Suche nach einem solchen Kreis. Endlichkeitstest. Vereinigung und Durchschnitt. Abschlusseigenschaften

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Suche nach einem solchen Kreis. Endlichkeitstest. Vereinigung und Durchschnitt. Abschlusseigenschaften"

Transkript

1 Endlichkeitstest Eingabe: DFA/NFA M. Frage: Ist die von M akzeptierte Sprache endlich? Nahe liegende Beobachtung: In einem DFA/NFA, der eine unendliche Sprache akzeptiert, muss es einen Kreis geben, der vom Startzustand aus erreichbar ist und von dem aus ein akzept. Zustand erreichbar ist. Suche nach einem solchen Kreis Entferne alle vom Startzustand aus nicht erreichbaren Zustände/Knoten. Drehe alle Kanten um. Führe DFS von den akzeptierenden Zuständen ausgehend durch. Es wird eine B-Kante erzeugt. Ein Kreis ist von einem akzeptierenden Zustand aus erreichbar. Rechenzeit: O( Q Σ ) Abschlusseigenschaften Satz T4.6.4: Sei M ein DFA für eine Sprache L. Dann kann ein DFA für L in Zeit O( Q ) erzeugt werden. Insbesondere: Wenn L regulär ist, ist auch L regulär, d.h., die regulären Sprachen sind unter Komplementbildung abgeschlossen. Beweis: Ersetze F durch Q F. Vereinigung und Durchschnitt Satz T4.6.5: Seien M 1 und M 2 DFAs für L 1 und L 2. Dann kann ein DFA für L 1 L 2 (L 1 L 2 ) in Zeit O( Q 1 Q 2 Σ ) konstruiert werden. Insbesondere: Wenn L 1 und L 2 regulär sind, sind auch L 1 L 2 und L 1 L 2 regulär, d.h., die regulären Sprachen sind gegen Vereinigung und Durchschnitt abgeschlossen. Bemerkung: Funktioniert nicht für NFAs

2 Konstruktion d. Produktautomaten Konstruiere DFA M: Q = Q 1 Q 2. q 0 = (q 01,q 02 ). F = {(q 1,q 2 ) q 1 F 1 q 2 F 2 }. δ((q 1,q 2 ),a) = (δ 1 (q 1,a),δ 2 (q 2,a)). Idee: Parallele Simulation beider DFAs. Übungsaufgaben: Übertragung der Konstruktion auf NFAs. Vermeidung der Konstruktion überfüssiger Zustände 419 Beispiel Produktautomat 1 p 1 p 0 p 2 q 0 q Vereinfachte Konstruktion f. NFAs Seien M 1,M 2 NFAs f. die Sprachen L 1 und L 2. Konstruktion eines NFAs für L 1 L 2 : Erzeuge Kopien von M 1 und M 2. Erzeuge neuen Startzustand q 0 (akzeptierend, falls q 0,1 oder q 0,2 akzept.). Für alle a Σ erzeuge a-übergänge von q 0 zu den a-nachfolgern der Startzustände von M 1 und M 2. - Funktioniert aber nicht für Durchschnitt. 421 Symmetrische Differenz Definition: L 1 L 2 ={w w L 1 L 2 w L 1 L 2 } heißt symmetrische Differenz von L 1 und L 2. Beispiel: L 1 ={00,11,01}, L 2 ={00,10}. Dann ist L 1 L 2 ={11,01,10} Satz: Seien M 1 und M 2 DFAs für L 1 und L 2. Dann kann ein DFA für L 1 L 2 in Zeit O( Q 1 Q 2 Σ ) konstruiert werden. 422

3 Abschluss unter symm. Differenz Satz: Seien M 1 und M 2 DFAs für L 1 und L 2. Dann kann ein DFA für L 1 L 2 in Zeit O( Q 1 Q 2 Σ ) konstruiert werden. Beweis: Benutze Produktautomatenkonstruktion mit F = {(q 1,q 2 ) (q 1 F 1 q 2 F 2 ) (q 1 F 1 q 2 F 2 )}. Äquivalenztest für DFAs Gegeben: DFAs M 1 und M 2 für Sprachen L 1 und L 2. Konstruiere DFA für L 1 L 2. Wende darauf den Leerheitstest an. Rechenzeit: O( Q 1 Q 2 Σ ). Übungsaufgabe: Überlege, woran diese Konstruktion für NFAs scheitert Produktsprache (Konkatenation) Definition T4.6.9: Seien L 1 und L 2 Sprachen über Σ. Die Konkatenation von L 1 und L 2 ist definiert durch Beispiel: L 1 ={0 n 1 n n 0}, L 2 ={1 n 0 n n 0}. Dann L 1 L 2 ={0 n 1 n+m 0 m }. Abschluss gegen Konkatenation Satz T4.6.10: Seien M 1 und M 2 DFAs für L 1 und L 2. Dann kann ein NFA für L 1 L 2 in Zeit O(( Q 1 + Q 2 ) Σ ) konstruiert werden. Insbesondere ist L 1 L 2 regulär, d.h., die regulären Sprachen sind gegen Konkatenation abgeschlossen

4 Beweis Seien M 1 und M 2 gegeben, o.b.d.a Q 1 Q 2 =. Idee: In akzept. Zuständen kann M 1 raten, dass sein Teilwort zu Ende ist. q 0 M 1 M 2 Formalere Beschreibung Zustandsmenge: Q 1 Q 2. Startzustand: Startzustand von M 1. Akz. Zustände: F 2 (bzw. F 1 F 2, falls ε L 2 ). Zustandsübergänge: Zustandsübergänge aus M 1 und M 2 Für q F 1 und a Σ zusätzlich: δ(q,a)=δ 2 (q 0,2,a) Kleenescher Abschluss Definition T4.6.11: L i : i-fache Produkt von L mit sich selbst. (L 0 ={ε}, L 1 =L, L 2 =LL, L 3 =LLL, ) Beispiel: L={00,11}. Dann: L*= {w 1 w n mit n gerade und w 2i 1 =w 2i }. 429 Abschluss unter kleeneschen A. Satz T4.6.12: Sei M ein DFA für L. Aus M kann in Zeit O( Q Σ ) ein NFA für L* konstruiert werden. Insbesondere ist L* regulär und die regulären Sprachen sind unter dem kleeneschen Abschluss abgeschlossen. Beweis: Idee: Rate die Stellen, wo die Teilwörter aus L zu Ende sind. 430

5 Idee: Formalere Beschreibung Sei (Q,Σ,q 0,δ,F) DFA für L. q 0 Neuer akzept. Startzustand Fortsetzen der Rechnung an Nachf. des Startzust. ermögl. 431 NFA (Q,Σ,q 0,δ,F ) für L*: Zustandsmenge: Q =Q {q 0 }. Startzustand: q 0. Akz. Zustände: F = {q 0 } F. Zustandsübergänge in δ : Zustandsübergänge aus δ. Für q {q 0 } F und a Σ zusätzlich: δ (q,a)=δ(q 0,a). 432 Reguläre Ausdrücke [K5.3] Im folgenden Teil 4 der Vorlesung: Regelsysteme, die Sprachen erzeugen Grammatiken Hier: einfaches Regelsystem für reguläre Sprachen: reguläre Ausdrücke 433 Def. von regulären Ausdrücken Definition T5.3.2: Rekursionsende: : leere Sprache ε: leeres Wort a Σ: Wörter aus einem Buchstaben sind reguläre Ausdrücke. Rekursion: Wenn A und B reguläre Ausdrücke sind, dann auch (A)+(B), (A) (B) und (A)*. Vereinigung Konkatenation Kleenescher 434A.

6 Beispiele für reguläre Ausdrücke Menge aller Wörter, die mit 0 beginnen und 1 enden: (0) ((0)+(1))* (1) Vereinfachung: 0(0+1)*1 Menge aller Wörter mit einer geraden Anzahl Nullen: 1* ((0) (1)* (0) (1)*)* Vereinfachung: 1*(01*01*)* Vereinfachungen Klammern um, ε, a weglassen +, assoziativ Klammern weglassen Prioritäten der Operationen: Addition/Vereinigung + Multiplikation/Konkatenation Potenzbildung/kleenescher Abschluss * Klammern entsprechend weglassen Zeichen für Konkatenation weglassen Beispiele für reguläre Ausdrücke L k ={w {0,1}* In w ist der k-te Buchstabe von hinten eine 1}. Regulärer Ausdruck: (0+1)* 1 (0+1) (0+1) ()-mal Zum Vergleich: Ein DFA für L k benötigt 2 k Zustände (Satz T4.4.3). grep Befehl zur Suche von Mustern in den Zeilen einer Textdatei Beschreibung der Muster: reguläre Ausdrücke [abc] entspricht a+b+c? entspricht jedem Buchstaben \ entspricht + Hintereinanderschreiben entspricht * entspricht kleeneschen Abschluss Klammern: \(, \)

7 grep (Fortsetzung) grep PATTERN FILE gibt die Zeilen von FILE aus, die das durch den reg. Ausdruck PATTERN beschriebene Muster enthalten. grep x PATTERN FILE gibt die Zeilen von FILE aus, die (als ganze Zeilen gesehen) durch den reg. Ausdruck PATTERN beschrieben sind. Beispiele für grep-syntax Menge aller Wörter, die mit 0 beginnen und 1 enden: vorher: 0(0+1)*1 grep: [0][01]*[1] Menge aller Wörter mit gerader Anzahl Nullen oder gerader Anzahl Einsen vorher: 1*(01*01*)* + 0*(10*10*)* grep: [1]*\([0][1]*[0][1]*\)*\ [0]*\([1][0]*[1][0]*\)* Zshg. reg Ausdrücke reg. Spr. Satz T5.3.3: Genau die regulären Sprachen lassen sich durch reguläre Ausdrücke beschreiben. Beweis: 1. Alle regulären Ausdrücke beschreiben reguläre Sprachen. 2. Alle regulären Sprachen können durch reguläre Ausdrücke beschrieben werden. Reg. Ausdr. beschr. reg. Sprachen Betrachte rekursive Def. der reg. Ausdrücke:, {ε}, {a} sind reguläre Sprachen. Die regulären Sprachen sind gegen Vereinigung (+), Konkatenation ( ) und kleeneschen Abschluss (*) abgeschlossen. Alle regulären Ausdrücke beschreiben reguläre Sprachen

8 Umformung DFA reg. Ausdruck Sei M DFA für reg. Sprache L. Sei Q={1,,n} u. dynamische Zustand 1 der Startzustand. Programmierung Definiere: R i,jk : Menge aller Wörter, für die M beginnend mit Zustand i den Zustand j erreicht, wobei die Zwischenzustände aus {1,,k} sind. Idee: Zeige, dass sich alle R i,jk durch reguläre Ausdrücke beschreiben lassen. 443 Konstr. von reg. Ausdr. für R i,j k k=0 keine Zwischenzustände erlaubt. R i,j0 : kann nur aus einem Buchstaben a bestehen, nämlich dem a mit δ(i,a)=j. R i,i0 : enthält zusätzlich ε. Reguläre Ausdrücke für R i,j0 : R i,jk : Menge aller Wörter, für die M beginnend mit Zustand i den Zustand j erreicht, wobei die Zwischenzustände aus {1,,k} sind. 444 Rekursive Bestimmung von R i,j k Rekursionsformel: R i,jk = R i,j + R i,k (R k,k )*R k,j Wörter, bei deren Rechnung der Zwischenzustand k ev. mehrfach benutzt wird. Wörter, bei deren Rechnung Zwischenzustand k nicht benutzt wird. R i,jk : Menge aller Wörter, für die M beginnend mit Zustand i den Zustand j erreicht, wobei die Zwischenzustände aus {1,,k} sind. 445 Rekursionsformel erzeugt aus reg. Ausdrücken für R i,j reg. Ausdrücke für R i,jk. Wir können reguläre Ausdrücke für R i,j n berechnen. Dann gilt für die von M akzeptierte Sprache: L = +i F R 1,i n regulärer Ausdruck R i,jk : Menge aller Wörter, für die M beginnend mit Zustand i den Zustand j erreicht, wobei die Zwischenzustände aus {1,,k} sind. 446

Abschluss gegen Substitution. Wiederholung. Beispiel. Abschluss gegen Substitution

Abschluss gegen Substitution. Wiederholung. Beispiel. Abschluss gegen Substitution Wiederholung Beschreibungsformen für reguläre Sprachen: DFAs NFAs Reguläre Ausdrücke:, {ε}, {a}, und deren Verknüpfung mit + (Vereinigung), (Konkatenation) und * (kleenescher Abschluss) Abschluss gegen

Mehr

Grammatiken. Einführung

Grammatiken. Einführung Einführung Beispiel: Die arithmetischen Ausdrücke über der Variablen a und den Operationen + und können wie folgt definiert werden: a, a + a und a a sind arithmetische Ausdrücke Wenn A und B arithmetische

Mehr

Umformung NTM DTM. Charakterisierung rek. aufz. Spr. Chomsky-3-Grammatiken (T5.3) Chomsky-0-Grammatik Rek. Aufz.

Umformung NTM DTM. Charakterisierung rek. aufz. Spr. Chomsky-3-Grammatiken (T5.3) Chomsky-0-Grammatik Rek. Aufz. Chomsky-0-Grammatik Rek. Aufz. Satz T5.2.2: Wenn L durch eine Chomsky-0- Grammatik G beschrieben wird, gibt es eine NTM M, die L akzeptiert. Beweis: Algo von M: Schreibe S auf freie Spur. Iteriere: Führe

Mehr

2 2 Reguläre Sprachen. 2.2 Endliche Automaten. Übersicht

2 2 Reguläre Sprachen. 2.2 Endliche Automaten. Übersicht Formale Systeme, Automaten, Prozesse Übersicht 2 2. Reguläre Ausdrücke 2.3 Nichtdeterministische endliche Automaten 2.4 Die Potenzmengenkonstruktion 2.5 NFAs mit ɛ-übergängen 2.6 Minimale DFAs und der

Mehr

Algorithmen mit konstantem Platzbedarf: Die Klasse REG

Algorithmen mit konstantem Platzbedarf: Die Klasse REG Algorithmen mit konstantem Platzbedarf: Die Klasse REG Sommerakademie Rot an der Rot AG 1 Wieviel Platz brauchen Algorithmen wirklich? Daniel Alm Institut für Numerische Simulation Universität Bonn August

Mehr

Kapitel 2: Formale Sprachen Gliederung

Kapitel 2: Formale Sprachen Gliederung Gliederung. Einleitung und Grundbegriffe. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 2.. Chomsky-Grammatiken 2.2. Reguläre Sprachen Reguläre Grammatiken, ND-Automaten

Mehr

liefern eine nicht maschinenbasierte Charakterisierung der regulären

liefern eine nicht maschinenbasierte Charakterisierung der regulären Reguläre Ausdrücke 1 Ziel: L=L M für NFA M L=L(r) für einen regulären Ausdruck r Reguläre Ausdrücke über einem Alphabet Σ Slide 1 liefern eine nicht maschinenbasierte Charakterisierung der regulären Sprachen

Mehr

Endliche Sprachen. Folgerung: Alle endlichen Sprachen sind regulär. Beweis: Sei L={w 1,,w n } Σ*. Dann ist w 1 +L+w n ein regulärer Ausdruck für

Endliche Sprachen. Folgerung: Alle endlichen Sprachen sind regulär. Beweis: Sei L={w 1,,w n } Σ*. Dann ist w 1 +L+w n ein regulärer Ausdruck für Endliche Sprachen Folgerung: Alle endlichen Sprachen sind regulär. Beweis: Sei L={w 1,,w n } Σ*. Dann ist w 1 +L+w n ein regulärer Ausdruck für L. 447 Zusammenfassung Beschreibungsformen für reguläre Sprachen:

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 2. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 1 Einelementiges Alphabet (4 Punkte) (a) Geben

Mehr

Automaten und Formale Sprachen ε-automaten und Minimierung

Automaten und Formale Sprachen ε-automaten und Minimierung Automaten und Formale Sprachen ε-automaten und Minimierung Ralf Möller Hamburg Univ. of Technology Literatur Gottfried Vossen, Kurt-Ulrich Witt: Grundkurs Theoretische Informatik, Vieweg Verlag 2 Danksagung

Mehr

Hoffmann (HAW Hamburg) Automatentheorie und formale Sprachen

Hoffmann (HAW Hamburg) Automatentheorie und formale Sprachen Hoffmann (HAW Hamburg) Automatentheorie und formale Sprachen 18.4. 2012 176 Automatentheorie und formale Sprachen VL 5 Reguläre und nichtreguläre Sprachen Kathrin Hoffmann 18. Aptil 2012 Hoffmann (HAW

Mehr

Der deterministische, endliche Automat. Formale Grundlagen der Informatik 1 Kapitel 3 Mehr zu regulären Sprachen

Der deterministische, endliche Automat. Formale Grundlagen der Informatik 1 Kapitel 3 Mehr zu regulären Sprachen Der deterministische, endliche Automat Formale Grundlagen der Informatik 1 Kapitel 3 Mehr zu regulären Sprachen Frank Heitmann heitmann@informatik.uni-hamurg.de 8. April 2014 Definition (DFA) Ein deterministischer,

Mehr

c) {abcde, abcfg, bcade, bcafg} d) {ade, afg, bcde, bcfg} c) {abcabc} d) {abcbc, abc, a} c) {aa, ab, ba, bb} d) {{aa}, {ab}, {ba}, {bb}}

c) {abcde, abcfg, bcade, bcafg} d) {ade, afg, bcde, bcfg} c) {abcabc} d) {abcbc, abc, a} c) {aa, ab, ba, bb} d) {{aa}, {ab}, {ba}, {bb}} 2 Endliche Automaten Fragen 1. Was ergibt sich bei {a, bc} {de, fg}? a) {abc, defg} b) {abcde, abcfg} c) {abcde, abcfg, bcade, bcafg} d) {ade, afg, bcde, bcfg} 2. Was ergibt sich bei {abc, a} {bc, λ}?

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 8. Reguläre Sprachen II Malte Helmert Gabriele Röger Universität Basel 24. März 24 Pumping Lemma Pumping Lemma: Motivation Man kann zeigen, dass eine Sprache regulär ist, indem man

Mehr

Übungsaufgaben zu Formalen Sprachen und Automaten

Übungsaufgaben zu Formalen Sprachen und Automaten Universität Freiburg PD Dr. A. Jakoby Sommer 27 Übungen zum Repetitorium Informatik III Übungsaufgaben zu Formalen Sprachen und Automaten. Untersuchen Sie das folgende Spiel: A B x x 2 x 3 C D Eine Murmel

Mehr

Theoretische Informatik Kap 1: Formale Sprachen/Automatentheorie

Theoretische Informatik Kap 1: Formale Sprachen/Automatentheorie Gliederung der Vorlesung. Grundbegriffe. Formale Sprachen/Automatentheorie.. Grammatiken.2..3. Kontext-freie Sprachen 2. Berechnungstheorie 2.. Berechenbarkeitsmodelle 2.2. Die Churchsche These 2.3. Unentscheidbarkeit

Mehr

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln,

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln, Theorie der Informatik 8. März 25 8. Reguläre Sprachen I Theorie der Informatik 8. Reguläre Sprachen I 8. Reguläre Grammatiken Malte Helmert Gabriele Röger 8.2 DFAs Universität Basel 8. März 25 8.3 NFAs

Mehr

Informatik IV Theoretische Informatik: Formale Sprachen und Automaten, Berechenbarkeit und NP-Vollständigkeit. Zugangsnummer: 3288

Informatik IV Theoretische Informatik: Formale Sprachen und Automaten, Berechenbarkeit und NP-Vollständigkeit.  Zugangsnummer: 3288 Informatik IV Theoretische Informatik: Formale Sprachen und Automaten, Berechenbarkeit und NP-Vollständigkeit Wiederholung Kapitel 2 http://pingo.upb.de Zugangsnummer: 3288 Dozent: Jun.-Prof. Dr. D. Baumeister

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2011/12 Deterministische Kellerautomaten Von besonderem Interesse sind kontextfreie Sprachen,

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2 Lösungsblatt 3. April 2 Einführung in die Theoretische Informatik

Mehr

Formale Methoden 1. Gerhard Jäger 23. Januar Uni Bielefeld, WS 2007/2008 1/18

Formale Methoden 1. Gerhard Jäger 23. Januar Uni Bielefeld, WS 2007/2008 1/18 1/18 Formale Methoden 1 Gerhard Jäger Gerhard.Jaeger@uni-bielefeld.de Uni Bielefeld, WS 2007/2008 23. Januar 2008 2/18 Das Pumping-Lemma Sein L eine unendliche reguläre Sprache über ein endliches Alphabet

Mehr

Formale Sprachen und endliche Automaten

Formale Sprachen und endliche Automaten Formale Sprachen und endliche Automaten Formale Sprachen Definition: 1 (Alphabet) Ein Alphabet Σ ist eine endliche, nichtleere Menge von Zeichen oder Symbolen. Ein Wort über dem Alphabet Σ ist eine endliche

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 1. Automaten und Sprachen 1.1 Endlicher Automat Einen endlichen Automaten stellen wir uns als Black Box vor, die sich aufgrund einer Folge von

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 3 14. Mai 2010 Einführung in die Theoretische

Mehr

Reguläre Sprachen und endliche Automaten

Reguläre Sprachen und endliche Automaten Reguläre Sprachen und endliche Automaten 1 Motivation: Syntaxüberprüfung Definition: Fließkommazahlen in Java A floating-point literal has the following parts: a whole-number part, a decimal point (represented

Mehr

äußere Klammern können entfallen, ebenso solche, die wegen Assoziativität von + und Konkatenation nicht notwendig sind:

äußere Klammern können entfallen, ebenso solche, die wegen Assoziativität von + und Konkatenation nicht notwendig sind: 3. Reguläre Sprachen Bisher wurden Automaten behandelt und Äquivalenzen zwischen den verschiedenen Automaten gezeigt. DEAs erkennen formale Sprachen. Gibt es formale Sprachen, die nicht erkannt werden?

Mehr

Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14

Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14 Kapitel: Die Chomsky Hierarchie Die Chomsky Hierarchie 1 / 14 Allgemeine Grammatiken Definition Eine Grammatik G = (Σ, V, S, P) besteht aus: einem endlichen Alphabet Σ, einer endlichen Menge V von Variablen

Mehr

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 2. Mai HA-Lösung. TA-Lösung

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 2. Mai HA-Lösung. TA-Lösung Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 2. Mai 2016 HA-Lösung TA-Lösung Einführung in die theoretische Informatik Aufgabenblatt 2 Beachten Sie: Soweit

Mehr

Übung zur Vorlesung Theoretische Information. Minimierungsalgorithmus

Übung zur Vorlesung Theoretische Information. Minimierungsalgorithmus Übung zur Vorlesung Theoretische Information Minimierungsalgorithmus Folie Warum Automaten minimieren? Zwei endliche Automaten Automat q q Automat 2 q q Beide akzeptieren die selbe Sprache Welche? q 2

Mehr

Automatentheorie und formale Sprachen

Automatentheorie und formale Sprachen Automatentheorie und formale Sprachen VL 4 Reguläre Ausdrücke und reguläre Sprachen Kathrin Hoffmann 10. April 2012 Hoffmann (HAW Hamburg) Automatentheorie und formale Sprachen 10.4. 2012 114 Aufgabe 13:

Mehr

Induktive Definition

Induktive Definition Rechenregeln A B = B A A (B C) = (A B) C A (B C) = (A B) C A (B C) = A B A C (B C) A = B A C A {ε} A = A A {ε} = A (A {ε}) = A (A ) = A A A = A + A A = A + A + {ε} = A Beispiel. Real-Zahlen = {0,..., 9}

Mehr

Endliche Automaten. Endliche Automaten J. Blömer 1/23

Endliche Automaten. Endliche Automaten J. Blömer 1/23 Endliche Automaten Endliche Automaten sind ein Kalkül zur Spezifikation von realen oder abstrakten Maschinen regieren auf äußere Ereignisse (=Eingaben) ändern ihren inneren Zustand produzieren gegebenenfalls

Mehr

Theoretische Informatik. Grammatiken. Grammatiken. Grammatiken. Rainer Schrader. 9. Juli 2009

Theoretische Informatik. Grammatiken. Grammatiken. Grammatiken. Rainer Schrader. 9. Juli 2009 Theoretische Informatik Rainer Schrader Institut für Informatik 9. Juli 2009 1 / 41 2 / 41 Gliederung die Chomsky-Hierarchie Typ 0- Typ 3- Typ 1- Die Programmierung eines Rechners in einer höheren Programmiersprache

Mehr

Worterkennung in Texten speziell im Compilerbau 14. April Frank Heitmann 2/65

Worterkennung in Texten speziell im Compilerbau 14. April Frank Heitmann 2/65 Grenzen regulärer Sprachen? Formale Grundlagen der Informatik 1 Kapitel 4 Über reguläre Sprachen hinaus und Frank Heitmann heitmann@informatik.uni-hamburg.de Wir haben mittlerweile einiges kennengelernt,

Mehr

Abschlusseigenschaften. Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Abschlusseigenschaften

Abschlusseigenschaften. Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Abschlusseigenschaften Automaten und Formale Sprachen alias Theoretische Informatik Sommersemester 2012 Dr. Sander Bruggink Übungsleitung: Jan Stückrath Abgeschlossenheit (Definition) Gegeben sei eine Menge M und ein n-ärer

Mehr

Definition (Reguläre Ausdrücke) Sei Σ ein Alphabet, dann gilt: (ii) ε ist ein regulärer Ausdruck über Σ.

Definition (Reguläre Ausdrücke) Sei Σ ein Alphabet, dann gilt: (ii) ε ist ein regulärer Ausdruck über Σ. Reguläre Ausdrücke Definition (Reguläre Ausdrücke) Sei Σ ein Alphabet, dann gilt: (i) ist ein regulärer Ausdruck über Σ. (ii) ε ist ein regulärer Ausdruck über Σ. (iii) Für jedes a Σ ist a ein regulärer

Mehr

Operationen auf endlichen Automaten und Transduktoren

Operationen auf endlichen Automaten und Transduktoren Operationen auf endlichen Automaten und Transduktoren Kursfolien Karin Haenelt 1 Notationskonventionen L reguläre Sprache A endlicher Automat DEA deterministischer endlicher Automat NEA nichtdeterministischer

Mehr

Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion

Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität 26. November 2007 Semi-Entscheidbarkeit

Mehr

Theoretische Informatik: Berechenbarkeit und Formale Sprachen

Theoretische Informatik: Berechenbarkeit und Formale Sprachen Prof. Dr. F. Otto 26.09.2011 Fachbereich Elektrotechnik/Informatik Universität Kassel Klausur zur Vorlesung Theoretische Informatik: Berechenbarkeit und Formale Sprachen SS 2011 Name:................................

Mehr

Formale Systeme. Büchi-Automaten. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Büchi-Automaten. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz

Mehr

Reguläre Sprachen Endliche Automaten

Reguläre Sprachen Endliche Automaten Endliche Automaten (Folie 54, Seite 16 im Skript) Einige Vorteile endlicher deterministischer Automaten: durch Computer schnell simulierbar wenig Speicher benötigt: Tabelle für δ (read-only), aktueller

Mehr

Frank Heitmann 2/47. 1 Ein PDA beginnt im Startzustand z 0 und mit im Keller. 2 Ist der Automat

Frank Heitmann 2/47. 1 Ein PDA beginnt im Startzustand z 0 und mit im Keller. 2 Ist der Automat Formale Grundlagen der Informatik 1 Kapitel 5 Über reguläre Sprachen hinaus und (Teil 2) Frank Heitmann heitmann@informatik.uni-hamburg.de 21. April 2015 Der Kellerautomat - Formal Definition (Kellerautomat

Mehr

7 Endliche Automaten. 7.1 Deterministische endliche Automaten

7 Endliche Automaten. 7.1 Deterministische endliche Automaten 7 Endliche Automaten 7.1 Deterministische endliche Automaten 7.2 Nichtdeterministische endliche Automaten 7.3 Endliche Automaten mit g-übergängen Endliche Automaten 1 7.1 Deterministische endliche Automaten

Mehr

Rekursiv aufzählbare Sprachen

Rekursiv aufzählbare Sprachen Kapitel 4 Rekursiv aufzählbare Sprachen 4.1 Grammatiken und die Chomsky-Hierarchie Durch Zulassung komplexer Ableitungsregeln können mit Grammatiken größere Klassen als die kontextfreien Sprachen beschrieben

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Rolf Socher ISBN 3-446-22987-6 Leseprobe Weitere Informationen oder Bestellungen unter http://www.hanser.de/3-446-22987-6 sowie im Buchhandel Einführung.. 13 2 Endliche

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 10.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

Konfiguration einer TM als String schreiben: Bandinschrift zwischen den Blank-Zeichen Links von der Kopfposition Zustand einfügen.

Konfiguration einer TM als String schreiben: Bandinschrift zwischen den Blank-Zeichen Links von der Kopfposition Zustand einfügen. H MPKP Konfiguration einer TM als String schreiben: Bandinschrift zwischen den Blank-Zeichen Links von der Kopfposition Zustand einfügen. Beispiel: 1234q567 bedeutet: Kopf steht auf 5, Zustand ist q. Rechnung:

Mehr

Automaten und formale Sprachen. Lösungen zu den Übungsblättern

Automaten und formale Sprachen. Lösungen zu den Übungsblättern Automaten und formale Sprachen zu den Übungsblättern Übungsblatt Aufgabe. (Sipser, exercise.3) M = ({q, q2, q3, q4, q5}, {u, d}, δ, q3, {q3}) δ: u d q q q 2 q 2 q q 3 q 3 q 2 q 4 q 4 q 3 q 5 q 5 q 4 q

Mehr

Formale Sprachen. Script, Kapitel 4. Grammatiken

Formale Sprachen. Script, Kapitel 4. Grammatiken Formale Sprachen Grammatiken Script, Kapitel 4 erzeugen Sprachen eingeführt von Chomsky zur Beschreibung natürlicher Sprache bedeutend für die Syntaxdefinition und -analyse von Programmiersprachen Automaten

Mehr

Für jede Sprache L X sind die folgenden Aussagen äquivalent:

Für jede Sprache L X sind die folgenden Aussagen äquivalent: Was bisher geschah Für jede Sprache L X sind die folgenden Aussagen äquivalent: Es existiert ein NFA A mit L = L(A) (L REC(NFA)). Es existiert ein vollständiger NFA B mit L = L(B). Es existiert ein ε-nfa

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 7 15. Juni 2010 Einführung in die Theoretische

Mehr

Maike Buchin 18. Februar 2016 Stef Sijben. Probeklausur. Theoretische Informatik. Bearbeitungszeit: 3 Stunden

Maike Buchin 18. Februar 2016 Stef Sijben. Probeklausur. Theoretische Informatik. Bearbeitungszeit: 3 Stunden Maike Buchin 8. Februar 26 Stef Sijben Probeklausur Theoretische Informatik Bearbeitungszeit: 3 Stunden Name: Matrikelnummer: Studiengang: Geburtsdatum: Hinweise: Schreibe die Lösung jeder Aufgabe direkt

Mehr

2.4 Kontextsensitive und Typ 0-Sprachen

2.4 Kontextsensitive und Typ 0-Sprachen Definition 2.43 Eine Typ 1 Grammatik ist in Kuroda Normalform, falls alle Regeln eine der folgenden 4 Formen haben: Dabei: A, B, C, D V und a Σ. Satz 2.44 A a, A B, A BC, AB CD. Für jede Typ 1 Grammatik

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Ulrich Furbach. Sommersemester 2014

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Ulrich Furbach. Sommersemester 2014 Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Ulrich Furbach Institut für Informatik Sommersemester 2014 Furbach Grundlagen d. Theoretischen Informatik:

Mehr

Vorlesung Theoretische Informatik

Vorlesung Theoretische Informatik Vorlesung Theoretische Informatik Automaten und Formale Sprachen Hochschule Reutlingen Fakultät für Informatik Masterstudiengang Wirtschaftsinformatik überarbeitet von F. Laux (Stand: 09.06.2010) Sommersemester

Mehr

Ein deterministischer endlicher Automat (DFA) kann als 5-Touple dargestellt werden:

Ein deterministischer endlicher Automat (DFA) kann als 5-Touple dargestellt werden: Sprachen und Automaten 1 Deterministische endliche Automaten (DFA) Ein deterministischer endlicher Automat (DFA) kann als 5-Touple dargestellt werden: M = (Z,3,*,qo,E) Z = Die Menge der Zustände 3 = Eingabealphabet

Mehr

Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie

Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Wintersemester 2005/2006 07.02.2006 28. und letzte Vorlesung 1 Die Chomsky-Klassifizierung Chomsky-Hierachien 3: Reguläre Grammatiken

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 3. Endliche Automaten (V) 21.05.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Determinierte endliche Automaten (DEAs) Indeterminierte

Mehr

kontextfreie Grammatiken Theoretische Informatik kontextfreie Grammatiken kontextfreie Grammatiken Rainer Schrader 14. Juli 2009 Gliederung

kontextfreie Grammatiken Theoretische Informatik kontextfreie Grammatiken kontextfreie Grammatiken Rainer Schrader 14. Juli 2009 Gliederung Theoretische Informatik Rainer Schrader Zentrum für Angewandte Informatik Köln 14. Juli 2009 1 / 40 2 / 40 Beispiele: Aus den bisher gemachten Überlegungen ergibt sich: aus der Chomsky-Hierarchie bleiben

Mehr

Automaten und Formale Sprachen

Automaten und Formale Sprachen Automaten und Formale Sprachen Prof. Dr. Dietrich Kuske FG Theoretische Informatik, TU Ilmenau Wintersemester 2011/12 WS 11/12 1 Organisatorisches zur Vorlesung Informationen, aktuelle Version der Folien

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/07 5. Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/07 5. Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 5. Vorlesung 09.11.2006 schindel@informatik.uni-freiburg.de 1 Äquivalenzklassen Definition und Beispiel Definition Für eine Sprache L Σ* bezeichnen

Mehr

Kapitel 2: Formale Sprachen Gliederung. 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie

Kapitel 2: Formale Sprachen Gliederung. 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie Gliederung 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 2.1. 2.2. Reguläre Sprachen 2.3. Kontextfreie Sprachen 2/1, Folie 1 2015 Prof. Steffen

Mehr

Teil 4: Grammatiken und Syntaxanalyse. (Kapitel T5-T7)

Teil 4: Grammatiken und Syntaxanalyse. (Kapitel T5-T7) Teil 4: Grammatiken und Syntaxanalyse (Kapitel T5-T7) Grammatiken und die Chomsky- Hierarchie [T5.1] Ziel: Regelsysteme zur Erzeugung von Sprachen. Beispiel: arithmetische Ausdrücke können definiert werden

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Sascha Böhme, Lars Noschinski Sommersemester 2 Lösungsblatt 23. Mai 2 Einführung in die Theoretische Informatik Hinweis:

Mehr

Theoretische Informatik 2

Theoretische Informatik 2 Theoretische Informatik 2 Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2009/10 Die Chomsky-Hierarchie Definition Sei G = (V, Σ, P, S) eine Grammatik. 1 G heißt vom Typ 3 oder

Mehr

Es gibt drei unterschiedliche Automaten:

Es gibt drei unterschiedliche Automaten: Automatentheorie Es gibt drei unterschiedliche Automaten: 1. Deterministische Endliche Automaten (DEA) 2. Nichtdeterministische Endliche Automaten (NEA) 3. Endliche Automaten mit Epsilon-Übergängen (ε-

Mehr

11.1 Kontextsensitive und allgemeine Grammatiken

11.1 Kontextsensitive und allgemeine Grammatiken Theorie der Informatik 7. April 2014 11. Kontextsensitive und Typ-0-Sprachen Theorie der Informatik 11. Kontextsensitive und Typ-0-Sprachen 11.1 Kontextsensitive und allgemeine Grammatiken Malte Helmert

Mehr

8. Turingmaschinen und kontextsensitive Sprachen

8. Turingmaschinen und kontextsensitive Sprachen 8. Turingmaschinen und kontextsensitive Sprachen Turingmaschinen (TM) von A. Turing vorgeschlagen, um den Begriff der Berechenbarkeit formal zu präzisieren. Intuitiv: statt des Stacks bei Kellerautomaten

Mehr

Satz von Kleene. (Stephen C. Kleene, ) Wiebke Petersen Einführung CL 2

Satz von Kleene. (Stephen C. Kleene, ) Wiebke Petersen Einführung CL 2 Satz von Kleene (Stephen C. Kleene, 1909-1994) Jede Sprache, die von einem deterministischen endlichen Automaten akzeptiert wird ist regulär und jede reguläre Sprache wird von einem deterministischen endlichen

Mehr

Turing-Maschinen. Definition 1. Eine deterministische Turing-Maschine (kurz DTM) ist ein 6- Dem endlichen Alphabet Σ von Eingabesymbolen.

Turing-Maschinen. Definition 1. Eine deterministische Turing-Maschine (kurz DTM) ist ein 6- Dem endlichen Alphabet Σ von Eingabesymbolen. Turing-Maschinen Nachdem wir endliche Automaten und (die mächtigeren) Kellerautomaten kennengelernt haben, werden wir nun ein letztes, noch mächtigeres Automatenmodell kennenlernen: Die Turing-Maschine

Mehr

Formale Grundlagen der Informatik 1 Kapitel 12 Zusammenfassung

Formale Grundlagen der Informatik 1 Kapitel 12 Zusammenfassung Formale Grundlagen der Informatik 1 Kapitel 12 Zusammenfassung Frank Heitmann heitmann@informatik.uni-hamburg.de 13. Mai 2014 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/17 Überblick Wir hatten

Mehr

Einführung in Berechenbarkeit, Komplexität und formale Sprachen

Einführung in Berechenbarkeit, Komplexität und formale Sprachen Johannes Blömer Skript zur Vorlesung Einführung in Berechenbarkeit, Komplexität und formale Sprachen Universität Paderborn Wintersemester 2011/12 Inhaltsverzeichnis 1 Einleitung 2 1.1 Ziele der Vorlesung...................................

Mehr

Formale Methoden 1. Gerhard Jäger 9. Januar Uni Bielefeld, WS 2007/2008 1/23

Formale Methoden 1. Gerhard Jäger 9. Januar Uni Bielefeld, WS 2007/2008 1/23 1/23 Formale Methoden 1 Gerhard Jäger Gerhard.Jaeger@uni-bielefeld.de Uni Bielefeld, WS 2007/2008 9. Januar 2008 2/23 Automaten (informell) gedachte Maschine/abstraktes Modell einer Maschine verhält sich

Mehr

THEORETISCHE INFORMATIK

THEORETISCHE INFORMATIK THEORETISCHE INFORMATIK Vorlesungsskript Jiří Adámek @ Institut für Theoretische Informatik Technische Universität Braunschweig Dezember 28 Inhaltsverzeichnis Endliche Automaten. Mathematische Grundbegriffe......................

Mehr

Thomas Behr. 17. November 2011

Thomas Behr. 17. November 2011 in in Fakultät für Mathematik und Informatik Datenbanksysteme für neue Anwendungen FernUniversität in Hagen 17. November 2011 c 2011 FernUniversität in Hagen Outline in 1 2 3 4 5 6 - Was ist das? in über

Mehr

Grundlagen Theoretischer Informatik I SoSe 2011 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de

Grundlagen Theoretischer Informatik I SoSe 2011 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de Grundlagen Theoretischer Informatik I SoSe 2011 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Grundlagen Theoretischer Informatik I Gesamtübersicht Organisatorisches; Einführung Logik

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 2: Eigenschaften von regulären Sprachen schulz@eprover.org Software Systems Engineering Alphabet Definition: Ein Alphabet Σ ist eine nichtleere, endliche

Mehr

Automaten und formale Sprachen Klausurvorbereitung

Automaten und formale Sprachen Klausurvorbereitung Automaten und formale Sprachen Klausurvorbereitung Rami Swailem Mathematik Naturwissenschaften und Informatik FH-Gießen-Friedberg Inhaltsverzeichnis 1 Definitionen 2 2 Altklausur Jäger 2006 8 1 1 Definitionen

Mehr

Klausur zur Vorlesung Grundbegriffe der Informatik 5. März 2014

Klausur zur Vorlesung Grundbegriffe der Informatik 5. März 2014 Klausur zur Vorlesung Grundbegriffe der Informatik 5. März 2014 Klausurnummer Nachname: Vorname: Matr.-Nr.: Aufgabe 1 2 3 4 5 6 7 max. Punkte 6 8 4 7 5 6 8 tats. Punkte Gesamtpunktzahl: Note: Punkte Aufgabe

Mehr

Alphabet, formale Sprache

Alphabet, formale Sprache n Alphabet Alphabet, formale Sprache l nichtleere endliche Menge von Zeichen ( Buchstaben, Symbole) n Wort über einem Alphabet l endliche Folge von Buchstaben, die auch leer sein kann ( ε leere Wort) l

Mehr

Einführung in Berechenbarkeit, Komplexität und Formale Sprachen

Einführung in Berechenbarkeit, Komplexität und Formale Sprachen Einführung in Berechenbarkeit, Komplexität und Formale Sprachen V7, 3.11.09 Willkommen zur Vorlesung Einführung in Berechenbarkeit, Komplexität und Formale Sprachen Friedhelm Meyer auf der Heide 1 Rückblick

Mehr

Automaten und Coinduktion

Automaten und Coinduktion Philipps-Univestität Marburg Fachbereich Mathematik und Informatik Seminar: Konzepte von Programmiersprachen Abgabedatum 02.12.03 Betreuer: Prof. Dr. H. P. Gumm Referentin: Olga Andriyenko Automaten und

Mehr

Formale Methoden 1. Gerhard Jäger 16. Januar Uni Bielefeld, WS 2007/2008 1/19

Formale Methoden 1. Gerhard Jäger 16. Januar Uni Bielefeld, WS 2007/2008 1/19 1/19 Formale Methoden 1 Gerhard Jäger Gerhard.Jaeger@uni-bielefeld.de Uni Bielefeld, WS 2007/2008 16. Januar 2008 2/19 Reguläre Ausdrücke vierte Art (neben Typ-3-Grammatiken, deterministischen und nicht-deterministischen

Mehr

Theoretische Informatik. Alphabete, Worte, Sprachen

Theoretische Informatik. Alphabete, Worte, Sprachen Theoretische Informatik Alphabete, Worte, Sprachen Alphabete, Worte, Sprachen 1. Alphabete und Worte Definitionen, Beispiele Operationen mit Worten Induktionsbeweise 2. Sprachen Definition und Beispiele

Mehr

Grundlagen der Theoretischen Informatik Musterlösungen zu ausgewählten Übungsaufgaben

Grundlagen der Theoretischen Informatik Musterlösungen zu ausgewählten Übungsaufgaben Dieses Dokument soll mehr dazu dienen, Beispiele für die formal korrekt mathematische Bearbeitung von Aufgaben zu liefern, als konkrete Hinweise auf typische Klausuraufgaben zu liefern. Die hier gezeigten

Mehr

Ausgewählte unentscheidbare Sprachen

Ausgewählte unentscheidbare Sprachen Proseminar Theoretische Informatik 15.12.15 Ausgewählte unentscheidbare Sprachen Marian Sigler, Jakob Köhler Wolfgang Mulzer 1 Entscheidbarkeit und Semi-Entscheidbarkeit Definition 1: L ist entscheidbar

Mehr

I.5. Kontextfreie Sprachen

I.5. Kontextfreie Sprachen I.5. Kontextfreie prachen Zieht man in Betracht, dass BNF-yteme gerade so beschaffen sind, dass auf der linken eite immer genau ein Nichtterminal steht, so sind das also gerade die Ableitungsregeln einer

Mehr

Was bisher geschah Chomsky-Hierarchie für Sprachen: L 0 Menge aller durch (beliebige) Grammatiken beschriebenen Sprachen L 1 Menge aller monotonen

Was bisher geschah Chomsky-Hierarchie für Sprachen: L 0 Menge aller durch (beliebige) Grammatiken beschriebenen Sprachen L 1 Menge aller monotonen Was bisher geschah Chomsky-Hierarchie für Sprachen: L 0 Menge aller durch (beliebige) Grammatiken beschriebenen Sprachen L 1 Menge aller monotonen (Kontextsensitive) Sprachen L 2 Menge aller kontextfreien

Mehr

Kontextfreie Sprachen

Kontextfreie Sprachen Kontextfreie Sprachen Bedeutung: Programmiersprachen (Compilerbau) Syntaxbäume Chomsky-Normalform effiziente Lösung des Wortproblems (CYK-Algorithmus) Grenzen kontextfreier Sprachen (Pumping Lemma) Charakterisierung

Mehr

1- und 2-Wege QFAs. Stephan Sigg Quantentheoretische Grundlagen. 3. DFAs und QFAs. 4. Einige bekannte Ergebnisse

1- und 2-Wege QFAs. Stephan Sigg Quantentheoretische Grundlagen. 3. DFAs und QFAs. 4. Einige bekannte Ergebnisse 1- und 2-Wege QFAs Stephan Sigg 09.12.2003 1. Einleitung und Überblick 2. Quantentheoretische Grundlagen 3. DFAs und QFAs 4. Einige bekannte Ergebnisse 5. Offene Fragen 6. Schluß Seminar 1- und 2-wege

Mehr

Das Postsche Korrespondenzproblem

Das Postsche Korrespondenzproblem Das Postsche Korrespondenzproblem Eine Instanz des PKP ist eine Liste von Paaren aus Σ Σ : (v 1, w 1 ),..., (v n, w n ) Eine Lösung ist eine Folge i 1,..., i k von Indizes 1 i j n mit v i1... v ik = w

Mehr

Satz 90 Sei A = (Q, Σ, δ, q 0, F ) ein DFA. Der Zeitaufwand des obigen Minimalisierungsalgorithmus ist O( Q 2 Σ ).

Satz 90 Sei A = (Q, Σ, δ, q 0, F ) ein DFA. Der Zeitaufwand des obigen Minimalisierungsalgorithmus ist O( Q 2 Σ ). Satz 90 Sei A = (Q, Σ, δ, q 0, F ) ein DFA. Der Zeitaufwand des obigen Minimalisierungsalgorithmus ist O( Q 2 Σ ). Beweis: Für jedes a Σ muss jede Position in der Tabelle nur konstant oft besucht werden.

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik 1 Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Wintersemester 2014/15 2 Kontextfreie Grammatiken Definition: Eine Grammatik G

Mehr

1 Varianten von Turingmaschinen

1 Varianten von Turingmaschinen 1 Varianten von Turingmaschinen Es gibt weitere Definitionen für Turingmaschinen. Diese haben sich aber alle als äquivalent herausgestellt. Ein wiederkehrendes Element der Vorlesung: Äquivalenz von Formalismen

Mehr

Formale Sprachen und Automaten: Tutorium Nr. 8

Formale Sprachen und Automaten: Tutorium Nr. 8 Formale Sprachen und Automaten: Tutorium Nr. 8 15. Juni 2013 Übersicht 1 Nachtrag 2 Besprechung von Übungsblatt 7 Aufgabe 1 Aufgabe 2 Aufgabe 3 3 CFG PDA Definitionen Ein Beispiel! Aufgabe 4 Der PDA als

Mehr

2. Übungsblatt 6.0 VU Theoretische Informatik und Logik

2. Übungsblatt 6.0 VU Theoretische Informatik und Logik 2. Übungsblatt 6.0 VU Theoretische Informatik und Logik 25. September 2013 Aufgabe 1 Geben Sie jeweils eine kontextfreie Grammatik an, welche die folgenden Sprachen erzeugt, sowie einen Ableitungsbaum

Mehr

Klausuraufgaben. 1. Wir betrachten die folgende Sprache über dem Alphabet {a, b}

Klausuraufgaben. 1. Wir betrachten die folgende Sprache über dem Alphabet {a, b} Klausuraufgaben 1. Wir betrachten die folgende Sprache über dem Alphabet {a, b} L = {a n b m n > 0, m > 0, n m} a) Ist L kontextfrei? Wenn ja, geben Sie eine kontextfreie Grammatik für L an. Wenn nein,

Mehr

Formale Systeme. Endliche Automaten. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Endliche Automaten. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz

Mehr

Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012

Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012 Hier Aufkleber mit Name und Matrikelnr. anbringen

Mehr

Übungsblatt 7. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17

Übungsblatt 7. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 7 Vorlesung Theoretische Grundlagen der Informatik im W 16/17 Ausgabe 17. Januar 2017 Abgabe 31. Januar 2017, 11:00 Uhr (im

Mehr