1. Die Wellengleichung

Größe: px
Ab Seite anzeigen:

Download "1. Die Wellengleichung"

Transkript

1 1. Die Wellengleichung Die Wellengleichung ist eine partielle Differenzialgleichung für das Schallfeld. Sie lässt sich durch Linearisierung aus der Massenbilanz, der Impulsbilanz und der Energiebilanz herleiten. Linearisierung: Untersucht wird die Schallausbreitung in ruhender Luft: Die Massendichte ρ 0 ist räumlich und zeitlich konstant. Der Luftdruck p 0 ist im Gleichgewicht mit der Schwerkraft. Die Strömungsgeschwindigkeit v 0 ist null. Prof. Dr. Wandinger 2. Grundlagen der Wellenausbreitung Akustik 2.1-1

2 1. Die Wellengleichung Die Schallausbreitung wird durch die akustischen Größen Schalldruck p(t), Dichteänderung ρ(t) und Schallschnelle v(t) beschrieben. Für die gesamten Größen gilt: p g x,t = p 0 x p x,t g x,t = 0 x,t v g x, t =v x, t Die akustischen Größen sind klein gegenüber den entsprechenden Größen im Ruhezustand: pt p 0, t 0 0 v 2 p 0 Die gesamten Größen müssen die Bilanzgleichungen erfüllen. Prof. Dr. Wandinger 2. Grundlagen der Wellenausbreitung Akustik 2.1-2

3 Mitbewegtes Teilgebiet: 1. Die Wellengleichung Die Bilanzgleichungen werden für ein so genanntes mitbewegtes Teilgebiet V aufgestellt. Dabei handelt es sich um ein beliebiges Teilgebiet, dessen Oberfläche S = V sich mit der Schallschnelle v bewegt. Ein mitbewegtes Teilgebiet besteht also zu jeder Zeit aus denselben Luftpartikeln. v V n S = V Prof. Dr. Wandinger 2. Grundlagen der Wellenausbreitung Akustik 2.1-3

4 1. Die Wellengleichung 1.1 Massenbilanz 1.2 Impulsbilanz 1.3 Energiebilanz 1.4 Materialgesetz 1.5 Wellengleichung 1.6 Randbedingungen Prof. Dr. Wandinger 2. Grundlagen der Wellenausbreitung Akustik 2.1-4

5 Integrale Massenbilanz: 1.1 Massenbilanz Das mit bewegte Gebiet enthält zu jedem Zeitpunkt die gleiche Masse an Luft. Daher gilt: d dt V t Mit dem Transporttheorem von Reynolds folgt: V t g t dv =0 g t g v i dv =0 Prof. Dr. Wandinger 2. Grundlagen der Wellenausbreitung Akustik 2.1-5

6 Lokale Massenbilanz: 1.1 Massenbilanz Da das Teilgebiet V(t) beliebig gewählt werden kann, muss gelten: g t g v i =0 Mit g t = 0 t folgt daraus: Linearisierung: Mit t 0 folgt schließlich: t 0 t v i =0 t 0 v i =0 Prof. Dr. Wandinger 2. Grundlagen der Wellenausbreitung Akustik 2.1-6

7 Integrale Impulsbilanz: 1.2 Impulsbilanz Die zeitliche Änderung des Impulses des mitbewegten Teilgebiets ist gleich der Summe aller am Teilgebiet angreifenden Kräfte: Dabei ist g i der Vektor der Erdbeschleunigung. Mit dem Transporttheorem von Reynolds und dem Integralsatz von Gauß folgt: V t d dt V t g v i dv = V t g g i dv S v g i g v i v j g g i p g t x j p g n i ds dv =0 Prof. Dr. Wandinger 2. Grundlagen der Wellenausbreitung Akustik 2.1-7

8 Lokale Impulsbilanz: 1.2 Impulsbilanz Da die integrale Impulsbilanz für ein beliebiges Teilgebiet gelten muss, folgt: g v i Ausdifferenzieren führt auf t g v i v j x j g t g v j x j g g i p g =0 v i g v i t v j v i x j g g i p g =0 Prof. Dr. Wandinger 2. Grundlagen der Wellenausbreitung Akustik 2.1-8

9 1.2 Impulsbilanz Mit der Massenbilanz vereinfacht sich diese Gleichung zu Da der Luftdruck p 0 im Gleichgewicht mit der Gewichtskraft ist, gilt: g v i t v j 0 g i p 0 =0 g t g v j x j =0 v i x j g g i p 0 p =0 Prof. Dr. Wandinger 2. Grundlagen der Wellenausbreitung Akustik 2.1-9

10 1.2 Impulsbilanz Mit g 0 folgt: 0 v i t v j v i x j p =0 Diese Gleichung ist noch nichtlinear in v. Bei akustischen Vorgängen ist die konvektive Beschleunigung klein: v i v j v i x j t Dann gilt: 0 v i t = p Prof. Dr. Wandinger 2. Grundlagen der Wellenausbreitung Akustik

11 1.2 Impulsbilanz Die Partikelbeschleunigung ist entgegengesetzt zum Druckgradienten gerichtet. Dieses Ergebnis lässt sich auch direkt aus dem Newtonschen Grundgesetz für einen infinitesimalen Quader gewinnen: z p(x) y x Δx p(x+δx) 0 x y z v x t = p x p x x y z v x 0 t = p x Dabei wird allerdings nicht deutlich, welche Annahmen getroffen wurden. Prof. Dr. Wandinger 2. Grundlagen der Wellenausbreitung Akustik

12 Integrale Energiebilanz: 1.3 Energiebilanz Die zeitliche Änderung der Energie eines mitbewegten Teilgebiets ist gleich der Leistung der angreifenden Kräfte plus der Summe der Wärmeströme. Die Energie setzt sich zusammen aus der inneren Energie und der kinetischen Energie. Mit der massenspezifischen inneren Energie u gilt unter Vernachlässigung von Wärmeleitung: d dt V t g u 1 2 v i v i dv = V t g g i v i dv S v i p g n i ds Prof. Dr. Wandinger 2. Grundlagen der Wellenausbreitung Akustik

13 1.3 Energiebilanz Mit dem Transporttheorem von Reynolds und dem Integralsatz von Gauß folgt: V t [ t g u 1 2 v i v i x j = V t [ g g i v i p g v i ] dv g u 1 2 v i v i v j] dv Prof. Dr. Wandinger 2. Grundlagen der Wellenausbreitung Akustik

14 Lokale Energiebilanz: 1.3 Energiebilanz Da die integrale Energiebilanz für ein beliebiges Teilgebiet gelten muss, folgt: g t u 1 i 2 v i v x j g v j u 1 i 2 v i v = g g i v i p g v i Ausdifferenzieren ergibt g t g v j x j u 1 2 v i v i g t u 1 2 v i v i v j x j u 1 2 v i v i = g g i p g v i p g v i Prof. Dr. Wandinger 2. Grundlagen der Wellenausbreitung Akustik

15 1.3 Energiebilanz Der erste Term auf der linken Seite verschwindet wegen der Massenbilanz. Weiteres Ausdifferenzieren führt auf g u t v u i j x g v v i j t v v i j x j g g i p g Mit der aus der Impulsbilanz gewonnen Beziehung v i p g v i =0 folgt: g v i t v j g u t v j v i x j g g i p g u x p g j v i =0 =0 Prof. Dr. Wandinger 2. Grundlagen der Wellenausbreitung Akustik

16 Mit den Näherungen 1.3 Energiebilanz u g 0, p g p 0, v j u x j t folgt die linearisierte Energiegleichung: 0 u t p 0 v i =0 Die innere Energie hängt von der spezifischen Entropie s und der Dichte ρ ab. Damit gilt: u t = u s s t u t Prof. Dr. Wandinger 2. Grundlagen der Wellenausbreitung Akustik

17 folgt: 1.3 Energiebilanz Mit den thermodynamischen Beziehungen u s =T 0 und u = p 0 Dabei ist T 0 die Temperatur im Ruhezustand. Einsetzen ergibt: u t =T 0 0 T 0 s t p 0 0 t p 0 s t p t 0 2 v i = 0 T 0 s t p 0 0 t 0 v i x =0 i Prof. Dr. Wandinger 2. Grundlagen der Wellenausbreitung Akustik

18 1.3 Energiebilanz Mit der Massenbilanz folgt daraus: s t =0 Bei der Schallausbreitung bleibt die Entropie konstant. Prof. Dr. Wandinger 2. Grundlagen der Wellenausbreitung Akustik

19 1.4 Materialgesetz Zustandsgrößen: Dichte, Druck und Entropie sind Zustandsgrößen. Ein ideales Gas lässt sich durch zwei Zustandsgrößen beschreiben. Für die Dichte gilt daher: = p, s Da bei akustischen Vorgängen die Entropie konstant ist, gilt t = p p s t = 1 = p mit c 2 p c 2 t s Wie später gezeigt wird, ist c die Schallgeschwindigkeit. Prof. Dr. Wandinger 2. Grundlagen der Wellenausbreitung Akustik

20 1.4 Materialgesetz Materialgesetz: Einsetzen in die Massenbilanz führt auf p t = 0 c 2 v i Das ist das Materialgesetz für das akustische Medium. Prof. Dr. Wandinger 2. Grundlagen der Wellenausbreitung Akustik

21 Kompressionsmodul: 1.4 Materialgesetz Die Materialkonstante K = 0 c 2 wird als Kompressionsmodul bezeichnet. v Aus i 1 =lim 1 V v i n i ds=lim V 0 V S V 0 V t folgt: p t = K lim V 0 1 V V t Für ein infinitesimal kleines Volumen verknüpft der Kompressionsmodul die relative Volumenänderung des Volumens mit der zugehörigen Druckänderung: p= K V V Prof. Dr. Wandinger 2. Grundlagen der Wellenausbreitung Akustik

22 1.4 Materialgesetz Berechnung der Schallgeschwindigkeit: Für eine adiabate Zustandsänderung eines idealen Gases gilt p g = p 0 p 0 p= p 0 0 g 0 0 Dabei ist κ der Isentropenexponent. Ableiten nach ρ ergibt: p = p 0 s 0 1 = p p 0 0 Prof. Dr. Wandinger 2. Grundlagen der Wellenausbreitung Akustik

23 1.4 Materialgesetz Die thermische Zustandsgleichung eines idealen Gases lautet p 0 =RT 0 0 mit der spezifischen Gaskonstanten R. Damit gilt: c= p 0 0 = R T 0 Prof. Dr. Wandinger 2. Grundlagen der Wellenausbreitung Akustik

24 1.4 Materialgesetz Zahlenwerte für Luft: Isentropenexponent: Spezifische Gaskonstante: Massendichte bei 20 C: Schallgeschwindigkeit bei 20 C: =1,4 R=287 J kg K 0 =1,204 kg/ m 3 c=343 m/s Prof. Dr. Wandinger 2. Grundlagen der Wellenausbreitung Akustik

25 1.5 Wellengleichung Mit der Impulsbilanz und dem Materialgesetz stehen zwei Gleichungen für die zwei unbekannten Größen p und v zur Verfügung. Daraus lässt sich eine Gleichung für den Schalldruck gewinnen: Impulsbilanz: Materialgesetz: 1 p = v i 0 t 1 0 c 2 p t = v i Prof. Dr. Wandinger 2. Grundlagen der Wellenausbreitung Akustik

26 1.5 Wellengleichung Wird die Divergenz der Impulsbilanz von der zeitlichen Ableitung des Materialgesetzes abgezogen, so folgt und daraus: 2 p 1 0 c 2 t p t 2 c2 2 p =0 2 p =0 Diese Gleichung wird als Wellengleichung bezeichnet. Prof. Dr. Wandinger 2. Grundlagen der Wellenausbreitung Akustik

27 1.6 Randbedingungen Das Schallfeld ist die Lösung der Wellengleichung, die auch die gegebenen Anfangs- und Randbedingungen erfüllt. Die Anfangsbedingung legt das Schallfeld zum Zeitpunkt t = 0 im gesamten untersuchten Gebiet fest. Die Randbedingungen legen den Wert des Schallfelds auf dem Rand des untersuchten Gebiets für jeden Zeitpunkt fest. Prof. Dr. Wandinger 2. Grundlagen der Wellenausbreitung Akustik

28 1.6 Randbedingungen Innenraumprobleme: S a Fläche S v : Die Schallschnelle normal zur Wand ist vorgegeben: S v V S p v i n i =v n =v Rn Eine Fläche mit v Rn = 0 wird als schallhart bezeichnet. Fläche S p : Der Schalldruck ist vorgegeben: p= p R Ein geöffnetes Fenster lässt sich näherungsweise als Fläche mit p R = 0 betrachten. Prof. Dr. Wandinger 2. Grundlagen der Wellenausbreitung Akustik

29 1.6 Randbedingungen Fläche S a : Eine lineare Beziehung zwischen Schalldruck und Schallschnelle normal zur Wand ist vorgegeben: Die Größe z wird als spezifische akustische Impedanz oder Feldimpedanz bezeichnet. Mithilfe der spezifischen akustischen Impedanz lassen sich absorbierende Flächen beschreiben. Der Kehrwert p=z v n a=1/ z der spezifischen Impedanz wird als spezifische akustische Admittanz bezeichnet. Prof. Dr. Wandinger 2. Grundlagen der Wellenausbreitung Akustik

30 1.6 Randbedingungen Außenraumprobleme: Auf S r gilt die Abstrahlbedingung von Sommerfeld: r S r lim r [ r p r 1 c p t ] =0 Prof. Dr. Wandinger 2. Grundlagen der Wellenausbreitung Akustik

3. Akustische Energie und Intensität

3. Akustische Energie und Intensität Aus der Energiebilanz lässt sich durch Berücksichtigung von Gliedern zweiter Ordnung eine Bilanzgleichung für die akustische Energie gewinnen. Etwas einfacher kann diese Energiegleichung aus der linearisierten

Mehr

4. Gleichungen im Frequenzbereich

4. Gleichungen im Frequenzbereich Stationäre Geräusche: In der technischen Akustik werden überwiegend stationäre Geräusche untersucht. Stationäre Geräusche sind zusammengesetzt aus harmonischen Schallfeldern p x,t = p x cos t x Im Folgenden

Mehr

5. Eigenschwingungen

5. Eigenschwingungen 5. Eigenschwingungen Bei Innenraumproblemen gibt es wie bei elastischen Strukturen Eigenschwingungen. Eigenschwingungen sind rein reelle Lösungen der Helmholtz-Gleichung bei homogenen Randbedingungen.

Mehr

2.2.2 Die EULERschen Bewegungsgleichungen (dynamischen Grundgleichungen)

2.2.2 Die EULERschen Bewegungsgleichungen (dynamischen Grundgleichungen) Raumakustik Wellentheoretische Raumakustik ist die Schallgeschwindigkeit (vgl. LAPLACEsche Gl. (.1), S. 6). Differentielle Form: Vektorielle Form: grad grad (.3) Das Argument des Gradienten ist ein Skalar,

Mehr

3. Das Prinzip der virtuellen Arbeit

3. Das Prinzip der virtuellen Arbeit 3.1 Stab 3.2 Scheibe 3. Das Prinzip der virtuellen Arbeit Prof. Dr. Wandinger 3. Prinzip der virtuellen Arbeit FEM 3.3-1 3.1 Stab Herleitung des Prinzips der virtuellen Arbeit: Am Stab greifen als äußere

Mehr

Ausblick. 1. Lineare dynamische Analysen 2. Nichtlineare Analysen 3. Weitere Anwendungen. Prof. Dr. Wandinger 5. Ausblick FEM 5-1

Ausblick. 1. Lineare dynamische Analysen 2. Nichtlineare Analysen 3. Weitere Anwendungen. Prof. Dr. Wandinger 5. Ausblick FEM 5-1 Ausblick 1. Lineare dynamische Analysen 2. Nichtlineare Analysen 3. Weitere Anwendungen Prof. Dr. Wandinger 5. Ausblick FEM 5-1 1. Lineare dynamische Analysen Beschleunigungen: Bei linearen dynamischen

Mehr

9.4 Stationäre kompressible Strömungen in Rohren oder Kanälen konstanten Querschnitts

9.4 Stationäre kompressible Strömungen in Rohren oder Kanälen konstanten Querschnitts 9.4 Stationäre kompressible Strömungen in Rohren oder Kanälen konstanten Querschnitts Die Strömung tritt mit dem Zustand 1 in die Rohrleitung ein. Für ein aus der Rohrstrecke herausgeschnittenes Element

Mehr

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4. 4. Die ebene Platte 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.4-1 Schallabstrahlung einer unendlichen ebenen Platte: Betrachtet

Mehr

Kompressible Strömungen

Kompressible Strömungen Kompressible Strömungen Problemstellungen: - Wie lassen sich Überschallströmungen realisieren? - Welche Windkanalgeometrie ist notwendig? - Thermodynamische Beziehungen in Überschallströmungen? - Unterschall

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Wenn die Bahn des Massenpunkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort im Raum zu bestimmen. Es muss ein Ortsvektor angegeben werden. Prof.

Mehr

3. Fluid-Struktur-Kopplung

3. Fluid-Struktur-Kopplung 3. Fluid-Struktur-Kopplung Bei einer schwingenden Struktur muss die Normalkomponente der Schallschnelle mit der Normalkomponente der Geschwindigkeit an der Oberfläche der Struktur übereinstimmen. Dadurch

Mehr

1. Eindimensionale Bewegung

1. Eindimensionale Bewegung 1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Punkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung bewegt sich der Punkt

Mehr

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik II - Lösung 04. Aufgabe 6: (1): p 1 = 1 bar, t 1 = 15 C.

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik II - Lösung 04. Aufgabe 6: (1): p 1 = 1 bar, t 1 = 15 C. Aufgabe 6: 2) 3) ): p = bar, t = 5 C 2): p 2 = 5 bar ) 3): p 3 = p 2 = 5 bar, t 3 = 5 C Die skizzierte Druckluftanlage soll V3 = 80 m 3 /h Luft vom Zustand 3) liefern. Dazu wird Luft vom Zustand ) Umgebungszustand)

Mehr

3. Prinzip der virtuellen Arbeit

3. Prinzip der virtuellen Arbeit 3. Prinzip der virtuellen rbeit Mit dem Satz von Castigliano können erschiebungen für Freiheitsgrade berechnet werden, an denen Lasten angreifen. Dabei werden nicht immer alle Terme der Formänderungsenergie

Mehr

5. Zustandsgleichung des starren Körpers

5. Zustandsgleichung des starren Körpers 5. Zustandsgleichung des starren Körpers 5.1 Zustandsgleichung 5.2 Körper im Schwerefeld 5.3 Stabilität freier Rotationen 2.5-1 5.1 Zustandsgleichung Zustand: Der Zustand eines starren Körpers ist durch

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 2 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3 Bilanzgleichungen 3.3.1 Massebilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

2. Translation und Rotation

2. Translation und Rotation 2. Translation und Rotation 2.1 Rotation eines Vektors 2.2 Rotierendes ezugssystem 2.3 Kinetik Prof. Dr. Wandinger 2. Relativbewegungen Dynamik 2 2.2-1 2.1 Rotation eines Vektors Gesucht wird die zeitliche

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Prof. Dr. Wandinger 1. Kinematik des Punktes TM 3 1.2-1 2. Räumliche Bewegung Wenn die Bahn des Punkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort

Mehr

IV. Strömungen eines idealen Fluids

IV. Strömungen eines idealen Fluids IV. Strömungen eines idealen Fluids Dieses Kapitel befasst sich mit einigen Lösungen des Systems von Gleichungen (III.8), (III.18) und (III.4) für die Bewegung eines idealen Fluids. Dabei wird angenommen,

Mehr

Materialien WS 2014/15 Dozent: Dr. Andreas Will.

Materialien WS 2014/15 Dozent: Dr. Andreas Will. Master Umweltingenieur, 1. Semester, Modul 42439, Strömungsmechanik, 420607, VL, Do. 11:30-13:00, R. 3.21 420608, UE, Do. 13:45-15:15, R. 3.17 Materialien WS 2014/15 Dozent: Dr. Andreas Will will@tu-cottbus.de

Mehr

1. Bewegungsgleichung

1. Bewegungsgleichung 1. Bewegungsgleichung 1.1 Das Newtonsche Grundgesetz 1.2 Dynamisches Gleichgewicht 1.3 Geführte Bewegung 1.4 Massenpunktsysteme 1.5 Schwerpunktsatz Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik

Mehr

1 Thermodynamik allgemein

1 Thermodynamik allgemein Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der

Mehr

3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1

3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1 3. Impuls und Drall Die Integration der Bewegungsgleichung entlang der Bahn führte auf die Begriffe Arbeit und Energie. Die Integration der Bewegungsgleichung bezüglich der Zeit führt auf die Begriffe

Mehr

4. Das Verfahren von Galerkin

4. Das Verfahren von Galerkin 4. Das Verfahren von Galerkin 4.1 Grundlagen 4.2 Methode der finiten Elemente 4.3 Beispiel: Stab mit Volumenkraft Prof. Dr. Wandinger 3. Prinzip der virtuellen Arbeit FEM 3.4-1 4.1 Grundlagen Das Verfahren

Mehr

4. Wirbelsätze. ω= v. Er beschreibt die Drehung einer Strömung. Aus der für jedes Vektorfeld w gültigen Beziehung. ω=0

4. Wirbelsätze. ω= v. Er beschreibt die Drehung einer Strömung. Aus der für jedes Vektorfeld w gültigen Beziehung. ω=0 Wirbelvektor: Der Wirbelvektor ist definiert durch ω= v Er beschreibt die Drehung einer Strömung. Aus der für jedes Vektorfeld w gültigen Beziehung ( w )=0 folgt: ω=0 Wirbellinien sind Kurven, deren Tangente

Mehr

Kapitel 4. Thermodynamisches Gleichgewicht zwischen zwei Systemen. 4.1 Systeme im thermischen Kontakt 1; E 1 =? 2; E 2 =?

Kapitel 4. Thermodynamisches Gleichgewicht zwischen zwei Systemen. 4.1 Systeme im thermischen Kontakt 1; E 1 =? 2; E 2 =? Kapitel 4 hermodynamisches Gleichgewicht zwischen zwei Systemen Im letzten Abschnitt haben wir am Beispiel des idealen Gases die Entropie (S(E)) bestimmt, und zwar im Rahmen des mikrokanonischen Ensembles

Mehr

Hyperbolische Erhaltungsgleichungen und die Wellengleichung

Hyperbolische Erhaltungsgleichungen und die Wellengleichung Hyperbolische Erhaltungsgleichungen und die Wellengleichung Stefanie Günther Universität Trier 11.November 2010 Stefanie Günther (Universität Trier) Seminar Numerik 1/29 11.November 2010 1 / 29 Inhaltsverzeichnis

Mehr

Projektbericht Kondensation an einem Fenster

Projektbericht Kondensation an einem Fenster Projektbericht Kondensation an einem Fenster Florian Hanzer Ruth Kalthaus Sommersemester 2009 Einleitung Da Glas ein relativ guter Wärmeleiter ist, sind Fenster einer der größten Schwachpunkte in Bezug

Mehr

4.6.5 Dritter Hauptsatz der Thermodynamik

4.6.5 Dritter Hauptsatz der Thermodynamik 4.6 Hauptsätze der Thermodynamik Entropie S: ds = dq rev T (4.97) Zustandsgröße, die den Grad der Irreversibilität eines Vorgangs angibt. Sie ist ein Maß für die Unordnung eines Systems. Vorgänge finden

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 3. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 3. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 3 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3 Bilanzgleichungen 3.3.1 Massebilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Thermodynamik I Formeln

Thermodynamik I Formeln Thermodynamik I Formeln Tobi 4. September 2006 Inhaltsverzeichnis Thermodynamische Systeme 3. Auftriebskraft........................................ 3 2 Erster Hauptsatz der Thermodynamik 3 2. Systemenergie........................................

Mehr

X.3.1 Energiedichte und -stromdichte des elektromagnetischen Feldes

X.3.1 Energiedichte und -stromdichte des elektromagnetischen Feldes X.3 Energie und Impuls des elektromagnetischen Feldes 169 X.3 Energie und Impuls des elektromagnetischen Feldes Genau wie mechanische Systeme trägt das elektromagnetische Feld Energie ( X.3.1 und Impuls

Mehr

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17 Karlsruher Institut für echnologie Institut für heorie der Kondensierten Materie Moderne heoretische Physik III (heorie F Statistische Mechanik) SS 17 Prof. Dr. Alexander Mirlin Blatt 2 PD Dr. Igor Gornyi,

Mehr

Lösung II Veröffentlicht:

Lösung II Veröffentlicht: 1 Momentane Bewegung I Die Position eines Teilchens auf der x-achse, ist gegeben durch x = 3m 30(m/s)t + 2(m/s 3 )t 3, wobei x in Metern und t in Sekunden angeben wird (a) Die Position des Teilchens bei

Mehr

Mode der Bewegung, Freiheitsgrade

Mode der Bewegung, Freiheitsgrade Mode der Bewegung, Freiheitsgrade Bewegungsmoden (normal modes of motion) : Jede UNABHÄNGIGE Bewegungsmöglichkeit der Atome (unabhängig: im quantenmechanischen Sinne durch orthogonale Wellenfunktionen

Mehr

O. Sternal, V. Hankele. 5. Thermodynamik

O. Sternal, V. Hankele. 5. Thermodynamik 5. Thermodynamik 5. Thermodynamik 5.1 Temperatur und Wärme Systeme aus vielen Teilchen Quelle: Wikimedia Commons Datei: Translational_motion.gif Versuch: Beschreibe 1 m 3 Luft mit Newton-Mechanik Beschreibe

Mehr

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten In Anwesenheit eines äußeren magnetischen Felds B entsteht in der paramagnetischen Phase eine induzierte Magnetisierung M. In der ferromagnetischen Phase führt B zu einer Verschiebung der Magnetisierung

Mehr

Formel X Leistungskurs Physik 2001/2002

Formel X Leistungskurs Physik 2001/2002 Versuchsaufbau: Messkolben Schlauch PI Barometer TI 1 U-Rohr-Manometer Wasser 500 ml Luft Pyknometer 2 Bild 1: Versuchsaufbau Wasserbad mit Thermostat Gegeben: - Länge der Schläuche insgesamt: 61,5 cm

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj Aufgabe 4 Zylinder nach oben offen Der dargestellte Zylinder A und der zugehörige bis zum Ventil reichende Leitungsabschnitt enthalten Stickstoff. Dieser nimmt im Ausgangszustand ein Volumen V 5,0 dm 3

Mehr

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung Vorlesungsfolien Mathematik 3 WS 2010/11 Dr. Leonhard Wieser UMIT Einleitung Begriff Vektoranalysis: Kombination aus Linearer Algebra/Vektorrechnung mit Differential- und Integralrechnung Inhaltsangabe:

Mehr

Bernoulligleichung. umax. Bernoulligleichung. Stromfadenvorstellung. Bild 1: Stromfaden als Sonderform der Stromröhre

Bernoulligleichung. umax. Bernoulligleichung. Stromfadenvorstellung. Bild 1: Stromfaden als Sonderform der Stromröhre Bernoulligleichung 1 Bernoulligleichung Stromfadenvorstellung Bild 1: Stromfaden als Sonderform der Stromröhre Im Arbeitsblatt Kontinuitätsgleichung wurde die Stromröhre eingeführt. Sie ist ein Bilanzgebiet

Mehr

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System:

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System: Theorie der Wärme kann auf zwei verschiedene Arten behandelt werden. mikroskopisch: Bewegung von Gasatomen oder -molekülen. Vielzahl von Teilchen ( 10 23 ) im Allgemeinen nicht vollständig beschreibbar

Mehr

Institut für Strömungsmechanik und Elektron. Rechnen im Bauwesen der Universität Hannover

Institut für Strömungsmechanik und Elektron. Rechnen im Bauwesen der Universität Hannover ! H W B - Bibliothek!nv.-Nr. p Institut für Strömungsmechanik und Elektron. Rechnen im Bauwesen der Universität Hannover BERICHT NR. 24/1987 Technische Universität Darmslacit Bibliothek Wasser und Umwelt

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 6 Dr. P. P. Orth bgabe und Besprechung 6.12.213 1. Vektoranalysis I (2

Mehr

Inhalt dieses Vorlesungsteils - ROADMAP

Inhalt dieses Vorlesungsteils - ROADMAP Inhalt dieses Vorlesungsteils - ROADMAP 2 Von der Kavitation zur Sonochemie 21 Industrieller Einsatz von Ultraschall 22 Physikalische Grundlagen I Was ist Ultraschall? 23 Einführung in die Technik des

Mehr

Numerische Simulation der Störungsausbreitung. Berücksichtigung nichtlinearer Effekte

Numerische Simulation der Störungsausbreitung. Berücksichtigung nichtlinearer Effekte DGLR Fachausschußsitzung T 2.3 Strömungsakustik/Fluglärm Numerische Simulation der Störungsausbreitung in Düsenströmungen unter Berücksichtigung nichtlinearer Effekte Hermann-Föttinger-Intitut Technische

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

d) Das ideale Gas makroskopisch

d) Das ideale Gas makroskopisch d) Das ideale Gas makroskopisch Beschreibung mit Zustandsgrößen p, V, T Brauchen trotzdem n, R dazu Immer auch Mikroskopische Argumente dazunehmen Annahmen aus mikroskopischer Betrachtung: Moleküle sind

Mehr

2. Fluide Phasen. 2.1 Die thermischen Zustandsgrößen Masse m [m] = kg

2. Fluide Phasen. 2.1 Die thermischen Zustandsgrößen Masse m [m] = kg 2. Fluide Phasen 2.1 Die thermischen Zustandsgrößen 2.1.1 Masse m [m] = kg bestimmbar aus: Newtonscher Bewegungsgleichung (träge Masse): Kraft = träge Masse x Beschleunigung oder (schwere Masse) Gewichtskraft

Mehr

Enthalpienullpunkt von Luft und Wasser am Tripelpunkt des siedenden Wassers T=T tr = 273,16 K:

Enthalpienullpunkt von Luft und Wasser am Tripelpunkt des siedenden Wassers T=T tr = 273,16 K: 3.3.5 Energiebilanz bei der Mischung feuchter Luft Bezugsgröße: Masse der trockenen Luft m L Beladung: Auf die Masse der Luft bezogene Enthalpie Enthalpienullpunkt von Luft und Wasser am Tripelpunkt des

Mehr

Aufgabe 1: Kolben. Allgemeine Hinweise:

Aufgabe 1: Kolben. Allgemeine Hinweise: Matrikelnummer Anzahl der bisherigen Antritte Familienname Vorname Allgemeine Hinweise: Alle Blätter sind mit Namen und Matrikelnummer zu versehen. Aus der Beschriftung muss deutlich ersichtlich sein,

Mehr

Zusammenfassung: Flächenintegrale

Zusammenfassung: Flächenintegrale Zusammenfassung: Flächenintegrale Gerichtetes Flächenelement: "Fluss" durch Flächenelement: "Fläche über G": "Fluss" durch die Fläche : Für orthogonale Koordinaten: Betrag des Flächenelements: Richtung:

Mehr

Allgemeines Gasgesetz. PV = K o T

Allgemeines Gasgesetz. PV = K o T Allgemeines Gasgesetz Die Kombination der beiden Gesetze von Gay-Lussac mit dem Gesetz von Boyle-Mariotte gibt den Zusammenhang der drei Zustandsgrößen Druck, Volumen, und Temperatur eines idealen Gases,

Mehr

TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik 1. Dr. M. Herrich SS 2017

TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik 1. Dr. M. Herrich SS 2017 TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik 1 Prof. Dr. K. Eppler Institut für Numerische Mathematik Dr. M. Herrich SS 2017 Aufgabe 1 Übungen zur Vorlesung Mathematik II 4. Übung,

Mehr

1. Prinzip von d'alembert

1. Prinzip von d'alembert 1. Prinzip von d'alembert 1.1 Freiheitsgrade 1.2 Zwangsbedingungen 1.3 Virtuelle Geschwindigkeiten 1.4 Prinzip der virtuellen Leistung Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik 2 5.1-1 1.1

Mehr

5. Die Thermodynamischen Potentiale

5. Die Thermodynamischen Potentiale 5. Die hermodynamischen Potentiale 5.1. Einführung der Potentiale Gibbs'sche Fundamentalgleichung. d = du + d, du + d δ Q d = = Ist die Entroie als Funktion von U und bekannt, = ( U, ) dann lassen sich

Mehr

GPH2 Thermodynamik. 27. September Dieser Entwurf ist weder vollständig oder fehlerfrei noch ein offizielles Script zur Vorlesung.

GPH2 Thermodynamik. 27. September Dieser Entwurf ist weder vollständig oder fehlerfrei noch ein offizielles Script zur Vorlesung. GPH2 Thermodynamik Dieser Entwurf ist weder ollständig oder fehlerfrei noch ein offizielles Scrit zur Vorlesung. Für Anregungen und Kritik: mail@sibbar.de 27. Setember 2004 GPH2 Thermodynamik Seite 2 on

Mehr

Einführung in die Physik I. Schwingungen und Wellen 3

Einführung in die Physik I. Schwingungen und Wellen 3 Einführung in die Physik Schwingungen und Wellen 3 O. von der Lühe und U. Landgraf Elastische Wellen (Schall) Elastische Wellen entstehen in Flüssigkeiten und Gasen durch zeitliche und räumliche Veränderungen

Mehr

5.1 Gruppe paralleler Kräfte 5.2 Körperschwerpunkt 5.3 Flächenschwerpunkt. 5. Schwerpunkt. Prof. Dr. Wandinger 1. Statik TM 1.5-1

5.1 Gruppe paralleler Kräfte 5.2 Körperschwerpunkt 5.3 Flächenschwerpunkt. 5. Schwerpunkt. Prof. Dr. Wandinger 1. Statik TM 1.5-1 5.1 Gruppe paralleler Kräfte 5.2 Körperschwerpunkt 5.3 Flächenschwerpunkt 5. Schwerpunkt Prof. Dr. Wandinger 1. Statik TM 1.5-1 5.1 Gruppe paralleler Kräfte G 1 G 2 G R G i G n P x x 1 S x S Gesucht: Angriffspunkt,

Mehr

16 Vektorfelder und 1-Formen

16 Vektorfelder und 1-Formen 45 16 Vektorfelder und 1-Formen 16.1 Vektorfelder Ein Vektorfeld v auf D R n ist eine Abbildung v : D R n, x v(x). Beispiele. Elektrisches und Magnetisches Feld E(x), B(x), Geschwindigkeitsfeld einer Strömung

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Cornel Stan Thermodynamik des Kraftfahrzeugs Mit 200 Abbildungen und 7 Tabellen Springer Inhaltsverzeichnis Liste der Formelzeichen XV 1 Grundlagen der Technischen Thermodynamik 1 1.1 Gegenstand und Untersuchungsmethodik

Mehr

Kleine Formelsammlung Technische Thermodynamik

Kleine Formelsammlung Technische Thermodynamik Kleine Formelsammlung Technische Thermodynamik von Prof. Dr.-Ing. habil. Hans-Joachim Kretzschmar und Prof. Dr.-Ing. Ingo Kraft unter Mitarbeit von Dr.-Ing. Ines Stöcker 2., aktualisierte Auflage Fachbuchverlag

Mehr

c ) Wie verhält sich die Enthalpieänderung, wenn das Wasser in einer Düse beschleunigt wird?

c ) Wie verhält sich die Enthalpieänderung, wenn das Wasser in einer Düse beschleunigt wird? Aufgabe 4 An einer Drosselstelle wird ein kontinuierlich fließender Strom von Wasser von p 8 bar auf p 2 2 bar entspannt. Die Geschwindigkeiten vor und nach der Drosselung sollen gleich sein. Beim des

Mehr

3 Der 1. Hauptsatz der Thermodynamik

3 Der 1. Hauptsatz der Thermodynamik 3 Der 1. Hauptsatz der Thermodynamik 3.1 Der Begriff der inneren Energie Wir betrachten zunächst ein isoliertes System, d. h. es können weder Teilchen noch Energie mit der Umgebung ausgetauscht werden.

Mehr

Molekulare Bioinformatik

Molekulare Bioinformatik Molekulare Bioinformatik Wintersemester 2013/2014 Prof. Thomas Martinetz Institut für Neuro- und Bioinformatik Universität zu Luebeck 14.01.2014 1 Molekulare Bioinformatik - Vorlesung 11 Wiederholung Wir

Mehr

3.3 Schalldämpfer. Prof. Dr. Wandinger 3. Schallausbreitung in Rohren Akustik 3.3-1

3.3 Schalldämpfer. Prof. Dr. Wandinger 3. Schallausbreitung in Rohren Akustik 3.3-1 3.3 Schalldämpfer Prof. Dr. Wandinger 3. Schallausbreitung in Rohren Akustik 3.3-1 3. Schalldämpfer Schalldämpfer haben die Aufgabe, das durch sie transportierte Schallfeld abzuschwächen. Reflexionsschalldämpfer:

Mehr

"Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab"

Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab V4.2 - V4.3: Integralsätze der Vektoranalysis [Notation in diesem Kapitel: Vorausschau/Überblick: alle Indizes unten!] "Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab" Hauptsatz

Mehr

Akustik. t 1 > t 0. x = c t

Akustik. t 1 > t 0. x = c t Akustik Wir kehren jetzt von der Wärmestrahlung (im Sinne der Thermodynamik eines Photonengases) zurück zu einem normalen Gas (oder gar einem Festkörper) und betrachten, wie sich eine Störung im Medium

Mehr

2 Grundbegriffe der Thermodynamik

2 Grundbegriffe der Thermodynamik 2 Grundbegriffe der Thermodynamik 2.1 Thermodynamische Systeme (TDS) Aufteilung zwischen System und Umgebung (= Rest der Welt) führt zu einer Klassifikation der Systeme nach Art der Aufteilung: Dazu: adiabatisch

Mehr

4. Stoßvorgänge. Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten.

4. Stoßvorgänge. Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten. 4. Stoßvorgänge Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten. Gesucht wird ein Zusammenhang zwischen den Geschwindigkeiten vor dem

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Thermodynamik des Kraftfahrzeugs Bearbeitet von Cornel Stan 1. Auflage 2012. Buch. xxiv, 598 S. Hardcover ISBN 978 3 642 27629 3 Format (B x L): 15,5 x 23,5 cm Gewicht: 1087 g Weitere Fachgebiete > Technik

Mehr

Pendel, starre Körper und Drehmoment

Pendel, starre Körper und Drehmoment Pendel, starre Körper und Drehmoment Pendel, starre Körper, Dremoment (Ruhr-Universität Bochum) 20. November 2013 1/ 27 Lernziele Ein rotierendes System ist immer auch ein beschleunigtes System Die Schwingungsdauer

Mehr

Thermodynamik I - Übung 1. Nicolas Lanzetti

Thermodynamik I - Übung 1. Nicolas Lanzetti Thermodynamik I - Übung 1 Nicolas Lanzetti Nicolas Lanzetti 02.10.2015 1 Hinweise zu der Übung Name: Nicolas Lanzetti; 5. Semester Maschinenbau; Mail: Raum: CHN C14; Zeit: Freitag, 8:15-10:00; Alle Unterlagen:

Mehr

Fallender Stein auf rotierender Erde

Fallender Stein auf rotierender Erde Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen

Mehr

Grundlagen der statistischen Physik und Thermodynamik

Grundlagen der statistischen Physik und Thermodynamik Grundlagen der statistischen Physik und Thermodynamik "Feuer und Eis" von Guy Respaud 6/14/2013 S.Alexandrova FDIBA 1 Grundlagen der statistischen Physik und Thermodynamik Die statistische Physik und die

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr

Statistische Thermodynamik I Lösungen zur Serie 11

Statistische Thermodynamik I Lösungen zur Serie 11 Statistische Thermodynamik I Lösungen zur Serie Verschiedenes 20 Mai 206 Barometrische Höhenformel: Betrachte die rdatmosphäre im homogenen Gravitationspotential M gz der rde Unter der Annahme, dass sich

Mehr

9.3 Stationäre, kompressible und reibungsfreie Strömungen in Rohren oder Kanälen mit veränderlichem Querschnitt

9.3 Stationäre, kompressible und reibungsfreie Strömungen in Rohren oder Kanälen mit veränderlichem Querschnitt 9.3 Stationäre, kompressible und reibungsfreie Strömungen in Rohren oder Kanälen mit veränderlichem Querschnitt 9.3.1 Düse und Diffusor im unter- und überschallschnellen Strömungen Kontinuität Impuls (reibungsfrei)

Mehr

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung.

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Nullter und Erster Hauptsatz der Thermodynamik. Thermodynamische

Mehr

Zur Erinnerung. Stichworte aus der 12. Vorlesung: Dehnung Scherung Torsion. Hysterese. Gleit-, Roll- und Haftreibung. Druck hydrostatischer Druck

Zur Erinnerung. Stichworte aus der 12. Vorlesung: Dehnung Scherung Torsion. Hysterese. Gleit-, Roll- und Haftreibung. Druck hydrostatischer Druck Stichworte aus der 12. Vorlesung: Zur Erinnerung Aggregatzustände: Dehnung Scherung Torsion Hysterese Reibung: fest, flüssig, gasförmig Gleit-, Roll- und Haftreibung Hydrostatik ideale Flüssigkeit Druck

Mehr

Finite Differenzen Methode (FDM)

Finite Differenzen Methode (FDM) Finite Differenzen Methode (FDM) /home/lehre/vl-mhs-1/folien/vorlesung/2_fdm/deckblatt_fdm.tex Seite 1 von 15. p.1/15 Inhaltsverzeichnis 1. Problemdarstellung 2. Bilanzgleichungen 3. Finite Differenzen-Approximation

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas Thermodynamik Teilgebiet der klassischen Physik. Wir betrachten statistisch viele Teilchen. Informationen über einzelne Teilchen werden nicht gewonnen bzw.

Mehr

- 1 - angeführt. Die Beschleunigung ist die zweite Ableitung des Ortes x nach der Zeit, und das Gesetz lässt sich damit als 2.

- 1 - angeführt. Die Beschleunigung ist die zweite Ableitung des Ortes x nach der Zeit, und das Gesetz lässt sich damit als 2. - 1 - Gewöhnliche Differentialgleichungen Teil I: Überblick Ein großer Teil der Grundgesetze der Phsik ist in Form von Gleichungen formuliert, in denen Ableitungen phsikalischer Größen vorkommen. Als Beispiel

Mehr

Modell der Punktmasse

Modell der Punktmasse Kinematik Die Kinematik (kinema, griech., Bewegung) ist die Lehre von der Bewegung von Punkten und Körpern im Raum, beschrieben durch die Größen Weg (Änderung der Ortskoordinate) s, Geschwindigkeit v und

Mehr

12.1 Fluideigenschaften

12.1 Fluideigenschaften 79 Als Fluide bezeichnet man Kontinua mit leicht verschieblichen Teilen. Im Unterschied zu festen Körpern setzen sie langsamen Formänderungen ohne Volumenänderung nur geringen Widerstand entgegen. Entsprechend

Mehr

Erstellung von Simulationsmodellen In MATLAB/Simulink Christian Müller

Erstellung von Simulationsmodellen In MATLAB/Simulink Christian Müller Erstellung von Simulationsmodellen In MATLAB/Simulink Christian Müller Vorlesung AFS, 06.06.007 1 Letzte Woche: Auslegung der Klimaanlage durch stationäre Gleichungen Berechnung des Gleichgewichtszustand

Mehr

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir Klassische Theoretische Physik TP-L - WS 2013/14 Mathematische Methoden 8.1.2014 Frank Bertoldi (Version 2) Abbildungen und Beispiele aus F. Embacher "Mathematische Grundlagen..." und "Elemente der theoretischen

Mehr

Inhaltsverzeichnis. Formelzeichen...XIII. 1 Einleitung Einheiten physikalischer Größen...3

Inhaltsverzeichnis. Formelzeichen...XIII. 1 Einleitung Einheiten physikalischer Größen...3 Inhaltsverzeichnis Formelzeichen...XIII 1 Einleitung...1 2 Einheiten physikalischer Größen...3 3 Systeme...6 3.1 Definition von Systemen...6 3.2 Systemarten...7 3.2.1 Geschlossenes System...7 3.2.2 Offenes

Mehr

4. Wellenausbreitung

4. Wellenausbreitung Motivation: Beim Stab konnten Lösungen der Form gefunden werden. u x,t = f 1 x ct f 2 x ct Diese Lösungen beschreiben die Ausbreitung von Wellen im Stab. Die Funktionen f 1 x und f 2 x werden durch die

Mehr

2. so rasch ausströmen, dass keine Wärmeübertragung stattfinden kann.

2. so rasch ausströmen, dass keine Wärmeübertragung stattfinden kann. Aufgabe 33 Aus einer Druckluftflasche V 50 dm 3 ) mit einem Anfangsdruck p 0 60 bar strömt solange Luft in die Umgebung p U bar, T U 300 K), bis der Druck in der Flasche auf 0 bar gefallen ist. Dabei soll

Mehr

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist.

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist. Beim Differenzieren von Vektoren im Zusammenhang mit den Kreisbewegungen haben wir bereits gesehen, dass ein Vektor als dreiwertige Funktion a(x, y, z) aufgefasst werden kann, die an jedem Punkt im dreidimensionalen

Mehr

1 Mathematische Hilfsmittel

1 Mathematische Hilfsmittel Mathematische Hilfsmittel. Vektoranalysis Wiederholung Vektor: Länge und Richtung Vektoraddition: A + B = B + A (A + B) + C = A + (B + C) kartesische Koordinaten: B A + B = i (a i + b i )e i A+B Multiplikation

Mehr

3 Grundlegende strömungstechnische und thermodynamische Voraussetzungen

3 Grundlegende strömungstechnische und thermodynamische Voraussetzungen 3 Grundlegende strömungstechnische und thermodynamische Voraussetzungen 3.1 Stationär durchströmte offene Systeme - Grundlegende Beziehungen - nergiesatz stationär durchströmter offener Systeme - nwendung

Mehr

Wir erinnern zunächst an die verschiedenen Arten von Funktionen, die uns bisher begegnet sind: V : r 0 3 V ( r) 0 3

Wir erinnern zunächst an die verschiedenen Arten von Funktionen, die uns bisher begegnet sind: V : r 0 3 V ( r) 0 3 3 1. Mathematische Grundlagen Zur Vorbereitung fassen wir in diesem ersten Kapitel die wichtigsten mathematischen Konzepte zusammen, mit denen wir in der Elektrodynamik immer wieder umgehen werden. 1.1.

Mehr