Vorbemerkung. [disclaimer]

Größe: px
Ab Seite anzeigen:

Download "Vorbemerkung. [disclaimer]"

Transkript

1 Vorbemerkung Dies ist ein korrigierter Übungszettel aus dem Modul physik411. Dieser Übungszettel wurde von einem Tutor korrigiert. Dies bedeutet jedoch nicht, dass es sich um eine Musterlösung handelt. Weder ich, noch der Tutor implizieren, dass dieses Dokument keine Fehler enthält. Alle Übungszettel zu diesem Modul können auf gefunden werden. Sofern im Dokuments nichts anderes angegeben ist: Dieses Werk von Martin Ueding ist lizenziert unter einer Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International Lizenz. [disclaimer]

2 Gruppe Florian Seidler Martin Ueding Lizenz: CC-BY-SA 3.0 cba Aufgabe 1 Punkte / 18 / 14 / 3 1. Das Morse-Potential eines diatomischen Moleküls 1a. Energieabstand der Schwingungsniveaus Die gegebene Formel kann von den Einheiten nicht stimmen: U(r) µω r r 0 / J kg s m kg m s kg s m Laut [Kubis & Urbach, 013, Folie 1] ist diese eigentlich: µ r r0 ω 0 Die Energieeigenwerte sind dann: E ν = ħhω ν + 1 Der Abstand der Energien ist ħhω. 1b. Obertöne Sind die Obertöne die, die sich durch die Korrektur ergeben? mu@uni-bonn.de 1

3 1. Das Morse-Potential eines diatomischen Moleküls V (r) r 0 r E 0 Abbildung 1: In blau das Morse-Potential für l = 1r 0. In mitternachtsblau den Fall l = r 0. Sowie in waldgrün l = 3r 0. 1c. Plot und Größen Für verschiedene l ist das Morse-Potential in Abbildung 1 dargestellt. Die Rolle von l scheint eine Art charakteristische Länge zu sein. Je größer l ist, desto länger reicht das Potential. Beim Wasserstoff ist dies ähnlich, da die zugeordneten Laguerrefunktionen mit zunehmendem l auch langreichweitiger werden. Daher ist auch der Quantendefekt bei größeren l kleiner, weil sich die Elektronen nicht mehr so häufig am Kern aufhalten. 1d. Schwingungsfrequenz Ich bilde die Taylorentwicklung des Potentials U M (r) um den Punkt r = r 0 : U M (r) = E 0 + E o l r r0 Die Krümmung ist das Potential des harmonischen Oszillators. Dieses ist laut [Kubis & Urbach, 013, Folie 1]: µ ω 0 r r0 Durch Umstellen erhalte ich: ω 0 = 4E 0 l µ Martin Ueding Seite / 6 Gruppe Florian Seidler

4 . Fouriertransformationsinfrarotspektroskopie (FTIR) 1e. Dissoziationsenergie Wie beim Wasserstoff auch, muss so viel Arbeit W Diss aufgebracht werden, dass die Gesamtenergie gleich null ist. Dabei gehe ich davon aus, dass vom Minimum des Potentials gerechnet wird. W Diss = E 0 + ħh 4E 0 l ν + 1 µ Je kleiner das n ist, desto mehr zusätzliche Energie wird gebraucht. Je nach l kann der Grundzustand schon ungebunden sein. 1f. Energiespektrum E vib = ħhω ν ν ħhω ħhω ν ν + 1 ħhω 4E 0 4E 0 = ħhω + (ν + 1) ħh ω Es kommt noch ein Summand (ν + 1) ħh ω E E dazu. Um einen Summanden E vib E HO vib E vib E HO vib E HO vib eingebracht werden. zu bekommen, muss dann ein Faktor Je schwerer, und damit träger, das Gesamtsystem wird (größere µ), desto weniger sollte es vom harmonischen Oszillator abweichen, da nur kleinere Auslenkungen erreicht werden. Bei höheren Anregungsniveaus ν wird, wie am Plot zu sehen, das harmonische Potential eine immer schlechtere Idealisierung.. Fouriertransformationsinfrarotspektroskopie (FTIR) a. Skizze Eine Skizze der Apparatur ist in Abbildung. b. Art der Strahlungsquelle Es könnte vielleicht einen Laser geben, der im Infrarotbereich strahlt. Eine LED wird wahrscheinlich kein Licht in diesem Spektralbereich abgeben, sie strahlen ja auch meistens kaltes Licht aus. Wobei es Martin Ueding Seite 3 / 6 Gruppe Florian Seidler

5 . Fouriertransformationsinfrarotspektroskopie (FTIR) l einfallendes Licht Strahlteiler Detektor Abbildung : Michelsoninterferometer für die Fouriertransformationsinfrarotspektroskopie. Die beiden unbeschrifteten Rechtecke sind Spiegel, der eine davon beweglich. Seine Position wird durch l gegeben. auch IR-LEDs gibt, zum Beispiel für Fernbedienungen (Dank an Lino). Eine Glühlampe eigentlich sich wunderbar dafür. Schließlich hat die EU ja die normalen Glühlampen verboten, weil sie zu viel Wärme abstrahlen, und nicht genug Licht. Der Infrarotbereich befindet sich zwischen Wellenlängen von 780 nm bis 1 mm. [Wikipedia, 013] Die ziemlich warme Raumtemperatur von 300 K lässt sich mit dem Wien schen Verschiebungsgesetz in eine Maximalwellenlänge umrechnen: Tλ max = 897,8 µm K = λ max = 9,659 µm c. Es kommen zwei gleiche Strahlen zur Interferenz, beide mit I 0 /. Dabei ist τ = l c die Zeit, die das Licht auf dem einen Arm des Interferometers mehr unterwegs ist. Das Feld sei linear polarisiert, so dass E(t) eine skalare Größe ist. Die Amplitude, die beim Detektor ankommt, ist dann die Differenz der beiden Felder, da ein Strahl beim Durchgang durch den Strahlteiler so reflektiert wird, dass seine Amplitude gespiegelt wird. Ē(t) = 1 E(t) E(t τ) Martin Ueding Seite 4 / 6 Gruppe Florian Seidler

6 . Fouriertransformationsinfrarotspektroskopie (FTIR) Die Energiedichte ϱ WFeld ist ϱ = 1 ɛ 0E (t), wobei der Strahlungsfluss I gerade ϱc ist. I(t) = 1 1 ɛ 0c E(t) E(t τ) = ɛ 0c E (t) E(t)E(t τ) + E (t τ) 4 Die Intensität muss allerdings über eine ganze Periode gemittelt werden, damit die mittlere Intensität herauskommt: I = 1 T T T dt ɛ 0c 4 E (t) E(t)E(t τ) + E (t τ) Mit einer Transformation t := t τ wird der letzte Summand wie der erste zu (0), also I 0. = 1 I 0 1 T T T dt ɛ 0c E(t)E(t τ) Damit auch Licht eines schwarzen Körpers benutzt werden kann, muss die Periode unendlich lang sein. = 1 I 1 0 lim T T T Das ist die gesuchte Relation. T dt ɛ 0c E(t)E(t τ) = 1 I 0 1 (τ) d. Auflösungsvermögen Es gelten: ωk = c, ω = k k, ω = c c Bei einer Diskreten Fouriertransformation (DFT oder FFT) erhalte ich mit N Messpunkten N Frequenzen. (Oder N 1?) Um zwei Frequenzen mit Wellenzahlunterschied von k = 0,1 cm 1 unterscheiden zu Martin Ueding Seite 5 / 6 Gruppe Florian Seidler

7 Literatur können, brauche ich: N = k = k Der Spiegel sollte sich soweit bewegen, dass mindestens eine komplette Periode abgedeckt ist, also I maximal und minimal geworden ist. Die Spiegelbewegung muss also abdecken: λ = π k = nm =: N l Der Bruchteil l muss dann sein: l = 3,9 nm So klein, wie die Werte allerdings sind, sind die Längen auch vielleicht um den Faktor N größer. Literatur [Kubis & Urbach, 013] Kubis, B. & Urbach, C. (013). physik41 Theoretische Physik 3 Quantenmechanik. [Wikipedia, 013] Wikipedia (013). Infrarotstrahlung. title=infrarotstrahlung&oldid= Martin Ueding Seite 6 / 6 Gruppe Florian Seidler

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein korrigierter Übungszettel aus dem Modul physik4. Dieser Übungszettel wurde von einem Tutor korrigiert. Dies bedeutet jedoch nicht, dass es sich um eine Musterlösung handelt. Weder

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein abgegebener Übungszettel aus dem Modul physik4. Dieser Übungszettel wurde nicht korrigiert. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle Übungszettel

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein korrigierter Übungszettel aus dem Modul physik411. Dieser Übungszettel wurde von einem Tutor korrigiert. Dies bedeutet jedoch nicht, dass es sich um eine Musterlösung handelt.

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein abgegebener Übungszettel aus dem Modul physik2. Dieser Übungszettel wurde nicht korrigiert. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle Übungszettel

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein korrigierter Übungszettel aus dem Modul physik411. Dieser Übungszettel wurde von einem Tutor korrigiert. Dies bedeutet jedoch nicht, dass es sich um eine Musterlösung handelt.

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein abgegebener Übungszettel aus dem Modul physik3. Dieser Übungszettel wurde nicht korrigiert. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle Übungszettel

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] orbemerkung Dies ist ein abgegebener Übungszettel aus dem Modul physik2. Dieser Übungszettel wurde nicht korrigiert. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle Übungszettel

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein abgegebener Übungszettel aus dem Modul physik41. Dieser Übungszettel wurde nicht korrigiert. s handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle Übungszettel

Mehr

Einführung in die Schwingungsspektroskopie

Einführung in die Schwingungsspektroskopie Einführung in die Schwingungsspektroskopie Quelle: Frederik Uibel und Andreas Maurer, Uni Tübingen 2004 Molekülbewegungen Translation: Rotation: Die Bewegung des gesamten Moleküls ls in die drei Raumrichtungen.

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein abgegebener Übungszettel aus dem Modul physik221. Dieser Übungszettel wurde nicht korrigiert. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle Übungszettel

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein abgegebener Übungsettel aus dem Modul math34. Dieser Übungsettel wurde nicht korrigiert. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle Übungsettel u diesem

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerung Dies ist ein abgegebener Übungszettel aus dem Modul physi211. Dieser Übungszettel wurde nicht orrigiert. Es handelt sich lediglich um meine Abgabe und eine Musterlösung. Alle Übungszettel zu

Mehr

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen Physik Schwingungen Zusammenfassung Mechanik Physik Mathe Einheiten Bewegung Bewegung 3d Newtons Gesetze Energie Gravitation Rotation Impuls Ableitung, Integration Vektoren Skalarprodukt Gradient Kreuzprodukt

Mehr

Wellen und Dipolstrahlung

Wellen und Dipolstrahlung Wellen und Dipolstrahlung Florian Hrubesch 25. März 2010 Inhaltsverzeichnis 1 Photoeffekt 1 2 Comptoneffekt 3 3 Bragg Streuung 4 4 Strahlungsgesetze 5 1 Photoeffekt Der Photoeffekt wurde erstmals 1839

Mehr

Grundlagen der Quantentheorie

Grundlagen der Quantentheorie Grundlagen der Quantentheorie Ein Schwarzer Körper (Schwarzer Strahler, planckscher Strahler, idealer schwarzer Körper) ist eine idealisierte thermische Strahlungsquelle: Alle auftreffende elektromagnetische

Mehr

Physik 4, Übung 12, Prof. Förster

Physik 4, Übung 12, Prof. Förster Physik 4, Übung 12, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

Technische Raytracer

Technische Raytracer University of Applied Sciences 05. Oktober 2016 Technische Raytracer 2 s 2 (1 (n u) 2 ) 3 u 0 = n 1 n 2 u n 4 n 1 n 2 n u 1 n1 n 2 5 Licht und Spektrum 19.23 MM Double Gauss - U.S. Patent 2,532,751 Scale:

Mehr

Wellen und Dipolstrahlung

Wellen und Dipolstrahlung Wellen und Dipolstrahlung Florian Hrubesch. März 00 Inhaltsverzeichnis Wellen. Wellen im Vakuum............................. Lösung der Wellengleichung................... Energietransport / Impuls - der

Mehr

Experimentelle Physik II

Experimentelle Physik II Experimentelle Physik II Sommersemester 08 Vladimir Dyakonov (Lehrstuhl Experimentelle Physik VI) VL#8 07-05-2008 Tel. 0931/888 3111 dyakonov@physik.uni-wuerzburg.de Experimentelle Physik II 2. Rotationen

Mehr

Übungen zur Vorlesung Physikalische Chemie 2 (B. Sc.) Lösungsvorschlag zu Blatt 12

Übungen zur Vorlesung Physikalische Chemie 2 (B. Sc.) Lösungsvorschlag zu Blatt 12 Übungen zur Vorlesung Physikalische Chemie B. Sc. ösungsvorschlag zu Blatt 1 Prof. Dr. Norbert Hampp Jens Träger Wintersemester 7/8. 1. 8 Aufgabe 1 Welche Schwingungsübergänge in einem elektronischen Spektrum

Mehr

Teil 1 Schwingungsspektroskopie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17

Teil 1 Schwingungsspektroskopie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 Teil 1 Schwingungsspektroskopie Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 www.ruhr-uni-bochum.de/chirality Themenüberblick Schwingungsspektroskopie Physikalische Grundlagen: Mechanisches Bild

Mehr

Übungen zu Physik I für Physiker Serie 12 Musterlösungen

Übungen zu Physik I für Physiker Serie 12 Musterlösungen Übungen zu Physik I für Physiker Serie 1 Musterlösungen Allgemeine Fragen 1. Warum hängt der Klang einer Saite davon ab, in welcher Entfernung von der Mitte man sie anspielt? Welche Oberschwingungen fehlen

Mehr

FK Ex 4 - Musterlösung 08/09/2015

FK Ex 4 - Musterlösung 08/09/2015 FK Ex 4 - Musterlösung 08/09/2015 1 Spektrallinien Die Natrium-D-Linien sind emittiertes Licht der Wellenlänge 589.5932 nm (D1) und 588.9965 nm (D2). Diese charakteristischen Spektrallinien entstehen beim

Mehr

Physik 4, Übung 5, Prof. Förster

Physik 4, Übung 5, Prof. Förster Physik 4, Übung 5, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen Physik für Maschinenbau Prof. Dr. Stefan Schael RWTH Aachen Vorlesung 11 Brechung b α a 1 d 1 x α b x β d 2 a 2 β Totalreflexion Glasfaserkabel sin 1 n 2 sin 2 n 1 c arcsin n 2 n 1 1.0 arcsin

Mehr

k m = 2 f (Frequenz) k = 2 m gilt näherungsweise für alle Schwingungen, falls die Auslenkungen klein genug sind (ähnliches Potential ähnliche Kraft)

k m = 2 f (Frequenz) k = 2 m gilt näherungsweise für alle Schwingungen, falls die Auslenkungen klein genug sind (ähnliches Potential ähnliche Kraft) 8. Der lineare harmonische Oszillator (1D) klass.: E = k m = f (Frequenz) x k = m U = k x = m x m größer -> ω kleiner (deuterierte Moleküle) gilt näherungsweise für alle Schwingungen, falls die Auslenkungen

Mehr

Moleküle und Wärmestatistik

Moleküle und Wärmestatistik Moleküle und Wärmestatistik Musterlösung.08.008 Molekülbindung Ein Molekül bestehe aus zwei Atomkernen A und B und zwei Elektronen. a) Wie lautet der Ansatz für die symmetrische Wellenfunktion in der Molekülorbitalnäherung?

Mehr

Ferienkurs Experimentalphysik Übung 2 - Musterlösung

Ferienkurs Experimentalphysik Übung 2 - Musterlösung Ferienkurs Experimentalphysik 4 00 Übung - Musterlösung Kopplung von Drehimpulsen und spektroskopische Notation (*) Vervollständigen Sie untenstehende Tabelle mit den fehlenden Werten der Quantenzahlen.

Mehr

Physik 4, Übung 2, Prof. Förster

Physik 4, Übung 2, Prof. Förster Physik 4, Übung, Prof. Förster Christoph Hansen Emailkontakt 4. April 03 Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit.

Mehr

(a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 100km/h) keine Rolle?

(a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 100km/h) keine Rolle? FK Ex 4-07/09/2015 1 Quickies (a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 100km/h) keine Rolle? (b) Wie groß ist die Energie von Lichtquanten mit einer Wellenlänge von

Mehr

Physik IV Einführung in die Atomistik und die Struktur der Materie

Physik IV Einführung in die Atomistik und die Struktur der Materie Physik IV Einführung in die Atomistik und die Struktur der Materie Sommersemester 2011 Vorlesung 20 29.06.2011 Physik IV - Einführung in die Atomistik Vorlesung 20 Prof. Thorsten Kröll 29.06.2011 1 Anmeldung

Mehr

Schwingungen (Vibrationen) zweiatomiger Moleküle

Schwingungen (Vibrationen) zweiatomiger Moleküle Schwingungen (Vibrationen) zweiatomiger Moleküle Das Molekülpotential ist die Potentialkurve für die Schwingung H 2 Molekül 0.0 2.5 4 5 6 H( 1s) + H( 3l ) Energie in ev 5.0 7.5 H( 1s) + H( 2l ) H( 1s)

Mehr

Fourier-Transform-Infrarot-Spektroskopie (FP 17)

Fourier-Transform-Infrarot-Spektroskopie (FP 17) Theorie Fourier-Transform-Infrarot-Spektroskopie (FP 17) Fortgeschrittenen-Praktikums-Kolloquium Alexander Erlich alexander.erlich@gmail.com B. Sc. Physik, 6. Semester Betreuerin: Janina Messerschmidt

Mehr

FK Experimentalphysik 3, Lösung 4

FK Experimentalphysik 3, Lösung 4 1 Sterne als schwarze Strahler FK Experimentalphysik 3, 4 1 Sterne als schwarze Strahler Betrachten sie folgende Sterne: 1. Einen roten Stern mit einer Oberflächentemperatur von 3000 K 2. einen gelben

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 3. Übungsblatt - 8.November 2010 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (2 Punkte) Berechnen

Mehr

3. Klausur in K2 am

3. Klausur in K2 am Name: Punkte: Note: Ø: Profilfach Physik Abzüge für Darstellung: Rundung: 3. Klausur in K am 4.3. 05 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: h =

Mehr

Wärmestrahlung. Einfallende Strahlung = absorbierte Strahlung + reflektierte Strahlung

Wärmestrahlung. Einfallende Strahlung = absorbierte Strahlung + reflektierte Strahlung Wärmestrahlung Gleichheit von Absorptions- und Emissionsgrad Zwei Flächen auf gleicher Temperatur T 1 stehen sich gegenüber. dunkelgrau hellgrau Der Wärmefluss durch Strahlung muss in beiden Richtungen

Mehr

Klausurtermin: Nächster Klausurtermin: September :15-11:15

Klausurtermin: Nächster Klausurtermin: September :15-11:15 Klausurtermin: 10.02.2017 Gruppe 1: 9:15 11:15 Uhr Gruppe 2: 11:45-13:45 Uhr Nächster Klausurtermin: September 2017 9:15-11:15 Fragen bitte an: Antworten: t.giesen@uni-kassel.de direkt oder im Tutorium

Mehr

Hier der Rest der Bearbeitungen zu den Übungsbeispielen. Viel Erfolg beim Test!

Hier der Rest der Bearbeitungen zu den Übungsbeispielen. Viel Erfolg beim Test! Liebe Übungsgruppe! Hier der Rest der Bearbeitungen zu den Übungsbeispielen. Viel Erfolg beim Test! 45) Die Nullpunktsenergie von 3ε kommt daher, dass die drei Oszillatoren im Grundzustand jeweils eine

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 007 Vladimir Dyakonov #16 am 0.0.007 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E143, Tel.

Mehr

I. Physikalisches Institut der Justus-Liebig-Universität Giessen

I. Physikalisches Institut der Justus-Liebig-Universität Giessen I. Physikalisches Institut der Justus-Liebig-Universität Giessen Versuch 1.2 Bandenspektrum von Jod A. Aufgabenstellung Im Bereich von 500-600 nm soll die Absorption von Joddampf photoelektrisch registriert

Mehr

FK Ex 4 - Musterlösung Probeklausur

FK Ex 4 - Musterlösung Probeklausur FK Ex 4 - Musterlösung Probeklausur Quickies (a) Was ist Licht? (b) Welche verschiedenen Arten von Polarisationen gibt es? (c) Durch welche Effekte kann man aus unpolarisiertem Licht polarisiertes Licht

Mehr

Dynamik von Molekülen. Rotationen und Schwingungen von Molekülen

Dynamik von Molekülen. Rotationen und Schwingungen von Molekülen Rotationen und Schwingungen von Molekülen Schwingungen und Rotationen Bis jetzt haben wir immer den Fall betrachtet, daß die Kerne fest sind Was geschieht nun, wenn sich die Kerne bewegen können? Zwei

Mehr

Physikalisches Grundpraktikum Technische Universität Chemnitz

Physikalisches Grundpraktikum Technische Universität Chemnitz Physikalisches Grundpraktikum Technische Universität Chemnitz Protokoll «A3 - Atomspektren - BALMER-Serie» Martin Wolf Betreuer: DP Emmrich Mitarbeiter: Martin Helfrich

Mehr

Übungsklausur. Optik und Wellenmechanik (Physik311) WS 2015/2016

Übungsklausur. Optik und Wellenmechanik (Physik311) WS 2015/2016 Übungsklausur Optik und Wellenmechanik (Physik311) WS 2015/2016 Diese Übungsklausur gibt Ihnen einen Vorgeschmack auf die Klausur am 12.02.2015. Folgende Hilfsmittel werden erlaubt sein: nicht programmierbarer

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker 9. Vorlesung 13.6.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Übungsblatt 03 (Hausaufgaben)

Übungsblatt 03 (Hausaufgaben) Übungsblatt 03 Hausaufgaben Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik 0.05.008 Aufgaben. Gegeben sind Ladungen + am Orte a; 0; 0 und a; 0; 0: a Berechnen

Mehr

Die meisten Elemente liegen in gebundener Form als einzelne Moleküle, in Flüssigkeiten oder in Festkörpern vor.

Die meisten Elemente liegen in gebundener Form als einzelne Moleküle, in Flüssigkeiten oder in Festkörpern vor. phys4.025 Page 1 13. Moleküle Nur eine kleine Anzahl von Elementen kommt natürlich in Form von einzelnen Atomen vor. Die meisten Elemente liegen in gebundener Form als einzelne Moleküle, in Flüssigkeiten

Mehr

Physik 4, Übung 4, Prof. Förster

Physik 4, Übung 4, Prof. Förster Physik 4, Übung 4, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

Übungen Atom- und Molekülphysik für Physiklehrer (Teil 2)

Übungen Atom- und Molekülphysik für Physiklehrer (Teil 2) Übungen Atom- und Molekülphysik für Physiklehrer (Teil ) Aufgabe 38) Welche J-Werte sind bei den Termen S, P, 4 P und 5 D möglich? Aufgabe 39) Welche Werte kann der Gesamtdrehimpuls eines f-elektrons im

Mehr

Physik 4, Übung 6, Prof. Förster

Physik 4, Übung 6, Prof. Förster Physik 4, Übung 6, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

Spektroskopie. im IR- und UV/VIS-Bereich. Spektrometer. http://www.analytik.ethz.ch

Spektroskopie. im IR- und UV/VIS-Bereich. Spektrometer. http://www.analytik.ethz.ch Spektroskopie im IR- und UV/VIS-Bereich Spektrometer Dr. Thomas Schmid HCI D323 schmid@org.chem.ethz.ch http://www.analytik.ethz.ch Allgemeiner Aufbau eines Spektrometers Lichtintensität d I 0 Probe I

Mehr

Intensitätsverteilung der Beugung am Spalt ******

Intensitätsverteilung der Beugung am Spalt ****** 5.10.801 ****** 1 Motivation Beugung am Spalt: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). 2 Experiment Abbildung 1: Experimenteller Aufbau

Mehr

Klassische Theoretische Physik III WS 2014/ Brewster-Winkel: (20 Punkte)

Klassische Theoretische Physik III WS 2014/ Brewster-Winkel: (20 Punkte) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Phsik III WS 204/205 Prof Dr A Shnirman Blatt 3 Dr B Narohn Lösung Brewster-Winkel: 20 Punkte

Mehr

1) Brillouin-Streuung zur Ermittlung der Schallgeschwindigkeit

1) Brillouin-Streuung zur Ermittlung der Schallgeschwindigkeit Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Eric Parzinger / Jens Repp Kontakt: eric.parzinger@wsi.tum.de / jens.repp@wsi.tum.de Blatt 3, Besprechung: 7. und 14.5.214

Mehr

Probeklausur zur Vorlesung Physik III Sommersemester 17 (Dated: )

Probeklausur zur Vorlesung Physik III Sommersemester 17 (Dated: ) Probeklausur zur Vorlesung Physik III Sommersemester 17 (Dated: 22.5.2017) Vorname und Name: Matrikelnummer: Hinweise Drehen Sie diese Seite nicht um, bis die Prüfung offiziell beginnt! Bitte legen Sie

Mehr

Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides?

Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides? Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides? Experimentelle Überprüfung der Energieniveaus im Bohr schen Atommodell Absorbierte und emittierte Photonen hν = E m E n Stationäre Elektronenbahnen

Mehr

Physik B2.

Physik B2. Physik B2 https://e3.physik.tudortmund.de/~suter/vorlesung/physik_a2_ws17/physik_a2_ws17.html 1 Wellen Welle = Ausbreitung einer Störung in einem kontinuierlichen Medium oder einer räumlich periodischen

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Übung Qi Li, Bernhard Loitsch, Hannes Schmeiduch Donnerstag, 08.03.2012 1 Schwarzer Körper Außerhalb der Erdatmosphäre misst man das Maximum des Sonnenspektrums bei einer

Mehr

UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK

UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK Quantenmechanik II Übungsblatt 10 Solutions 7. Wenn die zeitabhängige Störung periodisch in der Zeit ist, V = αx cos(ωt), mit einer Zahl α und einem

Mehr

Vorlesung Statistische Mechanik: N-Teilchensystem

Vorlesung Statistische Mechanik: N-Teilchensystem Virialentwicklung Die Berechnung der Zustandssumme bei realen Gasen ist nicht mehr exakt durchführbar. Eine Möglichkeit, die Wechselwirkung in realen Gasen systematisch mitzunehmen ist, eine Entwicklung

Mehr

Zusätzliche Aspekte der Absorbtion und Emission von Photonen

Zusätzliche Aspekte der Absorbtion und Emission von Photonen Vorlesung 9 Zusätzliche Aspekte der Absorbtion und Emission von Photonen Plancksche Verteilung und thermisches Gleichgewicht: Wir betrachten ein Medium aus Atomen. Die Atome wechselwirken nicht direkt

Mehr

Übungen zur Einführung in die Astrophysik I. Musterlösung Blatt 2

Übungen zur Einführung in die Astrophysik I. Musterlösung Blatt 2 Übungen zur Einführung in die Astrophysik I Musterlösung Blatt 2 Aufgabe 1(a) Das Gravitationspotential der Erde ist ein Zentralpotential. Es gilt somit: γ Mm r 2 = m v2 r wobei γ die Gravitationskonstante,

Mehr

Rubens - Flammenrohr ******

Rubens - Flammenrohr ****** V050630 5.6.30 ****** Motivation Dieser wunderschöne Versuch führt auf eindrückliche Weise stehende Wellen in Gasen vor. Eperiment Physik II, Prof. W. Fetscher, FS 008 Abbildung : In ein kreisrundes ohr

Mehr

2Fs m = 2 600N 0.225m. t = s v = 30m 30m/s = 1s = gt = 10 m s21s = 10m/s. v y. tanα = (v y /v x ) α = 18. m 1 v 1 = (m 1 + m 2 )v 2

2Fs m = 2 600N 0.225m. t = s v = 30m 30m/s = 1s = gt = 10 m s21s = 10m/s. v y. tanα = (v y /v x ) α = 18. m 1 v 1 = (m 1 + m 2 )v 2 Lösungen Vorschlag I: Massepunkte im Gravitationsfeld 1. (a) (b) Fallzeit = Flugzeit: a = F m v = 2as = v y 2Fs m = 2 600N 0.225m = 30 m/s 0.3kg t = s v = 30m 30m/s = 1s = gt = 10 m s21s = 10m/s v x α

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Dieser Zusammenhang reicht noch nicht aus, deswegen wird noch. n 1 = 1, n 2. n 1 = 1, 5 n 2 = 1, 485

Dieser Zusammenhang reicht noch nicht aus, deswegen wird noch. n 1 = 1, n 2. n 1 = 1, 5 n 2 = 1, 485 Musterlösung OIT 2006-1 1 Aufgabe 1 (a) Gesucht: n 1 und n 2 n = n 1 n 2 n 1 = 0, 015 + n 2 Dieser Zusammenhang reicht noch nicht aus, deswegen wird noch B L = L = n 2 c t AB n 1 n n 1 = 1, 01010101 n

Mehr

Ψ = Dexp( k II a) mit k II = [ 2m e (V 0 E)/ 2] 1/2

Ψ = Dexp( k II a) mit k II = [ 2m e (V 0 E)/ 2] 1/2 Institut für Physikalische Chemie Lösungen zu den Übungen zur Vorlesung Physikalische Chemie II im WS 015/016 Prof. Dr. Eckhard Bartsch / Marcel Werner M.Sc. Aufgabenblatt 11 vom 9.01.16 Aufgabe 11 1 L

Mehr

Versuch 4.1b: Interferenzrefraktor von Jamin

Versuch 4.1b: Interferenzrefraktor von Jamin PHYSIKALISCHES PRAKTIKUM FÜR FORTGESCHRITTENE Technische Universität Darmstadt Abteilung A: Institut für Angewandte Physik Versuch 4.1b: Interferenzrefraktor von Jamin Vorbereitung: Interferenzen gleicher

Mehr

Physik 2 (GPh2) am

Physik 2 (GPh2) am Name: Matrikelnummer: Studienfach: Physik (GPh) am 8.0.013 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter zur

Mehr

mit n =1, 2, 3,... (27) Die gesuchten Wellenfunktionen sind Sinuswellen, deren Wellenlänge λ die Bedingung L = n λ 2

mit n =1, 2, 3,... (27) Die gesuchten Wellenfunktionen sind Sinuswellen, deren Wellenlänge λ die Bedingung L = n λ 2 3FREIETEICHEN TEICHEN IM KASTEN 17 Somit kann man z. B. a = 2/ setzen. (Man könnte auch a = e iϕ 2/ wählen, mit beliebigem ϕ.) Damit sind die Energie- Eigenzustände des Teilchens im Kasten gegeben durch

Mehr

Physik IV - Schriftliche Sessionsprüfung SS 2008

Physik IV - Schriftliche Sessionsprüfung SS 2008 Physik IV - Schriftliche Sessionsprüfung SS 2008 9:00 11:00, Donnerstag, 14. August 2008 Bitte zur Kenntnis nehmen: Es befinden sich insgesamt 6 Aufgaben auf VIER Blättern. Es können insgesamt 60 Punkte

Mehr

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen!

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen! Physik / Klausur Anfang WS /3 Heift / Kurtz Name: Vorname: Matrikel-Nr: Unterschrift: Formeln siehe letzte Rückseite! Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen!

Mehr

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Sebastian Wild Freitag, 6.. Inhaltsverzeichnis Die WKB-Näherung. Grundlegendes............................. Tunnelwahrscheinlichkeit.......................

Mehr

Lösungen zu den Aufg. S. 363/4

Lösungen zu den Aufg. S. 363/4 Lösungen zu den Aufg. S. 363/4 9/1 Die gemessene Gegenspannung (s. Tab.) entspricht der max. kin. Energie der Photoelektronen; die Energie der Photonen = E kin der Elektronen + Austrittsarbeit ==> h f

Mehr

XII. Elektromagnetische Wellen in Materie

XII. Elektromagnetische Wellen in Materie XII. Elektromagnetische Wellen in Materie Unten den wichtigsten Lösungen der makroskopischen Maxwell-Gleichungen (XI.1) in Materie sind die (fortschreitenden) Wellen. Um die zugehörigen Wellengleichungen

Mehr

Die Rotationsterme werden im Folgenden wegen der geringen Auflösung des Gerätes nicht weiter betrachtet. Für kleine Schwingungsamplituden gilt näherun

Die Rotationsterme werden im Folgenden wegen der geringen Auflösung des Gerätes nicht weiter betrachtet. Für kleine Schwingungsamplituden gilt näherun UV/VIS-Spektroskopie: Optische Bestimmung der Dissoziationsenergie von I 2 Es soll ein UV/VIS-Spektrum von Ioddampf aufgenommen werden. Daraus sollen die Bandensysteme der v 00 -Progressionen (v 00 = 0,

Mehr

Fortgeschrittenen Praktikum, SS 2008

Fortgeschrittenen Praktikum, SS 2008 selektive Reflexionsspektroskopie (SRS) Fortgeschrittenen Praktikum, SS 2008 Alexander Seizinger, Michael Ziller, Philipp Buchegger, Tobias Müller Betreuer: Reinhardt Maier Tübingen, den 3. Juni 2008 1

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.

Mehr

Nanoplasma. Nano(cluster)plasmen

Nanoplasma. Nano(cluster)plasmen Nano(cluster)plasmen Nanoplasma Neben der Rumpfniveauspektroskopie an Clustern bietet FLASH die Möglichkeit Cluster unter extremen Bedingungen im Feld eines intensiven Röntgenpulses zu studieren (Nano)Plasmaphysik

Mehr

1.4 Elektromagnetische Wellen an Grenzflächen

1.4 Elektromagnetische Wellen an Grenzflächen 1.4 Elektromagnetische Wellen an Grenzflächen A Stetigkeitsbedingungen Zwei homogen isotrope optische Medien, die D εe, B µh und j σe mit skalaren Konstanten ε, µ, σ erfüllen, mögen sich an einer Grenzfläche

Mehr

Rubens - Flammenrohr ******

Rubens - Flammenrohr ****** V050630 5.6.30 ****** Motivation Dieser wunderschöne Versuch führt auf eindrückliche Weise stehende Wellen in Gasen vor. Eperiment Abbildung : Eperimenteller Aufbau zum. Der Lautsprecher befindet sich

Mehr

Theoretische Physik 4 - Blatt 1

Theoretische Physik 4 - Blatt 1 Theoretische Physik 4 - Blatt 1 Christopher Bronner, Frank Essenberger FU Berlin 21.Oktober.2006 Inhaltsverzeichnis 1 Compton-Effekt 1 2 Bohrsches Atommodell 2 2.1 Effektives Potential..........................

Mehr

Moderne Theoretische Physik II. V: Prof. Dr. D. Zeppenfeld, Ü: Dr. M. Rauch. Klausur 2 Lösung. 04. April 2017, 11:00-13:00 Uhr

Moderne Theoretische Physik II. V: Prof. Dr. D. Zeppenfeld, Ü: Dr. M. Rauch. Klausur 2 Lösung. 04. April 2017, 11:00-13:00 Uhr KIT WS 6/7 Moderne Theoretische Physik II V: Prof. Dr. D. Zeppenfeld, Ü: Dr. M. Rauch Klausur Lösung 4. April 7, :-: Uhr Aufgabe : Störung zum zweidimensionalen harmonischen Oszillator ++7 Punkte a Die

Mehr

FK Ex 4 - Musterlösung Montag

FK Ex 4 - Musterlösung Montag FK Ex 4 - Musterlösung Montag 1 Wellengleichung Leiten Sie die Wellengleichungen für E und B aus den Maxwellgleichungen her. Berücksichtigen Sie dabei die beiden Annahmen, die in der Vorlesung für den

Mehr

Strukturaufklärung (BSc-Chemie): Einführung

Strukturaufklärung (BSc-Chemie): Einführung Strukturaufklärung (BSc-Chemie): Einführung Prof. S. Grimme OC [TC] 13.10.2009 Prof. S. Grimme (OC [TC]) Strukturaufklärung (BSc-Chemie): Einführung 13.10.2009 1 / 25 Teil I Einführung Prof. S. Grimme

Mehr

Übungsaufgaben zu Interferenz

Übungsaufgaben zu Interferenz Übungsaufgaben zu Interferenz ˆ Aufgabe 1: Interferenzmaxima Natrium der Wellenlänge λ = 589 nm falle senkrecht auf ein quadratisches Beugungsgitter mit der Seitenlänge cm mit 4000 Linien pro Zentimeter.

Mehr

Elektrodynamik (T3p)

Elektrodynamik (T3p) Zusatzaufgaben zur Vorlesung Elektrodynamik (T3p) SoSe 5 Beachten Sie, dass die nachfolgenden Aufgaben nur als zusätzliche Übung und nicht als potenzielle Klausuraufgaben angesehen werden sollten! Aufgabe

Mehr

Termschema des neutralen Natriumatoms. Die Zahlen bei den schrägen Strichen sind die Wellenlängen beobachteter Übergänge in nm.

Termschema des neutralen Natriumatoms. Die Zahlen bei den schrägen Strichen sind die Wellenlängen beobachteter Übergänge in nm. Termschema des neutralen Natriumatoms. Die Zahlen bei den schrägen Strichen sind die Wellenlängen beobachteter Übergänge in nm. Prof. Dr. D. Winklmair Wechselwirkung 1/11 Symmetrische Valenzschwingung

Mehr

Quantisierung des elektromagnetischen Feldes

Quantisierung des elektromagnetischen Feldes 18. Juni 2008 1 Energiewerte Maxwell-Gleichungen Wellengleichung Lagrange-Funktion Hamilton-Funktion 1 Kanonische Helmholtzsche freie Energie Innere Energie Übersicht Behandelt wird die im Vakuum. Das

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/1 Grundlagen der Physik 2 Schwingungen und Wärmelehre 07. 05. 2007 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. 2/1 Wellen in

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies is ein abgegebener Übungszeel aus dem Modul physik311. Dieser Übungszeel wurde nih korrigier. Es handel sih lediglih um meine Abgabe und keine Muserlösung. Alle Übungszeel zu diesem Modul

Mehr

Club Apollo 13, 14. Wettbewerb Aufgabe 1.

Club Apollo 13, 14. Wettbewerb Aufgabe 1. Club Apollo 13, 14. Wettbewerb Aufgabe 1. (1) a) Grundlagenteil: Basteln und Experimentieren Wir haben den Versuchsaufbau entsprechend der Versuchsanleitung aufgebaut. Den Aufbau sowie die Phase des Bauens

Mehr

Das H + 2 -Molekülion

Das H + 2 -Molekülion Das Näherungen für das elektronische Problem und Kernbewegungen 7. Dezember 2011 Schrödinger-Gleichung des s Abbildung: Arthur Beiser; Atome, Moleküle, Festkörper; Vieweg, Braunschweig 1983 ( K/E 2 2 +

Mehr

Aufgabe1 EStrich ist Lennard Jones Potential mit Exponentialfunktion

Aufgabe1 EStrich ist Lennard Jones Potential mit Exponentialfunktion Aufgabe EStrich ist Lennard Jones Potential mit Exponentialfunktion Ansatz: Exponentialfunktion mit 3 Variablen einführen: a: Amplitude b:stauchung c:verschiebung_entlang_x_achse EStrich r_, ro_, _ : a

Mehr

Lloydscher Spiegelversuch

Lloydscher Spiegelversuch 1 Lloydscher Spiegelversuch 1.1 Fertige eine ausführliche gegliederte Versuchsbeschreibung an. 1.2. Erkläre das Zustandekommen von Interferenzen a) beim Doppelspalt, b) beim Fresnelschen Doppelspiegel,

Mehr

Theoretische Physik II: Quantenmechanik

Theoretische Physik II: Quantenmechanik Theoretische Physik II: Quantenmechanik Hans-Werner Hammer Marcel Schmidt (mschmidt@theorie.ikp.physik.tu-darmstadt.de) Wintersemester 2016/17 Probeklausur 12./13. Januar 2017 Name: Matrikelnummer: Studiengang:

Mehr