Leitfähigkeit. Schulexperimente. erleben Lernen einfach gemacht. Theorie und Praxisanwendungen. Praktische Beschreibung von Leitfähigkeitsmessungen

Größe: px
Ab Seite anzeigen:

Download "Leitfähigkeit. Schulexperimente. erleben Lernen einfach gemacht. Theorie und Praxisanwendungen. Praktische Beschreibung von Leitfähigkeitsmessungen"

Transkript

1 Schulexperimente Leitfähigkeit Praktische Beschreibung von Leitfähigkeitsmessungen Laborumgebung Ein Naturwissenschaftliche Leitfaden für Leitfähigkeitsmessungen Gesetze hautnah heorie und Praxisanwendungen erleben Lernen einfach gemacht

2 Inhaltsverzeichnis 1 Einführung 5 heorie 6.1 Elektrische Leitfähigkeit Grundlegende Informationen 6. Definition von Leitfähigkeit 6.3 Leitfähigkeit von Lösungen Gelöste Ionen 8.3. Selbstionisierung von Wasser 10.4 Messprinzip 11.5 Leitfähigkeitssensor Zweipolige Leitfähigkeitsmesszelle Vierpolige Leitfähigkeitsmesszelle Material Auswahl des richtigen Sensors 17.6 emperatureffekte Lineare emperaturkorrektur.6. Nicht-lineare Korrektur Reines Wasser Keine Korrektur 6.7 Negative Beeinflussung der Leitfähigkeitsmessung Lösung gasförmiger Substanzen 8.7. Luftblasen Ablagerungen auf der Elektrodenoberfläche Geometriebedingte Fehler Feldeffekte 9 3 Praxis Kalibrierung und Überprüfung ipps für den Umgang mit Standardlösungen Messung Messung niedriger Leitfähigkeitswerte Wartung und Lagerung 37 1

3 Inhaltsverzeichnis 3.6 Spezielle Anwendungen DS Konzentrationsmessungen Salinität Ultrareines Wasser Spezifischer Widerstand Leitfähigkeitsasche Bioethanol 50 4 Häufig gestellte Fragen 5 5 Glossar 55 6 Anhang emperaturkorrekturfaktoren f 5 für die nicht-lineare Korrektur emperaturkoeffizienten (α-werte) für Leitfähigkeits-Standards von MELER OLEDO Faktoren für die Umrechnung der Leitfähigkeit in DS 61

4 3

5 4Einführung

6 1. Einführung Die elektrische Leitfähigkeit wird in der Praxis schon seit über 100 Jahren gemessen und ist auch heute noch ein wichtiger und häufig verwendeter Analyseparameter. Dank der äusserst zuverlässigen, empfindlichen, schnell reagierenden und relativ kostengünstigen Messgeräte ist die Leitfähigkeit eine wertvolle und praktische Grösse für die Qualitätskontrolle. Die elektrische Leitfähigkeit ist ein nicht spezifischer Summenparameter für alle gelösten Ionenspezies (Salze, Säuren, Basen und einige organische Substanzen) in einer Lösung. Das heisst, dass es mit dieser echnik nicht möglich ist, zwischen den verschiedenen Ionenarten zu unterscheiden. Der Messwert ist proportional zu dem kombinierten Effekt aller Ionen in der Probe. Aus diesem Grund sind Leitfähigkeitsmessgeräte wichtige Instrumente, um die unterschiedlichsten Arten von Wasser (reines Wasser, rinkwasser, natürliches Wasser, Prozesswasser usw.) und andere Lösemittel zu überwachen. Mithilfe von Leitfähigkeitsmessungen wird auch die Konzentration leitfähiger Chemikalien gemessen. Dieser Leitfaden enthält alle wichtigen Grundlagen, die für das Verständnis von Leitfähigkeitsmessungen erforderlich sind. Des Weiteren werden alle wichtigen Faktoren und mögliche Fehlerquellen behandelt, die sich auf die Messung auswirken. Diese Broschüre beschränkt sich nicht auf theoretische Aspekte. In einem umfangreichen praktischen eil finden Sie schrittweise Anleitungen und Richtlinien für zuverlässige Kalibrierungen und Messungen, Beschreibungen spezieller Anwendungen und einen Abschnitt mit Antworten auf häufig gestellte Fragen. Das wichtigste Ziel dieses Leitfadens für Leitfähigkeitsmessungen ist es, Kenntnisse und ein Verständnis für dieses Analyseverfahren zu vermitteln, um die Zuverlässigkeit und Genauigkeit Ihrer Resultate zu verbessern. 5

7 heorie. heorie.1 Elektrische Leitfähigkeit Grundlegende Informationen Unter elektrischer Leitfähigkeit versteht man die Fähigkeit eines Materials, einen elektrischen Strom zu leiten. Der Begriff Leitfähigkeit kann jedoch auch in anderen Kontexten verwendet werden (z. B. Wärmeleitfähigkeit). Aus Gründen der Einfachheit wird der Begriff Leitfähigkeit in diesem Leitfaden immer im Sinne der elektrischen Leitfähigkeit verwendet. Die Übertragung von Elektrizität durch eine Masse setzt immer das Vorhandensein geladener Partikel voraus. Elektrische Leiter lassen sich basierend auf dem yp der geladenen Partikel in zwei Hauptgruppen einteilen. Die Leiter der ersten Gruppe bestehen aus einem Gitter von Atomen mit einer Aussenschale von Elektronen. Die Elektronen in dieser Elektronenwolke können sich von ihrem Atom lösen und Elektrizität durch das Gitter und somit auch durch das Material transportieren. Metalle, Graphit und einige andere chemische Verbindungen gehören dieser Gruppe an. Die Leiter der zweiten Gruppe sind die sogenannten Ionenleiter. Im Gegensatz zu den Leitern der ersten Gruppe wird der Stromfluss nicht durch frei bewegliche Elektronen, sondern durch Ionen ermöglicht. Aus diesem Grund ist die Ladungsübertragung in Elektrolyten immer mit dem ransport von Masse verbunden. Die Leiter der zweiten Gruppe bestehen aus elektrisch geladenen und beweglichen Ionen und werden als Elektrolyte bezeichnet. Die Ionisierung erfolgt durch Auflösen in einem polaren Lösemittel (wie Wasser) oder durch Schmelzen.. Definition von Entsprechend dem ohmschen Gesetz (1) ist die Spannung (V) in einer Leitfähigkeit Formeln Lösung Conductivity proportional Guide: zu dem fliessenden Strom (I): 1. V R I (1) R = Widerstand V (Ohm, Ω) V R= Spannung (Volt, V) I I = Strom (Ampere, A) Der Widerstand G 1 (R) ist eine proportionale Konstante und kann anhand des gemessenen R Stromflusses berechnet werden, wenn eine bekannte Spannung anliegt: K l A

8 Formeln Conductivity Guide: 1. V R I Formeln Conductivity Guide: 1. V VR I. R () I V. R Der Leitwert 3. G I 1 (G) ist definiert als der Kehrwert des elektrischen Widerstandes: R 3. G 1 (3) l 4. K R G = Leitwert A (Siemens, S) Formeln l 4. K Conductivity Guide: Um den l 5. G A Widerstand oder der Leitwert einer Probe zu messen, ist 1. V G K eine sogenannte R IA Messzelle erforderlich. Die Messzelle besteht aus mindestens zwei Polen mit unterschiedlicher Ladung. Der Begriff l 5. Elektrode 6. G V c Z wird Gals KSynonym für Pol verwendet und zusammen bilden. die R Pole eine ia i Messzelle. i Die Zelle und der umgebende isolierende Körper Ii werden als Sensor bezeichnet. 6. Formeln c Z i i i Der Conductivity Messwert i hängt von der Geometrie der Messzelle ab, die anhand 3. G 1 Guide: 7. der Zellkonstante ref (K) beschrieben wird. Dies ist das Verhältnis zwischen 1. V R I dem Abstand 1 (l) und ( der Fläche ref ) (A) der Pole: 100% 7. ref l 4. K V (4). R 1 ( ref ) ( I A 1) 100% % K = Zellkonstante ( 1 ) (cm -1 ) 1 l = Abstand l zwischen den Elektroden (cm) 5. ( 1) 100% G G G K A = Effektive 1 A Querschnittsfläche des Elektrolyts zwischen den (1698 R Elektroden ( (cm S 1/ cm S / cm) 100% ).017 %/ C (35 C 5 C) 1413 S / cm 6. Der Leitwert l (1698 c Z i i lässt i S / cm sich 1413 in die standardisierte S / cm) 100% Leitfähigkeit (κ) übertragen, 4. K i die vom A Aufbau der Messzelle unabhängig ist. Dies.017 erfolgt % durch / C (35 C C) S1413 / cm S / cm Multiplikation ref des Leitwerts mit der Zellkonstante: 14 S / cm.017 %/ C 1l (45C 5C) 100% ref G G 1996 K S /(5) cm ref 14 S / cm 1 A.017 %/ ( C ref ) 100% (45C 5C) 9. κ = Leitfähigkeit 5 C f5( ) 100% (S/cm) 6. c Z i i i ( i C f C 10. 0C 1) 100% 5( ) ( 1 ) C 10. 0C( ref S / cm 1413 S / cm) 100% DS ( ).017 %/ C 7

9 heorie.3 Leitfähigkeit von Lösungen Reine Lösemittel sind nicht leitend und besitzen daher eine Leitfähigkeit nahe null. Nur gelöste Feststoffe mit ionischen oder stark polaren Bindungen ermöglichen, dass eine Lösung Elektrizität leitet. Der Einfluss gelöster Ionen wird in Abschnitt.3.1 behandelt. Auch absolut reines Wasser enthält einige Ionen und leitet somit Elektrizität. Dieser Effekt wird durch die Selbstionisierung von Wasser ausgelöst und ist in Abschnitt.3. erläutert..3.1 Gelöste Ionen Das Lösen von Feststoffen und die Bildung von Ionen bezeichnet man als elektrolytische Dissoziation. Diese ist Voraussetzung dafür, dass in dem Lösemittel Elektrizität übertragen werden kann. Hier einige Beispiele für elektrolytische Dissoziation: NaCl Na + + Cl - HCl H + + Cl - Formeln Conductivity Guide: CH 3 COOH CH 3 COO - + H + 1. V R I Es wird zwischen starken und schwachen Elektrolyten unterschieden. Starke Elektrolyte wie Natriumchlorid zerfallen vollständig und bilden V. R Natrium- und Chloridionen. Schwache Elektrolyte wie Essigsäure I zerfallen hingegen nicht vollständig. Das heisst, dass die Elektrolytlösung ionisches Acetat (CH 3 COO - ), Protonen (H + ) und auch nichtionische Essigsäure (CH 3 COOH) enthält. 3. G 1 R Der Zerfall ist stark temperaturabhängig und lässt sich mit der Dissoziationsrate oder der Dissoziationskonstante quantifizieren. Für die Leitfähigkeit l 4. K sind nur die zerfallenen ionischen eile relevant. A Der Beitrag eines Ions zur Leitfähigkeit hängt von seiner Konzentration, Ladung und l Mobilität ab. Die Leitfähigkeit einer Probe lässt sich als 5. Funktion G der Konzentration G K gelöster Ionen und ihrer elektrochemischen A Eigenschaften ausdrücken: 8 6. c i i Z i i c = Konzentration [mol/l] Z = Ladungszahl = Äquivalentleitfähigkeit ref [S*cm /mol] 1 ( ref ) 100% ( 1) 100% (6)

10 Die Äquivalentleitfähigkeit ist ein spezifisches Attribut jedes Ionentyps. Sie hängt nicht nur vom Ionentyp, sondern auch von der Konzentration und der emperatur ab. Äquivalentleitfähigkeit (5 C, in H O, sehr starke Verdünnung) Kationen [S*cm /mol] Anionen [S*cm /mol] H + 349,8 OH - 198,6 Li + 38,7 Cl - 76,4 Na + 50,1 - HCO 3 44,5 NH ,4 ½ CO 3 69,3 ½ Mg + 53,1 - NO 3 71,5 ½ Ca + 59,5 - ½ SO 4 80,0 abelle 1: Äquivalentleitfähigkeit unterschiedlicher Ionentypen Die Äquivalentleitfähigkeit steigt mit der Ladungszahl und sinkt mit der Grösse. Die erwarteten Werte können von den Messwerten abweichen, die in abelle 1 aufgeführt sind. Das kleine Lithium-Ion besitzt beispielsweise eine deutlich geringere Leitfähigkeit als das grosse Ammonium-Ion. Dies liegt daran, dass die Grösse des solvatisierten Ions und nicht die Grösse des Ions der entscheidende Faktor ist. Ein kleineres, stark geladenes Ion kann mehr Wassermoleküle anziehen und eine grössere Solvationshülle aufbauen als ein grösseres, weniger stark geladenes Ion. Auch die sehr hohe Leitfähigkeit eines Protons (H + ) und von Hydroxid (OH - ) sind auffallend. Der ransportmechanismus dieser beiden Ionen basiert nicht auf der Ionenwanderung. Protonen werden von Hydronium (H 3 O + ) leicht an das umgebende H O oder von H O an Hydroxid (OH - ) abgegeben. Die Ladungsübertragung erfolgt im Wesentlichen durch den schnellen Elektronenaustausch und nicht durch H + H H H H H + die langsamere O Ionenwanderung O (siehe O Abbildung O 1). H + O H H H O H H H H O H H H O H H H + O - H H H H H O - O O O O O - H H H H H H H H H H Abbildung O 1: Ladungstransportmechanismus O O O von Protonen O - und Hydroxiden H H H H H 9

11 heorie Wie bereits erwähnt, ist die Äquivalentleitfähigkeit kein fester Wert. Mit steigender Konzentration nimmt die Äquivalentleitfähigkeit aufgrund der zunehmenden Interferenz der entgegengesetzt bewegenden Ionen ab. Auch bei schwachen Elektrolyten sinkt die Äquivalentleitfähigkeit aufgrund der geringeren Dissoziationsrate bei höheren Konzentrationen. Die emperatur wirkt sich auf unterschiedliche Weise auf die Äquivalentleitfähigkeit aus. Bei höherer emperatur steigt die Beweglichkeit der Partikel und die Viskosität des Lösemittels sinkt. Dadurch nimmt die Mobilität der Ionen zu und die Leitfähigkeit steigt. Bei schwachen Elektrolyten nimmt die Dissoziationsrate bei höheren emperaturen zu und somit steigt auch die Leitfähigkeit. Die Leitfähigkeit einer Lösung hängt von verschiedenen Parametern ab, die sich auf vielfältige Weise beeinflussen. Die wichtigen Parameter der Leitfähigkeit lassen sich wie folgt zusammenfassen: yp des gelösten Elektrolyts (Ionenladung, Ionenradius, Ionenmobilität) Konzentration des gelösten Elektrolyts Dissoziationsgrad des Elektrolyts Lösemittel (Viskosität, Permittivität) emperatur.3. Selbstionisierung von Wasser Bei Ionenteilen in einem Lösemittel, die die Leitfähigkeit einer Lösung reduzieren, handelt es sich nicht immer um externe Substanzen. Diese können auch im Lösemittel selbst gebildet werden. Ein Beispiel ist reines Wasser ohne Verunreinigungen, das eine Leitfähigkeit von 0,055 µs/ cm besitzt. Die Leitfähigkeit wird durch Hydronium (H 3 O + ) und Hydroxid (OH - ) verursacht, das durch die Selbstionisierung von Wasser gebildet wird. Das Gleichgewicht dieser Reaktion liegt stark auf der Wasserseite abhängig und nur zwei von einer Milliarde Wassermolekülen befinden sich in einer Ionenkonfiguration. Der Einfluss der Selbstionisierung ist sehr gering, muss jedoch bei Messungen von reinem Wasser berücksichtigt werden. H O H O O + H H H H Abbildung : Selbstionisierung von Wasser H H O - 10

12 .4 Messprinzip Eine Leitfähigkeitsmessung erfolgt im Prinzip mit einem Elektrodenpaar, den sogenannten Polen, an die eine Spannung angelegt wird. Das Messgerät misst den fliessenden Strom und berechnet die Leitfähigkeit (siehe Abschnitt.). Dies ist jedoch eine stark vereinfachte Beschreibung des Messprinzips. In der Praxis müssen einige weitere wichtige Aspekte berücksichtigt werden. Abbildung 3: Schematischer Aufbau einer Leitfähigkeitsmesszelle Wird an die Elektroden ein Gleichstrom angelegt, bewegen sich die positiv geladenen Ionen (Kationen) zu der negativ geladenen Elektrode (Kathode). Analog dazu bewegen sich die negativ geladenen Ionen (Anionen) in entgegengesetzter Richtung zur positiv geladenen Elektrode (Anode), wie in Abbildung 3 ersichtlich. Dies kann zu einer Akkumulation von Ionen in der Nähe der Elektrodenoberfläche führen und chemische Reaktionen auslösen. Diese Elektrolyse wirkt sich auf die Zusammensetzung der Lösung und somit auf die Leitfähigkeit aus. Um die unerwünschten Elektrolysereaktionen zu vermeiden, wird für Leitfähigkeitsmessungen Wechselstrom verwendet. Bei der Verwendung von Wechselstrom bewegen sich die Ionen nicht in eine Richtung, sondern sie oszillieren im Rhythmus der anliegenden Frequenz in ihrer Position (siehe Abbildung 4). 11

13 heorie Abbildung 4: Unterschiedliche Ionenwanderung, wenn an der Messzelle Gleich- oder Wechselstrom angelegt wird Auch mit Wechselstrom lässt sich die Akkumulation von Ionen nicht vollständig eliminieren. Alle Effekte, die an der Grenzfläche zwischen Sensor und Lösung bei einem anliegenden Strom auftreten, werden als Polarisation bezeichnet. Die Hauptursache ist die Bildung einer doppelten Schicht, die sich auf die Mobilität der Ionen auswirkt. Diese Schicht hat denselben Effekt wie eine Kontamination der Elektrodenoberfläche und bewirkt einen zusätzlichen Widerstand. Polarisationseffekte wirken sich negativ auf die Messung von Proben mit einer mittleren bis hohen Elektrolytkonzentration aus und begrenzen die Linearität am oberen Ende der Skala (siehe Abbildung 5). Polarisationseffekte lassen sich wie folgt reduzieren oder verhindern: Anpassen der Messfrequenz: Je höher die Messfrequenz, desto schneller erfolgt die Anlagerung der Ionen an der Elektrode und die Bildung einer doppelten Schicht. Durch eine hohe Messfrequenz lässt sich der Einfluss von Polarisationseffekten minimieren. Optimierung der Elektrodenoberfläche: Durch eine grössere Elektrodenoberfläche sinkt die Stromdichte und Polarisationseffekte werden reduziert (siehe Abschnitt.5.3). Verwendung einer vierpoligen Leitfähigkeitszelle: Diese Art von Leitfähigkeitszelle wird durch Polarisationseffekte nicht beeinflusst (siehe Abschnitt.5.). 1

14 Abbildung 5: Negative Auswirkung der Polarisation und Kapazität auf den gemessenen Leitfähigkeitswert Die Linearität am anderen Ende der Skala wird durch die Kapazität begrenzt (siehe Abbildung 5). Zwei Elektroden in einem nicht leitenden Medium verhalten sich wie ein Kondensator. Wird an diese Elektroden ein Gleichstrom angelegt, kann keine Elektrizität fliessen. Der kapazitive Widerstand ist unendlich gross und die Leitfähigkeit beträgt null. Wird an die Elektroden jedoch ein Wechselstrom angelegt, fällt der kapazitive Widerstand und die Leitfähigkeit steigt dementsprechend. Der Einfluss der Kapazität lässt sich wie folgt reduzieren oder eliminieren: Anpassen der Messfrequenz: Je geringer die Messfrequenz, desto geringer ist die Auswirkung der Kapazität. Verwendung einer Leitfähigkeitszelle mit einer geringen Kapazität: Je kleiner die Elektrodenfläche (A) und je grösser der Abstand (l) zwischen den Elektroden, desto geringer ist die Kapazität. Dies ist jedoch nicht wirklich eine Option, da für Messungen in einem tiefen Leitfähigkeitsbereich Zellen mit einer niedrigen Zellkonstante (grosse Elektrodenfläche und kleiner Elektrodenabstand) erforderlich sind. In manchen Situationen kann die Kapazität des Kabels zwischen den Elektroden und dem Messkreis einen grösseren Einfluss ausüben, sodass dieser durch die Gerätekonstruktion minimiert und/oder kompensiert werden sollte. 13

15 heorie Die optimale Messfrequenz ist vom Messbereich abhängig. Aus diesem Grund ist es erforderlich, die Frequenz an die Leitfähigkeit der Probe anzupassen. Im Allgemeinen werden niedrige Frequenzen bei geringen Leitfähigkeiten verwendet, bei denen Polarisationseffekte unerheblich sind. Hohe Frequenzen werden bei hohen Leitfähigkeiten verwendet, um eine Reduzierung der Polarisationseffekte zu ermöglichen. Moderne Leitfähigkeitsmessgeräte passen die Messfrequenz automatisch an. Die verschiedenen Hersteller von Leitfähigkeitsmessgeräten verwenden für die Justierung der Messfrequenz unterschiedliche Algorithmen..5 Leitfähigkeitssensor Im Hinblick auf die grosse Zahl unterschiedlicher Anwendungen ist es nicht überraschend, dass es keine ideale Messtechnologie für alle Situationen gibt. Die folgenden drei echnologien haben sich auf dem Markt etabliert: Zweipolige Leitfähigkeitszelle Vierpolige Leitfähigkeitszelle Induktive Leitfähigkeitsmesszelle Die induktiven Messzellen werden vorwiegend für linienintegrierte Messungen zur Prozesskontrolle in der Industrie verwendet. Aus diesem Grund werden in den folgenden Abschnitten nur die zwei- und vierpoligen Leitfähigkeitsmesszellen behandelt..5.1 Zweipolige Leitfähigkeitszelle Klassische zweipolige Leitfähigkeitszellen bestehen aus zwei Platten. Diese Platten sind normalerweise von einem Rohr umgeben, das sie vor mechanischer Beschädigung schützt und Fehler durch Feldeffekte reduziert (siehe Abbildung 6). Es gibt jedoch auch andere Ausführungen zweipoliger Zellen. Bei einer anderen weit verbreiteten Ausführung ist eine Stiftelektrode von der zweiten Elektrode umschlossen (siehe Abbildung 6). Diese Sensoren werden aus robusten Materialien wie Edelstahl oder itan hergestellt und sind weniger anfällig für mechanische Beschädigung. Die einfache Konstruktion der zweipoligen Zelle ermöglicht die Herstellung miniaturisierter Messzellen. Diese Mikrosensoren können auch kleine Probenmengen messen. 14

16 Abbildung 6: Schematische Darstellung einer zweipoligen Leitfähigkeitszelle Die zweipolige Leitfähigkeitsmesszelle hat den Vorteil, dass mit ihr geringe Leitfähigkeitswerte mit hoher Genauigkeit gemessen werden können. Der typische Messbereich beträgt 0,001 µs/cm bis 1000 µs/cm. Zu den Hauptanwendungen zweipoliger Zellen gehören Leitfähigkeitsmessungen von reinem Wasser, stark verdünnten wässrigen Lösungen und nicht wässrigen Lösungen..5. Vierpolige Leitfähigkeitsmesszelle Diese Weiterentwicklung der Leitfähigkeitsmesszelle basiert auf einem zusätzlichen Elektrodenpaar (siehe Abbildung 7). Vierpolige Zellen sind in unterschiedlichen Ausführungen erhältlich, jedoch ist das Funktionsprinzip immer gleich: Die äusseren Pole sind die Strompole, an denen ein Wechselstrom anliegt. Der Antrieb erfolgt auf dieselbe Weise wie bei dem zweipoligen Sensor. Die inneren Messpole sind in dem elektrischen Feld der Strompole platziert und messen die Spannung mit einem Verstärker mit hoher Impedanz. Der durch die äusseren Pole und die Lösung fliessende Strom kann mit dem Schaltkreis genau gemessen werden. Ist die Spannung zwischen den inneren Polen und der Strom bekannt, lässt sich der Widerstand und der Leitwert berechnen. Um die Leitfähigkeit zu berechnen, wird der Leitwert mit der Zellkonstante der inneren Pole multipliziert (siehe Abschnitt.). Vierpolige Sensoren bieten den Vorteil, dass nur sehr wenig Strom in den inneren Polen fliesst, an denen die Messung erfolgt. Daher treten keine Polarisationseffekte auf, die die Messung beeinflussen. Die vierpolige Leitfähigkeitsmesszelle ist ausserdem weniger anfällig für Messfehler durch Verunreinigungen. 15

17 heorie Abbildung 7: Schematische Darstellung einer vierpoligen Leitfähigkeitszelle Vierpolige Leitfähigkeitsmesszellen bieten den Vorteil, dass sie die Leitfähigkeit über einen grossen Messbereich von 10 µs/cm bis 1000 ms/cm mit hervorragender Linearität messen. Zu den Hauptanwendungen dieses Sensortyps zählen Messungen über einen breiten mittleren Leitfähigkeitsbereich, wie zum Beispiel bei Meerwasser, Abwasser oder verdünnten Säuren oder Basen. Zweipolige Zelle Hohe Genauigkeit bei geringen Leitfähigkeiten Die einfache Konstruktion bietet die Möglichkeit zur Herstellung miniaturisierter Zellen, um auch kleine Probenmengen messen zu können. Vierpolige Zelle Polarisationseffekte wirken sich nicht auf die Messung von Proben mit hoher Leitfähigkeit aus. Daher für die Messung hoher Leitfähigkeitswerte geeignet. Gute Linearität über einen sehr grossen Leitfähigkeitsbereich (mehrere Zehnerstellen) Geringere Beeinflussung durch Oberflächenkontamination abelle : Vorteile zwei- und vierpoliger Zellen.5.3 Material Leitfähigkeitsmesszellen werden aus unterschiedlichen Materialien gefertigt. Platin, platiniertes Platin, Graphit, Edelstahl und itan sind bewährte Werkstoffe für die Elektroden, während der Schaft aus Epoxid oder Glas besteht. Im Fall von Stahl und itan ist es auch möglich, die Elektroden und den Schaft in einem Stück zu fertigen. 16

18 Die verwendeten Materialien besitzen die folgenden wichtigen Eigenschaften: Chemische Beständigkeit Mechanische Festigkeit Polarisationsfestigkeit Übertragungseffekt Chemische Reaktionen zwischen dem Sensormaterial (insbesondere der Elektroden) und der Probe gilt es unbedingt zu vermeiden, da diese zu falschen Messresultaten führen und die Zelle dauerhaft verändern. Auch mechanische Einflüsse können die Zelle zerstören. Elektroden aus einem Material mit geringer mechanischer Festigkeit wie Platin oder Graphit werden normalerweise in ein robusteres Material eingeschlossen, das die Elektrode vor mechanischer Beschädigung schützt. Die Oberflächenstruktur der Elektrode wirkt sich auf den Polarisationswiderstand aus. Poröse oder raue Oberflächen besitzen einen geringeren Übergangswiderstand, sodass der Polarisationseffekt geringer ist. Unbeschichtete Platinelektroden besitzen einen sehr grossen Widerstand, während Elektroden aus platiniertem Platin den geringsten Widerstand aufweisen. Poröse Schichten wie bei platiniertem Platin oder Graphit können auch eile der Probe adsorbieren, was zu einem Übertragungseffekt und einer längeren Reaktionszeit führt, wenn Lösungen mit unterschiedlichen Konzentrationen gemessen werden. Diese Effekte wirken dem Polarisationswiderstand des Elektrodenmaterials entgegen. Abhängig von den Anforderungen kann ein Elektrodenmaterial mit einem geringen Polarisationswiderstand, einem starken Übertragungseffekt und einer längeren Reaktionszeit oder ein Elektrodenmaterial mit einem grossen Polarisationswiderstand, einem geringen Übertragungseffekt und einer kurzen Reaktionszeit gewählt werden. 17

19 heorie.5.4 Auswahl des richtigen Sensors Die Auswahl des richtigen Leitfähigkeitssensors ist ein entscheidender Faktor für genaue und zuverlässige Resultate. Wie in den vorherigen Abschnitten erläutert, lassen sich durch unterschiedliche Ausführungen und Materialien Sensoren mit verschiedenen Stärken und Schwächen herstellen. Daher ist es nicht sinnvoll, von guten oder schlechten Sensoren zu sprechen. Der richtige Sensor ist derjenige, der den Anwendungsanforderungen am besten gerecht wird. Eine grundsätzliche Anforderung ist jedoch, dass zwischen der Probe und dem Sensor keine chemischen Reaktionen stattfinden. Für chemisch reaktive Proben sind Glas und Platin oft die beste Wahl, da diese Werkstoffe die beste chemische Beständigkeit gegen alle im Allgemeinen für Zellen verwendeten Materialien besitzen. Für den praktischen Einsatz und auch für viele Laboranwendungen ist die mechanische Stabilität des Sensors von grösserer Bedeutung. Oft werden Leitfähigkeitssensoren mit einem Epoxidgehäuse und Graphitelektroden verwendet, da sich diese als extrem haltbar erwiesen haben und eine gute chemische Beständigkeit bieten. Für wässrige Lösungen und organische Lösemittel mit geringer Reaktivität sind Zellen aus Stahl oder itan oft eine gute Alternative. Die nächsten bei der Auswahl eines optimalen Sensors zu beachtenden Aspekte sind die Zellkonstante und die Konstruktion. Die geeignete Zellkonstante ist von der Leitfähigkeit der Probe abhängig. Je geringer die erwartete Leitfähigkeit der Probe, desto kleiner sollte die Zellkonstante des Sensors sein. Abbildung 8 zeigt eine Reihe von Proben und den Bereich der empfohlenen Zellkonstanten für die Messung. Bei der Entscheidung für oder gegen eine zwei- oder vierpolige Zelle kann die folgende Faustregel verwendet werden: Für die Messung geringer Leitfähigkeitswerte sollte eine zweipolige Zelle verwendet werden. Für Leitfähigkeitsmessungen mit mittleren bis hohen Werten ist eine vierpolige Zelle vorzuziehen, insbesondere für Messungen über einen grossen Leitfähigkeitsbereich. 18

20 Manchmal sind in Standards und Normen Anforderungen für Leitfähigkeitssensoren angegeben. Wird eine Leitfähigkeitsmessung entsprechend einem solchen Standard durchgeführt, muss der gewählte Sensor alle beschriebenen Anforderungen exakt erfüllen. Abbildung 8: Verschiedene Proben und empfohlene Zellkonstanten Es gibt auch einige Spezialsensoren mit einer sehr kleinen Zellkonstante für Präzisionsmessungen oder Ausführungen mit einem kleinen Schaftdurchmesser für Leitfähigkeitsmessungen in kleinen Probengefässen. abelle 3 enthält eine Übersicht über das von MELER OLEDO angebotene Portfolio von Leitfähigkeitssensoren für Laboranwendungen. Weitere Informationen finden Sie unter: 19

21 heorie Konfiguration Zellkonstante Messbereich Sensorname Universell 4 Platinpole Glasschaft 4 Graphitpole Epoxidschaft 0,80 cm -1 0, ms/cm InLab 710 0,57 cm -1 0, ms/cm InLab 731 InLab 738 Speziell Reines Wasser und hohe Präzision Micro itanpole itanschaft Stahlpole Stahlschaft Platinpole Glasschaft Platinpole Glasschaft Platinpole Glasschaft 0,01 cm -1 0, µs/cm InLab race 0,105 cm -1 0, µs/cm InLab 741 InLab 74 0,06 cm -1 0,1-500 µs/cm InLab 70 1,0 cm -1 0, ms/cm 1,0 cm -1 0,01-11 ms/cm InLab mm InLab 75-6 mm Bioethanol Platinpole Glasschaft 0,1 cm -1 0,1-500 µs/cm InLab 75 abelle 3: Portfolio der Leitfähigkeitssensoren von MELER OLEDO.6 emperatureffekte Leitfähigkeitsmessungen sind stark temperaturabhängig. Wenn die emperatur einer Probe steigt, sinkt ihre Viskosität, wodurch sich die Mobilität der Ionen erhöht. Aus diesem Grund sinkt auch die beobachtete Leitfähigkeit der Probe, auch wenn die Ionenkonzentration konstant bleibt (siehe Abschnitt.3.1). Jedes Resultat einer Leitfähigkeitsmessung muss mit einer emperatur angegeben werden, da es ansonsten wertlos ist. Beispielsweise beträgt die Leitfähigkeit von 0,01 molarem Kaliumchlorid 178 µs/cm bei 0 C, bei 5 C hingegen 1413 µs/cm. Daher ist es sinnlos, Messungen derselben Probe bei unterschiedlichen emperaturen zu vergleichen. Aus diesem Grund beziehen sich die Messwerte auf eine Referenztemperatur, die die Resultate vergleichbar macht. Die Referenztemperatur beträgt normalerweise 5 C, manchmal jedoch auch 0 C. 0

22 Bei der emperaturkorrektur gibt es Unterschiede Die emperaturkorrektur bei Leitfähigkeitsmessungen darf nicht mit der emperaturkorrektur bei ph-messungen verwechselt werden. Bei einer Leitfähigkeitsmessung ist der angezeigte Leitfähigkeitswert die berechnete Leitfähigkeit bei der gewünschten Referenztemperatur. Es wird also der emperatureinfluss der Probe korrigiert. Bei ph-messungen wird der ph-wert bei der Ist-emperatur (z. B. 7 C) angezeigt. Hier umfasst die emperaturkompensation die Anpassung der Steilheit der ph-elektrode an die gemessene Ist-emperatur. In diesem Fall wird der emperatureinfluss der Elektrode korrigiert. Es ist nicht effizient, die emperatur aller Proben mit einem kostspieligen emperaturregelsystem an die Referenztemperatur anzupassen. In der Praxis misst das Leitfähigkeitsmessgerät die Leitfähigkeit daher bei der aktuellen emperatur (z. B. 7 C) und wandelt den Messwert mithilfe von emperaturkorrekturalgorithmen, die der Benutzer wählen kann, in die gewünschte Referenztemperatur um. Da zwischen Leitfähigkeitsund emperaturmessungen eine Beziehung besteht, verfügen alle Leitfähigkeitssensoren von MELER OLEDO über einen integrierten emperatursensor. Weil die emperatur bei der Bestimmung der Leitfähigkeit eine wichtige Rolle spielt, muss die emperaturabhängigkeit (= Änderung der Leitfähigkeit pro C) der gemessenen Probe bekannt sein. Die emperaturabhängigkeit jeder Probe ist unterschiedlich und kann bei unterschiedlichen emperaturen und Ionenkonzentrationen stark variieren. Um die komplexe Beziehung zwischen Leitfähigkeit, emperatur und Ionenkonzentration zu vereinfachen, wurden verschiedene emperaturkorrekturverfahren entwickelt, um die Bediener zu unterstützen: Linear Nicht-linear Reines Wasser Keine Korrektur 1

23 heorie Formeln Conductivity Guide: 1. V R I. V R I Abhängig von der Probe, in der die Leitfähigkeit gemessen wird, Formeln Conductivity erfolgt die Auswahl eines der oben genannten Verfahren. Für mittel bis 3. G 1 Guide: stark leitfähige Lösungen wird ein linearer emperaturkorrekturmodus 1. V R I verwendet. Natürliches Wasser besitzt eine stärkere emperaturabhängigkeit, weshalb die nicht-lineare Korrektur empfohlen wird. l 4. Für K reines V. R Wasser, das die stärkste emperaturabhängigkeit besitzt, hat MELER IA OLEDO einen einzigartigen und äusserst genauen Algorithmus entwickelt, der auf dem tiefgreifenden Wissen und der umfassenden l Erfahrung von HORNON basiert, einem bei der G Analyse G 1 G K von A ultrareinem Wasser führenden Unternehmen. Diese R emperaturkorrekturverfahren werden in den folgenden Abschnitten beschrieben. 6. l c Z i i i 4. K i.6.1 Lineare Für die Aemperaturkorrektur von mittel bis stark leitenden Lösungen wird emperaturkorrektur häufig die folgende lineare Gleichung verwendet: l ref G G K (7) A 1 ( ref ) 100% 6. c Z i i i Sie umfasst ( i den 1) emperaturkoeffizient 100%, der die 8. Leitfähigkeitsabweichung ( 1 ) in %/ C ausdrückt. Die -Werte sind 1 der Literatur zu entnehmen oder experimentell zu bestimmen. Für die empirische Bestimmung werden zwei Leitfähigkeitsmessungen 7. ref durchgeführt, (1698 S / cm 1413 S / cm) 100% eine bei der Referenztemperatur und.017 die zweite %/ bei C der 1 ( ref ) Probentemperatur. (35100% C 5 Anschliessend C) 1413lässt S / cm sich anhand der Gleichung (8) der -Wert berechnen: ( 1) % S / cm 8. ref (8) 14 S / cm (.017 %/ C 1 1 ) 1 (45C 5C) 100% Beispiel: (1698 Bestimmung S / cm 1413 des emperaturkoeffizienten S / cm) 100% 9. Die Leitfähigkeit 5 C f5( ) der Probe wird ohne emperaturkompensation.017 %/ C( = 0) (35 C 5 C) 1413 S / cm bei zwei unterschiedlichen emperaturen gemessen, 1: gewählte Referenztemperatur, 5C 10. 0C : Ist-emperatur der Probe. Als Beispiel wird eine 0,01 molare KCl-Lösung 1996 verwendet. S / cm ref 14 S / cm %/ C 1 (45C 5C) 100% DS 11. DS factor : 9. 5 C f5( ) 5 C

Elektrische Leitfähigkeit

Elektrische Leitfähigkeit A. Allgemeines Unter der elektrischen Leitfähigkeit versteht man die Fähigkeit F eines Stoffes, den elektrischen Strom zu leiten. Die Ladungsträger ger hierbei können k sein: Elektronen: Leiter 1. Art

Mehr

+ - Leitfähigkeit. Leitfähigkeits-Fibel. Grundlagen

+ - Leitfähigkeit. Leitfähigkeits-Fibel. Grundlagen Leitfähigkeit Grundlagen Die spezifische elektrische Leitfähigkeit und der elektrische Leitwert sind ein Maß für die Fähigkeit einer Lösung, eines Metalls, eines Gases, kurz aller Materialien, den elektrischen

Mehr

TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg

TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg PROTOKOLL Modul: Versuch: Physikalische Eigenschaften I. VERSUCHSZIEL Die

Mehr

Dissoziation, ph-wert und Puffer

Dissoziation, ph-wert und Puffer Dissoziation, ph-wert und Puffer Die Stoffmengenkonzentration (molare Konzentration) c einer Substanz wird in diesem Text in eckigen Klammern dargestellt, z. B. [CH 3 COOH] anstelle von c CH3COOH oder

Mehr

Elektrolyse. Zelle.. Bei der Elektrolyse handelt es sich im Prinzip um eine Umkehrung der in einer galvanischen Zelle Z ablaufenden Redox-Reaktion

Elektrolyse. Zelle.. Bei der Elektrolyse handelt es sich im Prinzip um eine Umkehrung der in einer galvanischen Zelle Z ablaufenden Redox-Reaktion (Graphit) Cl - Abgabe von Elektronen: Oxidation Anode Diaphragma H + Elektrolyse Wird in einer elektrochemischen Zelle eine nicht-spontane Reaktion durch eine äußere Stromquelle erzwungen Elektrolyse-Zelle

Mehr

Elektrolyte. (aus: Goldenberg, SOL)

Elektrolyte. (aus: Goldenberg, SOL) Elektrolyte Elektrolyte leiten in wässriger Lösung Strom. Zu den Elektrolyten zählen Säuren, Basen und Salze, denn diese alle liegen in wässriger Lösung zumindest teilweise in Ionenform vor. Das Ostwaldsche

Mehr

Martin Raiber 21.02.07 Elektrolyse: Strom - Spannungskurven

Martin Raiber 21.02.07 Elektrolyse: Strom - Spannungskurven Martin Raiber 21.02.07 Elektrolyse: Strom - Spannungskurven Geräte: U-Rohr, verschiedene Platin-Elektroden (blank, platiniert), Graphit-Elektroden, spannungsstabilisierte Gleichspannungsquelle, CASSY-Spannungs/Stromstärkemessgerät

Mehr

Laborbericht. Wasserhärte Leitfähigkeit. Anna Senn Bianca Theus

Laborbericht. Wasserhärte Leitfähigkeit. Anna Senn Bianca Theus Laborbericht Wasserhärte Leitfähigkeit Anna Senn Bianca Theus 14.09. 2004 03.11. 2004 Inhaltsverzeichnis 1. Ziel... 1 2. Theorie... 1 2.1 Leitfähigkeit... 1 2.2 Wasserhärte... 2 2.3 Entstehung von Wasserhärte...

Mehr

Elektrolytische Leitfähigkeit

Elektrolytische Leitfähigkeit Elektrolytische Leitfähigkeit 1 Elektrolytische Leitfähigkeit Gegenstand dieses Versuches ist der Zusammenhang der elektrolytischen Leitfähigkeit starker und schwacher Elektrolyten mit deren Konzentration.

Mehr

Produktekatalog. ph Elektroden

Produktekatalog. ph Elektroden Produktekatalog ph Elektroden Inhalt Inhalt Inhalt... 1 Übersicht... 2 Allgemeines... 3 1. ph Elektroden... 5 ph Glaselektroden (GA Reihe)... 6 Kombinierte ph Elektroden (CA Reihe)... 9 1 Übersicht Übersicht

Mehr

Daniell-Element. Eine graphische Darstellung des Daniell-Elementes finden Sie in der Abbildung 1.

Daniell-Element. Eine graphische Darstellung des Daniell-Elementes finden Sie in der Abbildung 1. Dr. Roman Flesch Physikalisch-Chemische Praktika Fachbereich Biologie, Chemie, Pharmazie Takustr. 3, 14195 Berlin rflesch@zedat.fu-berlin.de Physikalisch-Chemische Praktika Daniell-Element 1 Grundlagen

Mehr

Aufgaben Wechselstromwiderstände

Aufgaben Wechselstromwiderstände Aufgaben Wechselstromwiderstände 69. Eine aus Übersee mitgebrachte Glühlampe (0 V/ 50 ma) soll mithilfe einer geeignet zu wählenden Spule mit vernachlässigbarem ohmschen Widerstand an der Netzsteckdose

Mehr

B Chemisch Wissenwertes. Arrhénius gab 1887 Definitionen für Säuren und Laugen an, die seither öfter erneuert wurden.

B Chemisch Wissenwertes. Arrhénius gab 1887 Definitionen für Säuren und Laugen an, die seither öfter erneuert wurden. -I B.1- B C H E M I S C H W ISSENWERTES 1 Säuren, Laugen und Salze 1.1 Definitionen von Arrhénius Arrhénius gab 1887 Definitionen für Säuren und Laugen an, die seither öfter erneuert wurden. Eine Säure

Mehr

Hinweise für Lehrer. NaT-Working Projekt. 1. Beispiele für Messergebnisse: Abb. 4 (unterschiedliche Salzkristalle)

Hinweise für Lehrer. NaT-Working Projekt. 1. Beispiele für Messergebnisse: Abb. 4 (unterschiedliche Salzkristalle) 1. Beispiele für Messergebnisse: Abb. 4 (unterschiedliche Salzkristalle) Hinweise für Lehrer Deutlich ist zu erkennen, dass die Geschwindigkeit des Lösevorganges bei dreimaliger Wiederholung des Beschichtungsvorganges

Mehr

Herzlich Willkommen. Grundlagen zur Leitfähigkeitsmessung. Dipl.-Ing. Manfred Schleicher

Herzlich Willkommen. Grundlagen zur Leitfähigkeitsmessung. Dipl.-Ing. Manfred Schleicher Herzlich Willkommen Grundlagen zur Leitfähigkeitsmessung Dipl.-Ing. Manfred Schleicher Übersicht Allgemeines Zellenkonstante Relative Zellenkonstante Kalibrierung Kalibrierung mit Kalibrierlösung 25 C

Mehr

DEFINITIONEN REINES WASSER

DEFINITIONEN REINES WASSER SÄUREN UND BASEN 1) DEFINITIONEN REINES WASSER enthält gleich viel H + Ionen und OH Ionen aus der Reaktion H 2 O H + OH Die GGWKonstante dieser Reaktion ist K W = [H ]*[OH ] = 10 14 In die GGWKonstante

Mehr

Handbuch der Elektroanalytik Teil 3 Die elektrische Leitfähigkeit

Handbuch der Elektroanalytik Teil 3 Die elektrische Leitfähigkeit Handbuch der Elektroanalytik Teil 3 Die elektrische Leitfähigkeit Inhaltsverzeichnis Die Messung der elektrischen Leitfähigkeit in wässrigen Lösungen 3 Was ist elektrische Leitfähigkeit? 3 Stromleitung

Mehr

Chemie für Biologen. Vorlesung im. WS 2004/05 V2, Mi 10-12, S04 T01 A02. Paul Rademacher Institut für Organische Chemie der Universität Duisburg-Essen

Chemie für Biologen. Vorlesung im. WS 2004/05 V2, Mi 10-12, S04 T01 A02. Paul Rademacher Institut für Organische Chemie der Universität Duisburg-Essen Chemie für Biologen Vorlesung im WS 200/05 V2, Mi 10-12, S0 T01 A02 Paul Rademacher Institut für Organische Chemie der Universität Duisburg-Essen (Teil : 03.11.200) MILESS: Chemie für Biologen 66 Chemische

Mehr

Grundlagen der Chemie Elektrochemie

Grundlagen der Chemie Elektrochemie Elektrochemie Prof. Annie Powell KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Elektrischer Strom Ein elektrischer Strom ist ein

Mehr

Leitfähigkeitsmessung

Leitfähigkeitsmessung Herzlich Willkommen Bienvenue Welcome Leitfähigkeitsmessung - Grundlagen - Kalibrierung ecotrans Lf Manfred Schleicher Information zu dieser Präsentation Diese Präsentationen vermittelt in Verbindung mit

Mehr

Kleines Wasserlexikon

Kleines Wasserlexikon Kleines Wasserlexikon Lösung von Kohlenstoffdioxid. Kohlenstoffdioxid CO 2 ist leicht wasserlöslich und geht mit manchen Inhaltsstoffen des Wassers auch chemische Reaktionen ein. In einem ersten Schritt

Mehr

3.4. Leitungsmechanismen

3.4. Leitungsmechanismen a) Metalle 3.4. Leitungsmechanismen - Metall besteht aus positiv geladenen Metallionen und frei beweglichen Leitungselektronen (freie Elektronengas), Bsp.: Cu 2+ + 2e - - elektrische Leitung durch freie

Mehr

4.2 Gleichstromkreise

4.2 Gleichstromkreise 4.2 Gleichstromkreise Werden Ladungen transportiert, so fließt ein elektrischer Strom I dq C It () [] I A s dt Einfachster Fall: Gleichstrom; Strom fließt in gleicher ichtung mit konstanter Stärke. I()

Mehr

Allgemeine Chemie für r Studierende der Zahnmedizin

Allgemeine Chemie für r Studierende der Zahnmedizin Allgemeine Chemie für r Studierende der Zahnmedizin Allgemeine und Anorganische Chemie Teil 6 Dr. Ulrich Schatzschneider Institut für Anorganische und Angewandte Chemie, Universität Hamburg Lehrstuhl für

Mehr

S u p l u e un u d n d Tr T ans n for o mator Klasse A Klasse A (Ergänzung) Norbert - DK6NF

S u p l u e un u d n d Tr T ans n for o mator Klasse A Klasse A (Ergänzung) Norbert - DK6NF Spule und Transformator Klasse (Ergänzung) Norbert - K6NF usgewählte Prüfungsfragen T301 n eine Spule wird über einen Widerstand eine Gleichspannung angelegt. Welches der nachfolgenden iagramme zeigt den

Mehr

LF - Leitfähigkeit / Überführung

LF - Leitfähigkeit / Überführung Verfasser: Matthias Ernst, Tobias Schabel Gruppe: A 11 Betreuer: G. Heusel Datum: 18.11.2005 Aufgabenstellung LF - Leitfähigkeit / Überführung 1) Es sind die Leitfähigkeiten von zwei unbekanten Elektrolyten

Mehr

Bedienungsanleitung. ph-ec Flow Control 3000

Bedienungsanleitung. ph-ec Flow Control 3000 Bedienungsanleitung EC-pH Flow Control 3000 mit ALARM Sehr geehrte Kundin, sehr geehrter Kunde, herzlichen Glückwunsch zum Kauf dieses Produktes. Um alle Funktionen und Ausstattungsmerkmale optimal nutzen

Mehr

Elektrochemie und Sauerstoffmessung mit LDO. Der ph-wert

Elektrochemie und Sauerstoffmessung mit LDO. Der ph-wert Elektrochemie und Sauerstoffmessung mit LDO Der ph-wert 2 Was ist der ph-wert? Aussage Der ph-wert zeigt die Menge an Säure oder Base in einer Probe an Parameter Konzentration H + bzw. OH - Temperatur

Mehr

ANWENDUNG EINER IONENSELEKTIVEN ELEKTRODE AUF DIE POTENTIOMETRISCHE BESTIMMUNG VON FLUORID

ANWENDUNG EINER IONENSELEKTIVEN ELEKTRODE AUF DIE POTENTIOMETRISCHE BESTIMMUNG VON FLUORID Thermodynamik Anwendung einer ionenselektiven Elektrode auf LUORID die potentiometrische Bestimmung von luorid ANWENDUNG EINER IONENSELEKTIVEN ELEKTRODE AU DIE POTENTIOMETRISCHE BESTIMMUNG VON LUORID 1.

Mehr

Natrium-Analyzer. Spezifische Bestimmung des Natriumgehalts Einfach und genau. Easy Na Einfach Genau Spezifisch

Natrium-Analyzer. Spezifische Bestimmung des Natriumgehalts Einfach und genau. Easy Na Einfach Genau Spezifisch Natrium-Analyzer Grossaufnahme des Natrium-Analyzer mit Fokus auf die Messzelle (Becher mit Sensoren) Easy Na Einfach Genau Spezifisch Spezifische Bestimmung des Natriumgehalts Einfach und genau Einführung

Mehr

Begriffe zur Elektrik und Elektrochemie

Begriffe zur Elektrik und Elektrochemie Staatsinstitut für Schulqualität und Bildungsforschung Begriffe zur Elektrik und Elektrochemie Akkumulator Atom Atomkern Batterie Ein Akkumulator ist eine Energiequelle, die wie eine Batterie Gleichstrom

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007 Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #35 am 28.06.2007 Vladimir Dyakonov Leitungsmechanismen Ladungstransport in Festkörpern Ladungsträger

Mehr

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Messung von c und e/m Autor: Noé Lutz Assistent:

Mehr

Der Schmelzpunkt von Salzen

Der Schmelzpunkt von Salzen Der Schmelzpunkt von Salzen Vergleich die Smp. der Salze (links). Welche Rolle könnten die Ionenradien bzw. die Ladung der enthaltenen Ionen spielen? Der Schmelzpunkt von Salzen ist i.d.r. sehr hoch. Er

Mehr

Elektrische Messverfahren Versuchsvorbereitung

Elektrische Messverfahren Versuchsvorbereitung Versuche P-70,7,8 Elektrische Messverfahren Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 6.2.200 Spannung, Strom und Widerstand Die Basiseinheit

Mehr

Versuch PC A E3. Ladungstransport in Elektrolytlösungen. Aufgabenstellung

Versuch PC A E3. Ladungstransport in Elektrolytlösungen. Aufgabenstellung Versuch PC A E3 Ladungstransport in Elektrolytlösungen Aufgabenstellung Bestimmung der Zellkonstanten C einer Leitfähigkeitsmeßzelle Bestimmung der spezifischen Leitfähigkeit κ als Funktion der Konzentration

Mehr

Elektrische Ladung und elektrischer Strom

Elektrische Ladung und elektrischer Strom Elektrische Ladung und elektrischer Strom Es gibt positive und negative elektrische Ladungen. Elektron Atomhülle Atomkern Der Aufbau eines Atoms Alle Körper sind aus Atomen aufgebaut. Ein Atom besteht

Mehr

Fällungsreaktion. Flammenfärbung. Fällungsreaktion:

Fällungsreaktion. Flammenfärbung. Fällungsreaktion: 2 Fällungsreaktion: 2 Fällungsreaktion Entsteht beim Zusammengießen zweier Salzlösungen ein Niederschlag eines schwer löslichen Salzes, so spricht man von einer Fällungsreaktion. Bsp: Na + (aq) + Cl -

Mehr

Vorlesung 3: Elektrodynamik

Vorlesung 3: Elektrodynamik Vorlesung 3: Elektrodynamik, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed georg.steinbrueck@desy.de 1 WS 2015/16 Der elektrische Strom Elektrodynamik:

Mehr

Musterprüfung Chemie Klassen: MPL 09 Datum: 14. 16. April 2010

Musterprüfung Chemie Klassen: MPL 09 Datum: 14. 16. April 2010 1 Musterprüfung Chemie Klassen: MPL 09 Datum: 14. 16. April 2010 Themen: Metallische Bindungen (Skript S. 51 53, inkl. Arbeitsblatt) Reaktionsverlauf (Skript S. 54 59, inkl. Arbeitsblatt, Merke, Fig. 7.2.1

Mehr

Chem. Grundlagen. ure-base Begriff. Das Protonen-Donator-Akzeptor-Konzept. Wasserstoff, Proton und Säure-Basen. Basen-Definition nach Brønsted

Chem. Grundlagen. ure-base Begriff. Das Protonen-Donator-Akzeptor-Konzept. Wasserstoff, Proton und Säure-Basen. Basen-Definition nach Brønsted Der SäureS ure-base Begriff Chem. Grundlagen Das Protonen-Donator-Akzeptor-Konzept Wasserstoff, Proton und Säure-Basen Basen-Definition nach Brønsted Wasserstoff (H 2 ) Proton H + Anion (-) H + = Säure

Mehr

Leitfähigkeitsmessung (induktiv)

Leitfähigkeitsmessung (induktiv) MPT GmbH Ferdinand-Porsche-Ring 8 63110 Rodgau Tel. 06106-4853 Fax. 06106-18039 e-mail: info@mpt-rodgau.de DIN EN ISO 90 01 Web : www.mpt-rodgau.de Reg.-Nr. 73 100 489 Technische Daten: Lf-Bereich Lf-

Mehr

3. Säure-Base-Beziehungen

3. Säure-Base-Beziehungen 3.1 Das Ionenprodukt des Wassers In reinen Wasser sind nicht nur Wassermoleküle vorhanden. Ein kleiner Teil liegt als Ionenform H 3 O + und OH - vor. Bei 25 C sind in einem Liter Wasser 10-7 mol H 3 O

Mehr

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 TECHNISCHE UNIVERSITÄT MÜNCHEN Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 Patrick Christ und Daniel Biedermann 16.10.2009 1. INHALTSVERZEICHNIS 1. INHALTSVERZEICHNIS... 2 2. AUFGABE 1...

Mehr

Da eine Elektrolyse unter Anlegen einer äußeren Spannung erzwungen, d.h. mit G > 0, abläuft, ist der Zusammenhang zwischen G und U 0 nach

Da eine Elektrolyse unter Anlegen einer äußeren Spannung erzwungen, d.h. mit G > 0, abläuft, ist der Zusammenhang zwischen G und U 0 nach Versuch PCA E 2 Polarisation und Zersetzungsspannung Aufgabenstellung Es sind die Temperaturabhängigkeit der Zersetzungsspannung einer 1,2 M HCl-Lösung sowie die Konzentrationsabhängigkeit der Zersetzungsspannung

Mehr

C Säure-Base-Reaktionen

C Säure-Base-Reaktionen -V.C1- C Säure-Base-Reaktionen 1 Autoprotolyse des Wassers und ph-wert 1.1 Stoffmengenkonzentration Die Stoffmengenkonzentration eines gelösten Stoffes ist der Quotient aus der Stoffmenge und dem Volumen

Mehr

Grundlagen der Elektrotechnik im Überblick. Brückenkurs Physik, 5. Tag

Grundlagen der Elektrotechnik im Überblick. Brückenkurs Physik, 5. Tag Grundlagen der Elektrotechnik im Überblick Brückenkurs Physik, 5. Tag Worum geht es? Elektrische Ladung Elektrische Spannung Elektrische Stromstärke Reihen- und Parallelschaltung von Widerständen 24.09.2014

Mehr

Aufgabe: Untersuchung der Kinetik der Zersetzung von Harnstoff durch Urease.

Aufgabe: Untersuchung der Kinetik der Zersetzung von Harnstoff durch Urease. A 36 Michaelis-Menten-Kinetik: Hydrolyse von Harnstoff Aufgabe: Untersuchung der Kinetik der Zersetzung von Harnstoff durch Urease. Grundlagen: a) Michaelis-Menten-Kinetik Im Bereich der Biochemie spielen

Mehr

Elektrik Grundlagen 1

Elektrik Grundlagen 1 Elektrik Grundlagen. Was versteht man unter einem Stromlaufplan? Er ist die ausführliche Darstellung einer Schaltung in ihren Einzelheiten. Er zeigt den Stromverlauf der Elektronen im Verbraucher an. Er

Mehr

Name: Punktzahl: von 57 Note:

Name: Punktzahl: von 57 Note: Testen Sie Ihr Wissen! Übungsprobe zu den Tertia-Themen und Säure-Base-Reaktionen Name: Punktzahl: von 57 Note: Für die folgenden Fragen haben Sie 60 Minuten Zeit. Viel Erfolg! Hilfsmittel: das ausgeteilte

Mehr

Grenzen der Current Interrupt (CI) Methode im Vergleich zur Impedanzspektroskopie

Grenzen der Current Interrupt (CI) Methode im Vergleich zur Impedanzspektroskopie Grenzen der Current Interrupt (CI) Methode im Vergleich zur Impedanzspektroskopie (EIS) Anwendungsbericht Autor: W. Friedrich Datum: 01.10.2007 FuelCon AG, Steinfeldstrasse 3, D 39179 Magdeburg-Barleben

Mehr

Messsystem, Routineüberwachung in der Praxis

Messsystem, Routineüberwachung in der Praxis SGSV Fachtage Nachspülqualität lität bei RDG Anforderungen, Messsystem, Routineüberwachung in der Praxis Cornelia Hugo, QM Beauftragte ZSV, Tübingen Dr. Winfried Michels, Miele Professional, Gütersloh

Mehr

Der elektrische Strom

Der elektrische Strom Der elektrische Strom Bisher: Ruhende Ladungen Jetzt: Abweichungen vom elektrostatischen Gleichgewicht Elektrischer Strom Transport von Ladungsträgern Damit Ladungen einen Strom bilden, müssen sie frei

Mehr

Che1 P / CheU P Praktikum Allgemeine und Anorganische Chemie. Gasmessung. 15. September 2008

Che1 P / CheU P Praktikum Allgemeine und Anorganische Chemie. Gasmessung. 15. September 2008 15. September 2008 1 1 Aufgabe und Lernziele... 3 2 Vorbereitung... 3 3 Einführung... 4 3.1 Grundlagen... 4 3.1.1Kohlenstoffdioxid... 4 3.2.2 Luftuntersuchungen mit Prüfröhrchen... 4 4 Praxis... 5 4.1

Mehr

Chemiebuch Elemente Lösungen zu Aufgaben aus Kapitel 13

Chemiebuch Elemente Lösungen zu Aufgaben aus Kapitel 13 Kantonsschule Kreuzlingen, Klaus Hensler Chemiebuch Elemente Lösungen zu Aufgaben aus Kapitel 13 Grundregeln für stöchiometrische Berechnungen Wenn es um Reaktionen geht zuerst die chem. Gleichung aufstellen

Mehr

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung.

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Prinzip In einer langen Spule wird ein Magnetfeld mit variabler Frequenz

Mehr

Wärmeleitung und thermoelektrische Effekte Versuch P2-32

Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Auswertung Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Iris Conradi und Melanie Hauck Gruppe Mo-02 7. Juni 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Wärmeleitfähigkeit 3 2 Peltier-Kühlblock

Mehr

Silbercoulometer / Elektrolyse. Bestimmung der Faraday schen Zahl mit dem Silbercoulometer

Silbercoulometer / Elektrolyse. Bestimmung der Faraday schen Zahl mit dem Silbercoulometer Institut f. Experimentalphysik Technische Universität Graz Petersgasse 16, A-8010 Graz Laborübungen: Elektrizität und Optik 20. Mai 2010 Silbercoulometer / Elektrolyse Stichworte zur Vorbereitung: Elektrolytische

Mehr

Klausur Physikalische Chemie für TUHH (Chemie III)

Klausur Physikalische Chemie für TUHH (Chemie III) 07.03.2012 14.00 Uhr 17.00 Uhr Moritz / Pauer Klausur Physikalische Chemie für TUHH (Chemie III) Die folgende Tabelle dient Korrekturzwecken und darf vom Studenten nicht ausgefüllt werden. 1 2 3 4 5 6

Mehr

Abschlussklausur Allgemeine und Anorganische Chemie Teil 2 (Geologie, Geophysik und Mineralogie)

Abschlussklausur Allgemeine und Anorganische Chemie Teil 2 (Geologie, Geophysik und Mineralogie) Abschlussklausur Allgemeine und Anorganische Chemie Teil 2 (Geologie, Geophysik und Mineralogie) Teilnehmer/in:... Matrikel-Nr.:... - 1. Sie sollen aus NaCl und Wasser 500 ml einer Lösung herstellen, die

Mehr

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der

Mehr

ÜBUNGSBEISPIELE Beispiel 1.

ÜBUNGSBEISPIELE Beispiel 1. ÜBUNGSBEISPIELE Beispiel 1. Wieviele Ladungen sind für das Ruhepotentialpotential von -70 mv nötig?? Zusatzinfo: Membrankondensator 0.01F/m 2 a) Wieviele K + Ionen sind dies pro m 2?? Eine typische Zelle

Mehr

1 Grundlagen der Impedanzmessung

1 Grundlagen der Impedanzmessung 1 Grundlagen der Impedanzmessung Die Impedanz ist ein wichtiger Parameter, die der Charakterisierung von elektronischen Komponenten, Schaltkreisen und Materialien die zur Herstellung von Komponenten verwendet

Mehr

Viele physikalische Grössen können einfach direkt gemessen werden. Die Messinstrumente sind dafür ausgestattet:

Viele physikalische Grössen können einfach direkt gemessen werden. Die Messinstrumente sind dafür ausgestattet: Verbesserung von Prozessen durch Beherrschung mit Messtechnik. Die Beurteilung von Prozesswerten ist mehr als nur die Integrierung des Sensors und das Ablesen von Messwerten. Um gut und effizient messen

Mehr

Elektrische Leitfähigkeit von Lösungen

Elektrische Leitfähigkeit von Lösungen Elektrische Leitfähigkeit von Lösungen Raphael Sigrist, Lars Müller D-CHAB 5. Februar 2004 larseric@student.ethz.ch rsigrist@student.ethz.ch Zusammenfassung Ziel dieses Versuches war es, sich mit der spezifischen

Mehr

ELEKTROCHEMIE. Elektrischer Strom: Fluß von elektrischer Ladung. elektrolytische (Ionen) Zwei Haupthemen der Elektrochemie.

ELEKTROCHEMIE. Elektrischer Strom: Fluß von elektrischer Ladung. elektrolytische (Ionen) Zwei Haupthemen der Elektrochemie. ELEKTROCHEMIE Elektrischer Strom: Fluß von elektrischer Ladung Elektrische Leitung: metallische (Elektronen) elektrolytische (Ionen) Zwei Haupthemen der Elektrochemie Galvanische Zellen Elektrolyse Die

Mehr

Übungsblatt zu Säuren und Basen

Übungsblatt zu Säuren und Basen 1 Übungsblatt zu Säuren und Basen 1. In einer wässrigen Lösung misst die Konzentration der Oxoniumionen (H 3 O + ) 10 5 M. a) Wie gross ist der ph Wert? b) Ist die Konzentration der OH Ionen grösser oder

Mehr

7. Tag: Säuren und Basen

7. Tag: Säuren und Basen 7. Tag: Säuren und Basen 1 7. Tag: Säuren und Basen 1. Definitionen für Säuren und Basen In früheren Zeiten wußte man nicht genau, was eine Säure und was eine Base ist. Damals wurde eine Säure als ein

Mehr

Misst man die Ladung in Abhängigkeit von der angelegten Spannung, so ergibt sich ein proportionaler Zusammenhang zwischen Ladung und Spannung:

Misst man die Ladung in Abhängigkeit von der angelegten Spannung, so ergibt sich ein proportionaler Zusammenhang zwischen Ladung und Spannung: 3.11 Der Kondensator In den vorangegangenen Kapiteln wurden die physikalischen Eigenschaften von elektrischen Ladungen und Feldern näher untersucht. In vielen Experimenten kamen dabei bereits Kondensatoren

Mehr

oder: AK Analytik 32. NET ( Schnellstarter All-Chem-Misst II 2-Kanäle) ToDo-Liste abarbeiten

oder: AK Analytik 32. NET ( Schnellstarter All-Chem-Misst II 2-Kanäle) ToDo-Liste abarbeiten Computer im Chemieunterricht einer Glühbirne Seite 1/5 Prinzip: In dieser Vorübung (Variante zu Arbeitsblatt D01) wird eine elektrische Schaltung zur Messung von Spannung und Stromstärke beim Betrieb eines

Mehr

Kapiteltest 1.1. Kapiteltest 1.2

Kapiteltest 1.1. Kapiteltest 1.2 Kapiteltest 1.1 a) Perchlorsäure hat die Formel HClO 4. Was geschieht bei der Reaktion von Perchlorsäure mit Wasser? Geben Sie zuerst die Antwort in einem Satz. Dann notieren Sie die Reaktionsgleichung.

Mehr

Verschiedene feste Stoffe werden auf ihre Leitfähigkeit untersucht, z.b. Metalle, Holz, Kohle, Kunststoff, Bleistiftmine.

Verschiedene feste Stoffe werden auf ihre Leitfähigkeit untersucht, z.b. Metalle, Holz, Kohle, Kunststoff, Bleistiftmine. R. Brinkmann http://brinkmann-du.de Seite 1 26/11/2013 Leiter und Nichtleiter Gute Leiter, schlechte Leiter, Isolatoren Prüfung der Leitfähigkeit verschiedener Stoffe Untersuchung fester Stoffe auf ihre

Mehr

Crashkurs Säure-Base

Crashkurs Säure-Base Crashkurs Säure-Base Was sind Säuren und Basen? Welche Eigenschaften haben sie?` Wie reagieren sie mit Wasser? Wie reagieren sie miteinander? Wie sind die Unterschiede in der Stärke definiert? Was ist

Mehr

EMPA: Abteilung Bautechnologien Bericht-Nr. 443 015-1 Auftraggeber: Toggenburger AG, Schlossackerstrasse 20, CH-8404 Winterthur Seite 2 / 7

EMPA: Abteilung Bautechnologien Bericht-Nr. 443 015-1 Auftraggeber: Toggenburger AG, Schlossackerstrasse 20, CH-8404 Winterthur Seite 2 / 7 Auftraggeber: Toggenburger AG, Schlossackerstrasse 20, CH-8404 Winterthur Seite 2 / 7 1 Auftrag Die Firma Toggenburger AG, Schlossackerstrasse 20, CH-8404 Winterthur, erteilte der EMPA Abt. Bautechnologien

Mehr

Amateurfunkkurs. Erstellt: 2010-2011. Landesverband Wien im ÖVSV. Passive Bauelemente. R. Schwarz OE1RSA. Übersicht. Widerstand R.

Amateurfunkkurs. Erstellt: 2010-2011. Landesverband Wien im ÖVSV. Passive Bauelemente. R. Schwarz OE1RSA. Übersicht. Widerstand R. Amateurfunkkurs Landesverband Wien im ÖVSV Erstellt: 2010-2011 Letzte Bearbeitung: 11. Mai 2012 Themen 1 2 3 4 5 6 Zusammenhang zw. Strom und Spannung am Widerstand Ohmsches Gesetz sformen Ein Widerstand......

Mehr

6. Tag: Chemisches Gleichgewicht und Reaktionskinetik

6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 1 6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 1. Das chemische Gleichgewicht Eine chemische Reaktion läuft in beiden Richtungen ab. Wenn

Mehr

Einführung in die Elektrochemie

Einführung in die Elektrochemie Einführung in die Elektrochemie > Grundlagen, Methoden > Leitfähigkeit von Elektrolytlösungen, Konduktometrie > Elektroden Metall-Elektroden 1. und 2. Art Redox-Elektroden Membran-Elektroden > Potentiometrie

Mehr

Lösungen (ohne Aufgabenstellungen)

Lösungen (ohne Aufgabenstellungen) Kapitel 1 Das chemische Gleichgewicht Lösungen (ohne Aufgabenstellungen) Aufgaben A 1 Die Hin- und die Rückreaktion läuft nach der Einstellung des Gleichgewichts mit derselben Geschwindigkeit ab, d. h.

Mehr

(Atommassen: Ca = 40, O = 16, H = 1;

(Atommassen: Ca = 40, O = 16, H = 1; 1.) Welche Molarität hat eine 14,8%ige Ca(OH) 2 - Lösung? (Atommassen: Ca = 40, O = 16, H = 1; M: mol/l)! 1! 2! 2,5! 3! 4 M 2.) Wieviel (Gewichts)%ig ist eine 2-molare Salpetersäure der Dichte 1,100 g/cm

Mehr

Pflege und Wartung von Elektroden

Pflege und Wartung von Elektroden Pflege und Wartung von Elektroden Dipl.-Ing. (FH) Lars Sebralla Ein Meßwert der mit einer Elektrode ermittelt wird ist nur so genau wie die Elektrode selber. Grundlegende Details sollten dabei beachtet

Mehr

Atomic Force Microscopy

Atomic Force Microscopy 1 Gruppe Nummer 103 29.4.2009 Peter Jaschke Gerd Meisl Atomic Force Microscopy Inhaltsverzeichnis 1. Einleitung... 2 2. Theorie... 2 3. Ergebnisse und Fazit... 4 2 1. Einleitung Die Atomic Force Microscopy

Mehr

Praktikum Physik. Protokoll zum Versuch: Kennlinien. Durchgeführt am 15.12.2011. Gruppe X. Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.

Praktikum Physik. Protokoll zum Versuch: Kennlinien. Durchgeführt am 15.12.2011. Gruppe X. Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm. Praktikum Physik Protokoll zum Versuch: Kennlinien Durchgeführt am 15.12.2011 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

Einführung in die Produktwelt der Aqua Design Amano Naturaquaristik FILTER- SYSTEME

Einführung in die Produktwelt der Aqua Design Amano Naturaquaristik FILTER- SYSTEME Einführung in die Produktwelt der Aqua Design Amano Naturaquaristik FILTER- SYSTEME Was ist das ADA Filtersystem? Ein Filtersystem zur Reinigung des Wassers ist das Herzstück eines jeden Aquariums. Es

Mehr

Lernziele zu SoL: Druck, Auftrieb

Lernziele zu SoL: Druck, Auftrieb Lernziele zu SoL: Druck, Auftrieb Theoriefragen: Diese Begriffe müssen Sie auswendig in ein bis zwei Sätzen erklären können. a) Teilchenmodell b) Wie erklärt man die Aggregatzustände im Teilchenmodell?

Mehr

Erläutere den CO 2 -Nachweis. Definiere den Begriff exotherme Reaktion und zeichne ein passendes Energiediagramm. Grundwissenskatalog Chemie 8 NTG

Erläutere den CO 2 -Nachweis. Definiere den Begriff exotherme Reaktion und zeichne ein passendes Energiediagramm. Grundwissenskatalog Chemie 8 NTG Erläutere den CO 2 -Nachweis. Wird das Gas in Kalkwasser (Ca(OH) 2 ) eingeleitet bildet sich ein schwerlöslicher Niederschlag von Calciumcarbonat (CaCO 3 ). Abgabe von innerer Energie (Wärme, Knall,...)

Mehr

Grundlagen. Maximilian Ernestus Waldorfschule Saarbrücken

Grundlagen. Maximilian Ernestus Waldorfschule Saarbrücken Grundlagen Maximilian Ernestus Waldorfschule Saarbrücken 2008/2009 Inhaltsverzeichnis 1 Chemische Elemente 2 2 Das Teilchenmodell 3 3 Mischungen und Trennverfahren 4 4 Grundgesetze chemischer Reaktionen

Mehr

CHEMIE KAPITEL 4 SÄURE-BASE. Timm Wilke. Georg-August-Universität Göttingen. Wintersemester 2013 / 2014

CHEMIE KAPITEL 4 SÄURE-BASE. Timm Wilke. Georg-August-Universität Göttingen. Wintersemester 2013 / 2014 CHEMIE KAPITEL 4 SÄURE-BASE Timm Wilke Georg-August-Universität Göttingen Wintersemester 2013 / 2014 Folie 2 Aufgaben In einen Liter Wasser werden 2 g NH - 2 (starke Base) eingeleitet welchen ph-wert hat

Mehr

Mobil. Leitfähigkeit. Leitfähigkeitsmessgerät. Elektrochemie. ph-meter. Multiparameter. Basic Labor

Mobil. Leitfähigkeit. Leitfähigkeitsmessgerät. Elektrochemie. ph-meter. Multiparameter. Basic Labor Mobil Multi Parameter Leitfähigkeit phmeter Basic Labor Leitfähigkeitsmessgerät Multiparameter Basic Labor phmeter Leitfähigkeitsmesser phmeter Elektrochemie info@phoenixinstrument.de Heinkelstr. 10 D30827

Mehr

Protokoll des Versuches 5: Messungen der Thermospannung nach der Kompensationsmethode

Protokoll des Versuches 5: Messungen der Thermospannung nach der Kompensationsmethode Name: Matrikelnummer: Bachelor Biowissenschaften E-Mail: Physikalisches Anfängerpraktikum II Dozenten: Assistenten: Protokoll des Versuches 5: Messungen der Thermospannung nach der Kompensationsmethode

Mehr

Wer ist MacGyver? Bildquelle: Themightyquill auf https://de.wikipedia.org/wiki/datei:richard-dean-anderson-c1985.jpg

Wer ist MacGyver? Bildquelle: Themightyquill auf https://de.wikipedia.org/wiki/datei:richard-dean-anderson-c1985.jpg Wer ist MacGyver? Angus Mac Gyvers auffälligste Fähigkeit ist die praktische Anwendung der Naturwissenschaften und die damit verbundene erfinderische Nutzung alltäglicher Gegenstände.... Dies... erlaubt

Mehr

Versuch A02: Thermische Ausdehnung von Metallen

Versuch A02: Thermische Ausdehnung von Metallen Versuch A02: Thermische Ausdehnung von Metallen 13. März 2014 I Lernziele Wechselwirkungspotential im Festkörper Gitterschwingungen Ausdehnungskoezient II Physikalische Grundlagen Die thermische Längen-

Mehr

Gebrauchsanweisung. Vierdrahtiges Erdungswiderstand-Prüfkit Modell GRT300

Gebrauchsanweisung. Vierdrahtiges Erdungswiderstand-Prüfkit Modell GRT300 Gebrauchsanweisung Vierdrahtiges Erdungswiderstand-Prüfkit Modell GRT300 Einführung Glückwunsch zum Kauf des vierdrahtigen Erdungswiderstand-Prüfkits von Extech. Das Modell GRT300 ist ist konform mit der

Mehr

Musterklausur 1 zur Allgemeinen und Anorganischen Chemie

Musterklausur 1 zur Allgemeinen und Anorganischen Chemie Musterklausur 1 zur Allgemeinen und Anorganischen Chemie Achtung: Taschenrechner ist nicht zugelassen. Aufgaben sind so, dass sie ohne Rechner lösbar sind. Weitere Hilfsmittel: Periodensystem der Elemente

Mehr

Physikalische Grundlagen Inhalt

Physikalische Grundlagen Inhalt Physikalische Grundlagen Inhalt Das Atommodell nach Bohr Die Gleichspannung Der Gleichstrom Der Stromfluss in Metallen Der Stromfluss in Flüssigkeiten Die Elektrolyse Die Wechselspannung Der Wechselstrom

Mehr

4. Wässrige Lösungen schwacher Säuren und Basen

4. Wässrige Lösungen schwacher Säuren und Basen 4. Wässrige Lösungen schwacher Säuren und Basen Ziel dieses Kapitels ist es, das Vorgehenskonzept zur Berechnung von ph-werten weiter zu entwickeln und ph-werte von wässrigen Lösungen einprotoniger, schwacher

Mehr

Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum. Praktikum Nr. 2. Thema: Widerstände und Dioden

Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum. Praktikum Nr. 2. Thema: Widerstände und Dioden Fachhochschule Bielefeld Fachbereich Elektrotechnik Versuchsbericht für das elektronische Praktikum Praktikum Nr. 2 Name: Pascal Hahulla Matrikelnr.: 207XXX Thema: Widerstände und Dioden Versuch durchgeführt

Mehr

1. Theorie: Kondensator:

1. Theorie: Kondensator: 1. Theorie: Aufgabe des heutigen Versuchstages war es, die charakteristische Größe eines Kondensators (Kapazität C) und einer Spule (Induktivität L) zu bestimmen, indem man per Oszilloskop Spannung und

Mehr

Einheiten und Einheitenrechnungen

Einheiten und Einheitenrechnungen Chemie für Studierende der Human- und Zahnmedizin WS 2013/14 Übungsblatt 1: allgemeine Chemie, einfache Berechnungen, Periodensystem, Orbitalbesetzung, Metalle und Salze Einheiten und Einheitenrechnungen

Mehr

Elektrochemie II: Potentiometrie

Elektrochemie II: Potentiometrie ersuchsprotokoll ersuchsdatum: 25.10.04 Zweitabgabe: Sttempell Durchgeführt von: Elektrochemie II: Potentiometrie 1. Inhaltsangabe 1..Inhaltsangabe---------------------------------------------------------------------------------

Mehr

Formel X Leistungskurs Physik 2005/2006

Formel X Leistungskurs Physik 2005/2006 System: Wir betrachten ein Fluid (Bild, Gas oder Flüssigkeit), das sich in einem Zylinder befindet, der durch einen Kolben verschlossen ist. In der Thermodynamik bezeichnet man den Gegenstand der Betrachtung

Mehr