachen Kontextfreie Sprachen und Grammatiken. Satzformen sind die Wörter aus (N T ). Notation: Wir verwenden oft und Grammatiken (Folie 119, eite 202 im kript) atzformen sind die Wörter aus (N T ). Notation: Wir verwenden oft a, b, c,... für Terminalsymbole A, B, C,... für Nonterminale u, v, w,... für Terminalwörter

Mehr

Automaten und Formale Sprachen SoSe 2013 in Trier

Automaten und Formale Sprachen SoSe 2013 in Trier Automaten und Formale Sprachen SoSe 2013 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 2. Juni 2013 1 Automaten und Formale Sprachen Gesamtübersicht Organisatorisches Einführung Endliche

Mehr

Übungsaufgaben zu Formalen Sprachen und Automaten

Übungsaufgaben zu Formalen Sprachen und Automaten Universität Freiburg PD Dr. A. Jakoby Sommer 27 Übungen zum Repetitorium Informatik III Übungsaufgaben zu Formalen Sprachen und Automaten. Untersuchen Sie das folgende Spiel: A B x x 2 x 3 C D Eine Murmel

Mehr

(Prüfungs-)Aufgaben zu formale Sprachen

(Prüfungs-)Aufgaben zu formale Sprachen (Prüfungs-)Aufgaben zu formale Sprachen (siehe auch bei den Aufgaben zu endlichen Automaten) 1) Eine Grammatik G sei gegeben durch: N = {S, A}, T = {a, b, c, d}, P = { (S, Sa), (S, ba), (A, ba), (A, c),

Mehr

Ein Satz der deutschen Sprache besitzt ein Subjekt, ein Prädikat und ein Objekt (SPO).

Ein Satz der deutschen Sprache besitzt ein Subjekt, ein Prädikat und ein Objekt (SPO). 1 Grammatiken Autor: Tilman Blumenbach Letzte Änderung: 28. Juni 2012 18:15 Ziel von Grammatiken Wollen die Struktur von Sprachen modellieren und charakterisieren. Beispiel Ein Satz der deutschen Sprache

Mehr

Algorithmen mit konstantem Platzbedarf: Die Klasse REG

Algorithmen mit konstantem Platzbedarf: Die Klasse REG Algorithmen mit konstantem Platzbedarf: Die Klasse REG Sommerakademie Rot an der Rot AG 1 Wieviel Platz brauchen Algorithmen wirklich? Daniel Alm Institut für Numerische Simulation Universität Bonn August

Mehr

Theoretische Informatik II

Theoretische Informatik II Theoretische Informatik II Einheit 4.2 Modelle für Typ-0 & Typ-1 Sprachen 1. Nichtdeterministische Turingmaschinen 2. Äquivalenz zu Typ-0 Sprachen 3. Linear beschränkte Automaten und Typ-1 Sprachen Maschinenmodelle

Mehr

Formale Grundlagen der Informatik

Formale Grundlagen der Informatik Formale Grundlagen der Informatik / 2015 1 Reguläre Ausdrücke Kommen in der Praxis immer dann vor, wenn standardisierte Eingaben erforderlich sind: Telefonnummern: +Land (0) Ort Anschluß Dateinamen: (A-Z,

Mehr

Nachklausur zur Vorlesung Informatik 3 mit einigen Anmerkungen zu Lösungen

Nachklausur zur Vorlesung Informatik 3 mit einigen Anmerkungen zu Lösungen Nachklausur zur Vorlesung Informatik 3 mit einigen Anmerkungen zu Lösungen Aufgabe 1 2 3 4 5 6 7 max. Punkte 6 6 7 7 8 8 12 err. Punkte Gesamtpunktzahl: Note: 1 Aufgabe 1 (3+1+1+1 = 6 Punkte) Es seien

Mehr

1. Klausur Einführung in die Theoretische Informatik Seite 1 von 14

1. Klausur Einführung in die Theoretische Informatik Seite 1 von 14 1. Klausur Einführung in die Theoretische Informatik Seite 1 von 14 1. Welche der folgenden Aussagen zu Normalformen einer aussagenlogischen Formel A ist falsch? A. Für Formel A existiert eine KNF K, sodass

Mehr

Dank. 1 Ableitungsbäume. 2 Umformung von Grammatiken. 3 Normalformen. 4 Pumping-Lemma für kontextfreie Sprachen. 5 Pushdown-Automaten (PDAs)

Dank. 1 Ableitungsbäume. 2 Umformung von Grammatiken. 3 Normalformen. 4 Pumping-Lemma für kontextfreie Sprachen. 5 Pushdown-Automaten (PDAs) ank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert iese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie

Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Wintersemester 2005/2006 07.11.2005 5. Vorlesung 1 Überblick: Kontextfreie Sprachen Formale Grammatik Einführung, Beispiele Formale

Mehr

Informales Beispiel. Formale Grundlagen der Informatik 1 Kapitel 6 Eigenschaften kontextfreier Sprachen. Grammatiken. Anmerkungen

Informales Beispiel. Formale Grundlagen der Informatik 1 Kapitel 6 Eigenschaften kontextfreier Sprachen. Grammatiken. Anmerkungen Informales Beispiel Formale Grundlagen der Informatik 1 Kapitel 6 Eigenschaften kontextfreier Sprachen Frank Heitmann heitmann@informatik.uni-hamburg.de 22. April 2014 I L IL ID L a b c D 0 1 2 3 4 Eine

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik im WiSe 2003/2004

Lösung zur Klausur. Grundlagen der Theoretischen Informatik im WiSe 2003/2004 Lösung zur Klausur Grundlagen der Theoretischen Informatik im WiSe 2003/2004 1. Geben Sie einen deterministischen endlichen Automaten an, der die Sprache aller Wörter über dem Alphabet {0, 1} akzeptiert,

Mehr

Definition 4 (Operationen auf Sprachen) Beispiel 5. Seien A, B Σ zwei (formale) Sprachen. Konkatenation: AB = {uv ; u A, v B} A + = n 1 An

Definition 4 (Operationen auf Sprachen) Beispiel 5. Seien A, B Σ zwei (formale) Sprachen. Konkatenation: AB = {uv ; u A, v B} A + = n 1 An Definition 4 (Operationen auf Sprachen) Seien A, B Σ zwei (formale) Sprachen. Konkatenation: AB = {uv ; u A, v B} A 0 = {ɛ}, A n+1 = AA n A = n 0 An A + = n 1 An Beispiel 5 {ab, b}{a, bb} = {aba, abbb,

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 4. Kellerautomaten und kontextfreie Sprachen (II) 11.06.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

a n b n c n ist kontextsensitiv kontextfreie Sprachen (Typ 2) Abschnitt 3.3 kontextfreie Sprachen: Abschlusseigenschaften Chomsky NF und binäre Bäume

a n b n c n ist kontextsensitiv kontextfreie Sprachen (Typ 2) Abschnitt 3.3 kontextfreie Sprachen: Abschlusseigenschaften Chomsky NF und binäre Bäume Kap 3: Grammatiken Chomsky-Hierarchie 32 Kap 3: Grammatiken Kontextfreie 33 a n b n c n ist kontextsensiti Beispiel 3111 modifizieren: Σ = {a, b, c G = (Σ, V, P, X ) V = {X, Y, Z P : X ε X axyz ZY YZ ay

Mehr

2 2 Reguläre Sprachen. 2.2 Endliche Automaten. Übersicht

2 2 Reguläre Sprachen. 2.2 Endliche Automaten. Übersicht Formale Systeme, Automaten, Prozesse Übersicht 2 2. Reguläre Ausdrücke 2.3 Nichtdeterministische endliche Automaten 2.4 Die Potenzmengenkonstruktion 2.5 NFAs mit ɛ-übergängen 2.6 Minimale DFAs und der

Mehr

Theoretische Informatik. Grammatiken. Grammatiken. Grammatiken. Rainer Schrader. 9. Juli 2009

Theoretische Informatik. Grammatiken. Grammatiken. Grammatiken. Rainer Schrader. 9. Juli 2009 Theoretische Informatik Rainer Schrader Institut für Informatik 9. Juli 2009 1 / 41 2 / 41 Gliederung die Chomsky-Hierarchie Typ 0- Typ 3- Typ 1- Die Programmierung eines Rechners in einer höheren Programmiersprache

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 12.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie

Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Wintersemester 2005/2006 07.02.2006 28. und letzte Vorlesung 1 Die Chomsky-Klassifizierung Chomsky-Hierachien 3: Reguläre Grammatiken

Mehr

Theoretische Informatik I

Theoretische Informatik I Theoretische Informatik I Rückblick Theoretische Informatik I 1. Mathematische Methoden 2. Reguläre Sprachen 3. Kontextfreie Sprachen Themen der Theoretischen Informatik I & II Mathematische Methodik in

Mehr

5.7 Kontextfreie Grammatiken und Kellerautomaten

5.7 Kontextfreie Grammatiken und Kellerautomaten 130 5.7 Kontextfreie Grammatiken und Kellerautomaten Im letzten Abschnitt haben wir gesehen, dass wir reguläre Sprachen auch mit Hilfe von endlichen Automaten charakterisieren können. Jetzt wollen wir

Mehr

Teil V. Weiterführende Themen, Teil 1: Kontextsensitive Sprachen und die Chomsky-Hierarchie

Teil V. Weiterführende Themen, Teil 1: Kontextsensitive Sprachen und die Chomsky-Hierarchie Teil V Weiterführende Themen, Teil 1: Kontextsensitive Sprachen und die Chomsky-Hierarchie Zwei Sorten von Grammatiken Kontextsensitive Grammatik (CSG) (Σ, V, P, S), Regeln der Form αaβ αγβ α, β (Σ V ),

Mehr

Reguläre Sprachen. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer,

Reguläre Sprachen. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer, Reguläre Sprachen Reguläre Sprachen (Typ-3-Sprachen) haben große Bedeutung in Textverarbeitung und Programmierung (z.b. lexikalische Analyse) besitzen für viele Entscheidungsprobleme effiziente Algorithmen

Mehr

Die Nerode-Relation und der Index einer Sprache L

Die Nerode-Relation und der Index einer Sprache L Die Nerode-Relation und der Index einer Sprache L Eine zweite zentrale Idee: Sei A ein vollständiger DFA für die Sprache L. Repäsentiere einen beliebigen Zustand p von A durch die Worte in Σ, die zu p

Mehr

Einführung in die Theoretische Informatik I/ Grundlagen der Theoretischen Informatik. SS 2007 Jun.-Prof. Dr. Bernhard Beckert Ulrich Koch

Einführung in die Theoretische Informatik I/ Grundlagen der Theoretischen Informatik. SS 2007 Jun.-Prof. Dr. Bernhard Beckert Ulrich Koch Einführung in die Theoretische Informatik I/ Grundlagen der Theoretischen Informatik SS 2007 Jun.-Prof. Dr. Bernhard Beckert Ulrich Koch 3. Teilklausur 25. 07. 2007 Persönliche Daten bitte gut leserlich

Mehr

Grundlagen der Informatik II

Grundlagen der Informatik II Grundlagen der Informatik II Tutorium 2 Professor Dr. Hartmut Schmeck Miniaufgabe * bevor es losgeht * Finden Sie die drei Fehler in der Automaten- Definition. δ: A = E, S, δ, γ, s 0, F, E = 0,1, S = s

Mehr

Teil 3: Endliche Automaten. (Kapitel T4 u. T5.3)

Teil 3: Endliche Automaten. (Kapitel T4 u. T5.3) Teil 3: Endliche Automaten (Kapitel T4 u. T5.3) Begriffe Rechnerstrukturen Schaltnetz (ohne Rückkopplungen/ Speicher) andere gängige Begriffe Schaltkreis [T] circuit combinational circuit Schaltwerk (mit

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Übung am 02.02.2012 INSTITUT FÜR THEORETISCHE 0 KIT 06.02.2012 Universität des Andrea Landes Schumm Baden-Württemberg - Theoretische und Grundlagen der Informatik

Mehr

2.11 Kontextfreie Grammatiken und Parsebäume

2.11 Kontextfreie Grammatiken und Parsebäume 2.11 Kontextfreie Grammatiken und Parsebäume Beispiel: Beispiel (Teil 3): Beweis für L(G) L: Alle Strings aus L der Länge 0 und 2 sind auch in L(G). Als Induktionsannahme gehen wir davon aus, dass alle

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 8. Reguläre Sprachen II Malte Helmert Gabriele Röger Universität Basel 24. März 24 Pumping Lemma Pumping Lemma: Motivation Man kann zeigen, dass eine Sprache regulär ist, indem man

Mehr

Aufgabentypen: Spickerblatt: kontextfrei (Typ 2): zusätzlich: u ist eine!"# v 1

Aufgabentypen: Spickerblatt: kontextfrei (Typ 2): zusätzlich: u ist eine!# v 1 Info4 Stoff Aufgabentypen: Grammatik CH einordnen NFA DFA Grammatik Chomsky-NF CYK-Algorithmus: Tabelle / Ableitungsbäume Grammatik streng kf. Grammatik Grammatik Pumping Lemma Beweis, dass Gr. nicht reg,

Mehr

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln,

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln, Theorie der Informatik 8. März 25 8. Reguläre Sprachen I Theorie der Informatik 8. Reguläre Sprachen I 8. Reguläre Grammatiken Malte Helmert Gabriele Röger 8.2 DFAs Universität Basel 8. März 25 8.3 NFAs

Mehr

Dyck-Sprachen & Syntax-Analyse

Dyck-Sprachen & Syntax-Analyse Dyck-Sprachen & Syntax-Analyse Volker Diekert Universität Stuttgart Dyck-Sprachen & Syntax-Analyse, TUM, 25. Juni 2003 1/?? Bäume sind überall............ Trees are everywhere ) ( [ [ ( [ [ ) [ [ ) ( [

Mehr

Formale Sprachen. Grammatiken und die Chomsky-Hierarchie. Rudolf FREUND, Marian KOGLER

Formale Sprachen. Grammatiken und die Chomsky-Hierarchie. Rudolf FREUND, Marian KOGLER Formale Sprachen Grammatiken und die Chomsky-Hierarchie Rudolf FREUND, Marian KOGLER Grammatiken Das fundamentale Modell zur Beschreibung von formalen Sprachen durch Erzeugungsmechanismen sind Grammatiken.

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik 1 Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Wintersemester 2014/15 2 Kontextfreie Grammatiken Definition: Eine Grammatik G

Mehr

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln,

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln, Theorie der Informatik 9. März 24 7. Reguläre Sprachen I Theorie der Informatik 7. Reguläre Sprachen I Malte Helmert Gabriele Röger Universität Basel 9. März 24 7. Reguläre Grammatiken 7.2 DFAs 7.3 NFAs

Mehr

16. Die Chomsky-Hierarchie

16. Die Chomsky-Hierarchie 16. Die Chomsky-Hierarchie Die Chomsky-Sprachen sind gerade die rekursiv aufzählbaren Sprachen: CH = RA Da es nicht rekursive (d.h. unentscheidbare) r.a. Sprachen gibt, ist das Wortproblem für Chomsky-Grammatiken,

Mehr

H MPKP. Beispiel für eine Rechnung. Reduktion H MPKP. Überführungsregeln

H MPKP. Beispiel für eine Rechnung. Reduktion H MPKP. Überführungsregeln H MPKP Konfiguration einer TM als String schreiben: Bandinschrift zwischen den Blank-Zeichen Links von der Kopfposition Zustand einfügen. Beispiel für eine Rechnung ##q ab##xq b##xyq 2 ##xyzq 3 ##xyq 4

Mehr

Grammatiken. Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V. Startsymbol S V. Kurzschreibweise G = (V, Σ, P, S)

Grammatiken. Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V. Startsymbol S V. Kurzschreibweise G = (V, Σ, P, S) Grammatiken Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V Startsymbol S V Produktionen P ( (V Σ) \ Σ ) (V Σ) Kurzschreibweise G = (V, Σ, P, S) Schreibweise für Produktion (α, β) P: α β 67 /

Mehr

Hochschule Bonn-Rhein-Sieg University of Applied Sciences Grantham-Allee Sankt Augustin

Hochschule Bonn-Rhein-Sieg University of Applied Sciences Grantham-Allee Sankt Augustin Hochschule Bonn-Rhein-Sieg Uniersity of Applied Sciences Grantham-Allee 20 53757 Sankt Augustin Director b-it Applied Science Institute Fachbereich Informatik Prof. Dr. Kurt-Ulrich Witt Mathematische und

Mehr

Falls H die Eingabe verwirft, so wissen wir, dass M bei Eingabe w nicht hält. M hält im verwerfenden Haltezustand. Beweis:

Falls H die Eingabe verwirft, so wissen wir, dass M bei Eingabe w nicht hält. M hält im verwerfenden Haltezustand. Beweis: 1 Unentscheidbarkeit 2 Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Wintersemester 2014/15 #include char *s="include

Mehr

Modellierung. Prof.Dr. Hans Kleine Büning, Prof.Dr. Johannes Blömer. Paderborn, 6. Februar Universität Paderborn Institut für Informatik

Modellierung. Prof.Dr. Hans Kleine Büning, Prof.Dr. Johannes Blömer. Paderborn, 6. Februar Universität Paderborn Institut für Informatik Modellierung Prof.Dr. Hans Kleine Büning, Prof.Dr. Johannes Blömer Universität Paderborn Institut für Informatik Paderborn, 6. Februar 2015 J. Blömer 1/19 Vorbereitung auf die Klausur 1 Vorlesungsinhalte

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Woche 7 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung Zusammenfassung der letzten LV 1 Wir betrachten die folgende Signatur

Mehr

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie 1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie WS 11/12 155 Überblick Zunächst einmal definieren wir formal den Begriff

Mehr

Theoretische Informatik Mitschrift

Theoretische Informatik Mitschrift Theoretische Informatik Mitschrift 2. Grammatiken und die Chomsky-Hierarchie Beispiel: Syntaxdefinition in BNF :=

Mehr

Kontextfreie Grammatiken. Kontextfreie Grammatiken 1 / 45

Kontextfreie Grammatiken. Kontextfreie Grammatiken 1 / 45 Kontextfreie Grammatiken Kontextfreie Grammatiken 1 / 45 Was kann man mit kontextfreien Grammatiken anfangen? Kontextfreie Grammatiken, kurz: werden zur Modellierung von KFGs beliebig tief geschachtelten

Mehr

11. Übung Formale Grundlagen der Informatik

11. Übung Formale Grundlagen der Informatik Institut für Informatik der Universität Zürich Sommersemester 2002 11. Übung Formale Grundlagen der Informatik Norbert E. Fuchs (fuchs@ifi.unizh.ch) Verantwortlicher Assistent Bruno Nietlispach (nietli@ifi.unizh.ch)

Mehr

1. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004. Mit Lösung!

1. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004. Mit Lösung! Universität Karlsruhe Theoretische Informatik Fakultät für Informatik WS 23/4 ILKD Prof. Dr. D. Wagner 2. Februar 24. Klausur zur Vorlesung Informatik III Wintersemester 23/24 Mit Lösung! Beachten Sie:

Mehr

Theoretische Informatik I (Grundzüge der Informatik I)

Theoretische Informatik I (Grundzüge der Informatik I) Theoretische Informatik I (Grundzüge der Informatik I) Literatur: Buch zur Vorlesung: Uwe Schöning, Theoretische Informatik - kurzgefasst. Spektrum Akademischer Verlag, Heidelberg/Berlin, 4. Auflage, 2001.

Mehr

Beispiele für Wortverarbeitung durch NEA. Beispiele für NEA (1) Beispiele für NEA (2) Beispiele für NEA (3) 1.) 1 q 2. q 5. q 1 1 0,1,2. 0 q 2.

Beispiele für Wortverarbeitung durch NEA. Beispiele für NEA (1) Beispiele für NEA (2) Beispiele für NEA (3) 1.) 1 q 2. q 5. q 1 1 0,1,2. 0 q 2. Beispiele für Wortverarbeitung durch NA q, q q 3 q q 4 Wort Weg q, q, q q, q, q, q, q, nicht akzeptierend Weg q, q, q nicht fortsetzbar Weg q, q, q, q, q 3, q 5 nicht fortsetzbar Weg q, q, q, q, q, q q

Mehr

Chomsky-Grammatiken 16. Chomsky-Grammatiken

Chomsky-Grammatiken 16. Chomsky-Grammatiken Chomsky-Grammatiken 16 Chomsky-Grammatiken Ursprünglich von Chomsky in den 1950er Jahren eingeführt zur Beschreibung natürlicher Sprachen. Enge Verwandschaft zu Automaten Grundlage wichtiger Softwarekomponenten

Mehr

Typ-1-Sprachen. Satz 1 (Kuroda ( ) 1964)

Typ-1-Sprachen. Satz 1 (Kuroda ( ) 1964) Typ-1-Sprachen Satz 1 (Kuroda (1934-2009) 1964) Eine Sprache L hat Typ 1 (= ist kontextsensitiv) genau dann, wenn sie von einem nichtdeterministischen LBA erkannt wird. Beweis: Sei zunächst L Typ-1-Sprache.

Mehr

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK Prof. Dr. Klaus Ambos-Spies Sommersemester 2011 17. DIE CHOMSKY-HIERARCHIE Theoretische Informatik (SoSe 2011) 17. Die Chomsky-Hierarchie 1 / 15 Einleitung Die

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

2.4 Kontextsensitive und Typ 0-Sprachen

2.4 Kontextsensitive und Typ 0-Sprachen Definition 2.43 Eine Typ 1 Grammatik ist in Kuroda Normalform, falls alle Regeln eine der folgenden 4 Formen haben: Dabei: A, B, C, D V und a Σ. Satz 2.44 A a, A B, A BC, AB CD. Für jede Typ 1 Grammatik

Mehr