Ausgewählte Literatur

Größe: px
Ab Seite anzeigen:

Download "Ausgewählte Literatur"

Transkript

1 Ausgewählte Literatur Die nachfolgend angegebene Literatur zur elementaren Zahlentheorie und zur Algebra dient zur Ergänzung der Ausführungen des vorliegenden Buches, sie führt teilweise allerdings deutlich weiter. Die mathematisch historischen Werke vermitteln einen Einblick in die geschichtliche Entwicklung der Algebra und Zahlentheorie. Die Literatur zum Zahl- und Ziffernbegriff hat kulturhistorische Bedeutung. Abschließend listen wir für den interessierten Leser eine Auswahl an Literatur zur Didaktik der Algebra und Zahlentheorie. 1. Literatur zur elementaren Zahlentheorie [1] A. Bartholomé, H. Kern, J. Rung: Zahlentheorie für Einsteiger. Vieweg Verlag, Wiesbaden, 5. Aufl [2] S. I. Borevich, I. R. Shafarevich: Zahlentheorie. Birkhäuser Verlag, Basel Stuttgart, [3] P. Bundschuh: Einführung in die Zahlentheorie. Springer-Verlag, Berlin Heidelberg New York, 5. Aufl [4] G. Frey: Elementare Zahlentheorie. Vieweg Verlag, Braunschweig, [5] G.H.Hardy,E.M.Wright:An Introduction to the Theory of Numbers. Oxford University Press, 5th edition [6] H. Hasse: Vorlesungen über Zahlentheorie. Springer-Verlag, Berlin Göttingen Heidelberg New York, 2. Aufl [7] S. Müller-Stach, J. Piontkowski: Elementare und algebraische Zahlentheorie. Vieweg Verlag, Wiesbaden, [8] R. Remmert: Elementare Zahlentheorie. Birkhäuser Verlag, Basel Boston Berlin, 2. Aufl

2 262 Ausgewählte Literatur [9] R. Schulze-Pillot: Elementare Algebra und Zahlentheorie. Springer- Verlag, Berlin Heidelberg New York, [10] A. Weil: Number Theory. Birkhäuser Verlag, Boston Basel Stuttgart, 2nd edition [11] J. Wolfart: Einführung in die Zahlentheorie und Algebra. Vieweg Verlag, Braunschweig/Wiesbaden, [12] J. Ziegenbalg: Algorithmen. Spektrum Akademischer Verlag, Heidelberg Berlin Oxford, Literatur zur Algebra [13] H.-W. Alten et al.: 4000 Jahre Algebra. Springer-Verlag, Berlin Heidelberg New York, [14] M. Artin: Algebra. Birkhäuser Verlag, Basel Boston Berlin, [15] J. Bewersdorff: Algebra für Einsteiger. Vieweg Verlag, Wiesbaden, 3. Aufl [16] S. Bosch: Algebra. Springer-Verlag,Berlin Heidelberg New York, 6. Aufl [17] B. Hornfeck: Algebra. Walter de Gruyter Verlag, Berlin, 3. Aufl [18] N. Jacobson: Lectures in Abstract Algebra. Van Nostrand, Toronto, [19] S. Lang: Algebra. Springer-Verlag, Berlin Heidelberg New York, 3. Aufl. 2002, 4. korr. ND [20] F. Lorenz, F. Lemmermeyer: Algebra 1: Körper und Galoistheorie. Spektrum Akademischer Verlag, Heidelberg Berlin Oxford, 4. Aufl [21] J. Stillwell: Elements of Algebra. Springer-Verlag, Berlin Heidelberg New York, 1. Aufl 1994, 3. korr. ND [22] B.L.van derwaerden:moderne Algebra. Band I. Springer-Verlag, Berlin Heidelberg New York, 8. Aufl [23] G. Wüstholz: Algebra. Vieweg Verlag, Wiesbaden, 2004.

3 3 Literatur zum Zahl- und Ziffernbegriff Literatur zum Zahl- und Ziffernbegriff [24] H. Ebbinghaus et al.: Zahlen. Springer-Verlag,BerlinHeidelberg New York, 3. Aufl [25] G. Ifrah: Universalgeschichte der Zahlen. Campus-Verlag, Frankfurt, 2. Aufl [26] K. Menninger: Zahlwort und Ziffer, eine Kulturgeschichte der Zahl. Vandenhoeck & Ruprecht, Band 1 & 2, Göttingen, 3. Aufl [27] R. Taschner: Der Zahlen gigantische Schatten. Vieweg Verlag, Wiesbaden, 3. Aufl Literatur zur Didaktik der Algebra und Zahlentheorie [28] F. Padberg, R. Danckwerts, M. Stein: Zahlbereiche. Spektrum Akademischer Verlag, Heidelberg Berlin Oxford, [29] F. Padberg: Einführung in die Mathematik I. Arithmetik. Spektrum Akademischer Verlag, Heidelberg Berlin, [30] H.-J. K. Vollrath: Algebra in der Sekundarstufe. Spektrum Akademischer Verlag, Heidelberg Berlin, [31] H. Winter: Entdeckendes Lernen im Mathematikunterricht. Vieweg Verlag, Braunschweig, 1991.

4 Index Äquivalenzklasse, 63 Äquivalenzrelation, 62 Alternierende Gruppe, 78 Assoziative Verknüpfung, 46 Beschränktheit, 173 Bild eines Gruppenhomomorphismus, 59 eines Ringhomomorphismus, 110 Bruch, 131 Bruchzahl, 91, 131 Cauchyfolge eines angeordneten Körpers, 185 Rationale, 153 Reelle, 164 Cayleysche Octionen, 200 Charakteristik, 105 Chinesischer Restsatz, 225 Dedekindsche Schnitte, 184 Dezimalbruchentwicklung Periode, 150 Periodische, 150 Reinperiodische, 150 Vorperiode, 150 Dezimalzahl, 167 Echte, 171 Abbrechende, 168 Unendliche, 167 Diedergruppe, 52 Diskreter Logarithmus, 242 Division mit Rest, 42, 96, 141 Einheit, 106 Imaginäre, 192 Element Einselement, 100 Inverses, 50, 106 Irreduzibles, 135 Linksinverses, 50, 106 Linksneutrales, 49 Neutrales, 48 Nullelement, 100 Primelement, 135 Rechtsinverses, 50, 106 Rechtsneutrales, 49 Unzerlegbares, 135 Ergänzungssatz Erster, 248 Zweiter, 251 Euklidischer Algorithmus, 143 Erweiterter, 144 Euklidisches Lemma, 33, 98 Euler-Kriterium, 246 Eulersche ϕ-funktion, 225 Exponentialfunktion, 206 Faktorgruppe, 74 Faktorring, 116

5 266 Index Fundamentalsatz der Algebra, 196 der elementaren Zahlentheorie, 31, 98 Ganze Zahlen, 88 Anordnung, 89 Betrag, 90 Dezimaldarstellung, 147 Differenz, 88 Produkt, 93 Quotient, 131 Gaußsche Zahlenebene, 193 Gaußsches Lemma, 249 Gruppe, 50 Abelsche/kommutative Gruppe, 52 Direkte Summe, 228 Direktes Produkt, 228 Zyklische Gruppe, 55 Gruppenhomomorphismus, 58 Gruppenisomorphismus, 58 Gruppentafel, 54 Halbgruppe, 46 Abelsche/kommutative Halbgruppe, 47 Reguläre Halbgruppe, 79 Halbsystem modulo p, 248 Hamiltonsche Quaternionen, 197 Betrag, 199 Konjugiertes Quaternion, 199 Homomorphiesatz für Gruppen, 75 für Ringe, 117 Ideal, 111 Durchschnitt, 136 Einsideal, 112 Größter gemeinsamer Teiler, 137 Hauptideal, 112 Kleinstes gemeinsames Vielfaches, 137 Nullideal, 112 Summe, 136 Teilbarkeit, 136 Index einer Untergruppe, 67 Infimum, 175 Infimumsprinzip, 177 Integritätsbereich, 104 Intervallschachtelung, 175 Intervallschachtelungsprinzip, 177 Jacobi-Symbol, 247 Körper, 120 Algebraisch abgeschlossen, 197 Anordnung, 185 Archimedische Anordnung, 186 Betrag, 185 mit p Elementen, 225 Kern eines Gruppenhomomorphismus, 59 eines Ringhomomorphismus, 110 Kleiner Satz von Fermat, 233 Kleinstes gemeinsames Vielfaches, 37, 99, 134, 137 Komplexe Zahlen, 193 Betrag, 196

6 Index 267 Konjugiert komplexe Zahl, 196 Kongruenz modulo m, 217 Legendre-Symbol, 244 Lineare Kongruenz, 220 Modul einer Kongruenz, 217 Monoid, 48 Multiplikative Gruppe eines Rings, 120 Nachfolger, 13 Natürliche Zahlen, 13 Anordnung, 18 Dezimaldarstellung, 44 Differenz, 20, 88 Produkt, 15 Summe, 15 Nebenklasse, 69 Linksnebenklasse, 65 Rechtsnebenklasse, 68 Normalteiler, 69 Nullfolge Rationale, 153 Nullteiler, 104 Linker Nullteiler, 104 Nullteilerfrei, 104 Rechter Nullteiler, 104 Obere Schranke, 173 Ordnung einer Gruppe, 55 eines Elements, 56 Peano-Axiome, 13 Prime Restklasse modulo m, 221 Prime Restklassengruppe modulo m, 224 Primitivwurzel modulo p, 241 Primzahl, 25, 96 Fermatsche, 27 Mersennesche, 27 Prinzip des kleinsten Elements, 19 Quadratischer Charakter modulo p, 246 Quadratischer Nichtrest modulo m, 235 Quadratischer Rest modulo m, 235 Quadratisches Reziprozitätsgesetz, 256 Quotientenkörper, 130 Rationale Zahlen, 131 Anordnung, 132 Betrag, 133 Dezimalbruchentwicklung, 149 Dezimaldarstellung, 149 Reelle Zahlen, 162 Anordnung, 163 Betrag, 164 Dezimalbruchentwicklung, 172 Dezimaldarstellung, 172 Reelle Zahlenfolge (Streng) monoton fallend, 173 (Streng) monoton wachsend, 173 Grenzwert, 165 Konvergenz, 165 Reelle Zahlengerade, 179 Restklasse modulo m, 217 Restklassenring modulo m, 218

7 268 Index Ring, 100 Euklidischer Ring, 141 Faktorieller Ring, 138 Hauptidealring, 139 Kommutativer Ring, 100 Nullring, 100 Polynomring, 102 ZPE-Ring, 138 Ringhomomorphismus, 109 Ringisomorphismus, 109 Satz von Euklid, 26 von Euler, 232 von Gauß, 139 von Lagrange, 67 von Liouville, 202 von Wilson, 240 Schiefkörper, 120 Standard-Halbsystem modulo p, 249 Supremum, 175 Supremumsprinzip, 177 Symmetrische Gruppe, 53 Teiler, 21, 95, 133, 136 Echter Teiler, 24 Gemeinsamer Teiler, 21, 95, 134 Größter gemeinsamer Teiler, 35, 99, 134, 137 Trivialer Teiler, 24, 96 Teilerfremd, 39 Paarweise teilerfremd, 40 Untere Schranke, 173 Untergruppe, 56 Untergruppenkriterium, 57 Unterring, 107 Unterringkriterium, 108 Vollständige Induktion, 14 Vollständigkeit Axiom der geometrischen, 182 der reellen Zahlen, 167 eines angeordneten Körpers, 185 Vollständigkeitsprinzip, 177 Vorgänger, 13 Zahl Algebraische, 200 Befreundete, 30 Eulersche, 206 Irrationale, 172 Liouvillesche, 204 Transzendente, 201 Vollkommene, 28

Elemente der Algebra. Eine Einführung in Grundlagen und Denkweisen. Von Doz. Dr. Peter Göthner Universität Leipzig

Elemente der Algebra. Eine Einführung in Grundlagen und Denkweisen. Von Doz. Dr. Peter Göthner Universität Leipzig Elemente der Algebra Eine Einführung in Grundlagen und Denkweisen Von Doz. Dr. Peter Göthner Universität Leipzig B. G. Teubner Verlagsgesellschaft Stuttgart Leipzig 1997 Inhalt 1 Strukturen mit einer binären

Mehr

Armin Leutbecher. Zahlentheorie. Eine Einführung in die Algebra. Mit 9 Abbildungen, 6 Tabellen und 1 Falttafel. SJ Springer

Armin Leutbecher. Zahlentheorie. Eine Einführung in die Algebra. Mit 9 Abbildungen, 6 Tabellen und 1 Falttafel. SJ Springer Armin Leutbecher Zahlentheorie Eine Einführung in die Algebra Mit 9 Abbildungen, 6 Tabellen und 1 Falttafel SJ Springer Inhaltsverzeichnis Einleitung 1 Häufig verwendete Abkürzungen 9 1 Der Fundamentalsatz

Mehr

1.1.1 Konstruktion der ganzen Zahlen, Vertretersystem (nicht-negative und negative ganze Zahlen)

1.1.1 Konstruktion der ganzen Zahlen, Vertretersystem (nicht-negative und negative ganze Zahlen) Zahlentheorie LVA 405.300 C. Fuchs Inhaltsübersicht 26.06.2013 Inhaltsübersicht Die Zahlentheorie gehört zu den Kerngebieten der Mathematik und steht historisch und thematisch in ihrem Zentrum. Es geht

Mehr

Basiswissen Zahlentheorie

Basiswissen Zahlentheorie Kristina Reiss Gerald Schmieder Basiswissen Zahlentheorie Eine Einführung in Zahlen und Zahlbereiche Zweite Auflage Mit 43 Abbildungen ^y Springer Inhaltsverzeichnis 1 Grundlagen und Voraussetzungen 1.1

Mehr

Inhaltsverzeichnis. Leitfaden 1

Inhaltsverzeichnis. Leitfaden 1 Inhaltsverzeichnis Leitfaden 1 1 Gruppen 5 1.1 Halbgruppen, Gruppen und Untergruppen... 5 1.1.1 Innere Verknüpfungen und Halbgruppen... 5 1.1.2 Beispiele... 6 1.1.3 Definition einer Gruppe... 8 1.1.4 Abschwächung

Mehr

Basiswissen Zahlentheorie

Basiswissen Zahlentheorie Mathematik für das Lehramt Basiswissen Zahlentheorie Eine Einführung in Zahlen und Zahlbereiche Bearbeitet von Kristina Reiss, Gerald Schmieder Neuausgabe 2007. Taschenbuch. XVI, 477 S. Paperback ISBN

Mehr

INHALTSVERZEICHNIS XII

INHALTSVERZEICHNIS XII Inhaltsverzeichnis I Gruppen 1 1 Halbgruppen, Gruppen und Untergruppen... 1 1.1 Innere Verknüpfungen und Halbgruppen... 1 1.2 Beispiele... 2 1.3 Definition einer Gruppe... 4 1.4 Abschwächung der Gruppenaxiome...

Mehr

1 Herangehensweise an eine Aufgabe

1 Herangehensweise an eine Aufgabe Im Folgenden seien sofern nicht anders angegeben G eine Gruppe, R, S Ringe, I, J Ideale, K, L Körper, p Z eine Primzahl und m Z. 1 Herangehensweise an eine Aufgabe Soll man einen gewissen Sachverhalt A

Mehr

Lineare Algebra und Analytische Geometrie I*

Lineare Algebra und Analytische Geometrie I* Lineare Algebra und Analytische Geometrie I* Prof. Dr. Jürg Kramer Mitschrift von Michael Kreikenbaum Version vom 27. Juni 2007 2 Inhaltsverzeichnis 0 Gruppen, Ringe, Körper 5 0.1 Mengentheoretische Grundlagen........................

Mehr

Lineare Algebra und Analytische Geometrie I*

Lineare Algebra und Analytische Geometrie I* Lineare Algebra und Analytische Geometrie I* Prof. Dr. Jürg Kramer Mitschrift von Michael Kreikenbaum Version vom 28. August 2006 2 Inhaltsverzeichnis 0 Gruppen, Ringe, Körper 4 0.1 Mengentheoretische

Mehr

Übungsaufgaben zur Zahlentheorie (Holtkamp)

Übungsaufgaben zur Zahlentheorie (Holtkamp) Ruhr-Universität Bochum Fakultät für Mathematik Sommersemester 2005 Übungsaufgaben zur Zahlentheorie (Holtkamp) Sonderregelung: Zur vollständigen Lösung jeder Aufgabe gehört die Kennzeichnung der (maximal

Mehr

Christian Karpfinger Kurt Meyberg. Algebra. Gruppen - Ringe - Korper. Spektrum 9*M. AKADEMISCHER VERLAG

Christian Karpfinger Kurt Meyberg. Algebra. Gruppen - Ringe - Korper. Spektrum 9*M. AKADEMISCHER VERLAG Christian Karpfinger Kurt Meyberg Algebra Gruppen - Ringe - Korper Spektrum 9*M. AKADEMISCHER VERLAG Vorwort 0 Vorbemerkungen 1 0.1 Womit befasst sich die Algebra? 1 0.2 Gruppen, Ringe, Korper 2 1 Halbgruppen

Mehr

Inhaltsverzeichnis. Bibliografische Informationen digitalisiert durch

Inhaltsverzeichnis. Bibliografische Informationen  digitalisiert durch Inhaltsverzeichnis Gruppen 1 1 Halbgruppen, Gruppen und Untergruppen 1 1.1 Innere Verknüpfungen und Halbgruppen 1 1.2 Beispiele 2 1.3 Definition einer Gruppe 4 1.4 Abschwächung der Gruppenaxiome 4 1.5

Mehr

5. Gruppen, Ringe, Körper

5. Gruppen, Ringe, Körper 5. Gruppen, Ringe, Körper 5.1. Gruppen Die Gruppentheorie, als mathematische Disziplin im 19. Jahrhundert entstanden, ist ein Wegbereiter der modernen Mathematik. Beispielsweise folgt die Gruppe, die aus

Mehr

Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik. Sommersemester 2018

Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik. Sommersemester 2018 Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik Sommersemester 2018 Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper).

Mehr

ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe.

ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe. ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe. Das heißt, um den ggt von zwei 1000-Bit-Zahlen zu ermitteln,

Mehr

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte)

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte) Aufgabe 1 (6 Punkte) Einführung in Algebra und Zahlentheorie svorschläge zur Klausur vom 23.09.2016 a) Bestimmen Sie das multiplikativ inverse Element zu 22 in Z/61Z. b) Finden Sie ein x Z mit folgenden

Mehr

Symbolverzeichnis. Erzeugnis von A F p

Symbolverzeichnis. Erzeugnis von A F p Symbolverzeichnis (a i ) Das von den a i erzeugte Ideal (G : U) Index von U in G [a,b] Kommutator von a und b [H,H] Kommutator von H [L : K] Grad von L über K gcd (a,b) größter gemeinsamer Teiler von a

Mehr

Lehrbuch der Algebra

Lehrbuch der Algebra Gerd Fischer Lehrbuch der Algebra Mit lebendigen Beispielen, ausfuhrlichen Erlauterungen und zahlreichen Bildern Unter Mitarbeit von Florian Quiring und Reinhard Sacher vieweg Inhaltsverzeichnis Gruppen

Mehr

VORLESUNGEN ÜBER ZAHLENTHEORIE

VORLESUNGEN ÜBER ZAHLENTHEORIE VORLESUNGEN ÜBER ZAHLENTHEORIE VON HELMUT HASSE O. PROFESSOR AN DER UNIVERSITÄT IN HAMBURG ZWEITE NEUBEARBEITETE AUFLAGE MIT 28 ABBILDUNGEN SPRINGER-VERLAG BERLIN GÖTTINGEN HEIDELBERG NEW YORK 1964 Inhaltsverzeichnis

Mehr

Seminar zum Thema Kryptographie

Seminar zum Thema Kryptographie Seminar zum Thema Kryptographie Michael Hampton 11. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 1.1 Konventionen.................................. 3 1.2 Wiederholung.................................. 3

Mehr

3. Ringtheorie. 3.1 Definition, Ideale, Kongruenzen

3. Ringtheorie. 3.1 Definition, Ideale, Kongruenzen 20 3. Ringtheorie 3.1 Definition, Ideale, Kongruenzen Definition 1. a) Eine nicht leere Menge R gemeinsam mit zwei Verknüpfungen + und heißt ein Ring (mit Einselement), wenn folgendes gilt: (R1) (R, +)

Mehr

Algebra Zusammenfassung

Algebra Zusammenfassung Algebra Zusammenfassung Jan Arends 1 Die Menge der ganzen Zahlen 1.1 Die Rechenstruktur Z 1.2 Teilbarkeit 1.2.1 Division mit Rest Seien a Z b N: q Z r N 0 : a = b q + r mit 0 r < b Modulo Alternative Schreibweisen:

Mehr

Algebra. Gruppen - Ringe - Körper. Bearbeitet von Christian Karpfinger, Kurt Meyberg

Algebra. Gruppen - Ringe - Körper. Bearbeitet von Christian Karpfinger, Kurt Meyberg Algebra Gruppen - Ringe - Körper Bearbeitet von Christian Karpfinger, Kurt Meyberg 4. Auflage 2017. Buch. XXII, 467 S. Softcover ISBN 978 3 662 54721 2 Weitere Fachgebiete > Mathematik > Algebra Zu Leseprobe

Mehr

Man schreibt auch a b statt a + ( b). Beispiel A = {0,1,2,3} als abelsche Gruppe

Man schreibt auch a b statt a + ( b). Beispiel A = {0,1,2,3} als abelsche Gruppe 9 Wichtige Sätze und Definitionen zu 3: Gruppen, Ringe und Körper aus der Vorlesung: LV-NR 150 239 Veranstaltung Diskrete Mathematik II, 4.0 std Dozent Holtkamp, R. 3.1 a) (A, ) sei Monoid mit neutralem

Mehr

4.1 Ringe Grundbegriffe

4.1 Ringe Grundbegriffe TEIL III: RINGE Wir führen jetzt die 2. algebraische Struktur der Vorlesung ein: die Ring-Struktur. Diese besteht aus einer Menge R zusammen mit zwei Verknüpfungen + und, wobei (R+) eine abelsche Gruppe

Mehr

ALGEBRA I Serie 7. z 2 z 1 mit z1, z 2 C. Zeigen Sie, daß

ALGEBRA I Serie 7. z 2 z 1 mit z1, z 2 C. Zeigen Sie, daß Wintersemester 17/18 ALGEBRA I Serie 7 Prof. Dr. J.S. Wilson Aufgabe 7.1 [4 Punkte] (a) Seien R = {a + bi a, b Q}, S = {a + bi a, b Z}. Zeigen Sie, daß R, S Unterringe von C sind. Bestimmen Sie die Einheitengruppen

Mehr

Einführung in die Zahlentheorie

Einführung in die Zahlentheorie Einführung in die Zahlentheorie Jörn Steuding Uni Wü, SoSe 2015 I Zahlen II Modulare Arithmetik III Quadratische Reste IV Diophantische Gleichungen V Quadratische Formen Wir behandeln die wesentliche Zahlentheorie

Mehr

χ a : N + {0, 1, 1} {( a χ a (n) = χ a (n ). ψ(mn) < ψ(m)ψ(n).

χ a : N + {0, 1, 1} {( a χ a (n) = χ a (n ). ψ(mn) < ψ(m)ψ(n). September 007, Zahlentheorie 1 a) Formulieren Sie das quadratische Reziprozitätsgesetz einschließlich der Definitionen der Legendre- und Jacobi-Symbole. b) Für a Z \ {0} definieren wir durch χ a (n) =

Mehr

Einführung in die Zahlentheorie

Einführung in die Zahlentheorie Peter Bundschuh Einführung in die Zahlentheorie Sechste, überarbeitete und aktualisierte Auflage 4y Springer Inhalt s Verzeichnis Kapitel 1. Teilbarkeit 1 1. Fundamentalsatz der Arithmetik 2 1. Natürliche

Mehr

Algebra, Kryptologie und Kodierungstheorie

Algebra, Kryptologie und Kodierungstheorie Algebra, Kryptologie und Kodierungstheorie Mathematische Methoden der Datensicherheit von Roland Matthes 1. Auflage Hanser München 2003 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 22431 5

Mehr

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Grundlagen)

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Grundlagen) WS 2014/15 Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Grundlagen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_14

Mehr

1 Verknüpfungen, Halbgruppen, Gruppen

1 Verknüpfungen, Halbgruppen, Gruppen 1 Verknüpfungen, Halbgruppen, Gruppen 1.1 Def. M (i) assoziatives : M M M (a,b) a b heißt Verknüpfung auf M. (ii) Verknüpfung auf M heißt assoziativ a, b, c M Verknüpfung auf M heißt kommutativ a, b M

Mehr

Kap. II Ringe und Körper

Kap. II Ringe und Körper Chr.Nelius:Grundzüge der Algebra (WS 2005/06) 1 Kap. II Ringe und Körper Zur Untersuchung von Gruppen haben wir einige Methoden herangezogen, die für die Algebra typisch sind: Bildung von Untergruppen

Mehr

Inhaltsverzeichnis. Kapitel 1. Teilbarkeit... 1

Inhaltsverzeichnis. Kapitel 1. Teilbarkeit... 1 Inhaltsverzeichnis Kapitel 1. Teilbarkeit... 1 1. Fundamentalsatz der Arithmetik... 2 1. Natürliche und ganze Zahlen 2. Teiler 3. Primzahlen 4. Satz von Euklid 5. Der Fundamentalsatz der Arithmetik 6.

Mehr

30 Ringe und Körper Motivation Definition: Ring. Addition und eine. Häufig gibt es auf einer Menge zwei Verknüpfungen: eine

30 Ringe und Körper Motivation Definition: Ring. Addition und eine. Häufig gibt es auf einer Menge zwei Verknüpfungen: eine 30 Ringe und Körper 30.1 Motivation Häufig gibt es auf einer Menge zwei Verknüpfungen: eine Addition und eine Multiplikation. Beispiele: (Z, +, ) hier gibt es sogar noch eine Division mit Rest. (IR, +,

Mehr

Übungen zu Zahlentheorie, SS 2017

Übungen zu Zahlentheorie, SS 2017 Übungen zu Zahlentheorie, SS 017 Christoph Baxa 1) Finde alle positiven Teiler von a) 1799 b) 997. ) Zeige (a b) (a n b n ) für alle a, b Z und alle n N. 3) Zeige: Wenn m n dann (a m b m ) (a n b n ) (mit

Mehr

1 Kryptographie - alt und neu

1 Kryptographie - alt und neu 1 Krytograhie - alt und neu 1.1 Krytograhie - alt [H] S. 9-14 und S. 18:.3.1. (Idee) - olyalhabetische Verschlüsselung, Vigenère (1550) 1. Primzahlen [RS] S. 89-93, wohl im wesenlichen ohne Beweise. Ausnahme

Mehr

Proseminar Algebra und diskrete Mathematik. SS 2017

Proseminar Algebra und diskrete Mathematik. SS 2017 Proseminar Algebra und diskrete Mathematik. SS 2017 Bachelorstudium Lehramt Sekundarstufe (Allgemeinbildung) Lehramtsstudium Unterrichtsfach Mathematik Ganze Zahlen: 1. Zeigen Sie folgende Teibarkeiten

Mehr

Grundbegriffe aus der Vorlesung Algebra

Grundbegriffe aus der Vorlesung Algebra Grundbegriffe aus der Vorlesung Algebra 17. Februar 2010 Dieses Glossar enthält die wichtigsten Begriffe und auch einige der wichtigsten Aussagen der Vorlesung. Zusätzliche Dinge (nicht klausurrelevant)

Mehr

Thema: Die Einheitengruppe des Restklassenrings /n

Thema: Die Einheitengruppe des Restklassenrings /n RWTH Aachen Lehrstuhl D für Mathematik Betreuer: Prof. U. Schoenwaelder Hausaufsatz zur Vorlesung Algebra I im WS 99/00 Thema: Die Einheitengruppe des Restklassenrings /n Vorgelegt von Sascha Haarkötter

Mehr

Polynome und endliche Körper

Polynome und endliche Körper Universität Koblenz-Landau Polynome und endliche Körper Ausarbeitung zum Proseminar Modul 4c Kryptographie im Fachbereich 3 Regula Krapf Arbeitsgruppe: Prof. Dr. Peter Ullrich Universität Koblenz-Landau

Mehr

IT-Security. Teil 9: Einführung in algebraische Strukturen

IT-Security. Teil 9: Einführung in algebraische Strukturen IT-Security Teil 9: Einführung in algebraische Strukturen 08.05.17 1 Literatur und Videos [9-1] http://www.iti.fh-flensburg.de/lang/krypto [9-2] Forster, Otto: Algorithmische Zahlentheorie. 2. Auflage,

Mehr

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen Algebra und Diskrete Mathematik, PS3 Sommersemester 2016 Prüfungsfragen Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper). Wodurch

Mehr

Michael Artin. Algebra. Aus dem Englischen übersetzt von Annette A'Campo. Birkhäuser Verlag Basel Boston Berlin

Michael Artin. Algebra. Aus dem Englischen übersetzt von Annette A'Campo. Birkhäuser Verlag Basel Boston Berlin Michael Artin Algebra Aus dem Englischen übersetzt von Annette A'Campo Birkhäuser Verlag Basel Boston Berlin INHALTSVERZEICHNIS Vorwort Hinweise viii x Kapitel 1 MATRIZEN 1 1. Matrizenkalkül 1 2. Zeilenreduktion

Mehr

EINFÜHRUNG IN DIE ALGEBRA Proseminar SS Übungsblatt für den

EINFÜHRUNG IN DIE ALGEBRA Proseminar SS Übungsblatt für den 1. Übungsblatt für den 11. 3. 2010 1. Es seien a, b Z. Beweisen Sie: a) a b T (a) T (b) b) Für jedes k Z gilt: T (a) T (b) = T (a) T (b + ka) c) Für jedes k Z gilt: ggt(a, b) = ggt(a, b + ka). 2. Für n

Mehr

Einführung in Algebra und Zahlentheorie Lösungsvorschlag zur Klausur am 16. Februar 2016

Einführung in Algebra und Zahlentheorie Lösungsvorschlag zur Klausur am 16. Februar 2016 Fakultät für Mathematik Institut für Algebra und Geometrie PD Dr. Stefan Kühnlein Dipl.-Math. oec. Anja Randecker Einführung in Algebra und Zahlentheorie Lösungsvorschlag zur Klausur am 16. Februar 016

Mehr

Leseprobe. Rolf Socher. Algebra für Informatiker. Mit Anwendungen in der Kryptografie und Codierungstheorie. ISBN (Buch):

Leseprobe. Rolf Socher. Algebra für Informatiker. Mit Anwendungen in der Kryptografie und Codierungstheorie. ISBN (Buch): Leseprobe Rolf Socher Algebra für Informatiker Mit Anwendungen in der Kryptografie und Codierungstheorie ISBN (Buch): 978-3-446-43257-4 ISBN (E-Book): 978-3-446-43312-0 Weitere Informationen oder Bestellungen

Mehr

Ringe und Körper. Das Homomorphieprinzip für Ringe

Ringe und Körper. Das Homomorphieprinzip für Ringe Ringe und Körper Das Homomorphieprinzip für Ringe Wir beginnen mit einem Beispiel. R = Z/m Z sei die Faktorgruppe von Z nach der Untergruppe m Z, m IN. Für m = 0 ist der kanonische Homomorphismus Z Z/m

Mehr

Algorithmische Zahlentheorie

Algorithmische Zahlentheorie Algorithmische Zahlentheorie ICPC-Proseminar-Vortrag vom 22. Mai 2010 Tomáš Přerovský Abschnitt 1: Grundlagen. Ringe Unter einem Ring R versteht man eine Menge zusammen mit zwei Operationen + (Addition)

Mehr

8. Algebraische Strukturen - Themenübersicht

8. Algebraische Strukturen - Themenübersicht 8. Algebraische Strukturen - Themenübersicht Mengen mit einer Operation Halbgruppen Monoide Gruppen Mengen mit zwei Operationen Körper Ringe Strukturerhaltende Abbildungen Prof. Dr. Bernhard Steffen Mathematik

Mehr

Mathematische Methoden für Informatiker

Mathematische Methoden für Informatiker Prof. Dr. 29.11.2018 32. Vorlesung Homomorphiesatz für Ringe Chinesischer Restsatz, speziell für Ringe Z n Lösen von t simultanen linearen Kongruenzen Sonderfall t = 2 Anwendungen, z.b. schnelle Addition

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 14 Restklassenbildung Nach Satz 13.6 ist der Kern eines Ringhomomorphismus ein Ideal. Man kann umgekehrt zu jedem Ideal I R in

Mehr

Ringe. Kapitel Einheiten

Ringe. Kapitel Einheiten Kapitel 8 Ringe Die zahlreichen Analogien zwischen Matrizenringen und Endomorphismenringen (beides sind zugleich auch Vektorräume) legen es nahe, allgemeinere ringtheoretische Grundlagen bereitzustellen,

Mehr

Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung)

Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung) Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS2017 Kapitel I. Gruppen 1 Grundlegende Definitionen (Wiederholung) 1.1 Definition. Eine Gruppe ist ein Paar

Mehr

Literatur und Videos. ISM WS 2017/18 Teil 4/Algebren

Literatur und Videos. ISM WS 2017/18 Teil 4/Algebren Literatur und Videos [4-1] http://www.iti.fh-flensburg.de/lang/krypto [4-2] Forster, Otto: Algorithmische Zahlentheorie. 2. Auflage, Springer, 2015 [4-3] Teschl, Gerald; Teschl, Susanne: Mathematik für

Mehr

Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n

Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n Definitionen Die Ringe Z n für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: Beispiel n = 15 + n : Z n Z n Z n : (a, b) (a + b) mod n n : Z n Z n Z n : (a, b) (a b) mod n 9 + 15 11 = 5 9 15 11 = 9

Mehr

Fibonacci-Zahlen und goldener Schnitt

Fibonacci-Zahlen und goldener Schnitt Fibonacci-Zahlen und goldener Schnitt Suche eine Darstellung der Form F n = x n für reelle Zahl x > 0. Aus der definierenden Gleichung folgt sofort x 2 = x + 1. Dann liefert die p-q-formel: x 1,2 = 1 2

Mehr

IT-Sicherheitsmanagement. Teil 4: Einführung in algebraische Strukturen

IT-Sicherheitsmanagement. Teil 4: Einführung in algebraische Strukturen IT-Sicherheitsmanagement Teil 4: Einführung in algebraische Strukturen 19.09.18 1 Literatur und Videos [4-1] http://www.iti.fh-flensburg.de/lang/krypto [4-2] Forster, Otto: Algorithmische Zahlentheorie.

Mehr

Der Zwei-Quadrate-Satz von Fermat. Hauptseminar: Eine Einladung in die Mathematik Leitung: Prof. Dr. Lukacova Referent: Julia Breit Datum:

Der Zwei-Quadrate-Satz von Fermat. Hauptseminar: Eine Einladung in die Mathematik Leitung: Prof. Dr. Lukacova Referent: Julia Breit Datum: Der Zwei-Quadrate-Satz von Fermat Hauptseminar: Eine Einladung in die Mathematik Leitung: Prof. Dr. Lukacova Referent: Julia Breit Datum: 09.11.2015 GLIEDERUNG Einleitung Der Zwei-Quadrate-Satz Vorwissen

Mehr

Kongruenzen und Restklassenringe. 2. Kongruenzen und Restklassenringe

Kongruenzen und Restklassenringe. 2. Kongruenzen und Restklassenringe 2. Kongruenzen und Restklassenringe Kongruenzen Definition: Wir sagen a ist kongruent zu b modulo m schreiben a b mod m, wenn m die Differenz b-a te Beispiel: Es gilt 2 19 mod 21, 10 0 mod 2. Reflexivität:

Mehr

Anhang A Bloom sche Taxonomie

Anhang A Bloom sche Taxonomie Anhang A Bloom sche Taxonomie Bloom sche Taxonomie von Lernzielen im kognitiven Bereich BT1: Wissen Das Wissen und Erinnern von gelernten Fakten, Begriffen, Regeln ohne Berücksichtigung der Frage, ob Verständnis

Mehr

Euklidische Division. Zahlentheorie - V Zusammenfassung 225 / 231

Euklidische Division. Zahlentheorie - V Zusammenfassung 225 / 231 Euklidische Division 1. Euklidische Division: Landau Notation: f(n) = O(g(n)). Definitionen: Gruppe, Ring, Ideal Teilbarkeit und Teilbarkeit mit Rest (euklidisch) Beispiel für euklidische Ringe Z euklidisch

Mehr

Index. C, 53 x, 30 x, 30, 6 ggt, 47. Charakteristik, 25 Cosinushyperbolicus, 110

Index. C, 53 x, 30 x, 30, 6 ggt, 47. Charakteristik, 25 Cosinushyperbolicus, 110 Index C, 53 x, 30 x, 30, 6 ggt, 47 π, 96 inf M, 51 sup M, 51 R erw, 51 Äquivalenzklasse, 12 Äquivalenzrelation, 11 Überdeckung offene, 85 Abbildung identische, 13 Ableitung, 100 Abschluss, 84 absolut konvergent,

Mehr

Wir betrachten jetzt algebraische Strukturen mit zwei inneren Verknüpfungen Definition (Ring) Ist R eine Menge mit zwei inneren Verknüpfungen

Wir betrachten jetzt algebraische Strukturen mit zwei inneren Verknüpfungen Definition (Ring) Ist R eine Menge mit zwei inneren Verknüpfungen 70 2.5 Ringe und Körper Wir betrachten jetzt algebraische Strukturen mit zwei inneren Verknüpfungen. 2.5.1 Definition (Ring) Ist R eine Menge mit zwei inneren Verknüpfungen +: R R R und : R R R, dann heißt

Mehr

1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl

1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl Westfälische Wilhelms-Universität Münster Mathematik Sommersemester 2017 Seminar: Verschlüsselungs- und Codierungstheorie Leitung: Thomas Timmermann 1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl

Mehr

Chr.Nelius: Grundzüge der Algebra (WS2005/06) 1. (14.1) DEF: Ein kommutativer Ring (K, +, ) heißt ein Körper, wenn gilt: 1) 1 K 0 K 2) K = K \ {0 K }

Chr.Nelius: Grundzüge der Algebra (WS2005/06) 1. (14.1) DEF: Ein kommutativer Ring (K, +, ) heißt ein Körper, wenn gilt: 1) 1 K 0 K 2) K = K \ {0 K } Chr.Nelius: Grundzüge der Algebra (WS2005/06) 1 14 Körper (14.1) DEF: Ein kommutativer Ring (K, +, ) heißt ein Körper, wenn gilt: 1) 1 K 0 K 2) K = K \ {0 K } (14.2) BEM: a) Ist K ein Körper, so ist (K

Mehr

Einführung in die Zahlentheorie

Einführung in die Zahlentheorie Einführung in die Zahlentheorie von Peter Hellekalek Institut für Mathematik Universität Salzburg Hellbrunner Straße 34 A-5020 Salzburg, Austria Tel: +43-(0)662-8044-5310 Fax: +43-(0)662-8044-137 e-mail:

Mehr

Algebraische Grundlagen der Informatik

Algebraische Grundlagen der Informatik Kurt-Ulrich Witt Algebraische Grundlagen der Informatik Zahlen - Strukturen - Codierung - Verschlüsselung vieweg Vorwort Abbildungssverzeichnis V VII XIII I Grundlagen 1 1 Mengen und Einführung in die

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie Prof. Dr. Sebastian Iwanowski DM4 Folie 1 Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 4: Zahlentheorie Beutelspacher 5 Lang 7, Biggs 20, 22, 23 (jeweils teilweise,

Mehr

Lineare Algebra 1. 4 Ringe und Körper (Fortsetzung) Der erweiterte Euklidische Algorithmus. Heinrich Heine-Universität Düsseldorf Sommersemester 2014

Lineare Algebra 1. 4 Ringe und Körper (Fortsetzung) Der erweiterte Euklidische Algorithmus. Heinrich Heine-Universität Düsseldorf Sommersemester 2014 Fakultät für Mathematik PD Dr. Markus Perling Heinrich Heine-Universität Düsseldorf Sommersemester 2014 Lineare Algebra 1 Siebte Woche, 21.5.2014 4 Ringe und Körper (Fortsetzung) Satz: Es sei R ein Ring

Mehr

Einführung in die Zahlentheorie und algebraische Strukturen

Einführung in die Zahlentheorie und algebraische Strukturen Einführung in die Zahlentheorie und algebraische Strukturen Wintersemester 2017/2018 Universität Bayreuth Michael Stoll Inhaltsverzeichnis 1. Wiederholung: Gruppen, Ringe, Körper 2 2. Teilbarkeitslehre

Mehr

Kapitel 6: Das quadratische Reziprozitätsgesetz

Kapitel 6: Das quadratische Reziprozitätsgesetz Kapitel 6: Das quadratische Reziprozitätsgesetz Ziel dieses Kapitels: die Untersuchung der Lösbarkeit der Kongruenzgleichung X also die Frage, ob die ganze Zahl Z eine Quadratwurzel modulo P besitzt. Im

Mehr

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra A. Filler Folie 1 /15 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 2. Die reellen Zahlen A. Filler Humboldt-Universität zu Berlin, Institut für Mathematik Sommersemester 2016

Mehr

Einführung in die Zahlentheorie und algebraische Strukturen

Einführung in die Zahlentheorie und algebraische Strukturen Einführung in die Zahlentheorie und algebraische Strukturen Wintersemester 2014/2015 Universität Bayreuth Michael Stoll Inhaltsverzeichnis 1. Wiederholung: Gruppen, Ringe, Körper 2 2. Teilbarkeitslehre

Mehr

Vorlesung Algebra I. Inhaltsverzeichnis 1. Einleitung 1 2. Gruppen Einleitung

Vorlesung Algebra I. Inhaltsverzeichnis 1. Einleitung 1 2. Gruppen Einleitung Vorlesung Algebra I Christian Lehn Inhaltsverzeichnis 1. Einleitung 1 2. Gruppen 5 1.1. Vorkenntnisse Gruppen 1. Einleitung Definition. Es sei G eine Menge. Eine Verknüpfung auf G ist eine Abbildung :

Mehr

Halbgruppen, Gruppen, Ringe

Halbgruppen, Gruppen, Ringe Halbgruppen-1 Elementare Zahlentheorie Einige Bezeichnungen Halbgruppen, Gruppen, Ringe Die Menge N 0 der natürlichen Zahlen 0, 1, 2, Die Menge N = N 1 der von Null verschiedenen natürlichen Zahlen Die

Mehr

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra A. Filler Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 2 Folie 1 /15 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 2. Die reellen Zahlen A. Filler

Mehr

Einführung in Algebra und Zahlentheorie

Einführung in Algebra und Zahlentheorie Institut für Algebra und Geometrie 05. September 2013 Klausur zur Vorlesung Einführung in Algebra und Zahlentheorie Name, Vorname: Matrikelnummer: Fachrichtung: Semester: Zur Bearbeitung: Verwenden Sie

Mehr

Algebraische Grundbegriffe, Kongruenzen

Algebraische Grundbegriffe, Kongruenzen KAPITEL 3 Algebraische Grundbegriffe, Kongruenzen Wir entwickeln die Anfänge der Gruppen- und der Ringtheorie in dem später benötigten Umfang. Ringe oder genauer Halbringe und die Matrizenmultiplikation

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 80 Andreas Gathmann 11. Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als ein Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 3. Der euklidische Algorithmus

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 3. Der euklidische Algorithmus Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 3 Der euklidische Algorithmus Euklid (4. Jahrhundert v. C.) Definition 3.1. Seien zwei Elemente a, b (mit b 0) eines euklidischen Bereichs

Mehr

Mathematik für Informatiker I,

Mathematik für Informatiker I, Teil II Algebra 70 Kapitel 8 Gruppen 8.1 Bedeutung in der Informatik Gruppen sind abstrakte Modelle für Mengen, auf denen eine Verknüpfung (etwa Addition oder Multiplikation) definiert ist. Allgemeine

Mehr

2. Reelle und komplexe Zahlen [Sch-St ]

2. Reelle und komplexe Zahlen [Sch-St ] 7 2. Reelle und komplexe Zahlen [Sch-St 6.4-6.5] 2.1 Körperstruktur und Anordnung von R [Kö 2.1-2.2] Für (beliebige) reelle Zahlen a, b, c R gelten die folgenden (algebraischen) Körperaxiome: (K1) a +

Mehr

r(s + t) = rs + rt, (r + s)t = rt + st. (f + g)(m) := f(m) + g(m), (f g)(m) := f(m) g(m)

r(s + t) = rs + rt, (r + s)t = rt + st. (f + g)(m) := f(m) + g(m), (f g)(m) := f(m) g(m) 290 7.1 Ringe und Ideale Erinnern wir uns zunächst an die Definition von Ringen, es sind Mengen R mit zwei Verknüpfungen + und, so daß (R, +) eine abelsche Gruppe, (R, ) eine Halbgruppe ist, und die beiden

Mehr

3.1 Homomorphismen, Ideale und Faktorringe

3.1 Homomorphismen, Ideale und Faktorringe Algebra I c Rudolf Scharlau, 2002 2012 123 3.1 Homomorphismen, Ideale und Faktorringe Aus dem Einleitungskapitel 1.5 sind uns folgende Begriffe bereits bekannt: Ring, kommutativer Ring mit Eins, Teilring

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 10.01.2014 Alexander Lytchak 1 / 9 Erinnerung: Zwei ganz wichtige Gruppen Für jede Gruppe (G, ) und jedes Element g

Mehr

Inhaltsverzeichnis Vier spannende Problem e... Teiler, Vielfache, R e ste P rim zah len

Inhaltsverzeichnis Vier spannende Problem e... Teiler, Vielfache, R e ste P rim zah len Inhaltsverzeichnis 1 Vier spannende Probleme... 1 1.1 Natürliche Zahlen als Summe zweier Primzahlen... 1 1.2 Primzahlen als Differenz zweier Quadratzahlen... 2 1.3 Freitag, der 13. - ein U nglückstag?...

Mehr

Wiederholung: Gruppe. Definition Gruppe. Eine Gruppe ist ein Tupel (G, ) bestehend aus einer Menge G und einer Verknüpfung : G G G mit

Wiederholung: Gruppe. Definition Gruppe. Eine Gruppe ist ein Tupel (G, ) bestehend aus einer Menge G und einer Verknüpfung : G G G mit Wiederholung: Gruppe Definition Gruppe Eine Gruppe ist ein Tupel (G, ) bestehend aus einer Menge G und einer Verknüpfung : G G G mit 1 Neutrales Element:!e G mit e g = g e = g für alle g G. 2 Inverses

Mehr

F. NEVANLINNA EINLEITUNG IN DIE ALGEBRA UND DIE THEORIE DER ALGEBRAISCHEN GLEICHUNGEN

F. NEVANLINNA EINLEITUNG IN DIE ALGEBRA UND DIE THEORIE DER ALGEBRAISCHEN GLEICHUNGEN F. NEVANLINNA EINLEITUNG IN DIE ALGEBRA UND DIE THEORIE DER ALGEBRAISCHEN GLEICHUNGEN MATHEMATISCHE REIHE BAND 29 LEHRBÜCHER UND MONOGRAPHIEN AUS DEM GEBIETE DER EXAKTEN WISSENSCHAFTEN EINLEITUNG IN DIE

Mehr

5 Grundlagen der Zahlentheorie

5 Grundlagen der Zahlentheorie 5 Grundlagen der Zahlentheorie 1 Primfaktorzerlegung Seienm, n N + := {k N k > 0} Man schreibt n n, gesprochen m teilt n oder m ist ein Teiler von n, wenn es eine positive natürliche Zahl k gibt mit mk

Mehr

Elementare Zahlentheorie

Elementare Zahlentheorie Elementare Zahlentheorie Beispiele, Geschichte, Algorithmen Jochen Ziegenbalg Inhalt Vorwort 5 1 Einführende Bemerkungen, Überblick, 7 Geschichtliches zu Zahl und Zahldarstellung 1.1 Zahlen und Zahldarstellungen:

Mehr

Algebra. Wissenschaftsverlag Mannheim/Wien/Zürich

Algebra. Wissenschaftsverlag Mannheim/Wien/Zürich Algebra von Prof. Dr. Hans-Jörg Reiffen Universität Osnabrück Prof. Dr. Günter Scheja Universität Tübingen Prof. Dr. Udo Vetter Universität Osnabrück 2., durchgesehene Auflage Wissenschaftsverlag Mannheim/Wien/Zürich

Mehr