A40 Höppler- und Ostwaldviskosimeter - Viskosität von Flüssigkeiten -

Größe: px
Ab Seite anzeigen:

Download "A40 Höppler- und Ostwaldviskosimeter - Viskosität von Flüssigkeiten -"

Transkript

1 1 ufgabe Mit einem ugelfallviskosimeters nach Höppler ist die Viskosität von Wasser bei 5, 0, 40 und 50 C zu bestimmen. Mittels eines apillarviskosimeters nach Ostwald ist die Viskosität von Wasser, Ethanol und einer Wasser-Ethanol-Mischung bei 0 C zu ermitteln. Grundlagen.1 llgemeines Gleiten in einem Medium hier: lüssigkeiten verschiedene Schichten mit unterschiedlichen Geschwindigkeiten v aneinander vorbei, so tritt innere eibung auf. Dabei wird ein Impuls I z senkrecht zur Bewegungsrichtung des Mediums (hier: x -ichtung) von einer schneller bewegten Schicht auf eine langsamere Schicht übertragen, der bezogen auf die Zeiteinheit t als eibungskraft aufzufassen ist. bbildung 1: Schematische Darstellung einer fließenden lüssigkeit im ontakt mit einer starren Wand. Die Strömungsgeschwindigkeit (genauer die z-omponente des Geschwindigkeitsvektors) wird umso größer, je weiter sich eine gedachte lüssigkeitsfläche von der Wand entfernt befindet. Hierbei ist die je Zeiteinheit transportierte Impulsmenge proportional zur Querschnittsflä- dv che und dem Geschwindigkeitsgefälle z dx, wobei der entsprechende Proportionalitätsfaktor die sogenannte dynamische Viskosität bzw. Zähflüssigkeit oder Zähigkeit η ist: (.1) di z dvz = = η dt dx lüssigkeiten, deren Viskositäten nicht von ihren Strömungsgeschwindigkeiten v abhängen, heißen Newtonsche lüssigkeiten. Version 01/0/0 Seite 1/7

2 . ugelfallviskosimeter nach Höppler Beim so genannten Höpplerschen ugelfallviskosimeter macht man sich die Stokessche Gleichung zur Bestimmung der dynamischen Viskosität η zunutze. Danach gilt für die eibungskraft an einer laminar umströmten ugel mit dem adius r : (.) = 6 π rvη Diese eibungskraft steht im Gleichgewicht mit der Gewichtskraft G der ugel vermindert um deren uftriebskraft in der entsprechenden lüssigkeit: (.) = G (.4) = ( ρ ρ ) V g l Hierbei stehen ρ und ρ l für die Dichten der ugel und der lüssigkeit, V für das ugelvolumen sowie g für die Erdbeschleunigung (Ortsfaktor). Durch Gleichsetzen von (.) mit (.4) unter Berücksichtigung von (.5) (.6) folgt s v = und t V 4 = π r r g = l t = l t, 9s (.7) η ( ρ ρ ) ( ρ ρ ) wobei die sogenannte ugelkonstante und t die allzeit der ugel ist. Da in der Praxis die Stokessche ormel (.) nicht streng gültig ist, verwendet man in Gleichung (.7) eine ugelkonstante, die man zuvor durch Eichmessungen erhielt. Die Temperaturabhängigkeit der Viskosität folgt in lüssigkeiten einem Exponentialgesetz: (.8) 1 = B exp η T Hierbei ist B der so genannte präexponentielle aktor, E die ktivierungsenergie, die universelle Gaskonstante und T die absolute Temperatur. Durch Umformung von (.8) erhält man: E 1 + T (.9) ln η = onst. E Version 01/0/0 Seite /7

3 . apillarviskosimeter nach Ostwald Mit dem Ostwaldschen apillarviskosimeter ( bbildung.1) wird hingegen die sogenannte kinematische Viskosität ν bestimmt, die mit der dynamischen Viskosität η über die Dichte ρ verknüpft ist: (.10) η ν = ρ Die Gesetzmäßigkeit, die der Bestimmung der kinematischen Viskosität ν zugrunde liegt, ist das Gesetz von Hagen-Poiseuille für die Strömung von luiden durch apillaren: 4 π rgδht (.11) ν = 8lV Dabei steht r für den Innenradius der apillare, g für die Erdbeschleunigung (Ortsfaktor), Δ h für die mittlere Höhendifferenz der lüssigkeitssäule, t für die Zeit, l für die Länge der apillare und V für das Durchflussvolumen. Da dieses Gesetz nur für unendlich lange apillaren exakt gültig ist, muss bei Verwendung eines apillarviskosimeters eine orrektur, die so genannte Hagenbach-orrektur, eingeführt werden, welche die Vorgänge am Ein- und uslauf der apillare berücksichtigt: (.1) 4 π rgδht mv ν = 8lV 8π lt Hagenbach-orrektur Hierbei hängt der empirische und dimensionslose aktor m von der orm des nfangs und besonders des Endes der apillare ab..4 Einheiten der Viskosität: η ν heute gebräuchliche Einheiten Pa s = m s früher gebräuchliche Einheiten 1 Poise = 0,1 Pa s m 1 Stokes = s m 4 cm 10 = 1 s s Version 01/0/0 Seite /7

4 Durchführung 40 Höppler- und Ostwaldviskosimeter.1 ugelfallviskosimeter nach Höppler Zunächst vergewissert man sich, dass der Thermostat ausreichend Wasser zur Temperierung enthält ( ggf. mit VE-Wasser auffüllen!), dann stellt man den ühlwasserkreislauf und den Thermostaten ein. nschließend stellt man die gewünschte Temperatur ( Oberkante des Metallpegels am ontaktthermometer) ein. Nach etwa zwischen dem allrohr und dem Mantelgefäß des Viskosimeters erreicht. In der Zwischenzeit wird das Viskosimeter so positioniert, dass es frei schwenkbar ist ( Wasserschläuche!), 10 min ist der Temperaturausgleich das Thermometer im Wassermantelgefäß abgelesen werden kann und sich das Viskosimeter im Wasser befindet ( Libelle einstellen!). Zudem überprüft man, dass das allrohr des Viskosimeters keine Luftblasen enthält ( Öffnung des Viskosimeters und Entfernen der Blase nur durch den/die ssistent/in!). Messungen Man löst die rretierung und dreht das Viskosimeter um 180. Mit einer Stoppuhr misst man die Zeit, welche die ugel zum Durchfallen der Strecke zwischen der oberen und der unteren ingmarkierung des allrohrs benötigt. Bei 5, 0, 40 und 50 C sind jeweils 5 Messungen durchzuführen. Bei jeder (!) Messung ist die im Mantelgefäß herrschende Temperatur zu notieren; die ugelkonstante und die Dichte der ugel ρ sind am rbeitsplatz angegeben. Version 01/0/0 Seite 4/7

5 . apillarviskosimeter nach Ostwald Die Thermostatisierung des Viskosimeters erfolgt mit einem großen VE-Wasserbad ( VE-Wasser aus einem Wasserkanister im Labor entnehmen! anister anschließend auffüllen!), das mit Hilfe von Eiswürfeln auf (0 ± 1) C eingestellt wird. Zur schnelleren Temperaturequilibrierung des Viskosimeters wird das Wasserbad mittels Magnetrührer gerührt, ( wichtig ist hierbei, dass das Viskosimeter bis weit über die obere ingmarkierung in das Bad eintaucht!). Etwa 10 min nach jeder Befüllung ist der Temperaturausgleich zwischen Viskosimeter und Wasserbad erreicht. bbildung : apillarviskosmeter nach Ostwald Messungen Zunächst wird das Viskosimeter mit der zu messenden lüssigkeit eingespült. Hierzu werden,00 ml der Probe durch den weiten Teil des Viskosimeters eingefüllt und mit Hilfe eines Peleusballs durch die apillare in den Teil oberhalb der apillare gesaugt. nschließend wird die Lösung verworfen und das Viskosimeter erneut mit,00 ml der lüssigkeit befüllt. Die lüssigkeit wird abermals in den engeren Teil des Viskosimeters gesaugt, bis die obere ingmarkierung überschritten ist. Mit einer Stoppuhr misst man die Zeit, welche die lüssigkeit zum blaufen der Strecke zwischen der oberen und der unteren ingmarkierung benötigt. Es sind jeweils Messungen je Probe durchzuführen. Bei jeder (!) Messung ist die im Wasserbad herrschende Temperatur zu notieren. Zuerst kalibriert man das Viskosimeter mit VE-Wasser, anschließend erfolgt die Messung von reinem Ethanol und einer Mischung gleicher Volumenanteile von Ethanol und Wasser. (.1) Daten für η ( H O, 0 und ( H O, 0 ν ( ) (,0 ) ν HO,0 C 1 t m 7 = 1, 10 t HO C t Hagenbach-orrektur alibrierwert ρ befinden sich im nhang ( nhang) Version 01/0/0 Seite 5/7

6 4 ufgaben 40 Höppler- und Ostwaldviskosimeter 4.1 ugelfallviskosimeter nach Höppler Berechnen Sie zunächst die Mittelwerte und Standardabweichungen der zu einem Messpunkt gehörigen allzeiten t und Temperaturen T. Bestimmen Sie hieraus die entsprechenden dynamischen Viskositäten η und tragen Sie diese graphisch gegen die Temperatur T auf. Vergleichen Sie ihre Ergebnisse mit Literaturwerten Tragen Sie graphisch den natürlichen Logarithmus der dynamischen Viskosität η gegen den ehrwert der Temperatur T auf und leiten Sie hieraus die ktivierungsenergie E ab Treffen Sie eine sinnvolle nnahme für den adius r eines Wassermoleküls und berechnen Sie mit Hilfe der so genannten Stokes-Einstein-Gleichung (4.1) kt B D = 6πηr den Selbst-Diffusionskoeffizienten D für Wasser bei 0 C. 4. apillarviskosimeter nach Ostwald 4..1 Bestimmen Sie mit Hilfe von Gleichung (.1) zunächst die kinematischen Viskositäten υ ihrer beiden Proben, anschließend deren dynamische Viskositäten η. lle hierfür erforderlichen Daten finden Sie im nhang ( nhang). 4.. Versuchen Sie eine Interpretation des experimentellen Ergebnisses. Version 01/0/0 Seite 6/7

7 4. llgemeines 4..1 Ordnen Sie folgende lüssigkeiten nach steigender Viskosität und erklären Sie die eihenfolge: Wasser, ceton, Glycerin, Methanol 4.. Diskutieren Sie die Ähnlichkeit zwischen der Beziehung für die Temperaturabhängigkeit der Viskosität für lüssigkeiten und der rrhenius-gleichung für die T- bhängigkeit chemischer eaktionen. Hinweis Bitte halten Sie sich bei der Bearbeitung der ufgaben sowohl an die vorgegebene eihenfolge als auch an die im Skript verwendete Nomenklatur! chten Sie außerdem bei Ihren ngaben auf eine sinnvolle nzahl signifikanter Stellen sowie auf Vollständigkeit der Einheiten! Denken Sie bei allen Berechnungen auch an eine entsprechende ehlerrechnung! 5 Literaturdaten (siehe z. B. CC-Handbook of Chemistry and Physics) ( H O, 0 η 1, Pa s ( H O, 0 ρ 998, m ( H O EtOH, 0 ρ 99,6 m ( EtOH, 0 ρ 789, m 6 Stichworte, zu denen man außerdem noch etwas wissen sollte Transportgesetze Newtonsche und nicht-newtonsche lüssigkeiten Messmethoden der Viskosität Temperatur- und Druckabhängigkeit der Viskosität von Gasen und lüssigkeiten Version 01/0/0 Seite 7/7

Kugelfallviskosimeter

Kugelfallviskosimeter S20 Name: Kugelfallviskosimeter Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig (keine Gruppenlösung!)

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I Name: Kugelfallviskosimeter Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von

Mehr

Versuch 41: Viskosität durchgeführt am

Versuch 41: Viskosität durchgeführt am Physikalisch-chemisches Grundpraktikum Gruppe 6 Philipp von den Hoff Andreas J. Wagner Versuch 4: Viskosität durchgeführt am 26.05.2004 Zielsetzung: Ziel des Versuches ist es, die Viskosität von n-butan-2-ol

Mehr

M21. Viskosität. ν = ρ

M21. Viskosität. ν = ρ M1 Viskosität In vielen Fällen wird bei Betrachtungen zur Mechanik vorausgesetzt, dass Reibungseffekte vernachlässigbar sind. In diesem Versuch sielt die Reibung in üssigkeiten die zentrale Rolle, es soll

Mehr

3.5.6 Geschwindigkeitsprofil (Hagen-Poiseuille) ******

3.5.6 Geschwindigkeitsprofil (Hagen-Poiseuille) ****** 3.5.6 ****** 1 Motivation Bei der Strömung einer viskosen Flüssigkeit durch ein Rohr ergibt sich ein parabolisches Geschwindigkeitsprofil. 2 Experiment Abbildung 1: Versuchsaufbau zum Der Versuchsaufbau

Mehr

Viskosität und Dichte von wässrigen n-propanollösungen

Viskosität und Dichte von wässrigen n-propanollösungen Viskosität und Dichte von wässrigen n-propanollösungen Zusammenfassung Die Viskositäten von n-propanollösungen wurden mit Hilfe eines Ubbelohde-Viskosimeters bei einer Temperatur von 30 C bestimmt. Dabei

Mehr

Versuch M11 - Viskosität von Flüssigkeiten. Gruppennummer: lfd. Nummer: Datum:

Versuch M11 - Viskosität von Flüssigkeiten. Gruppennummer: lfd. Nummer: Datum: Ernst-Moritz-Arndt Universität Greifswald Institut für Physik Versuch M11 - Viskosität von Flüssigkeiten Name: Mitarbeiter: Gruppennummer: lfd. Nummer: Datum: 1. Aufgabenstellung 1.1. Versuchsziel Bestimmen

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum Viskosität von Flüssigkeiten Laborbericht Korrigierte Version 9.Juni 2002 Andreas Hettler Inhalt Kapitel I Begriffserklärungen 5 Viskosität 5 Stokes sches

Mehr

Versuch V1 - Viskosität, Flammpunkt, Dichte

Versuch V1 - Viskosität, Flammpunkt, Dichte Versuch V1 - Viskosität, Flammpunkt, Dichte 1.1 Bestimmung der Viskosität Grundlagen Die Viskosität eines Fluids ist eine Stoffeigenschaft, die durch den molekularen Impulsaustausch der einzelnen Fluidpartikel

Mehr

M 7 Innere Reibung von Flüssigkeiten

M 7 Innere Reibung von Flüssigkeiten M 7 Innere Reibung von Flüssigkeiten 1. Aufgabenstellung 1.1 Bestimmen Sie die dynamische Viskosität von Glyzerin bei Zimmertemperatur nach der Kugelfallmethode. 1.2 Überprüfen Sie, ob für die verwendeten

Mehr

Grundlagen: Die Zersetzung von Ameisensäure in konzentrierter Schwefelsäure verläuft nach folgendem Mechanismus:

Grundlagen: Die Zersetzung von Ameisensäure in konzentrierter Schwefelsäure verläuft nach folgendem Mechanismus: A 35: Zersetzung von Ameisensäure Aufgabe: Für die Zersetzung von Ameisensäure in konzentrierter Schwefelsäure sind die Geschwindigkeitskonstante bei 30 und 40 C sowie der präexponentielle Faktor und die

Mehr

Versuch 6. Zähigkeit (Viskosität) Abbildung 1. v τ=η (1) y

Versuch 6. Zähigkeit (Viskosität) Abbildung 1. v τ=η (1) y Versuch 6 Zähigkeit (Viskosität) Gesetz von Stokes Wenn zwei feste Körper aufeinander gleiten, so wird ihre Bewegung dadurch gehet, dass zwischen den Körpern ein Reibungswiderstand herrscht. in ähnliches

Mehr

Carl-Engler-Schule Karlsruhe Physik-Labor (BS/BK/FS) 1 (5)

Carl-Engler-Schule Karlsruhe Physik-Labor (BS/BK/FS) 1 (5) Carl-Engler-Schule Karlsruhe Physik-Labor (BS/BK/FS) 1 (5) Laborversuch: Viskosität 1. Grundlagen Die Viskosität ist eine Materialkenngröße. Sie beschreibt die Zähigkeit von Flüssigkeiten bzw. von Gasen

Mehr

Versuch Nr.53. Messung kalorischer Größen (Spezifische Wärmen)

Versuch Nr.53. Messung kalorischer Größen (Spezifische Wärmen) Versuch Nr.53 Messung kalorischer Größen (Spezifische Wärmen) Stichworte: Wärme, innere Energie und Enthalpie als Zustandsfunktion, Wärmekapazität, spezifische Wärme, Molwärme, Regel von Dulong-Petit,

Mehr

Skript zum Versuch A46. Innere Reibung von Gasen: Gasviskosität. Dez Herausgeber: Institut für Physikalische Chemie

Skript zum Versuch A46. Innere Reibung von Gasen: Gasviskosität. Dez Herausgeber: Institut für Physikalische Chemie Physikalische-Chemisches Praktikum für Anfänger Skript zum Versuch A46 Innere Reibung von Gasen: Gasviskosität Dez. 2018 Herausgeber: Institut für Physikalische Chemie 1 Aufgabe Man messe die Viskosität

Mehr

Versuch 4 Messung der dynamischen Viskosität mit dem Rotationsviskosimeter (Grundlagen DIN 53018)

Versuch 4 Messung der dynamischen Viskosität mit dem Rotationsviskosimeter (Grundlagen DIN 53018) Versuch 4 Messung der dynamischen Viskosität mit dem Rotationsviskosimeter (Grundlagen DIN 53018) Versuch 4 Messung der dynamischen Viskosität mit dem Rotationsviskosimeter (Grundlagen DIN 53018) 4.1 Begriff

Mehr

Labor zur Vorlesung Physik

Labor zur Vorlesung Physik Labor zur Vorlesung Physik 1. Zur Vorbereitung Die folgenden Begriffe sollten Sie kennen und erklären können: Viskosität, Innere Reibung von üssigkeiten, Stokeskraft, Auftrieb, laminare Strömung, Inkompressibilität

Mehr

Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung)

Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung) Versuch Nr. 57 Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung) Stichworte: Dampf, Dampfdruck von Flüssigkeiten, dynamisches Gleichgewicht, gesättigter Dampf, Verdampfungsenthalpie, Dampfdruckkurve,

Mehr

Sinkt ein Körper in einer zähen Flüssigkeit mit einer konstanten, gleichförmigen Geschwindigkeit, so (A) wirkt auf den Körper keine Gewichtskraft (B) ist der auf den Körper wirkende Schweredruck gleich

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - Theorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften 1.5 Maßsysteme 1.6 Messfehler und

Mehr

Grundpraktikum M6 innere Reibung

Grundpraktikum M6 innere Reibung Grundpraktikum M6 innere Reibung Julien Kluge 1. Juni 2015 Student: Julien Kluge (564513) Partner: Emily Albert (564536) Betreuer: Pascal Rustige Raum: 215 Messplatz: 2 INHALTSVERZEICHNIS 1 ABSTRACT Inhaltsverzeichnis

Mehr

Aufgabe: Man bestimme die Geschwindigkeitskonstante für den Zerfall des Diacetonalkohols bei 293 und 303 K.

Aufgabe: Man bestimme die Geschwindigkeitskonstante für den Zerfall des Diacetonalkohols bei 293 und 303 K. A 31 Zersetzung von Diacetonalkohol Aufgabe: Man bestimme die Geschwindigkeitskonstante für den Zerfall des Diacetonalkohols bei 293 und 303 K. Grundlagen: Diacetonalkohol (ρ (20 C) = 0,931 g/cm 3 ) zerfällt

Mehr

Innere Reibung von Flüssigkeiten

Innere Reibung von Flüssigkeiten Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: Bearbeitet: Versuch: L. Jahn RF M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher Aktualisiert: am 29. 03. 2010 Innere Reibung von

Mehr

109 Kugelfallmethode nach Stokes

109 Kugelfallmethode nach Stokes 109 Kugelfallmethode nach Stokes 1. Aufgaben 1.1 Messen Sie die Fallzeit von Stahlkugeln mit unterschiedlichem Durchmesser in Rizinusöl! 1.2 Bestimmen Sie daraus die dynamische Viskosität des Öls, und

Mehr

3. Innere Reibung von Flüssigkeiten

3. Innere Reibung von Flüssigkeiten IR1 3. Innere Reibung von Flüssigkeiten 3.1 Einleitung Zwischen den Molekülen in Flüssigkeiten wirken anziehende Van der Waals Kräfte oder wie im Falle des Wassers Kräfte, die von sogenannten Wasserstoffbrückenbindungen

Mehr

dx bewegt sich eine Flüssigkeit in Form einer laminaren d Strömung : Einzelne Schichten gleiten übereinander ohne

dx bewegt sich eine Flüssigkeit in Form einer laminaren d Strömung : Einzelne Schichten gleiten übereinander ohne Versuch : Viskosität 1. Aufgabenstellung Mit einem Höppler - Viskosimeter (DIN 53015) wird die dynamische Viskosität von Öl in Abhängigkeit von der Temperatur untersucht. Mit den Messwerten werden die

Mehr

Freie Universität Berlin

Freie Universität Berlin 2.5.2014 Freie Universität Berlin - Fachbereich Physik Kugelfallviskosimeter Protokoll zum Versuch des physikalischen Grundpraktikums I Teilnehmer: Ludwig Schuster, ludwig.schuster@fu- berlin.de Florian

Mehr

1.9. Hydrodynamik Volumenstrom und Massenstrom Die Strömungsgeschwindigkeit

1.9. Hydrodynamik Volumenstrom und Massenstrom Die Strömungsgeschwindigkeit 1.9.1. Volumenstrom und Massenstrom 1.9. Hydrodynamik Strömt eine Flüssigkeit durch ein Gefäss, so bezeichnet der Volumenstrom V an einer gegebenen Querschnittsfläche das durchgeströmte Volumen dv in der

Mehr

Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1. Spezifische Drehung von gelöstem Rohrzucker - Rohrzuckerinversion

Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1. Spezifische Drehung von gelöstem Rohrzucker - Rohrzuckerinversion Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1 A 33 Spezifische Drehung von gelöstem Rohrzucker - Rohrzuckerinversion Aufgabe: 1. Bestimmen Sie den Drehwinkel für Rohrzucker für

Mehr

Versuch M10 für Physiker Viskosität

Versuch M10 für Physiker Viskosität Versuch M10 für Physiker Viskosität I. Physikalisches Institut, Raum 103 Stand: 12. Oktober 2012 generelle Bemerkungen bitte Versuchspartner angeben bitte Versuchsbetreuer angeben bitte nur handschriftliche

Mehr

Dynamische Viskosität von Gasen (Hagen-Poiseuille' sches Gesetz)

Dynamische Viskosität von Gasen (Hagen-Poiseuille' sches Gesetz) Versuch Nr. 58 Dynamische Viskosität von Gasen (Hagen-Poiseuille' sches Gesetz) Stichworte: Kinetische Gastheorie, ideales Gas, charakteristische Größen zur Beschreibung von Gasen (s.u.), Hagen-Poiseuille'sches

Mehr

11. Viskosität eines Gases 1

11. Viskosität eines Gases 1 11. Viskosität eines Gases 1 11. Viskosität eines Gases 1 Aufgabe Ermittlung der mittleren freien Weglänge und des Durchmessers von Gasmolekülen und etrachtung der Temperaturabhängigkeit der Viskositätszahl

Mehr

Auf vielfachen Wunsch Ihrerseits gibt es bis auf weiteres die Vorlesungen und Übungen und Lösung der Testklausur im Internet:

Auf vielfachen Wunsch Ihrerseits gibt es bis auf weiteres die Vorlesungen und Übungen und Lösung der Testklausur im Internet: Auf vielfachen Wunsch Ihrerseits gibt es bis auf weiteres die Vorlesungen und Übungen und Lösung der Testklausur im Internet: http://www.physik.uni-giessen.de/dueren/ User: duerenvorlesung Password: ******

Mehr

Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1. Lambert Beer sches Gesetz - Zerfall des Manganoxalations

Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1. Lambert Beer sches Gesetz - Zerfall des Manganoxalations Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1 A 34 Lambert Beer sches Gesetz - Zerfall des Manganoxalations Aufgabe: 1. Bestimmen Sie die Wellenlänge maximaler Absorbanz λ max eines

Mehr

Strömung. 1 Einleitung. 2 Physikalische Grundlagen. Versuchsziele:

Strömung. 1 Einleitung. 2 Physikalische Grundlagen. Versuchsziele: 1 Strömung Versuchsziele: Experimentelle Überprüfung des Hagen-Poiseuill schen Gesetzes Durchführung zweier Methoden der Viskositätsbestimmung von Flüssigkeiten Ermittlung der Temperaturabhängigkeit der

Mehr

Versuch 11 Einführungsversuch

Versuch 11 Einführungsversuch Versuch 11 Einführungsversuch I Vorbemerkung Ziel der Einführungsveranstaltung ist es Sie mit grundlegenden Techniken des Experimentierens und der Auswertung der Messdaten vertraut zu machen. Diese Grundkenntnisse

Mehr

Prüfungsfrage Strömung der Flüssigkeiten. Fluideigenschaften. Strömungslehre. HYDROSTATIK keine Bewegung

Prüfungsfrage Strömung der Flüssigkeiten. Fluideigenschaften. Strömungslehre. HYDROSTATIK keine Bewegung 016.11.18. Prüfungsfrage Strömung der Flüssigkeiten Typen der Flüssigkeitsströmung. Die Reynolds-Zahl. Die Viskosität. Die Gesetzmäßigkeiten der Flüssigkeitsströmung: die Gleichung der Kontinuität, das

Mehr

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 7

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 7 1 Ergänzungen zur Hydrodynamik Fluide = Flüssigkeiten oder Gase - ideale Fluide - reale Fluide mit "innerer Reibung", ausgedrückt durch die sog. Viskosität Strömungen von Flüssigkeiten, d.h. räumliche

Mehr

Aufgaben zur Einführung in die Messtechnik Größen und Einheiten

Aufgaben zur Einführung in die Messtechnik Größen und Einheiten F 1 Aufgaben zur Einführung in die Messtechnik Größen und Einheiten Wolfgang Kessel Braunschweig.PPT/F1/2004-11-02/Ke AUFGABE01 F 2 AUFGABE01: Potenzprodukte physikalischer Größen. Stellen Sie die nachfolgenden

Mehr

Fluidmechanik. Thema Erfassung der Druckverluste in verschiedenen Rohrleitungselementen. -Laborübung- 3. Semester. Namen: Datum: Abgabe:

Fluidmechanik. Thema Erfassung der Druckverluste in verschiedenen Rohrleitungselementen. -Laborübung- 3. Semester. Namen: Datum: Abgabe: Strömungsanlage 1 Fachhochschule Trier Studiengang Lebensmitteltechnik Fluidmechanik -Laborübung-. Semester Thema Erfassung der Druckverluste in verschiedenen Rohrleitungselementen Namen: Datum: Abgabe:

Mehr

Hydrodynamik y II - Viskosität

Hydrodynamik y II - Viskosität Physik A VL9 (..0) Hydrodynamik y II - Viskosität Die Viskosität ität Das Gesetz on Hagen-Poiseuille Die Stokes sche Reibung Die Reynolds-Zahl Viskose Fluide Viskosität bisher: Kräfte zwischen dem strömenden

Mehr

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund Fadenpendel M1) Ziel des Versuches Der Aufbau dieses Versuches ist denkbar einfach: eine Kugel hängt an einem Faden. Der Zusammenhang zwischen der Fadenlänge und der Schwingungsdauer ist nicht schwer zu

Mehr

1 Messung eines konstanten Volumenstroms mit konstanter Dichte

1 Messung eines konstanten Volumenstroms mit konstanter Dichte INHALTE I Inhalte 1 Konstanter Volumenstrom 1 1.1 Auswertung der Messwerte........................ 1 1.2 Berechnung des Volumenstroms...................... 1 1.3 Fehlerbetrachtung.............................

Mehr

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und Univ.-Prof. Dr.-Ing. Wolfram Frank 01.10.2002 Lehrstuhl für Fluiddynamik und Strömungstechnik Aufgabe Name:... Vorname:... (Punkte) 1)... Matr.-Nr.:... HS I / HS II / IP / WI 2)... 3)... Beurteilung:...

Mehr

Grundoperationen der Verfahrenstechnik. Sedimentation I

Grundoperationen der Verfahrenstechnik. Sedimentation I Grundoperationen der Verfahrenstechnik 3. Übung, WS 2016/2017 Betreuer: Maik Tepper M.Sc., Maik.Tepper@avt.rwth-aachen.de Morten Logemann M.Sc., Morten.Logemann@avt.rwth-aachen.de Johannes Lohaus M.Sc.,

Mehr

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund Fadenpendel M) Ziel des Versuches Der Aufbau dieses Versuches ist denkbar einfach: eine Kugel hängt an einem Faden. Der Zusammenhang zwischen der Fadenlänge und der Schwingungsdauer ist nicht schwer zu

Mehr

23. Mai 2000 Physikalisch-Chemisches Praktikum Versuch Nr. 11

23. Mai 2000 Physikalisch-Chemisches Praktikum Versuch Nr. 11 23. Mai 2000 Physikalisch-Chemisches Praktikum Versuch Nr. 11 Thema: Nernst scher Verteilungssatz Aufgabenstellung: 1. Ermittlung des Molekülzustandes der Benzoesäure in der Wasser- und in der Toluolphase

Mehr

2. Bestimmen Sie die Geschwindigkeitskonstante k der Rohrzuckerinversion in s -1.

2. Bestimmen Sie die Geschwindigkeitskonstante k der Rohrzuckerinversion in s -1. Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1 A 33 Spezifische Drehung von gelöstem Rohrzucker - Rohrzuckerinversion Aufgabe: 1. Bestimmen Sie den Drehwinkel α für Rohrzucker für

Mehr

Physikalisches Grundpraktikum

Physikalisches Grundpraktikum Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum Praktikum für Mediziner M1 Viskose Strömung durch Kapillaren Name: Versuchsgruppe: Datum: Mitarbeiter der Versuchsgruppe:

Mehr

Versuch 14: Dampfdruckkurve - Messung der Dampfdruckkurven leicht verdampfbarer Flüssigkeiten -

Versuch 14: Dampfdruckkurve - Messung der Dampfdruckkurven leicht verdampfbarer Flüssigkeiten - 1 ersuch 14: Dampfdruckkurve - Messung der Dampfdruckkurven leicht verdampfbarer Flüssigkeiten - 1. Theorie Befindet sich eine Flüssigkeit in einem abgeschlossenen Gefäß, so stellt sich zwischen der Gasphase

Mehr

Protokoll Dampfdruck. Punkte: /10

Protokoll Dampfdruck. Punkte: /10 Protokoll Dampfdruck Gruppe Biologie Assistent: Olivier Evelyn Jähne, Eva Eickmeier, Claudia Keller Kontakt: claudiakeller@teleport.ch Sommersemester 2006 6. Juni 2006 Punkte: /0 . Einleitung Wenn eine

Mehr

GRUNDLAGEN DER SCHMIERSTOFFE

GRUNDLAGEN DER SCHMIERSTOFFE Grundl d Schmierstoffe.06.01.1 Praktische Einheiten/Umrechnungen 1 dyn s cm 2 = 1 Poise (P) = 100 cp 1 1 N m 2 = 1 Pascal (Pa) N s m 2 = 1 Pa s 1 cp = 1 mpa s Definition der Viskosität Grundl d Schmierstoffe.06.01.2

Mehr

Überlegungen zur Leistung und zum Wirkungsgrad von Solarkochern

Überlegungen zur Leistung und zum Wirkungsgrad von Solarkochern Überlegungen zur Leistung und zum Wirkungsgrad von Solarkochern (Dr. Hartmut Ehmler) Einführung Die folgenden Überlegungen gelten ganz allgemein für Solarkocher, unabhängig ob es sich um einen Parabolkocher,

Mehr

Protokoll Grundpraktikum I: M6 - Innere Reibung in Flüssigkeiten

Protokoll Grundpraktikum I: M6 - Innere Reibung in Flüssigkeiten Protoko Grundpraktikum I: M6 - Innere Reibung in Füssigkeiten Sebastian Pfitzner 0. Apri 013 Durchführung: Sebastian Pfitzner (553983), Anna Andre (55) Arbeitspatz: Patz Betreuer: Stefanie Winker Versuchsdatum:

Mehr

Aufgabe: Es sind die kryoskopischen Konstante von Wasser und die Molmassen von darin löslichen Substanzen zu bestimmen.

Aufgabe: Es sind die kryoskopischen Konstante von Wasser und die Molmassen von darin löslichen Substanzen zu bestimmen. Versuchsanleitungen zum Praktikum Physikalische Chemie für nfänger 1 4 Kryoskopie ufgabe: Es sind die kryoskopischen Konstante von Wasser und die Molmassen von darin löslichen Substanzen zu bestimmen.

Mehr

Versuch Nr. 5 Viskosität von Flüssigkeiten

Versuch Nr. 5 Viskosität von Flüssigkeiten Versuch Nr. 5 Viskosität von Flüssigkeiten Gruppe W 7 Andreas Josef Birnesser Andreas.Birnesser@wirtschaftsphysik.de Sascha Wagner Sascha.Wagner@wirtschaftsphysik.de Durchgeführt am 04. Oktober 000 Erste

Mehr

Verbrennungsenergie und Bildungsenthalpie

Verbrennungsenergie und Bildungsenthalpie Praktikum Physikalische Chemie I 1. Januar 2016 Verbrennungsenergie und Bildungsenthalpie Guido Petri Anastasiya Knoch PC111/112, Gruppe 11 Aufgabenstellung Die Bildungsenthalpie von Salicylsäure wurde

Mehr

Umgang mit Formeln Was kann ich?

Umgang mit Formeln Was kann ich? Umgang mit ormeln Was kann ich? ufgabe 1 (Quelle: DV Ph 010 5) In der Grafik werden einige Messpunkte der I-U- Kennlinie einer elektrischen Energiequelle dargestellt. a) Bei welchem der Messpunkte, B,

Mehr

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre ρ L0

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre ρ L0 ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre 03. 08. 007 1. Aufgabe (10 Punkte) Ein mit elium gefüllter Ballon (Volumen V 0 für z = 0) steigt in einer Atmosphäre mit der Gaskonstante R

Mehr

M0 BIO - Reaktionszeit

M0 BIO - Reaktionszeit M0 BIO - Reaktionszeit 1 Ziel des Versuches In diesem Versuch haben Sie die Möglichkeit, sich mit Messunsicherheiten vertraut zu machen. Die Analyse von Messunsicherheiten erfolgt hierbei an zwei Beispielen.

Mehr

Tutorium Hydromechanik I + II

Tutorium Hydromechanik I + II Tutorium Hydromechanik I + II WS 2015/2016 Session 3 Prof. Dr. rer. nat. M. Koch 1 Aufgabe 13 (Klausuraufgabe am 07.10.2012) Der bekannte Bergsteiger Reinhold Messner befindet sich mal wieder auf Himalaya

Mehr

Inhaltsverzeichnis Seite. 0. Verzeichnis der verwendeten Zeichen und Abkürzungen

Inhaltsverzeichnis Seite. 0. Verzeichnis der verwendeten Zeichen und Abkürzungen Inhaltsverzeichnis Seite 0. Verzeichnis der verwendeten Zeichen und Abkürzungen 1. Einleitung 1 2. Grundlagen 3 2.1. Allgemeine Grundlagen 3 2.1.1. Die Wasserstoffbrückenbindung 3 2.1.2. Die Diffusion

Mehr

LK Lorentzkraft. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2

LK Lorentzkraft. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2 LK Lorentzkraft Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Magnetfeld dünner Leiter und Spulen......... 2 2.2 Lorentzkraft........................

Mehr

104 Biegung. 1.3 Führen Sie eine Größtfehlerabschätzung durch, und vergleichen Sie Ihre Ergebnisse mit Tabellenwerten!

104 Biegung. 1.3 Führen Sie eine Größtfehlerabschätzung durch, und vergleichen Sie Ihre Ergebnisse mit Tabellenwerten! 104 Biegung 1. ufgaben 1.1 Messen Sie die Durchbiegung verschiedener Stäbe in bhängigkeit von der Belastung und stellen Sie den Zusammenhang grafisch dar! Kontrollieren Sie dabei, ob die Verformung reversibel

Mehr

NICHT: W = ± 468 J, sondern: W = ± J oder: W = (1.283 ± 0.005) 10 5 J

NICHT: W = ± 468 J, sondern: W = ± J oder: W = (1.283 ± 0.005) 10 5 J Musterbericht Allgemeines Der Versuchsbericht sollte kurz gehalten werden, aber das Notwendige enthalten. Er sollte klar vermitteln was - wie gemessen wurden. Kapitelüberschriften helfen bei der sauberen

Mehr

Protokoll zum Versuch Druckmessung / III

Protokoll zum Versuch Druckmessung / III Protokoll zum Versuch Druckmessung / III Datum des Versuches:Dezember 2004 Praktikumsgruppe: Mitarbeiter: 1.Aufgabenstellung - an einer Rohrleitung sind systematischen Fehler p des statischen Druckes infolge

Mehr

Vergleichbarkeit von Viskositätsmessungen. Warum bewährte Messvorschriften nicht umgeschrieben werden müssen!

Vergleichbarkeit von Viskositätsmessungen. Warum bewährte Messvorschriften nicht umgeschrieben werden müssen! Vergleichbarkeit von Viskositätsmessungen. Warum bewährte Messvorschriften nicht umgeschrieben werden müssen! Lothar Gehm, Jutta Schelske-Gehm; prorheo GmbH In der täglichen Praxis ist die Messung der

Mehr

Messung der Leitfähigkeit wässriger Elektrolytlösungen

Messung der Leitfähigkeit wässriger Elektrolytlösungen Versuch Nr. 10: Messung der Leitfähigkeit wässriger Elektrolytlösungen 1. Ziel des Versuchs In diesem Versuch sollen die Leitfähigkeiten von verschiedenen Elektrolyten in verschiedenen Konzentrationen

Mehr

Phasengleichgewicht. 1. Experimentelle Bestimmung des Dampfdrucks von Methanol als Funktion der Temperatur. A fl. A g

Phasengleichgewicht. 1. Experimentelle Bestimmung des Dampfdrucks von Methanol als Funktion der Temperatur. A fl. A g Physikalisch-Chemische Praktika Phasengleichgewicht Versuch T-2 Aufgaben 1. Experimentelle Bestimmung des Dampfdrucks von Methanol als Funktion der Temperatur. 2. Ermittlung der Phasenumwandlungsenthalpie

Mehr

Vakuum und Gastheorie

Vakuum und Gastheorie Vakuum und Gastheorie Jan Krieger 9. März 2005 1 INHALTSVERZEICHNIS 0.1 Formelsammlung.................................... 2 0.1.1 mittlere freie Weglänge in idealen Gasen................... 3 0.1.2 Strömungsleitwerte

Mehr

Verseifungsgeschwindigkeit eines Esters

Verseifungsgeschwindigkeit eines Esters A 32 Verseifungsgeschwindigkeit eines Esters Aufgabe: Man bestimme die Geschwindigkeitskonstante k der Methylacetatverseifung bei 2 verschiedenen Temperaturen und berechne daraus den Vorfaktor sowie die

Mehr

Reibung zwischen Festkörpern und in Flüssigkeiten

Reibung zwischen Festkörpern und in Flüssigkeiten Versuch 2 Reibung zwischen Festkörpern und in Flüssigkeiten Versuchsziel: Zunächst soll das in der Praxis wichtige Phänomen der Reibung zwischen Festkörpern untersucht werden. Einerseits ist sie Voraussetzung

Mehr

Die Förderhöhe einer Pumpe errechnet sich wie folgt: Sie setzt sich also zusammen aus: dem zu überwindenden Höhenunterschied

Die Förderhöhe einer Pumpe errechnet sich wie folgt: Sie setzt sich also zusammen aus: dem zu überwindenden Höhenunterschied Zum Verständnis der folgenden Kapitel werden wir zuerst die in dieser Broschüre verwendeten Fachbegriffe der definieren und erläutern. Im Stichwortverzeichnis finden Sie diese Begriffe alphabetisch geordnet

Mehr

Institut für math.-naturw. Grundlagen Physikalisches Anfängerpraktikum. Versuch M2: Viskositätsmessung nach verschiedenen DIN-Verfahren

Institut für math.-naturw. Grundlagen Physikalisches Anfängerpraktikum. Versuch M2: Viskositätsmessung nach verschiedenen DIN-Verfahren Versuch : Viskositätsmessung nach verschiedenen DIN-Verfahren 1. Aufgabenstellung Mit einem Höppler - Viskosimeter (DIN 5655) wird die dynamische Viskosität eines Mineralöles in Abhängigkeit von der Temperatur

Mehr

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und Univ.-Prof. Dr.-Ing. Wolfram Frank 14.10.2005 Lehrstuhl für Fluiddynamik und Strömungstechnik Aufgabe Name:... Matr.-Nr.:... Vorname:... HS I / HS II / IP / WI (Punkte) Frage 1)... Frage 2)... Beurteilung:...

Mehr

Newtonsche Kalibrierflüssigkeiten der Viskosität

Newtonsche Kalibrierflüssigkeiten der Viskosität Arbeitsgruppe 3.32 Flüssigkeitseigenschaften Newtonsche Kalibrierflüssigkeiten der Viskosität sind Proben newtonscher Flüssigkeiten, die rückverfolgbar an das Nationale Normal der Einheit der Viskosität

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I W21 Name: Verdampfungswärme von Wasser Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Folgende Fragen

Mehr

Grundlagen der Physik 3 Lösung zu Übungsblatt 1

Grundlagen der Physik 3 Lösung zu Übungsblatt 1 Grundlagen der Physik 3 Lösung zu Übungsblatt Daniel Weiss 0. Oktober 200 Inhaltsverzeichnis Aufgabe - Anzahl von Atomen und Molekülen a) ohlensto..................................... 2 b) Helium.......................................

Mehr

Vortrag: Flüssigkeiten (6. Klasse AHS)

Vortrag: Flüssigkeiten (6. Klasse AHS) Physikalisches Schulversuchspraktikum Vortrag: lüssigkeiten / Vortragsdatum: 3..00 bgabetermin: 0.0.00 Physikalischen Schulversuchspraktikum Vortrag: lüssigkeiten (6. Klasse HS) Mittendorfer Stephan Matr.

Mehr

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X Praktikum Physik Protokoll zum Versuch 1: Viskosität Durchgeführt am 26.01.2012 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

Skript zur Vorlesung

Skript zur Vorlesung Skript zur Vorlesung 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für

Mehr

Laborpraktikum Prozeßmeßtechnik. Versuch Viskositätsmessung PM 2

Laborpraktikum Prozeßmeßtechnik. Versuch Viskositätsmessung PM 2 Otto-von-Guericke-Universität Magdeburg Fakultät für Elektrotechnik und Informationstechnik Institut für Mikro- und Sensorsysteme (IMOS) Laborpraktikum Prozeßmeßtechnik Versuch Viskositätsmessung PM 2

Mehr

1. Die Wellengleichung

1. Die Wellengleichung 1. Die Wellengleichung Die Wellengleichung ist eine partielle Differenzialgleichung für das Schallfeld. Sie lässt sich durch Linearisierung aus der Massenbilanz, der Impulsbilanz und der Energiebilanz

Mehr

Vergleich Auslaufbecher und Rotationsviskosimeter

Vergleich Auslaufbecher und Rotationsviskosimeter Vergleich Auslaufbecher und Rotationsviskosimeter Die Viskositätsmessung mit dem Auslaufbecher ist, man sollte es kaum glauben, auch in unserer Zeit der allgemeinen Automatisierung und ISO 9 Zertifizierungen

Mehr

7.6 Brechung. 7.7 Zusammenfassung. Schwingungen und Wellen. Phasengeschwindigkeit ist von Wassertiefe abhängig

7.6 Brechung. 7.7 Zusammenfassung. Schwingungen und Wellen. Phasengeschwindigkeit ist von Wassertiefe abhängig 7.6 Brechung Phasengeschwindigkeit ist von Wassertiefe abhängig Dreieckige Barriere lenkt ebene Welle ab Dispersion Brechung von Licht 7.7 Zusammenfassung Schwingungen und Wellen 7.1 Harmonische Schwingungen

Mehr

Versuch Eichung und Linearisierung eines Hitzdrahtes Wirbelbildung am quer angeströmten Kreiszylinder (Kármánsche Wirbelstraße)

Versuch Eichung und Linearisierung eines Hitzdrahtes Wirbelbildung am quer angeströmten Kreiszylinder (Kármánsche Wirbelstraße) Versuch 7 + 8 Eichung und Linearisierung eines Hitzdrahtes Wirbelbildung am quer angeströmten Kreiszylinder (Kármánsche Wirbelstraße) Strömungsmechanisches Praktikum des Deutschen Zentrums für Luft- und

Mehr

Klausur Strömungsmechanik I

Klausur Strömungsmechanik I ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik I 08. 08. 2014 1. Aufgabe (12 Punkte) Eine Ölbarriere in der Form eines Zylinders mit dem Durchmesser D schwimmt im Meer. Sie taucht in dem

Mehr

2 Grundbegriffe der Thermodynamik

2 Grundbegriffe der Thermodynamik 2 Grundbegriffe der Thermodynamik 2.1 Thermodynamische Systeme (TDS) Aufteilung zwischen System und Umgebung (= Rest der Welt) führt zu einer Klassifikation der Systeme nach Art der Aufteilung: Dazu: adiabatisch

Mehr

Vergleich von experimentellen Ergebnissen mit realen Konfigurationen

Vergleich von experimentellen Ergebnissen mit realen Konfigurationen Ähnlichkeitstheorie Vergleich von experimentellen Ergebnissen mit realen Konfigurationen Verringerung der Anzahl der physikalischen Größen ( Anzahl der Experimente) Experimentelle Ergebnisse sind unabhängig

Mehr

Fragen zum Versuch 11a Kinetik Rohrzuckerinversion:

Fragen zum Versuch 11a Kinetik Rohrzuckerinversion: Fragen zum Versuch 11a Kinetik Rohrzuckerinversion: 1. Die Inversion von Rohrzucker ist: a. Die Umwandlung von Rohrzucker in Saccharose b. Die katalytische Spaltung in Glucose und Fructose c. Das Auflösen

Mehr

b ) den mittleren isobaren thermischen Volumenausdehnungskoeffizienten von Ethanol. Hinweis: Zustand 2 t 2 = 80 C = 23, kg m 3

b ) den mittleren isobaren thermischen Volumenausdehnungskoeffizienten von Ethanol. Hinweis: Zustand 2 t 2 = 80 C = 23, kg m 3 Aufgabe 26 Ein Pyknometer ist ein Behälter aus Glas mit eingeschliffenem Stopfen, durch den eine kapillarförmige Öffnung führt. Es hat ein sehr genau bestimmtes Volumen und wird zur Dichtebestimmung von

Mehr

Klausur Strömungsmechanik II

Klausur Strömungsmechanik II ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik II 16. 08. 018 1. Aufgabe (14 Punkte) Das Kräftegleichgewicht in einer ausgebildeten, laminaren Rohrströmung unter Gravitationseinfluss wird

Mehr

4 Flaschen mit Stammlösung (0,001 M HCl, 0,001 M NaCl, 0,1 M Essigsäure, 0,001 M Natriumacetat), demineralisiertes Wasser.

4 Flaschen mit Stammlösung (0,001 M HCl, 0,001 M NaCl, 0,1 M Essigsäure, 0,001 M Natriumacetat), demineralisiertes Wasser. Juni 29, 2017 Physikalisch-Chemisches Praktikum Versuch Nr. 9 Thema: Aufgabenstellung: Material: Substanzen: Ablauf: 1: 2: 3: 4: 5: 6: 7: 8: Ladungstransport in Elektrolytlösungen Ermittlung der Dissoziationskonstanten

Mehr

Innere Reibung von Gasen

Innere Reibung von Gasen Blatt: 1 Aufgabe Bestimmen Sie die Viskosität η von Gasen aus der Messung der Strömung durch Kapillaren. Berechnen Sie aus den Messergebnissen für jedes Gas die Sutherland-Konstante C, die effektiven Moleküldurchmesser

Mehr

Homogenes Gleichgewicht

Homogenes Gleichgewicht Knoch, Anastasiya Datum der Durchführung: Petri, Guido 08.12.2015 (Gruppe 11) Datum der Korrektur: 02.02.2016 Praktikum Physikalische Chemie I. Thermodynamik Homogenes Gleichgewicht 1. Aufgabenstellung

Mehr

! #!! % & ( )! ! +, +,# # !.. +, ) + + /) # %

! #!! % & ( )! ! +, +,# # !.. +, ) + + /) # % ! #! #!! % & ( )!! +, +,# #!.. +, ) + + /)!!.0. #+,)!## 2 +, ) + + 3 4 # )!#!! ), 5 # 6! # &!). ) # )!#! #, () # # ) #!# #. # ) 6 # ) )0 4 )) #, 7) 6!!. )0 +,!# +, 4 / 4, )!#!! ))# 0.(! & ( )!! 8 # ) #+,

Mehr

Vorlesung Physik für Pharmazeuten PPh Hydrostatik Grenzflächenspannung Hydrodynamik

Vorlesung Physik für Pharmazeuten PPh Hydrostatik Grenzflächenspannung Hydrodynamik Vorlesung Physik für Pharmazeuten PPh - 05 Hydrostatik Grenzflächenspannung Hydrodynamik 21.05.2007 Ruhende lüssigkeiten (Hydrostatik) Der hydrostatische Druck : P = A A [P]=N/m 2 = Pa(scal) 1 bar=10 5

Mehr