Ganzzahlige lineare Programme

Größe: px
Ab Seite anzeigen:

Download "Ganzzahlige lineare Programme"

Transkript

1 KAPITEL 5 Ganzzahlige lineare Programme Wir betrachten nun Optimierungsprobleme vom Typ (42) min c T x s.d. Ax = b, x 0, x ganzzahlig, wobei die Matrix A R m n und die Vektoren c R n, b R m gegeben seien. Wir setzen P = {x R n Ax = b, x 0}. Das mathematische Optimierungsproblem (42) ist kein lineares Programm im strengen Sinn, da der Zulässigkeitsbereich F = {x P x N n } eine diskrete Menge und im allgemeinen kein Polyeder ist. Ist F endlich und setzen wir P I = conv F, so ist (42) äquivalent zu dem Problem min c T x s.d. x P I. Wäre eine Matrix A und ein Vektor b mit P I = P (A, b ) bekannt, so könnte man das Ausgangsproblem (42) z.b. dadurch lösen, indem man mit der Simplexmethode löst. min c T x s.d. A x b VEREINBARUNG. In diesem Kapitel nehmen wir durchweg an, dass sämtliche Problemparameter A, c, b rational sind. OBdA dürfen (und werden) wir bei der Problemanalyse deshalb sogar Ganzzahligkeit annehmen: A Z m n, c Z n, b Z m. 1. Schnittebenen Es seien A Z m n und b Z m gegeben und P = P (A, b) = {x R n Ax b} das entsprechende rationale Polyeder. Wir interessieren uns für die Menge P I = conv {x P x Z n }. PROPOSITION 5.1. Ist P eine rationales Polyeder, dann ist auch P I ist ein rationales Polyeder. 59

2 60 5. GANZZAHLIGE LINEARE PROGRAMME Beweis. Im Fall P I = ist nichts zu beweisen. Sei also P I. Nach dem Dekompositionssatz von Weyl-Minkowski existieren endliche Mengen V, W Q n so, dass P = conv V + cone W. Nach geeigneter Skalierung dürfen wir die Vektoren w W obda dabei als ganzzahlig annehmen. Ein beliebiges x P kann in der Form x = V s + W t mit s, t 0, 1 T s = 1 dargestellt werden. Bezeichen wir mit t der ganzzahlig nach unten gerundeten Komponenten von t und setzen t = t t 0, dann erhalten wir x = (V s + W t) + W t = x + W t mit dem ganzzahligen t und x in dem Polytop(!) Wegen W t Z n finden wir und deshalb P = {V s + W t s 0, 1 T s = 1, 0 t 1}. x Z n x Z n P Z n = P Z n + {W z z 0 ganzzahlig}. Da P ein Polytop (und somit beschränkt) ist, ist P Z n eine endliche Menge. Wegen (43) P I = conv (P Z n ) + cone W erkennen wir P I somit als Polyeder. Im Prinzip könnte man aus der Darstellung (43) (z.b. mit Fourier-Motzkin) eine lineare Beschreibung von P I durch Ungleichungen ableiten. Für das Optimierungsproblem (42) ist dies jedoch nicht interessant, da ein solches Vorgehen bedeutet, dass man ohnehin zuerst sämtliche ganzzahligen Vektoren in P (darunter auch die Optimallösung von (43) ) auflisten müsste Das Verfahren von Gomory. Um eine lineare Beschreibung von P I zu erzielen, gehen wir von gültigen Ungleichungen für das Polyeder P = P (A, b) aus. Gemäss dem Lemma von Farkas betrachten wir deshalb ein beliebiges rationales y 0 und c T = y T A. Dann ist c T x z mit z = y T b eine gültige Ungleichung für P. Wir dürfen y als ganzzahlig annnehmen. Der springende Punkt ist dann die Beobachtung c T = y T A ist ganzzahlig und c T x z mit z = y T b Z eine gültige Ungleichung für P I, da sie von allen ganzzahligen Vektoren in P erfüllt wird.

3 1. SCHNITTEBENEN 61 Tatsächlich genügt es, sich dabei auf y mit Komponenten y i [0, 1] zu beschränken. Denn bei allgemeinem y Q n + und z Z n + mit 0 y = y z 1 ist die Ungleichung (z T A)x z T b Z ja ohnehin schon von Ax b impliziert. Für ganzzahliges x P (A, b) gilt darum (y ) T Ax (y ) T b y T Ax y T b. Damit erhalten wir das Gomory-Polyeder P = {x P (y T A)x y T b, y [0, 1] m, y T A Z n }. BEMERKUNG. P ist tatsächlich ein Polyeder, denn es gibt nur endlich viele verschiedene Gomory-Schnitte. Das sieht man so: Die Menge {y T A 0 y 1} ist eine beschränkte Menge von Zeilenvektoren in R n und enthält deshalb nur endlich viele ganzzahlige Vektoren. Iterieren wir diese Konstruktion, so ergibt sich die Gomory-Folge P P P... P I. Man bemerke, dass keine der Gomory-Ungleichungen einen ganzzahligen Punkt aus P abschneidet. Ausserdem gilt: Sobald bei der Gomory-Folge kein neues Polyeder konstruiert wird, hat man genügend viele Ungleichungen erzeugt, die P I festlegen. Ohne Beweis bemerken wir SATZ 5.1 (Gomory). Die Gomory-Folge eines rationalen Polyeders P hat endliche Länge und endet mit P I. Der Beweis ist nicht schwer aber etwas aufwendig. Deshalb sei hier darauf verzichtet. Wir beweisen nur: LEMMA 5.1. Sei P ein rationales Polytop mit P = P. Dann gilt P = P I. Beweis. Sei P P I. Dann besitzt P eine Ecke v mit (mindestens) einer Komponente v j / Z. Ausserdem existiert ein c Z n derart, dass die Funktion f(x) = c T x über P genau von v maximiert wird. Seien v (1),..., v (k) die übrigen Ecken von P und max l=1,...,k (ct v c T v (l) ) = ε > 0 max x n x P = M <. Sei K N so gewählt, dass Kε > 2M erfüllt ist. Dann maximiert v auch die Funktion f(x) = c T x über P, mit c T = [Kc 1,..., Kc j + 1,..., Kc n ] = Kc T + e T j.

4 62 5. GANZZAHLIGE LINEARE PROGRAMME Denn für jede andere Ecke v (l von P gilt K(c T v (l) ) + v (l) j < K(c T v ε) + M < Kc T v M < Kc T v + v j. Wegen c T v Kc T v = v j / Z ist entweder c T v oder c T v keine ganze Zahl. Also ist c T x c T v oder c T x c T v eine Ungleichung, die zwar für P I gültig ist aber nicht für P. D.h. P P. Der Satz von Gomory führt zu einem endlichen Algorithmus zur Lösung von des ganzzahligen Optimierungsproblems Man löst die LP-Relaxierung max c T x s.d. Ax b, x Z n. max c T x s.d. Ax b. Ist die gefundene Optimallösung x ganzzahlig, dann ist nichts weiter zu tun. Andernfalls berechnet man das Gomory-Polyeder P und löst max x P ct x usw. bis das ganzzahlige Optimum gefunden ist. In der Praxis ist diese Vorgehensweise typischerweise jedoch hoffnungslos ineffizient Schnittebenenverfahren. Die Idee hinter Schnittebenenverfahren zur Lösung ganzzahliger linearer Programme ist wie die des Gomory-Verfahrens: Man löst die LP-Relaxierung des Problems. Ist die gefundene Optimallösung x, so fügt man dem LP eine Ungleichung a T x b hinzu, die für alle x P Z n gilt und von x verletzt wird. Die entsprechende Hyperebene H(a, b) = {x R n a T x = b} heisst Schnittebene (bzgl. P und P I ). Unter der Ausnutzung der speziellen kombinatorischen Struktur, die das Optimierungsproblem haben mag, lassen sich in der Praxis oft gezielt Schnittebenen bestimmen, die zu effizienteren Algorithmen führen als das Allzweck-Gomoryverfahren. Ein Schnittebenen-Verfahren geht nach folgendem Prinzip zur Lösung des Problems vor: max c T x s.d. Ax b, x Z n (SE0) Löse das relaxierte LP-Problem max c T x s.d. Ax b. Ist die gefundene Optimallösung x ganzzahlig, STOP.

5 1. SCHNITTEBENEN 63 (SE1) Bestimme im Fall x / Z n eine Schnittebenenungleichung a T x b für P I, die von x verletzt wird (d.h. a T x > b) und füge diese den Restriktionen hinzu. Löse nun max c T x s.d. Ax b, a T x b. Ist die gefundene Optimallösung x ganzzahlig, STOP. (SE2) Bestimme im Fall x / Z n eine Schnittebenenungleichung a T x b für P I, die von x verletzt wird (d.h. a T x > b) und füge diese den bisherigen Restriktionen hinzu usw Quadratische boolesche Optimierung. Als Beispiel betrachten wir zu gegebenen Paramentern q ij R das Problem n n max q ij x i x j, x i {0, 1}. i=1 j=1 Sei V = {1,..., n} und E die Menge aller Paarmengen {i, j}. Zu e = {i, j} setzen wir d i = q ii und c e = q ij + q ji. Wegen x 2 i = x i und y e = x i x j {0, 1} erhalten wir eine Formulierung als ganzzahliges LP: max i V d i x i + e E c e y e (44) s.d. y e x i 0 e E, i e x i + x j y e 1 e = {i, j} x i, y e 1 x i, y e 0 x i, y e ganzzahlig. BEMERKUNG. Man kann sich dieses Problem vorstellen als die Aufgabe, im vollständigen Graphen K n mit Knotenmenge V und Kantenmenge E einen vollständigen Untergraphen maximalen Gesamtgewichts zu wählen. Dabei sind die Knoten i V mit d i und die Kanten e E mit c e gewichtet. Als Schnittebenen für das von den ganzzahligen Lösungen von (44) erzeugte Polytop P I kommen alle Ungleichungen in frage, die von den ganzzahligen Lösungsvektoren erfüllt werden. Beispiele sind etwa die Dreiecksungleichungen x i + x j + x k y e y f y g 1 für jeweils drei Knoten i, j, k V und die dazugehörigen Kanten e, f, g E des entsprechenden Dreiecks {i, j, k}. Dieses Beispiel kann verallgemeinert werden. Dazu setzen für S V mit S 2 x(s) = x i und y(s) = y e, i S e E(S)

6 64 5. GANZZAHLIGE LINEARE PROGRAMME wobei E(S) die Menge aller Paarmengen e = {i, j} S ist. Zu α N definieren wir die entsprechende Cliquenungleichung als αx(s) y(s) α(α + 1)/2. LEMMA 5.2. Jede zulässige (0, 1)-Lösung (x, y) von (44) erfüllt jede Cliquenungleichung. Beweis. Sei C = {i S x i = 1} und s = C S. Dann gilt x(s) = s und y(s) = s(s 1)/2. Also finden wir α(α + 1)/2 αx(s) y(s) = [α(α + 1) 2αs + s(s 1)]/2 = (α s)(α s + 1)/2. Da α und s ganze Zahlen sind, ist der letzte Ausdruck immer nichtnegativ. Es gibt allein schon 2 n n 1 Cliquenungleichungen. Diese genügen noch nicht, um P I vollständig zu beschreiben. Bei nicht zu grossen booleschen Problemen (n 40) kommt man damit aber in der Praxis schon recht weit. 2. Unimodularität Wir gehen das Ganzzahligkeitsproblem nun von einer anderen Seite an und suchen nach Bedingungen für die Matrix A Z m n, die garantieren, dass jede Ecke des Polyeders P = {x R n Ax = b, x 0} ganzzahlige Ecken hat, sofern b ganzzahlig ist. OBdA nehmen wir wieder m = rg A an. Wir nennen A unimodular, wenn jede (m m)-basisteilmatrix A B von A die Eigenschaft det A B = 1 besitzt. Sei A B eine Basismatrix mit zugeordneter Basislösung x. Nach der Cramerschen Regel ergeben sich die Komponenten als x j = det A B(j, b) det A B (j B), wobei A B (j, b) aus A B hervorgeht, indem die Spalte j durch den Vektor b ersetzt wird. Im Fall b Z m ist det A B (j, b) eine ganze Zahl. Folglich finden wir A unimodular = x j Z für alle b Z m. PROPOSITION 5.2. Sei A Z m n eine unimodulare Matrix vom Rang m = rg A und b Z m. Dann gilt für jedes c R n : Entweder hat das lineare Programm min c T x s.d. Ax = b, x 0 keine Optimallösung oder es existiert eine optimale Lösung x mit ganzzahligen Komponenten x j.

7 Beweis. Simplexalgorithmus. 2. UNIMODULARITÄT 65 Für viele Anwendungen ist es geschickt, den Begriff der Unimodularität zu verschärfen. Wir nennen eine Matrix A total unimodular, wenn für jede quadratische Teilmatrix A von A unimodular ist, d.h. det A { 1, 0, +1}. Insbesondere gilt a ij { 1, 0 + 1} für alle Koeffizienten der total unimodularen Matrix A = [a ij ]. EX Die Matrix A = [ ] 1 1 ist unimodular aber nicht total unimodular. 1 2 Bevor wir Beispiele von total unimodularen Matrizen diskutieren, geben wir einige wichtige Matrixkonstruktionen an. LEMMA 5.3. Sei A Z m n total unimodular und e Z m ein Einheitsvektor. Dann gilt: (a) Wenn man Spalte von A mit 0 oder 1 multipliziert, erhält man wieder eine total unimodular Matrix. (b) A T total unimodular. (c) A = [A, e] total unimodular. Beweis. (a) folgt aus der Tatsache, dass sich die Skalarmultiplikation eine Spalte einer Matrix in der Skalarmultiplikation der Determinante auswirkt. (b) ergibt sich aus dem Transpositionssatz det C = det C T. Um (c) einezusehen, betrachten wir eine quadratische Untermatrix A von [A, e]. OBdA dürfen wir annehmen, dass die Spalte e in A auftaucht. Wir entwickeln die Determinate nach dieser Spalte e und finden det A = ±1 det A, wobei A eine quadratische Untermatrix von A ist. Also gilt det A { 1, 0 + 1}. PROPOSITION 5.3. Sei A Z m n total unimodular, b Z m und l, u Z n derart, dass P = {x R n Ax b, l x u}. Dann ist P eine Polytop mit ganzzahligen Ecken. Beweis. P ist die Lösungsmenge des total unimodularen Ungleichungssystems A I x b u I l

8 66 5. GANZZAHLIGE LINEARE PROGRAMME Intervallmatrizen. Sei M = {1,..., m}. Unter einem Intervall versteht man eine Teilmenge F M derart, dass Elemente i, j M existieren mit der Eigenschaft F = {k M i k j}. Eine (0, 1)-Matrix A heisst Intervallmatrix, wenn die Zeilen von A in einer solchen Reihenfolge angeordnet werden können, dass jede Spalte der (0, 1)-Inzidenzvektor eines Intervalls der Zeilenindices ist. Es ist klar, dass jede quadratische Untermatrix einer Intervallmatrix selber eine Intervallmatrix ist. Es gilt LEMMA 5.4. Jede Intervallmatrix A ist total unimodular. Beweis. OBdA sei A = [a ij ] quadratisch und { 1 für j = 1,..., k a 1j = 0 für j = k + 1,..., n. Ausserdem entspreche die erste Spalte von A dem kleinsten Intervall, das 1 enthält. Im Fall k = 1 ist die erste Zeile ein Einheitsvektor. Entwicklung der Determinante nach der ersten Zeile liefert dann die Behauptung per Induktion wie bei Netzwerkmatrizen. Im Fall k 2 subtrahiert man die erste Spalte von den Spalten 2,..., k. Die resultierende Matrix ist wieder eine Intervallmatrix und die Determinante hat sich nicht geändert. Auf die neue Matrix trifft aber der vorige Fall zu. BEMERKUNG. (0, 1)-Inzidenzmatrizen von allgemeinen Familien F von Teilmengen einer endlichen Grundmenge M sind typischerweise nicht total unimodular!

KAPITEL 6 GANZZAHLIGE OPTIMIERUNG UND VOLLSTÄNDIG UNIMODULARE MATRIZEN

KAPITEL 6 GANZZAHLIGE OPTIMIERUNG UND VOLLSTÄNDIG UNIMODULARE MATRIZEN KPITEL 6 GNZZHLIGE OPTIMIERUNG UND VOLLSTÄNDIG UNIMODULRE MTRIZEN F. VLLENTIN,. GUNDERT. Ganzzahlige lineare Programme Viele Optimierungsprobleme des Operations Research lassen sich als ganzzahlige lineare

Mehr

Die Verbindung von Linearer Programmierung und Graphentheorie

Die Verbindung von Linearer Programmierung und Graphentheorie Die Verbindung von Linearer Programmierung und Graphentheorie Definition 5.9. Ein kombinatorisches Optimierungsproblem entspricht einem LP, bei dem statt der Vorzeichenbedingungen x i 0 Bedingungen der

Mehr

Optimierung auf Netzwerken

Optimierung auf Netzwerken KAPITEL 4 Optimierung auf Netzwerken Wir untersuchen hier spezielle lineare Programme, die eine zusätzliche kombinatorische (graphentheoretische) Struktur tragen. Nutzt man diese kombinatorische Struktur

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

Flüsse in Netzwerken

Flüsse in Netzwerken Skript zum Seminar Flüsse in Netzwerken WS 2008/09 David Meier Inhaltsverzeichnis 1 Einführende Definitionen und Beispiele 3 2 Schnitte in Flussnetzwerken 12 2.1 Maximaler s t Fluss..........................

Mehr

3. Schnittebenenverfahren

3. Schnittebenenverfahren 3. Schnittebenenverfahren Themen 3. Schnittebenenverfahren Ganzzahlige lineare Programmierung Schnittebenenverfahren Konstruktion von Schnittebenen Auswahl von Schnittrestriktionen Operations Research

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare

Mehr

Lineares Programmieren Algorithmentechnik WS 09/10 Dorothea Wagner 7. Januar 2010

Lineares Programmieren Algorithmentechnik WS 09/10 Dorothea Wagner 7. Januar 2010 Lineares Programmieren Algorithmentechnik WS 09/10 Dorothea Wagner 7. Januar 2010 FAKULTÄT FÜR I NFORMATIK, I NSTITUT FÜR T HEORETISCHE I NFORMATIK KIT Universität des Landes Baden-Württemberg und nationales

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Wiederholung zu Flüssen

Wiederholung zu Flüssen Universität Konstanz Methoden der Netzwerkanalyse Fachbereich Informatik & Informationswissenschaft SS 2008 Prof. Dr. Ulrik Brandes / Melanie Badent Wiederholung zu Flüssen Wir untersuchen Flüsse in Netzwerken:

Mehr

Lineare Programmierung

Lineare Programmierung Lineare Programmierung WS 2003/04 Rolle der Linearen Programmierung für das TSP 1954: Dantzig, Fulkerson & Johnson lösen das TSP für 49 US-Städte (ca. 6.2 10 60 mögliche Touren) 1998: 13.509 Städte in

Mehr

Diskrete Optimierungsverfahren zur Lösung von Sudokus

Diskrete Optimierungsverfahren zur Lösung von Sudokus Diskrete Optimierungsverfahren zur Lösung von Sudokus Seminarvortrag von Daniel Scholz am 6. Dezember 2006 Am Beispiel der Lösung von Sudokurätseln mit Hilfe der linearen Optimierung werden verschiedenen

Mehr

Kombinatorische Geometrien

Kombinatorische Geometrien KAPITEL 5 Kombinatorische Geometrien Beispiele von Geometrien wurden schon als Inzidenzstrukturen (z.b. projektive Ebenen) gegeben. Wir nehmen hier einen anderen Standpunkt ein und verstehen unter einer

Mehr

Technische Universitat Darmstadt

Technische Universitat Darmstadt Technische Universitat Darmstadt Diskrete Optimierung Nach einer Vorlesung vom Sommersemester 2006 gehalten von Prof. Dr. Alexander Martin Inhaltsverzeichnis 1 Einführung 5 1.1 Beispiele und Formulierungen....................

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

NP-schwierige kombinatorische Optimierungsprobleme

NP-schwierige kombinatorische Optimierungsprobleme Kapitel 3 NP-schwierige kombinatorische Optimierungsprobleme Optimierungsprobleme sind Probleme, die im Allgemeinen viele zulässige Lösungen besitzen. Jeder Lösung ist ein bestimmter Wert (Zielfunktionswert,

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

Vorlesung Kombinatorische Optimierung (Wintersemester 2016/17)

Vorlesung Kombinatorische Optimierung (Wintersemester 2016/17) Vorlesung Kombinatorische Optimierung (Wintersemester 06/7) Kapitel : Flüsse und Zirkulationen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 4. Oktober 06) Definition. Ein Netzwerk

Mehr

Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden:

Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden: Inverse Matritzen Spezialfall: Die Gleichung ax b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a a 1 gelöst werden: ax b x b a a 1 b. Verallgemeinerung auf Ax b mit einer n nmatrix A: Wenn es

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

4. Vektorräume und Gleichungssysteme

4. Vektorräume und Gleichungssysteme technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof Dr H M Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 41 und 42 4 Vektorräume

Mehr

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É.

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Tardos Janick Martinez Esturo jmartine@techfak.uni-bielefeld.de xx.08.2007 Sommerakademie Görlitz Arbeitsgruppe 5 Gliederung

Mehr

Spezialgebiet Mathematik(Christian Behon ) 1. Matrizen. Kapitel 1 Definitionen und Herleitung von Matrizen. Kapitel 2 Matrizenoperation

Spezialgebiet Mathematik(Christian Behon ) 1. Matrizen. Kapitel 1 Definitionen und Herleitung von Matrizen. Kapitel 2 Matrizenoperation . Inhaltsverzeichnis.............. Spezialgebiet Mathematik(Christian Behon ) 1 Matrizen Kapitel 1 Definitionen und Herleitung von Matrizen 1.1 Was sind Matrizen 1.2 Arten von Matrizen Kapitel 2 Matrizenoperation

Mehr

3.2 Lineare Optimierung (Entscheidungen unter Sicherheit)

3.2 Lineare Optimierung (Entscheidungen unter Sicherheit) 3. Lineare Optimierung (Entscheidungen unter Sicherheit) Betrachtet wird hier der Fall Θ = (bzw. die Situation u(a, ϑ) bzw. l(a,ϑ) konstant in ϑ Θ für alle a A). Da hier keine Unsicherheit über die Umweltzustände

Mehr

Lineare Algebra I Klausur. Klausur - Musterlösung

Lineare Algebra I Klausur. Klausur - Musterlösung Prof. Dr. B. Hanke Dr. J. Bowden Lineare Algebra I Klausur Klausur - Musterlösung 20. Februar 203 Aufgabe - Lösung Aussage wahr falsch (Z, +, 0) ist eine abelsche Gruppe. Der Ring Z/24Z ist nullteilerfrei.

Mehr

DER LIFT & PROJECT- SCHNITTEBENENALGORITHMUS FÜR GEMISCHT-GANZZAHLIGE 0/1-OPTIMIERUNGSAUFGABEN

DER LIFT & PROJECT- SCHNITTEBENENALGORITHMUS FÜR GEMISCHT-GANZZAHLIGE 0/1-OPTIMIERUNGSAUFGABEN DER LIFT & PROJECT- SCHNITTEBENENALGORITHMUS FÜR GEMISCHT-GANZZAHLIGE 0/1-OPTIMIERUNGSAUFGABEN Diplomarbeit von Stefan Körkel Betreuer: Prof. Dr. Gerhard Reinelt März 1995 UNIVERSITÄT HEIDELBERG FAKULTÄT

Mehr

5 Zwei spieltheoretische Aspekte

5 Zwei spieltheoretische Aspekte 5 Zwei spieltheoretische Aspekte In diesem Kapitel wollen wir uns mit dem algorithmischen Problem beschäftigen, sogenannte Und-Oder-Bäume (kurz UOB) auszuwerten. Sie sind ein Spezialfall von Spielbäumen,

Mehr

KLAUSUR zu Einführung in die Optimierung. Studiengang: Bachelor Master Diplom (bitte ankreuzen)

KLAUSUR zu Einführung in die Optimierung. Studiengang: Bachelor Master Diplom (bitte ankreuzen) Mathematisches Institut WS 2012/13 der Heinrich-Heine-Universität 7.02.2013 Düsseldorf Prof. Dr. Achim Schädle KLAUSUR zu Einführung in die Optimierung Bitte folgende Angaben ergänzen und DEUTLICH LESBAR

Mehr

2. Stetige lineare Funktionale

2. Stetige lineare Funktionale -21-2. Stetige lineare Funktionale Die am Ende von 1 angedeutete Eigenschaft, die ein lineares Funktional T : D(ú) 6 verallgemeinerten Funktion macht, ist die Stetigkeit von T in jedem n 0 0 D(ú). Wenn

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Timo Stöcker Erstsemestereinführung Informatik TU Dortmund 22. März 2011 Heute Themen Lineare Gleichungssysteme Matrizen Timo Stöcker https://fsinfo.cs.tu-dortmund.de/studis/ese/vorkurse/mathe

Mehr

2 Euklidische Vektorräume

2 Euklidische Vektorräume Sei V ein R Vektorraum. 2 Euklidische Vektorräume Definition: Ein Skalarprodukt auf V ist eine Abbildung σ : V V R, (v, w) σ(v, w) mit folgenden Eigenschaften ( Axiome des Skalarprodukts) (SP1) σ ist bilinear,

Mehr

Lineare Programmierung Teil I

Lineare Programmierung Teil I Seminar über Algorithmen Prof. Dr. Helmut Alt Lineare Programmierung Teil I Lena Schlipf, Benjamin Jankovic Lena Schlipf, Benjamin Jankovic Seminar über Algorithmen SS05 1 Struktur des Vortrags 1. Was

Mehr

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch WS 2010/2011 14. Januar 2011 Geometrie mit Übungen Übungsblatt 9, Musterlösungen Aufgabe 33. Es werden Kreise in der Euklidischen

Mehr

Inhaltsübersicht für heute:

Inhaltsübersicht für heute: Inhaltsübersicht für heute: Anwendung: Das Heiratsproblem Ganzzahligkeit von Polyedern Anwendung: Netzwerkflüsse Mehrgüterflussprobleme Ganzzahlige Optimierung Inhaltsübersicht für heute: Anwendung: Das

Mehr

Diskrete Optimierung (Einführung zur Vorlesung)

Diskrete Optimierung (Einführung zur Vorlesung) Diskrete Optimierung (Einführung zur Vorlesung) Christoph Helmberg : [,] Inhaltsübersicht Diskrete Optimierung. Das Heiratsproblem (ungerichtete Graphen).2 Ganzzahligkeit von Polyedern ( und gerichtete

Mehr

3 Polytope. 3.1 Polyeder

3 Polytope. 3.1 Polyeder 28 3 Polytope 3.1 Polyeder Polytope in der Ebene und im Raum standen neben Kreis und Kugel schon während der griechischen Antike im Mittelpunkt des mathematischen (und philosophischen) Interesses. Durch

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof Dr Erich Walter Farkas Kapitel 7: Lineare Algebra 73 Ergänzungen Prof Dr Erich Walter Farkas Mathematik I+II, 73 Ergänzungen 1 / 17 1 Reguläre Matrizen Prof Dr

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} Ganze Zahlen : Aus

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 2013/14 Lösungen zu den Übungsaufgaben (Vortragsübung) Blatt 7

Mathematik für Wirtschaftswissenschaftler im WS 2013/14 Lösungen zu den Übungsaufgaben (Vortragsübung) Blatt 7 Mathematik für Wirtschaftswissenschaftler im WS 203/4 Lösungen zu den Übungsaufgaben (Vortragsübung) Blatt 7 Aufgabe 27 Sei eine lineare Abbildung f : R 4 R 3 gegeben durch f(x, x 2, x 3 ) = (2 x 3 x 2

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Konvexe Mengen und konvexe Funktionen

Konvexe Mengen und konvexe Funktionen Konvexe Mengen und konvexe Funktionen Teilnehmer: Moritz Butz Franziska Ihlefeldt Johannes Jendersie Marie Lambert Eike Müller Gregor Pasemann Konstantin Rohde Herder-Gymnasium Herder-Gymnasium Georg-Forster-Gymnasium

Mehr

Vektorräume und Rang einer Matrix

Vektorräume und Rang einer Matrix Universität Basel Wirtschaftswissenschaftliches Zentrum Vektorräume und Rang einer Matrix Dr. Thomas Zehrt Inhalt:. Lineare Unabhängigkeit 2. Vektorräume und Basen 3. Basen von R n 4. Der Rang und Rangbestimmung

Mehr

Algorithmen und Datenstrukturen Kapitel 10

Algorithmen und Datenstrukturen Kapitel 10 Algorithmen und Datenstrukturen Kapitel 10 Flüsse Frank Heitmann heitmann@informatik.uni-hamburg.de 6. Januar 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/8 Flüsse Graphen Grundlagen Definition

Mehr

2. Repräsentationen von Graphen in Computern

2. Repräsentationen von Graphen in Computern 2. Repräsentationen von Graphen in Computern Kapitelinhalt 2. Repräsentationen von Graphen in Computern Matrizen- und Listendarstellung von Graphen Berechnung der Anzahl der verschiedenen Kantenzüge zwischen

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

6. Flüsse und Zuordnungen

6. Flüsse und Zuordnungen 6. Flüsse und Zuordnungen In diesem Kapitel werden Bewertungen von Kanten als maximale Kapazitäten interpretiert, die über solch eine Kante pro Zeiteinheit transportiert werden können. Wir können uns einen

Mehr

OPTIMIERUNG I. Christian Clason. Fakultät für Mathematik Universität Duisburg-Essen

OPTIMIERUNG I. Christian Clason. Fakultät für Mathematik Universität Duisburg-Essen OPTIMIERUNG I Vorlesungsskript, Sommersemester 2014 Christian Clason Stand vom 1. Juli 2014 Fakultät für Mathematik Universität Duisburg-Essen INHALTSVERZEICHNIS I GRUNDLAGEN 1 theorie der linearen ungleichungen

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Pfade. Traveling Salesman Problem. Flüsse in Netzwerken

Mehr

Tropische Kurven zählen. Enumerative Geometrie. Alg. Geometrie. Beispiel Strategie. Geometrie. Kurven Multiplizität Correspondence Theorem Ergebnisse

Tropische Kurven zählen. Enumerative Geometrie. Alg. Geometrie. Beispiel Strategie. Geometrie. Kurven Multiplizität Correspondence Theorem Ergebnisse Alg. Ebene e Hannah Markwig Technische Universität Kaiserslautern 6. Juli 2006 Alg. Inhalt 1 () 2 3 Der Algorithmus zum Zählen ebener 4 Der Algorithmus Alg. Algebraische Geometrische Objekte sind Nullstellengebilde

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Daniel Borchmann. Sommerakademie Görlitz September 2007

Daniel Borchmann. Sommerakademie Görlitz September 2007 Einführung in Semidenite Programmierung Daniel Borchmann Sommerakademie Görlitz 2007 12. September 2007 1 Einleitung Lineare Optimierung Semidenite Optimierung 2 MAX-CUT MAX-BISECTION MAX-2SAT Einleitung

Mehr

Optimierungsalgorithmen

Optimierungsalgorithmen Optimierungsalgorithmen Jakob Puchinger Algorithmen und Datenstrukturen 2 Arbeitsbereich für Algorithmen und Datenstrukturen Institut für Computergraphik und Algorithmen Technische Universität Wien Übersicht

Mehr

Optimierungsprobleme. B. Langfeld, M. Ritter, B. Wilhelm Diskrete Optimierung: Fallstudien aus der Praxis

Optimierungsprobleme. B. Langfeld, M. Ritter, B. Wilhelm Diskrete Optimierung: Fallstudien aus der Praxis Optimierungsprobleme Instanz eines Optimierungsproblems zulässiger Bereich (meist implizit definiert) Zielfunktion Optimierungsrichtung opt {max, min} Optimierungsproblem Menge von Instanzen meist implizit

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik Prof. Dr. A. Taraz, Dipl-Math. A. Würfl, Dipl-Math. S. König Weihnachtsblatt Aufgabe W.1 Untersuchen Sie nachstehenden

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen Algebra und Diskrete Mathematik, PS3 Sommersemester 2016 Prüfungsfragen Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper). Wodurch

Mehr

Optimierung I. Dr. Ulf Lorenz F2.413

Optimierung I. Dr. Ulf Lorenz F2.413 Optimierung I Dr. Ulf Lorenz F2.413 flulo@upb.de Organisation Dozent: Dr. Ulf Lorenz F2.413 Fürstenallee 11 email: flulo@upb.de WWW: http://www.upb.de/cs/flulo (hier auch aktuelle Infos + Ü-Zettel) Vorlesungen:

Mehr

Gemischt-ganzzahlige und Kombinatorische Optimierung

Gemischt-ganzzahlige und Kombinatorische Optimierung 5. Präsenzaufgabenblatt, Sommersemester 2015 Übungstunde am 15.06.2015 Aufgabe J Betrachten Sie die LP-Relaxierung max c T x a T x b 0 x i 1 des 0/1-Knapsack-Problems mit n Gegenständen, c 0 und a > 0.

Mehr

Graphentheorie. Maximale Flüsse. Maximale Flüsse. Maximale Flüsse. Rainer Schrader. 31. Oktober Gliederung. sei G = (V, A) ein gerichteter Graph

Graphentheorie. Maximale Flüsse. Maximale Flüsse. Maximale Flüsse. Rainer Schrader. 31. Oktober Gliederung. sei G = (V, A) ein gerichteter Graph Graphentheorie Rainer Schrader Zentrum ür Angewandte Inormatik Köln 31. Oktober 2007 1 / 30 2 / 30 Gliederung maximale Flüsse Schnitte Edmonds-Karp-Variante sei G = (V, A) ein gerichteter Graph sei c eine

Mehr

Lineare Programmierung

Lineare Programmierung Seminar: Intelligente Algorithmen Stefan Kopp, Alfred Kranstedt, Nadine Leßmann Lineare Programmierung Frank Schönmann WS 2003/04 Inhaltsverzeichnis 1 Motivation 3 2 Lineare Programmierung (LP) 4 2.1 Einführendes

Mehr

Effiziente Algorithmen I

Effiziente Algorithmen I H 10. Präsenzaufgabenblatt, Wintersemester 2015/16 Übungstunde am 18.01.2015 Aufgabe Q Ein Reiseveranstalter besitzt ein Flugzeug, das maximal p Personen aufnehmen kann. Der Veranstalter bietet einen Flug

Mehr

Homogenität Assoziativgesetz A (B 1 + B 2 ) = A B 1 + A B 2 Distributivgesetz 1 (A 1 + A 2 ) B = A 1 B + A 2 B Distributivgesetz 2

Homogenität Assoziativgesetz A (B 1 + B 2 ) = A B 1 + A B 2 Distributivgesetz 1 (A 1 + A 2 ) B = A 1 B + A 2 B Distributivgesetz 2 1. Formatbedingungen der Matrixoperationen Die Addition (Subtraktion) A ± B verlangt gleiches Format der Operanden A und B. Das Ergebnis hat das Format der Operanden. Skalarmultiplikation λa: Es gibt keine

Mehr

Optimierung. Zusammenfassung

Optimierung. Zusammenfassung Optimierung Zusammenfassung Inhalte 1. Lineare Programmierung 2. Simplexalgorithmus 3. Ellipsoidmethode 4. Dualität 5. Ganzzahligkeit 6. Facility Location 7. Randomisiertes Runden 8. Branch and Bound &

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Kapitel 17. Determinanten

Kapitel 17. Determinanten Kapitel 17. Determinanten Vorschau: Determinanten Es gibt drei Problemfelder, für die Determinanten von großem Nutzen sind: die formelmäßige Überprüfung der linearen Unabhängigkeit eines Systems von n

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010 Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und

Mehr

35 Stetige lineare Abbildungen

35 Stetige lineare Abbildungen 171 35 Stetige lineare Abbildungen Lernziele: Konzepte: Lineare Operatoren und ihre Normen Resultate: Abschätzungen für Matrizennormen Kompetenzen: Abschätzung von Operatornormen 35.1 Lineare Abbildungen.

Mehr

3.3 Klassifikation quadratischer Formen auf R n

3.3 Klassifikation quadratischer Formen auf R n 3.3. Klassifikation quadratischer Formen auf R n 61 3.3 Klassifikation quadratischer Formen auf R n Wir können den Hauptsatz über symmetrische Matrizen verwenden, um uns einen Überblick über die Lösungsmengen

Mehr

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen)

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen) Def Wiederholung Sei f : V U eine lineare Abbildung Das Bild von f ist die folgende Teilmenge von U: Bild f = {u U so dass es gibt ein Element v V mit f (v) = u} (Andere Bezeichnung: f (V) wird in Analysis-Vorlesung

Mehr

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling Approximationsalgorithmen: Klassiker I Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling VO Approximationsalgorithmen WiSe 2011/12 Markus Chimani

Mehr

6. Flüsse in Netzwerken Berechnung maximaler Flüsse. dann berechnet der Markierungsalgorithmus für beliebige Kapazitätsfunktionen

6. Flüsse in Netzwerken Berechnung maximaler Flüsse. dann berechnet der Markierungsalgorithmus für beliebige Kapazitätsfunktionen 6. Flüsse in Netzwerken Berechnung maximaler Flüsse Satz 6.4. Ersetzt man in Algorithmus 6.1 den Schritt 2 durch 2a. Wähle den Knoten, der zuerst in eingefügt wurde. Setze. dann berechnet der arkierungsalgorithmus

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2016 Lineare Gleichungssysteme Schwerpunkte: Interpretation und Verständnis der Gleichungen Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik unter

Mehr

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung Kapitel 2: Matrizen 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung 2.1 Matrizen M = n = 3 m = 3 n = m quadratisch M ij : Eintrag von M in i-ter

Mehr

Lineare (Un-)Gleichungen und lineare Optimierung

Lineare (Un-)Gleichungen und lineare Optimierung Lineare (Un-)Gleichungen und lineare Optimierung Franz Pauer Institut für Mathematik Universität Innsbruck Lehrer/innen/fortbildungstag Wien 2010 9. April 2010 Eine Maximumsaufgabe Eine Firma stellt aus

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Lineare Gleichungssysteme (Teschl/Teschl 11.1)

Lineare Gleichungssysteme (Teschl/Teschl 11.1) Lineare Gleichungssysteme (Teschl/Teschl.) Ein Lineares Gleichungssystem (LGS) besteht aus m Gleichungen mit n Unbekannten x,...,x n und hat die Form a x + a 2 x 2 +... + a n x n b a 2 x + a 22 x 2 +...

Mehr

Brückenkurs Elementarmathematik

Brückenkurs Elementarmathematik Brückenkurs Elementarmathematik IV. Ungleichungen November 13, 2013 Inhalt 1 Ungleichungen 2 Umformungen von Ungleichungen 2.1 Äquivalenzumformungen 2.2 Addition und Multiplikation von Ungleichungen 3

Mehr

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298 Kapitel 5 Dualität Peter Becker (H-BRS) Operations Research I Sommersemester 2014 241 / 298 Inhalt 5 Dualität Dualitätssätze Zweiphasen-Simplexalgorithmus Peter Becker (H-BRS) Operations Research I Sommersemester

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Stefan Lell 2. Juli 2 Aufgabe. Sei t Q und A t = t 4t + 2 2t + 2 t t 2t 2t Mat 3Q a Bestimmen Sie die Eigenwerte von A t in Abhängigkeit

Mehr

Lineare Algebra II 5. Übungsblatt

Lineare Algebra II 5. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen,

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Der Golay-Code und das Leech-Gitter

Der Golay-Code und das Leech-Gitter Der Golay-Code und das Leech-Gitter Vortrag zum Seminar Gitter und Codes Nils Malte Pawelzik.5.5 Inhaltsverzeichnis Designs 3. Elementare Eigenschaften eines Designs und die Eindeutigkeit eines - (, 5,

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen 5. Zwei spieltheoretische Aspekte Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2015/2016 1 / 36 Überblick

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen Kapitel III Stetige Funktionen 14 Stetigkeit und Rechenregeln für stetige Funktionen 15 Hauptsätze über stetige Funktionen 16 Konvergenz von Funktionen 17 Logarithmus und allgemeine Potenz C 1 14 Stetigkeit

Mehr

Kap 5: Rang, Koordinatentransformationen

Kap 5: Rang, Koordinatentransformationen Kap 5: Rang, Koordinatentransformationen Sei F : V W eine lineare Abbildung. Dann ist der Rang von F erklärt durch: rang F =dim ImF. Stets gilt rang F dimv, und ist dimv

Mehr

KAPITEL 3. Kooperative Spiele

KAPITEL 3. Kooperative Spiele KAPITEL 3 Kooperative Spiele In den bisher betrachteten Modellen spielen die Spieler gegeneinander und versuchen dabei, ihren persönlichen Nutzen zu maximieren. Dabei hat sich herausgestellt, dass das

Mehr

6.2 Perfekte Sicherheit

6.2 Perfekte Sicherheit 04 6.2 Perfekte Sicherheit Beweis. H(B AC) + H(A C) = H(ABC) H(AC) + H(AC) H(C) Wegen gilt Einsetzen in die Definition gibt = H(AB C). H(A BC) = H(AB C) H(B C). I(A; B C) = H(A C) H(AB C) + H(B C). Da

Mehr