Vorlesung Lineare Optimierung (Sommersemester 2010)

Größe: px
Ab Seite anzeigen:

Download "Vorlesung Lineare Optimierung (Sommersemester 2010)"

Transkript

1 1 Vorlesung Lineare Optimierung (Sommersemester 2010) Kapitel 2: Konvexe Mengen und Kegel Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 19. April 2010) Gliederung 2 Konvexe Mengen und Polyeder Kegel Polare Kegel Polyedrische Kegel Das Farkas-Lemma

2 Konvexe Mengen Definition 2.1 Eine Menge X R n heißt konvex, falls für alle x, y X 3 λx + (1 λ)y X für alle 0 λ 1 gilt. konvex nicht konvex Eine Menge ist genau dann konvex, wenn sie mit je zwei Punkten auch deren Verbindungstrecke enthält. Konvexe Mengen sind (weg-)zusammenhängend. Konvexe Funktionen auf konvexen Mengen 4 Definition 2.2 Sei X R n konvex. Eine Funktion f : X R heißt konvex/konkav, wenn für alle x, y X und 0 λ 1 gilt. Bemerkung 2.3 f (λx + (1 λ)y) / λf (x) + (1 λ)f (y) Nimmt eine konvexe/konkave Funktion auf einer konvexen Menge in einem Punkt ein lokales Minimum/Maximum an, so nimmt sie dort auch ihr globales Minimum/Maximum an. (Beweis wie Beweis von Bem. 1.8.)

3 5 Niveaumengen Beobachtung 2.4 Ist f : R n R konvex, so ist für jedes α R die Menge {x R n : f (x) α} konvex. 6 Ellipsoide Bemerkung 2.5 Für eine positiv definite symmetrische Matrix Q R n n und z R n ist das von Q definierte Ellipsoid Ell(z, Q) := {x R n (x z) T Q 1 (x z) 1} mit Zentrum z konvex (und kompakt).

4 Ellipsoide und Bälle Das einfachste Ellispoid ist der Ball 7 B(z, ϱ) := Ell(ϱ 2 I n, z) = {x R n x z ϱ} vom Radius ϱ > 0 um z R n. Spalten von C R n n : Mit Quadratwurzeln der Eigenwerte skalierte Orthonormalbasis aus Eigenvektoren von Q Dann ist Ell(Q, z) = C B(O n, 1) + z (Spalten von C: Halbachsen von Ell(Q, z)). Schnitte konvexer Mengen 8 Beobachtung 2.6 Ist I eine Indexmenge (beliebiger Kardinalität), und sind X i R n konvexe Mengen (i I ), so ist auch ihre Schnittmenge konvex. i I X i

5 Konvexe Hüllen 9 Definition 2.7 Für X R n heißt conv X := {X R n X X, X konvex} die konvexe Hülle von X. Lineare Hülle: lin X := {L R n X L, L linearer Unterraum} Affine Hülle: aff X := {A R n X A, A affiner Unterraum} Kombinationen 10 Für x (1),..., x (r) R n und λ 1,..., λ r R ist r λ i x (i) i=1 eine lineare Kombination von x (1),..., x (r). Falls r i=1 λ i = 1: affine Kombination Falls λ 1,..., λ r 0: konische Kombination Konische affine Kombinationen: konvexe Kombinationen Bemerkung 2.8 Die konvexe / lineare / affine Hülle von X R n ist die Menge aller konvexen /linearen / affinen Kombinationen von (endlich vielen) Punkten aus X.

6 11 Halbräume, Hyperebenen Definition 2.9 Für a R n \ {O n } und β R heißen H (a, β) := {x R n : a, x β} und H = (a, β) := {x R n : a, x = β} der von (a, β) definierte (affine) Halbraum bzw. die von (a, β) definierte (affine) Hyperebene (falls β = 0: linear). Beobachtung 2.10 Halbräume sind konvex (und abgeschlossen). Hyperebenen sind konvex. Affine Unterräume sind konvex. Die Schnittmenge beliebig vieler Halbräume ist konvex. 12 Polyeder Definition 2.11 Eine Teilmenge P R n heißt ein (konvexes) Polyeder, wenn P die Schnittmenge endlich vieler affiner Halbräume ist. P = und P = R n (Schnitt über leerer Indexmenge) sind Polyeder Affine Unterräume sind Polyeder. Beobachtung Polyeder sind konvex und (topologisch) abgeschlossen. 2. Die Menge P (A, b) := {x R n : Ax b} der zulässigen Lösungen eines linearen Optimierungsproblems ist ein Polyeder.

7 13 Polyeder: Beispiele 14 Minkowski-Summen und Skalierungen Definition 2.13 Für Mengen X 1,..., X q R n heisst q X i = X X q := i=1 { q i=1 } x (i) : x (i) X i für alle i [q] die Minkowski-Summe von X 1,..., X q. Bemerkung 2.14 Minkowski-Summen und Skalierungen konvexer Mengen sind konvex. (X R n, α R: αx := {αx x X } Skalierung von X )

8 Trennsätze für konvexe Mengen 15 Satz 2.15 Sind X R n konvex und abgeschlossen und y R n \ X, so gibt es a R n \ {O n } und ε > 0 mit a, x a, y ε für alle x X. Satz 2.16 Sind X, Y R n konvexe Mengen mit X Y =, so gibt es a R n \ {O n } mit a, x a, y für alle x X, y Y. Topologischer Abschluss 16 Bemerkung 2.17 Für jede konvexe Menge X R n ist auch der topologische Abschluss cl(x ) von X konvex. Korollar 2.18 Der topologische Abschluss einer konvexen Menge ist der Schnitt aller sie enthaltenden Halbräume. Bemerkung 2.19 Die Schnittmengen (beliebig vieler) Halbräume sind also genau die abgeschlossenen konvexen Mengen. (Die Schnittmengen endlich vieler Halbräume sind die Polyeder.)

9 17 Kegel Definition 2.20 Eine Teilmenge K R n heißt Kegel, wenn K ist und für alle x K und α 0 auch αx K ist. R n + := {x R n : x O n } konvexer Kegel nicht konvexer Kegel 18 Eigenschaften von Kegeln Bemerkung 2.21 Ist I eine Indexmenge (beliebiger Kardinalität), und sind K i R n Kegel (i I ), so ist auch die Schnittmenge i I K i ein Kegel. Bemerkung 2.22 Eine Menge K R n ist genau dann ein konvexer Kegel, wenn K alle konischen Kombinationen von Elementen aus K enthält.

10 Wichtige Kegel 19 Der nicht-negative Orthant R n + := {x R n x O n }. Der Kegel der positiv-semidefiniten Matrizen S k + := {A S k A positiv semidefinit}, wobei S k der k(k+1) 2 -dimensionale Unterraum der symmetrischen Matizen in R k k ist. R n + und S k + sind konvex und abgeschlossen. Trennsatz für konvexe Kegeln 20 Satz 2.23 Sind K R n ein abgeschlossener konvexer Kegel und y R n \ K ein Punkt außerhalb von K, so gibt es a R n mit a, x 0 für alle x K und a, y = 1.

11 21 Konische Hüllen Definition 2.24 Für X R n ist die konische Hülle von X cone X := {K R n X K, K Kegel}. Bemerkung 2.25 Bemerkung 2.26 cone X = {αx x X, α 0} {O n } Für alle X R n ist cone X ein Kegel. Für konvexe Mengen X ist cone X ein konvexer Kegel. 22 Konvex-konische Hüllen Definition 2.27 Für X R n ist ccone X := {K R n X K, K konvexer Kegel} die konvex-konische Hülle von X. Bemerkung 2.28 Für alle X R n ist ccone X ein konvexer Kegel.... die Menge aller konischen Kombinationen von Elementen aus X.

12 Endlich erzeugte Kegel 23 Definition 2.29 Ein Kegel ist endlich erzeugt, wenn er ccone X = { λ x x λx 0 für alle x X } x X für eine endliche Menge X R n ist. Ist X R n sogar linear unabhängig, so heißt ccone X ein simplizialer Kegel. Bemerkung 2.30 Endlich erzeugte Kegel sind konvex. Satz von Carathéodory 24 Satz 2.31 Sind X R n und x ccone X, so gibt es eine linear unabhängige Teilmenge X X von X mit x ccone X (insbesondere: X n). Satz 2.32 Endlich erzeugte Kegel sind konvex und abgeschlossen.

13 Polare von Kegeln 25 Definition 2.33 Für einen Kegel K R n heißt K := {y R n : y, x 0 für alle x K} der zu K polare Kegel. Eigenschaften von Polaren Bemerkung Für zwei Kegel K 1 K 2 gilt K 1 K 2. Bemerkung 2.35 Für einen Kegel K R n ist cl(k) ein Kegel mit K = (cl(k)). Bemerkung 2.36 Die Polaren von Kegeln sind konvexe abgeschlossene Kegel. Bemerkung 2.37 Für X R n ist (ccone X ) = {y R n x, y 0 für alle x X }. Satz 2.38 Für jeden abgeschlossenen konvexen Kegel K gilt K = K.

14 Polare von Schnitten 27 Satz 2.39 Sind K 1,..., K q R n konvexe Kegel mit ( q K 1 i=2 ) int(k i ), (1) so ist ( q ) K i = i=1 q K i. (2) i=1 (int(x ): Menge der inneren Punkte von X R n ) Polyederische Kegel 28 Definition 2.40 Ein polyedrischer Kegel ist ein Kegel, der ein Polyeder ist.

15 29 Eigenschaften polyedrischer Kegel, Beispiele Bemerkung 2.41 Eine Menge K R n ist genau dann ein polyedrischer Kegel, wenn es eine Matrix A R m n gibt mit K = P (A, O n ). Bemerkung 2.42 Polyedrische Kegel sind konvex und abgeschlossen. Bemerkung 2.43 Die Polaren von endlich erzeugten Kegeln sind polyedrische Kegel. 30 Polyedrische vs. endlich erzeugte Kegel Lemma 2.44 Jeder polyedrische Kegel ist endlich erzeugt. Satz 2.45 Ein Kegel ist genau dann polyedrisch, wenn er endlich erzeugt ist.

16 31 Verstärkung von Lemma 2.44 Definition Für jede Matrix M R m n : δ(m) = {det M I J I [m], J [n], I = J } (M) = { p q p, q δ(m) ( δ(m)), q 0} Lemma 2.44 Für jede Matrix A R m n gibt es X (A) n, X < mit P (A, O) = ccone(x ). 32 Für den Beweis von Lemma 2.44 Per Induktion nach p = 0, 1,... : Für alle) B R p n und C R q n (mit p + q 1, n 1) und A = R (p+q) n, existiert X (A) n, X < mit ( B C K := {x R n Bx O p, Cx = O q } = ccone X. Lemma 2.44a Seien B) R p n, C R q n (mit p + q 1, n 1), A = R (p+q) n und K := {x R n Bx O p, Cx = O q }. ( B C 1. Falls dim(ker(b) ker(c)) dim(ker(c)) 1: Es gibt X (A) n, X < mit K = ccone X. 2. Andernfalls: Es gibt z ker(c) \ {O n } mit z K, z K.

17 Illustration 1 des Beweises von Lemma 2.44a 33 a, y a y ker (C) a 1 a,y y U = ker (C) ker (B) u O u Illustration 2 des Beweises von Lemma 2.44a 34 L ker(c) ker (C) z K B T 1 U = ker (C) ker (B)

18 Illustration des Induktionsschritts (Beweis Lemma 2.44 ) 35 ker (C) x + λ z z x K x + µ ( z) z Polare von polyedrischen Kegeln 36 Satz 2.46 Für den polaren Kegel eines polyedrische Kegels K = P (A, O m ) (mit A R m n ) gilt K = ccone{a 1,,..., A m, }. Insbesondere: Die Polaren von polyedrischen Kegeln sind endlich erzeugt. Korollar 2.47 Sind K 1,..., K q R n polyedrische Kegel, so ist ( q i=1 K i) = q i=1 K i.

19 Farkas-Lemma 37 Lemma 2.48 Sind A R m n und b R m so, dass P (A, b) = gilt, so gibt es λ R m + mit λ T A = O T n und λ, b = 1. Satz 2.49 Für alle A R m n und b R m gilt: Entweder ist oder es ist {x R n Ax b} {y R m A T y = O n, b, y = 1, y O m } (aber nicht beides).

Vorlesung Lineare Optimierung (Sommersemester 2010)

Vorlesung Lineare Optimierung (Sommersemester 2010) 1 Vorlesung Lineare Optimierung (Sommersemester 2010) Kapitel 6: Die Geometrie der Linearen Optimierung Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Juni 2010) Gliederung 2 Das

Mehr

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14)

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 3/) Kapitel : Optimierung ohne Nebenbedingungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom. Oktober 3) Gliederung

Mehr

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14)

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 3/4) Kapitel : Optimierung ohne Nebenbedingungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom. Oktober 3) Gliederung

Mehr

Insbesondere sind nach dieser Definition also auch die leere Menge und einpunktige Teilmengen konvex.

Insbesondere sind nach dieser Definition also auch die leere Menge und einpunktige Teilmengen konvex. Konvexe Mengen 2 Wie am Ende des vorigen Kapitels bereits erwähnt, ist die notwendige Gradientenbedingung aus Satz 1.4.6 für konvexe Zielfunktionen auch hinreichend. Diese Tatsache mag als erste Motivation

Mehr

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt.

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Kapitel 3 Konvexität 3.1 Konvexe Mengen Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Definition 3.1 Konvexer Kegel. Eine Menge Ω R n heißt konvexer Kegel, wenn mit x

Mehr

Operations Research. Polyeder und Polytope. Polyeder und Polytope. Polyeder. Rainer Schrader. 11. Mai Gliederung. sei P R n

Operations Research. Polyeder und Polytope. Polyeder und Polytope. Polyeder. Rainer Schrader. 11. Mai Gliederung. sei P R n Operations Research Rainer Schrader Polyeder und Zentrum für Angewandte Informatik Köln. Mai 27 / 83 2 / 83 Gliederung Polyeder Optimierung linearer Funktionen Rezessionskegel und polyedrische Kegel rationale

Mehr

Vorlesung Lineare Optimierung (Sommersemester 2007)

Vorlesung Lineare Optimierung (Sommersemester 2007) 1 Vorlesung Lineare Optimierung (Sommersemester 007) Kapitel 9: Ganzzahlige Polyeder und Kombinatorische Dualität Volker Kaibel Otto-von-Guericke Universität Magdeburg Montag, 9. Juli 007 Gliederung Ganzzahlige

Mehr

8. Konvexe Polytope. Tobias Boelter. Mittwoch, 5. März TopMath Frühlingsschule

8. Konvexe Polytope. Tobias Boelter. Mittwoch, 5. März TopMath Frühlingsschule 1 / 31 8. Konvexe Tobias Boelter TopMath Frühlingsschule Mittwoch, 5. März 2014 2 / 31 Es können auch nicht konvexe untersucht werden, wir beschränken uns hier aber auf konvexe. Mit einem Polytop ist hier

Mehr

Vorlesung Mathematik für Ingenieure 2 (Sommersemester 2009)

Vorlesung Mathematik für Ingenieure 2 (Sommersemester 2009) 1 Vorlesung Mathematik für Ingenieure 2 (Sommersemester 2009) Kapitel 10: Differenzialrechnung R n R m Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 27. März 2009) Differenzialrechnung

Mehr

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10)

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Kapitel 15: Eigenwerte und -vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 5. November 2009) Diagonalisierbarkeit

Mehr

Vorlesung Mathematik für Ingenieure II (Sommersemester 2008)

Vorlesung Mathematik für Ingenieure II (Sommersemester 2008) Vorlesung Mathematik für Ingenieure II (Sommersemester 8) Kapitel : Differenzialrechnung R n R m Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 8. Mai 8) Differenzialrechnung R R 4

Mehr

Triangulierungen von Punktmengen und Polyedern

Triangulierungen von Punktmengen und Polyedern Triangulierungen von Punktmengen und Polyedern Vorlesung im Sommersemester 2000 Technische Universität Berlin Jörg Rambau 17.05.2000 Sekundärpolytop und 6 bistellare Operationen In diesem Kapitel werden

Mehr

A = A A

A = A A Musterlösung - Aufgabenblatt 8 Aufgabe 1 Gegeben ist das Polytop P = conv {±e i ± e j : 1 i, j 3, i j} = conv {e 1 + e 2, e 1 e 2, e 1 + e 2, e 1 e 2, e 1 + e 3, e 1 e 3, e 1 + e 3, e 1 e 3, e 2 + e 3,

Mehr

Konvexe Mengen. Def. Eine Teilmenge A R n heißt konvex, wenn sie mit je zwei Punkten x,y auch stets deren Verbindungsstrecke

Konvexe Mengen. Def. Eine Teilmenge A R n heißt konvex, wenn sie mit je zwei Punkten x,y auch stets deren Verbindungsstrecke Konvexe Mengen Def. Eine Teilmenge A R n heißt konvex, wenn sie mit je zwei Punkten x,y auch stets deren Verbindungsstrecke xy = {x + t xy 0 t 1} = {(1 t)x + ty 0 t 1} enthält. konvex nicht konvex Lemma

Mehr

Konvexe Mengen und Funktionen

Konvexe Mengen und Funktionen Konvexe Mengen und Funktionen von Corinna Alber Seminararbeit Leiter: Prof. Jarre im Rahmen des Seminars Optimierung III am Lehrstuhl für Mathematische Optimierung an der Heinrich-Heine-Universität Düsseldorf

Mehr

Der Satz von Krein-Milman und der Satz von der trennenden Hyperebene

Der Satz von Krein-Milman und der Satz von der trennenden Hyperebene Der Satz von Krein-Milman und der Satz von der trennenden Hyperebene Sascha Schleef 28.10.2011 Ausarbeitung im Rahmen des Proseminars Analysis auf Grundlage des Buches A course in convexity von Alexander

Mehr

Hüllen und Kombinationen

Hüllen und Kombinationen Hüllen und Kombinationen 2 Die zulässigen Bereiche in der Linearen Optimierung sind Lösungen von linearen Ungleichungssystemen. Deswegen müssen wir die Werkzeuge der linearen Algebra um Elemente erweitern,

Mehr

6 Hauptachsentransformation

6 Hauptachsentransformation 6 Hauptachsentransformation A Diagonalisierung symmetrischer Matrizen (6.1) Satz: Sei A M(n n, R) symmetrisch. Dann gibt es eine orthogonale n n-matrix U mit U t AU = D Diagonalmatrix Es folgt: Die Spalten

Mehr

Computergestützte Mathematik zur Linearen Algebra

Computergestützte Mathematik zur Linearen Algebra Computergestützte Mathematik zur Linearen Algebra Singulärwertzerlegung Achim Schädle Übungsleiter: Lennart Jansen Tutoren: Marina Fischer, Kerstin Ignatzy, Narin Konar Pascal Kuhn, Nils Sänger, Tran Dinh

Mehr

Konvexe Optimierungsprobleme

Konvexe Optimierungsprobleme von: Veronika Kühl 1 Konvexe Optimierungsprobleme Betrachtet werden Probleme der Form (P) min x C f(x) wobei f : C R eine auf C konvexe, aber nicht notwendigerweise differenzierbare Funktion ist. Ziel

Mehr

Operations Research. Ganzzahlige lineare Programme. ganzzahlige lineare Programme. Ganzzahlige lineare Programme. Rainer Schrader. 25.

Operations Research. Ganzzahlige lineare Programme. ganzzahlige lineare Programme. Ganzzahlige lineare Programme. Rainer Schrader. 25. Operations Research Rainer Schrader Ganzzahlige lineare Programme Zentrum für Angewandte Informatik Köln 25. Juni 2007 1 / 49 2 / 49 Ganzzahlige lineare Programme Gliederung ganzzahlige lineare Programme

Mehr

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10)

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) 1 Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Kapitel 14: Vektorräume und lineare Abbildungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 6. Oktober 2009) Vektorräume

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 03.12.2013 Alexander Lytchak 1 / 16 Wiederholung und Beispiele Der Spaltenrang einer Matrix ist gleich ihrem Zeilenrang.

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 2: Vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 19. Oktober 2011) Vektoren in R n Definition 2.1

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008

KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008 KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008 MUSTERLÖSUNG Name: Studiengang: Aufgabe 1 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter die Aufgabenstellung

Mehr

Affine Geometrie (Einfachere, konstruktive Version)

Affine Geometrie (Einfachere, konstruktive Version) Affine Geometrie (Einfachere, konstruktive Version) Def. Affiner Raum der Dimension n über Körper K ist nach Definition K n. Bemerkung. Man könnte Theorie von affinen Raumen auch axiomatisch aufbauen mit

Mehr

Konvexe Menge. Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, d.h.

Konvexe Menge. Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, d.h. Konvexe Menge Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, dh Kapitel Extrema konvex: h x + h y D für alle h [0, ], und x,

Mehr

Proseminar Konvexe Mengen: Der Satz von Carathéodory

Proseminar Konvexe Mengen: Der Satz von Carathéodory Proseminar Konvexe Mengen: Der Satz von Carathéodory Gerrit Grenzebach 26. Otober 2004 In diesem Referat werden der Begriff der onvexen Hülle einer Menge eingeführt und einige Eigenschaften der onvexen

Mehr

Organisatorisches. Operations Research. Organisatorisches. Organisatorisches. Rainer Schrader. 20. April 2007

Organisatorisches. Operations Research. Organisatorisches. Organisatorisches. Rainer Schrader. 20. April 2007 Organisatorisches Operations Research Rainer Schrader Zentrum für Angewandte Informatik Köln 20. April 2007 Dozent: Prof. Dr. Rainer Schrader Weyertal 80 Tel.: 470-6030 email: schrader@zpr.uni-koeln.de

Mehr

1. Lineare Optimierungsaufgaben (LOA) als Teilklasse konvexer Optimierungsprobleme. f(x) min, x G (1.1) (Legende)

1. Lineare Optimierungsaufgaben (LOA) als Teilklasse konvexer Optimierungsprobleme. f(x) min, x G (1.1) (Legende) . Lineare Optimierungsaufgaben (LOA) als Teilklasse konvexer Optimierungsprobleme X Banachraum, wobei X = R n G zulässige Menge des Optimierungsproblems f: G R Zielfunktion f(x) min, x G (.) (Legende)

Mehr

Optimierungstheorie Scheinklausur Sommersemester Juli 2007

Optimierungstheorie Scheinklausur Sommersemester Juli 2007 Universität Karlsruhe (TH) Forschungsuniversität gegründet 1825 Prof. Dr. Christian Wieners, Dipl.-Math. techn. Martin Sauter Institut für Angewandte und Numerische Mathematik Optimierungstheorie Scheinklausur

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

Vorlesung Lineare Optimierung (Sommersemester 2009)

Vorlesung Lineare Optimierung (Sommersemester 2009) 1 Vorlesung Lineare Optimierung (Sommersemester 2009) Kapitel 7: Der Simplex-Algorithmus Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 18. Juni 2009) Gliederung 2 Ecken, Kanten, Extremalstrahlen

Mehr

5 Schnitt, Verbindung und Erzeugung affiner Unterräume: Fortsetzung

5 Schnitt, Verbindung und Erzeugung affiner Unterräume: Fortsetzung Kapitel II Lineare Algebra und analytische Geometrie 5 Schnitt, Verbindung und Erzeugung affiner Unterräume: Fortsetzung Wann liegt ein Punkt auf einem affinen Unterraum? Wann haben zwei affine Unterräume

Mehr

Optimierung. Vorlesung 02

Optimierung. Vorlesung 02 Optimierung Vorlesung 02 LPs in kanonischer Form Für i = 1,, m und j = 1,, d seien c j, b i und a ij reele Zahlen. Gesucht wird eine Belegung der Variablen x 1,, x d, so das die Zielfunktion d c j x j

Mehr

Kapitel 5. Eigenwerte. Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42

Kapitel 5. Eigenwerte. Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42 Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

4.4 Hermitesche Formen

4.4 Hermitesche Formen 44 Hermitesche Formen Wie üblich bezeichnen wir das komplex konjugierte Element von ζ = a + bi C (a, b R) mit ζ = a bi Definition 441 Sei V ein C-Vektorraum Eine hermitesche Form (HF) auf V ist eine Abbildung

Mehr

1. Grundlagen der konvexen Analysis Version

1. Grundlagen der konvexen Analysis Version 1. Grundlagen der konvexen Analysis Version 18.02.10 1.1 Konvexe Mengen Definitionen. Eine Menge M R n heisst konvex, wenn aus x, y M folgt, dass auch alle Punkte z = λx + (1 λ)y mit 0 < λ < 1 (Strecke

Mehr

Operations Research. Konvexe Funktionen. konvexe Funktionen. konvexe Funktionen. Rainer Schrader. 4. Juni Gliederung

Operations Research. Konvexe Funktionen. konvexe Funktionen. konvexe Funktionen. Rainer Schrader. 4. Juni Gliederung Operations Research Rainer Schrader Konvexe Funktionen Zentrum für Angewandte Informatik Köln 4. Juni 2007 1 / 84 2 / 84 wir haben uns bereits mit linearen Optimierungsproblemen beschäftigt wir werden

Mehr

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn.

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn. Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2016/17 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

Affine Hülle. x x 1 ist lineare Kombination der Vektoren x 2 x 1,x 3 x 1,...,x k x 1. Tatsächlich, in diesem Fall ist λ 1 = 1 λ 2 λ 3...

Affine Hülle. x x 1 ist lineare Kombination der Vektoren x 2 x 1,x 3 x 1,...,x k x 1. Tatsächlich, in diesem Fall ist λ 1 = 1 λ 2 λ 3... Affine Hülle Wiederholung. Der Vektor x K n ist eine lineare Kombination der Vektoren x,...,x k K n, wenn es Zahlen λ,...,λ k K gibt mit x = λ x +... + λ k x k. Def. Gibt es solche Zahlen λ,...,λ k K mit

Mehr

9 Vektorräume mit Skalarprodukt

9 Vektorräume mit Skalarprodukt 9 Skalarprodukt Pink: Lineare Algebra 2014/15 Seite 79 9 Vektorräume mit Skalarprodukt 9.1 Normierte Körper Sei K ein Körper. Definition: Eine Norm auf K ist eine Abbildung : K R 0, x x mit den folgenden

Mehr

Analyis I -Metrische Räume - eine Einführung in die Topologie

Analyis I -Metrische Räume - eine Einführung in die Topologie Analyis I -Metrische Räume - eine Einführung in die Topologie E = E isolierter Punkte x 1 x 2 x 3 E ist abgeschlossen U ɛ (x) x innerer Punkt Ω Häufungspunkte Ω Metrik Metrische Räume Definition Sei X

Mehr

Extremalprobleme mit Nebenbedingungen

Extremalprobleme mit Nebenbedingungen Extremalprobleme mit Nebenbedingungen In diesem Abschnitt untersuchen wir Probleme der folgenden Form: g(x 0 ) = inf{g(x) : x Ω, f(x) = 0}, (x 0 Ω, f(x 0 ) = 0). (1) Hierbei sind Ω eine offene Menge des

Mehr

Kapitel 14. Geometrie Eine kurze Einführung in die affine Geometrie

Kapitel 14. Geometrie Eine kurze Einführung in die affine Geometrie Kapitel 14 Geometrie Sei V ein Vektorraum, z.b. V = R 3. Wenn wir uns für geometrische Eigenschaften vonr 3 interessieren, so stört manchmal dieausnahmerolle des Nullvektors, die es ja in V gibt. Beispielsweise

Mehr

Ganzzahlige lineare Programme

Ganzzahlige lineare Programme KAPITEL 5 Ganzzahlige lineare Programme Wir betrachten nun Optimierungsprobleme vom Typ (42) min c T x s.d. Ax = b, x 0, x ganzzahlig, wobei die Matrix A R m n und die Vektoren c R n, b R m gegeben seien.

Mehr

4 Differenzierbarkeit einer konjugierten Funktion

4 Differenzierbarkeit einer konjugierten Funktion 4 Differenzierbarkeit einer konjugierten Funktion (Eingereicht von Corinna Vits) 4.1 Differenzierbarkeit 1.Ordnung Theorem 4.1.1: Sei f ConvR n strikt konvex. Dann ist int dom und f ist stetig differenzierbar

Mehr

2.4 Verallgemeinerte Ungleichungen

2.4 Verallgemeinerte Ungleichungen 2.4 Verallgemeinerte Ungleichungen 2.4.1 Eigentliche Kegel und verallgemeinerte Ungleichungen Ein Kegel K R heißt eigentlicher Kegel, wenn er die folgenden Bedingungen erfüllt: K ist konvex K ist abgeschlossen

Mehr

Wiederholungsserie II

Wiederholungsserie II Lineare Algebra II D-MATH, FS 205 Prof. Richard Pink Wiederholungsserie II. Zeige durch Kopfrechnen, dass die folgende reelle Matrix invertierbar ist: 205 2344 234 990 A := 224 423 990 3026 230 204 9095

Mehr

17. Orthogonalsysteme

17. Orthogonalsysteme 17. Orthogonalsysteme 17.1. Winkel und Orthogonalität Vorbemerkung: Sei V ein Vektorraum mit Skalaprodukt, und zugehöriger Norm, dann gilt nach Cauchy-Schwarz: x, y V \ {0} : x, y x y 1 Definition: (a)

Mehr

EULER-CHARAKTERISTIK KONVEXER POLYEDER

EULER-CHARAKTERISTIK KONVEXER POLYEDER MINI-IKM 1998 EULER-CHARAKTERISTIK KONVEXER POLYEDER Eberhard-Karls-Universität Tübingen, März 1998 Richard Bödi Inhalt 1. Der euklidische Raum, affine Räume...........................................1

Mehr

ist ein Polyeder. c) Sei F eine Seite von P. Wann ist f 1 (F ) eine Seite von f 1 (P )? Begründen Sie Ihre Antwort. x 1. x = max{ x i i N n }.

ist ein Polyeder. c) Sei F eine Seite von P. Wann ist f 1 (F ) eine Seite von f 1 (P )? Begründen Sie Ihre Antwort. x 1. x = max{ x i i N n }. alteklausuraufgaben 1 LinOpt Klausur Sommersemester 05 Aufgabe 1 a) Definieren Sie den Begriff der konischen Hülle. b) Sei S R n. Zeigen Sie: Cone S = Lin S x S : x Cone (S \ {x}). Aufgabe 2 a) Definieren

Mehr

Jede symmetrische Bilinearform b definiert eine quadratische Form q durch. q(x) := b(x, x).

Jede symmetrische Bilinearform b definiert eine quadratische Form q durch. q(x) := b(x, x). 1 Kapitel 1 Clifford-Algebren 1 Innere Produkte Sei k {R, C}, V stets ein endlich-dimensionaler k-vektorraum. Fehlende Beweise finden sich in der Literatur ([Art1], [Bou1], [Brie], [Cohn]). Definition.

Mehr

Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz

Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 23. Mai 2016 Stefan Ruzika 7: Bild, Faser, Kern 23. Mai 2016 1 / 11 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume 4 Basis

Mehr

Lösung zu Serie 18. Lineare Algebra D-MATH, HS Prof. Richard Pink

Lösung zu Serie 18. Lineare Algebra D-MATH, HS Prof. Richard Pink Lineare Algebra D-MATH, HS 201 Prof. Richard Pink Lösung zu Serie 18 1. Sei V,, ein endlich-dimensionaler unitärer Vektorraum. Zeige, dass zu jeder Sesquilinearform f : V V C eine eindeutige lineare Abbildung

Mehr

Einbettungen von Polarräumen

Einbettungen von Polarräumen Einbettungen von Polarräumen Diplomarbeit von Velena Reuter betreut von Prof. Dr. Dr. Katrin Tent Fakultät für Mathematik Universität Bielefeld 13. August 2008 Inhaltsverzeichnis 1 Einleitung 2 2 Punkt-Geraden-Räume

Mehr

Analytische Geometrie

Analytische Geometrie 21 Vorlesungen über Analytische Geometrie für Lehramtstudierende der Schulformen Grund-, Mittel- und Realschule Jens Jordan Universität Würzburg, Wintersemster 2015/16 Hier kommt noch ein schönes Bildchen

Mehr

Kapitel 5 : Eigenwerte und Eigenvektoren

Kapitel 5 : Eigenwerte und Eigenvektoren Kapitel 5 : Eigenwerte und Eigenvektoren 5.1 Definition und allgemeine Eigenschaften Definition 5.1 Sei A eine quadratische (n n)-matrix. λ C heißt Eigenwert von A, wenn ein Vektor x C n mit x 0 existiert,

Mehr

Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla

Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla Sätze über Konvexität von Kapitel 4.7 bis 4.10 Theorem 4.7-1. Sei U ein konvexer Unterraum eines normierten Vektorraums. Dann

Mehr

Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr?

Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? 1. Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? A. Wenn n = 3 ist, sind mindestens zwei der drei Euler-Winkel einer Drehung kleiner oder gleich π. B. Wenn n = 2

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Grundbegriffe der Topologie. V. Bangert. (zur Vorlesung Differentialgeometrie, WS 12/13 )

Grundbegriffe der Topologie. V. Bangert. (zur Vorlesung Differentialgeometrie, WS 12/13 ) 01.10.2012 Grundbegriffe der Topologie V. Bangert (zur Vorlesung Differentialgeometrie, WS 12/13 ) Def. 0.1 Ein topologischer Raum ist eine Menge X zusammen mit einem System O von Teilmengen von X, das

Mehr

4.4 Quadratische Optimierungsprobleme

4.4 Quadratische Optimierungsprobleme 4.4 Quadratische Optimierungsprobleme 1. Quadratische Programme (QP) 1 2 xt P x + q T x + r s.t. Gx h (4.34) wobei P S n +, G R (m n) und A R (p n) Zielfunktion (ZF) ist (konvex) quadratisch Nebenbedingungen

Mehr

Prüfung Lineare Algebra 2

Prüfung Lineare Algebra 2 1. Überprüfen Sie die folgenden Aussagen: (1) Zwei reelle symmetrische Matrizen sind genau dann ähnlich, wenn sie die gleiche Signatur haben. (2) Jede symmetrische Matrix ist kongruent zu einer Diagonalmatrix,

Mehr

2.3 Basis und Dimension

2.3 Basis und Dimension 23 Basis und Dimension Erinnerung Gegeben ein K-Vektorraum V, ein Vektorensystem x,, x n in V Eine Linearkombination in den x i ist ein Vektor der Form λ x + + λ n x n mit λ i K Die λ i heißen Koeffizienten

Mehr

Definition Sei V ein Vektorraum, und seien v 1,..., v n V. Dann heißt eine Linearkombination. n λ i = 1. mit. v = v i λ i.

Definition Sei V ein Vektorraum, und seien v 1,..., v n V. Dann heißt eine Linearkombination. n λ i = 1. mit. v = v i λ i. Kapitel Geometrie Sei V ein Vektorraum, z.b. V = R 3. Wenn wir uns für geometrische Eigenschaften von R 3 interessieren, so stört manchmal die Ausnahmerolle des Nullvektors, die es ja in V gibt. Beispielsweise

Mehr

3.4 Kombinatorische Äquivalenz und Dualität von Polytopen

3.4 Kombinatorische Äquivalenz und Dualität von Polytopen 222 Diskrete Geometrie (Version 3) 12. Januar 2012 c Rudolf Scharlau 3.4 Kombinatorische Äquivalenz und Dualität von Polytopen Dieser Abschnitt baut auf den beiden vorigen auf, indem er weiterhin den Seitenverband

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

Ultrametrik. Christian Semrau Metrische Räume

Ultrametrik. Christian Semrau Metrische Räume Ultrametrik Christian Semrau 05.11.2002 Inhaltsverzeichnis 1 Metrische Räume 1 1.1 Definition der Metrik.................................. 1 1.2 Offene und abgeschlossene Mengen..........................

Mehr

Übungen zur Vorlesung Lineare Algebra

Übungen zur Vorlesung Lineare Algebra Übungen zur Vorlesung Lineare Algebra Institut für Reine Mathematik WS 2009/10 & SS 2010 Kapitel 1. Vektorräume Was ist ein Vektorraum? Sei X und K ein Körper. Wie macht man Abb (X, K) zu einem K -Vektorraum?

Mehr

Eigenwerte. Vorlesung Computergestützte Mathematik zur Linearen Algebra. Lehrstuhl für Angewandte Mathematik Sommersemester 2009

Eigenwerte. Vorlesung Computergestützte Mathematik zur Linearen Algebra. Lehrstuhl für Angewandte Mathematik Sommersemester 2009 Eigenwerte Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Sommersemester 2009 25. Juni + 2.+9. Juli 2009 Grundlagen Definition Ist für A C n,n, Ax = λx

Mehr

3 Polytope. 3.1 Polyeder

3 Polytope. 3.1 Polyeder 28 3 Polytope 3.1 Polyeder Polytope in der Ebene und im Raum standen neben Kreis und Kugel schon während der griechischen Antike im Mittelpunkt des mathematischen (und philosophischen) Interesses. Durch

Mehr

Höhere Funktionalanalysis WS2016/17 Übungsblatt

Höhere Funktionalanalysis WS2016/17 Übungsblatt Höhere Funktionalanalysis WS2016/17 Übungsblatt 1 11.10.2016 Aufgabe 1. Berechne die Normen der Operatoren (a) f L [0, 1], M f : L 2 [0, 1] L 2 [0, 1], (M f g)(x) = f(x)g(x). (b) g C[0, 1], T g : C[0,

Mehr

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 1

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 1 1.1 (Herbst 2005, Thema 1, Aufgabe 1) Bestimmen Sie alle reellen Lösungen des folgenden linearen

Mehr

Projektive Räume und Unterräume

Projektive Räume und Unterräume Projektive Räume und Unterräume Erik Slawski Proseminar Analytische Geometrie bei Prof. Dr. Werner Seiler und Marcus Hausdorf Wintersemester 2007/2008 Fachbereich 17 Mathematik Universität Kassel Inhaltsverzeichnis

Mehr

12. Trennungssätze für konvexe Mengen 83

12. Trennungssätze für konvexe Mengen 83 12. Trennungssätze für konvexe Mengen 83 C_1 C_2 a Abbildung 12.4. Trennung konvexer Mengen durch eine Hyperebene mit Normalenvektor a Dann ist int(c) nicht leer (warum?) und [als Minkowski-Summe von C

Mehr

Lanczos Methoden. Stefan Grell Im Rahmen eines Proseminar zur Numerischen Mathematik unter der Leitung von Prof. Wolf Hofmann. 15.

Lanczos Methoden. Stefan Grell Im Rahmen eines Proseminar zur Numerischen Mathematik unter der Leitung von Prof. Wolf Hofmann. 15. Lanczos Methoden Stefan Grell Im Rahmen eines Proseminar zur Numerischen Mathematik unter der Leitung von Prof. Wolf Hofmann 15. Juni 2005 Lanczos-Methoden Lanczos-Methoden sind iterative Verfahren zur

Mehr

(a), für i = 1,..., n.

(a), für i = 1,..., n. .4 Extremwerte Definition Sei M R n eine Teilmenge, f : M R stetig, a M ein Punkt. f hat in a auf M ein relatives (oder lokales) Maximum bzw. ein relatives (oder lokales) Minimum, wenn es eine offene Umgebung

Mehr

7.3 Unitäre Operatoren

7.3 Unitäre Operatoren Wir können jeden Operator T wie folgt schreiben: Dabei gilt T = 1 2 (T + T ) + i( 1 2 i (T T )) (T + T ) = T + T sowie ( 1 2 i (T T )) = 1 2 i (T T) = 1 2 i (T T ). Wir können T also in zwei lineare Operatoren

Mehr

Lösung 7: Bilinearformen

Lösung 7: Bilinearformen D-MATH Lineare Algebra II FS 207 Dr. Meike Akveld Lösung 7: Bilinearformen. a). Seien u, u 2 V, λ K, dann gelten nach Voraussetzung: L v (u + λu 2 ) =β(v, u + λu 2 ) = β(v, u ) + β(v, λu 2 ) =β(v, u )

Mehr

12 Lineare Algebra - Übersicht. Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen

12 Lineare Algebra - Übersicht. Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen 12 Lineare Algebra - Übersicht Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen Unterräume Sei X ein Vektorraum über Ã. Eine Teilmenge M X heißt Unterraum von X, wenn

Mehr

4 Holomorphie-Konvexität. Definition Satz. 42 Kapitel 2 Holomorphiegebiete

4 Holomorphie-Konvexität. Definition Satz. 42 Kapitel 2 Holomorphiegebiete 42 Kapitel 2 Holomorphiegebiete 4 Holomorphie-Konvexität Wir wollen weitere Beziehungen zwischen Pseudokonvexität und affiner Konvexität untersuchen. Zunächst stellen wir einige Eigenschaften konvexer

Mehr

5 Vektorräume. (V1) für alle x, y V : x + y = y + x; (V2) für alle x, y, z V : (x + y) + z = x + (y + z);

5 Vektorräume. (V1) für alle x, y V : x + y = y + x; (V2) für alle x, y, z V : (x + y) + z = x + (y + z); 5 Vektorräume Was wir in den vorangegangenen Kapiteln an Matrizen und Vektoren gesehen haben, wollen wir nun mathematisch abstrahieren. Das führt auf den Begriff des Vektorraumes, den zentralen Begriff

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau 312 LinAlg II Version 0 20. Juni 2006 c Rudolf Scharlau 4.3 Bilinearformen Bilinearformen wurden bereits im Abschnitt 2.8 eingeführt; siehe die Definition 2.8.1. Die dort behandelten Skalarprodukte sind

Mehr

7.2 Die adjungierte Abbildung

7.2 Die adjungierte Abbildung 7.2 Die adjungierte Abbildung Definition 7.2.1 Eine lineare Abbildung f : V K heißt lineares Funktional oder Linearform. (Diese Definition gilt für beliebige K-Vektorräume, nicht nur für innere Produkträume.)

Mehr

Teil I. Lineare Optimierung

Teil I. Lineare Optimierung Teil I Lineare Optimierung 5 Kapitel 1 Grundlagen Definition 1.1 Lineares Optimierungsproblem, lineares Programm. Eine Aufgabenstellung wird lineares Optimierungsproblem oder lineares Programm genannt,

Mehr

1 Der Simplex Algorithmus I

1 Der Simplex Algorithmus I 1 Nicoletta Andri 1 Der Simplex Algorithmus I 1.1 Einführungsbeispiel In einer Papiermühle wird aus Altpapier und anderen Vorstoffen feines und grobes Papier hergestellt. Der Erlös pro Tonne feines Papier

Mehr

Optimierung I. Einführung in die Optimierung. Skript zur Vorlesung von Prof. Dr. Mirjam Dür Prof. Dr. Alexander Martin

Optimierung I. Einführung in die Optimierung. Skript zur Vorlesung von Prof. Dr. Mirjam Dür Prof. Dr. Alexander Martin Optimierung I Einführung in die Optimierung Skript zur Vorlesung von Prof. Dr. Mirjam Dür Prof. Dr. Alexander Martin Wintersemester 2005/2006 TU Darmstadt Überarbeitete Version vom 21. Oktober 2005 2 3

Mehr

Probeklausur Lineare Algebra 1 Achten Sie auf vollständige, saubere und schlüssige Argumentation! 100 Punkte sind 100%. Inhaltsverzeichnis

Probeklausur Lineare Algebra 1 Achten Sie auf vollständige, saubere und schlüssige Argumentation! 100 Punkte sind 100%. Inhaltsverzeichnis Prof. Dr. Wolfgang Arendt Manuel Bernhard Wintersemester 5/6 Probeklausur Lineare Algebra Achten Sie auf vollständige, saubere und schlüssige Argumentation! Punkte sind %. Inhaltsverzeichnis Aufgabe Aufgabe

Mehr

Hauptachsentransformation: Eigenwerte und Eigenvektoren

Hauptachsentransformation: Eigenwerte und Eigenvektoren Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung

Mehr

Vektorräume. Stefan Ruzika. 24. April Mathematisches Institut Universität Koblenz-Landau Campus Koblenz

Vektorräume. Stefan Ruzika. 24. April Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 3: Vektorräume 24. April 2016 1 / 20 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume Erinnerung:

Mehr

5.4 Affine Abbildungen in C 2 und R 2

5.4 Affine Abbildungen in C 2 und R 2 5.4 Affine Abbildungen in C 2 und R 2 Notation. Wir erinnern an die affine Ähnlichkeit von Matrizen (5.3.8): L 1, L 1 AM n (K). Dann: L 1 a L 2 falls C AGL n (K) mit C 1 L 2 C = L 1. Die aus 3.2.9 bekannte

Mehr

Klausurvorbereitungsblatt Lineare Algebra

Klausurvorbereitungsblatt Lineare Algebra Klausurvorbereitungsblatt Lineare Algebra Sommersemester 25 Aufgabe 2 2 Sei A 3 3 8 2 4 3 R4 5. 5 2 a) Bestimmen Sie die Lösungsmenge des linearen Gleichungssystems Ax b) Ist Ax b mit b lösbar? (Begründen

Mehr

. TRENNENDE HYPEREBENEN

. TRENNENDE HYPEREBENEN VORLESUNG ÜBER KONVEXITÄT Daniel Plaumann Universität Konstanz Wintersemester /.. HYPEREBENEN De nition.. Es sei V ein reeller Vektorraum. Eine lineare Abbildung ℓ V R heißt lineares Funktional auf V.

Mehr

Der LLL - Algorithmus. Seminar ganzzahlige Optimierung Wintersemester 2006/2007

Der LLL - Algorithmus. Seminar ganzzahlige Optimierung Wintersemester 2006/2007 Der LLL - Algorithmus Seminar ganzzahlige Optimierung Wintersemester 2006/2007 Autor: Konrad Schade Betreuer: Prof. Dr. J. Rambau 1 Einführung 1.1 Motivation In dieser Arbeit soll die Verwendung des LLL-Algotithmuses

Mehr

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) 1 Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) Kapitel 4: Konvergenz und Stetigkeit Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. November 2007) Folgen Eine Folge

Mehr

Musterlösung zur Serie 10

Musterlösung zur Serie 10 D-MATH, D-PHYS, D-CHAB Lineare Algebra II FS 1 Prof. Giovanni Felder, Thomas Willwacher Musterlösung zur Serie 1 1. a) Zur Erinnerung: Eine Äquivalenzrelation auf einer Menge M ist eine Relation, die die

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

3 Bilinearform, Basen und Matrizen

3 Bilinearform, Basen und Matrizen Lineare Algebra II 2. Oktober 2013 Mitschrift der Vorlesung Lineare Algebra II im SS 2013 bei Prof. Peter Littelmann von Dario Antweiler an der Universität zu Köln. Kann Fehler enthalten. Veröentlicht

Mehr