Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik II - Lösung 04. Aufgabe 6: (1): p 1 = 1 bar, t 1 = 15 C.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik II - Lösung 04. Aufgabe 6: (1): p 1 = 1 bar, t 1 = 15 C."

Transkript

1 Aufgabe 6: 2) 3) ): p = bar, t = 5 C 2): p 2 = 5 bar ) 3): p 3 = p 2 = 5 bar, t 3 = 5 C Die skizzierte Druckluftanlage soll V3 = 80 m 3 /h Luft vom Zustand 3) liefern. Dazu wird Luft vom Zustand ) Umgebungszustand) angesaugt, auf den Zustand 2) verdichtet und danach in einem wärmeisolierten Wärmeübertrager isobar auf die Temperatur t 3 zurückgekühlt. Die Verdichtung erfolgt irreversibel adiabat. Der isentrope Wirkungsgrad beträgt dabei η s,v = w t,is = 0,8. w t,real a) Skizzieren Sie die Zustandsänderungen der Luft in einem p,v-diagramm. b) Berechnen Sie die Temperatur t 2 der Luft nach der irreversibel adiabaten Verdichtung. c) Wie groß ist der Volumenstrom V in m 3 /h) der angesaugten Luft? d) Welcher Wärmestrom Q in kj/h) wird im Wärmeübertrager von der Druckluft an das Kühlwasser abgegeben? Weitere Angaben: Änderungen der kinetischen und potentiellen Energien sollen vernachlässigt werden. Luft soll als perfektes Gas mit der Gaskonstanten R = 0,287 kj/kgk) und der spezifischen Wärmekapazität c p =,0 kj/kgk) betrachtet werden. Gegeben: V3 = 80 m 3 /h η s,v := w t,is /w t,real = 0, 8 R = 0,287 kj/kgk) c p =,0 kj/kgk) Zustand : p = p u = bar t = t u = 5 C Zustand 2: p 2 = 5 bar Zustand 3: p 3 = p 2 = 5 bar t 3 = t = 5 C 2 irrev. adiabate Verdichtung 2 3 isobare, adiabate Kühlung

2 a ) Skizzieren Sie die Zustandsänderungen ZÄ) der Luft in einem p,v-diagramm. Für spezifische technische Arbeiten gilt, unter Vernachlässigung der potentiellen und der kinetischen Energien: rev. adiabat isentrop: w t,2,is = irrev. adiabat: w t,2,real = w t,2,real > w t,2,is 2 vp)dp 2 vp)dp + w R,2 Es gilt: die spez. techn. Arbeit entspricht in einem p-v-diagramm der Fläche unter der Kurve vp), w t = vp)dp). die Steigung einer irrev. Zustandsänderung muss im p-v-diagramm größer als die einer reversiblen Zustandsänderung sein. Es ergibt sich folgendes Diagramm: b) Berechnen Sie die Temperatur t 2 der Luft nach der irreversibel adiabaten Verdichtung. Gesucht: Temperatur t 2 2 reale Verdichtung w t,2 w t,2,real Systemgrenze festlegen: System Verdichter siehe Skizze) Bekannt ist der isentrope Verdichterwirkungsgrad η s,v := w t,is /w t,real = 0, 8 mit w t,rev = w t,isentrop siehe Aufgabe a)) 2 η s,v = w t,is = w t,is = h 2,is h w t,real w t,real h 2 h 3 Temperatur aus spez. Enthalpie: Luft ist als perf. Gas anzunehmen siehe Aufgabenstellung) dh = c p dt η s,v = h 2,isentrop h h 2 h = T 2,isentrop T T 2 T 2

3 Einzige Unbekannte ist T 2,isentrop. T 2 = T 2,isentrop T η s,v + T Für isentrope Zustandsänderungen gilt: p 2,isentrop = p 2, aber T 2,isentrop T 2 Diagramm) siehe Für eine isentrope Zustandsänderung gilt: T 2,isentrop T = T 2,isentrop = T p2,isentrop = c p c p R = 000 J/kgK) 000 J/kgK) 287 j/kgk) =, 4 p2,isentrop T 2 = T 2,isentrop T η s,v Möglichkeit 2: Lösung über.hs η s,v = p ) = , 5)K T 2,isentrop = 456, 38 K + T = 456, 38 K 288, 5 K 0, 8 T 2 = 498, 44 K t 2 = 225, 29 C p ) = ),4 5 bar,4 bar + 288, 5 K w t,is w t,real mit w t,rev = w t,2 und w t,real = w t,2. Hauptsatz für stationäre Fließprozesse spezifisch): q 0 c 2 + w t,2 = 2 h g 0 2 z p2 Luft ist als perfektes Gas zu behandeln dh = c p dt 2 h = c p T 2 T ) Nach gesuchter Größe umstellen: w t,2 = 2 h = c p T 2 T ) T 2 = w t,2 c p + T *) p ) einzige Unbekannte Größe ist nun noch w t,2 irreversibel); Bestimmung über gegebenen isentropen Verdichterwirkungsgrad. w t,is η s,v := = w t,2 = 0, 8 w t,real w t,2 w t,2 = w t,2 0, 8 2*) 3

4 Unbekannte Größe ist w t,2 ; 2 ideale Verdichtung Zur Bestimmung von w t,2 gibt es 2 Möglichkeiten: Möglichkeit : bei einer idealen Verdichtung ist der Prozess reversibel und somit w R = 0. w t,2 = w t,2 = Isentropengleichung für Volumenbeziehung: 2 2 vp)dp + w R,2 + 2 c2 2 c2 ) + g z 2 z ) vp)dp + w 0 R,2 + 2 c c2 ) + g z 0 2 z ) 2 rev. adiabat isentrop: ) p 2 v = p v 2 p 2 = p 2, siehe Diagramm a) p ) 2 v = v p v 2 2 = vp) = w t,2 = p v [ ] 2 w t,2 = p v p = p v [ p2 w t,2 = p p }{{} p p p =p w t,2 v w t,2 = R T p ) 2 ) dp p ] p = p v p 2 ideale Gasgleichung: p v = R T [ p2 ) ] ; = c p R = R T cp R [ p2 p p ) R cp ] = T c p [ p2 p ) p v p ) ; p 2 = p 2 [ p2 p ) R cp ] ) ) 287 J/kgK) w t,2 = , 5)K 000 J/kgK) 5 bar 000 J/kgK) = 69, 7 kj/kg bar Möglichkeit 2: über. Hauptsatz ] T 2 q w t,2 aus Isentropengleichung: T 2 = T p2 p ) R cp = 2 h + 0 c g z w t,2 = 2 h = c p T 2 T ) einzige Unbekannte ist T 2 ) T 2 p2 = ; p2 = p 2 und T p ) 5 bar = , 5)K bar 287 J/kgK) = c p R 000 J/kgK) = 457, 32 K 4

5 w t,2 = c p T 2 T ) = 000 J/kgK) 457, 32 K , 5)K) = 69, 7 kj/kg Jetzt müssen nur noch alle Größen eingesetzt werden: Gleichung 2*) in *) T 2 = w t,2 c p 0, 8 + T = 69, 7 03 J/kg , 5)K = 499, 6 K 000 J/kgK) 0, 8 t 2 = 226, 46 C Abweichung zum. Ergebnis aufgrund von Rundungsfehlern) c) Wie groß ist der Volumenstrom V in m 3 /h) der angesaugten Luft? Gesucht: V in m 3 /h) Pinzipiell gilt: ṁ = ṁ 2 = ṁ 3 = ṁ = const., m = ρ V ṁ = ρ V V = ṁ = ρ V = ρ 3 V 3 = ṁ 3 V = ρ 3 ρ V 3 ; die Dichten ergeben sich aus der id. Gasgl.: ρ = p R T p 3 R T 3 p V 3 ; R T = R T 3 V p 3 = p V 3 = 5 bar bar 80 m3 /h = 400 m 3 /h R T d) Welcher Wärmestrom Q in kj/h) wird im Wärmeübertrager von der Druckluft an das Kühlwasser abgegeben? Gesucht: Q in kj/h) allg. gilt: Q = q ṁ Unbekannte sind q und ṁ Beachte: Q L = Q ea = Q 23, aber q L = q ea, da ṁ L ṁ w spez. Wärmemenge q gesucht Systemgrenze einzeichnen Durch die beliebige Wahl der Systemgrenzen ergeben sich 3 mögliche Lösungswege für diese Aufgabe. Möglichkeit : System Wasser Q ea = q ea ṁ w Vorüberlegung: Die Luft soll gekühlt werden Wasser muss Wärme aufnehmen q ea muss größer Null sein egozentrische Systembetrachtung). Hauptsatz: spez. Enthalpie bestimmen: reale Fluide q ea + w 0 c t,ea = ea h ea 2 + g 0 ea z Wasser wird als inkompressibles Medium angenommen, vereinfachende Annahme: dp = 0 5

6 ) h Es folgt: dh = dt + T p }{{} c w =const. ) h 0 p dp = c w dt T ea h = h a h e = c w T a T e ) q ea = ea h = c w T a T e ) Q ea = ṁ w q ea = ṁ w c w T a T e ) Da keine zahlenmäßigen Angaben für Wasser gegeben sind, führt dieser Lösungsweg zu keinem Ergebnis. Es lässt sich auch keine Aussage treffen, ob q ea > 0. Möglichkeit 2: System Luft Q L = q L ṁ L Vorüberlegung: Die Luft soll gekühlt werden Luft muss Wärme abgeben q L muss kleiner Null sein egozentrische Systembetrachtung). Hauptsatz aufstellen: q 23 + w 0 c t,23 = 23 h g 0 23 z spez. Enthalpie bestimmen: Luft perfektes Gas Es folgt: 23 h = c p T 3 T 2 ) q L = 23 h = c p T 3 T 2 ) q 23 = 000 J/kgK) 288, 5 K 499, 6 K) = 2, 46 kj/kg) < 0, plausibel siehe Vorüberlegung) ṁ L = ṁ 3 = ρ 3 V 3 = p 3 R T 3 V 3 = Q L = ṁ L q L ; ṁ L bestimmen Es ist bekannt V 3 = 80 m 3 /h = 45 m3 /s m = ρ V ṁ = ρ V Dichte über id. Gasgl.: ρ = p R T P a 287 J/kgK) , 5)K 45 m3 /s = 0, 344 kg/s Q 23 = 0, 344 kg/s 3600 s/h 2, 46 kj/kg)) = 02, 33 MJ/h wird abgegeben 6

7 Möglichkeit 3: System Luft gesamtes System) Q L = q L ṁ L q L ist die dem System Druckluft entzogene massenspezifische Wärmemenge; Ẇ t,2 ist der dem Verdichter zugeführte Arbeitsstrom q 23 < 0 und w t,2 > 0 egozentrische Systembetrachtung) c. Hauptsatz: q 23 + w t,2 = 3 h g 0 3 z spez. Enthalpie bestimmen: siehe oben 3 h = c p T 3 T ); mit T 3 = T q 23 = 3 h w t,2 = c p 0 T 3 T ) w t,2 q 23 = w t,2 ; w t,2 = w t,2 q 23 = w t,2 η s,v η s,v q 23 = 69, 7 03 J/kg 0, 8 = 2, 46 kj/kgk) vgl. Möglichkeit 2) Q 23 = ṁ L q 23 = 0, 344 kg/s 3600 s/h 2, 46 kj/kg)) = 02, 33 MJ/h Aufgabe 7: Durch eine horizontale, wärmeisolierte Rohrleitung, deren Querschnitt sich kontinuierlich vom Anfangsquerschnitt A auf A 2 = 2 A erweitert, strömt Wasser. Die Querschnittserweiterung bewirkt eine Erhöhung des Wasserdrucks von p = 2,0 bar auf p 2 = 2, bar. a) Bestimmen Sie die Änderung der Temperatur und der spezifischen Entropie des Wassers beim Durchströmen der Querschnittserweiterung, wenn das Wasser im Eintrittszustand eine Temperatur T = 300 K und eine Strömungsgeschwindigkeit c = 0 m/s besitzt. b) Ermitteln Sie anhand einer Abschätzung der Entropieänderung, ob für Luft anstelle von Wasser im Endquerschnitt grundsätzlich dieselben Werte der Zustandsgößen erreicht werden können, wenn man für Luft dieselben Werte der Zustandsgrößen und der Strömungsgeschwindigkeit im Anfangsquerschnitt wie für Wasser voraussetzt. Weitere Angaben: Wasser soll als inkompressibles Medium angesehen werden mit ρ = 000 kg/m 3 und c p = c v = c w = 4,9 kj/kgk). Luft soll als perfektes Gas betrachtet werden mit c p =,0 kj/kgk) und R = 0,287 kj/kgk). 7

8 Gegeben: A 2 = 2 A p = 2 bar p 2 = 2, bar c p = c v = c w = 4, 9 kj/kgk) R L = 0, 287 kj/kgk) c p,l =, 0 kj/kgk) ρ w = 000 kg/m 3 A a) Bestimmen Sie die Änderung der Temperatur und der spezifischen Entropie des Wassers beim Durchströmen der Querschnittserweiterung, wenn das Wasser im Eintrittszustand eine Temperatur T = 300 K und eine Strömungsgeschwindigkeit c = 0 m/s besitzt. Gesucht: 2 T ; 2,w s 2 T : Temperaturänderung 2 T Systemgrenze festlegen: System Rohrleitung Für die Massenströme gilt: ṁ = ρ c A = ρ 2 c 2 A 2 = ṁ 2 ; inkompressibel) ρ = ρ 2, da Wasser ρ c A = ρ 2 c 2 A 2 = ρ 2 c 2 2 A c 2 = 2 c 2Bekannt sind q, w t, c2 2, c p und z. Hauptsatz: 3 spez. Enthalpie bestimmen: q w 0 c 2 t,2 = 2 h g 0 2 z 2 h = 2 c 2 2 = 2 c2 c 2 2) Wasser inkompressibel), Druckänderung gegeben dp 0 dh = c w dt + v dp; v = = const., da ρ = const. ρ 2 h = c w T 2 T ) + v p 2 p ) = 2 c2 c 2 2) 2 T = T 2 T ) = [ ] c w 2 c2 c 2 2) v p 2 p ) ; c 2 = 2 c 2 T = c 2 c2 2 c w 4 ) v p 2 p ); v = c w ρ = 000 kg/m 3 = 000 m3 /kg [0 m/s) 2 2 T = J/kgK) ] 0 m/s)2 4 2, P a) = 6, K 000 m3 /kg 490 J/kgK) 2, 05 P a+ 8

9 2,w s Gibbsche Hauptgleichung GHG): dh = T ds + vdp ds = T dh vdp) 2 dh bestimmen Wasser ist inkompressibel dh = c w dt + vdp 3 nach 2 s auflösen: ds = T c wdt + vdp vdp) ds = T c w dt 2,w s = 2 c w T dt 2 T = T 2 T ) T 2 = 2 T + T = 6, K = 300, K ) ) T2 300, K 2,w s = c w ln = 490 J/kgK) ln = 0, 092 J/kgK) > K T 4 Kontrolle ob der Prozess möglich ist: 2. Hauptsatz: 0 ds dτ = i Ṡ 0 Q,i + Ṡirr + j ṁ s Ṡ irr = ṁ s s 2 ) > 0 Prozess möglich }{{} 2,w s 9

10 b) Ermitteln Sie anhand einer Abschätzung der Entropieänderung, ob für Luft anstelle von Wasser im Endquerschnitt grundsätzlich dieselben Werte der Zustandsgößen erreicht werden können, wenn man für Luft dieselben Werte der Zustandsgrößen und der Strömungsgeschwindigkeit im Anfangsquerschnitt wie für Wasser voraussetzt. Gesucht: 2,L s p = 2bar p 2 = 2, bar c p = 000 J/kgK) T = 300 K c = 0 m/s R = 287 J/kgK) Vorgehen analog Entropiebestimmung Aufgabe a) Gibbsche Hauptgleichung: dh = T ds + vdp ds = T dh vdp) 2 dh bestimmen: 3 nach 2 s auflösen: Luft ist als perfektes Gas anzunehmen dh = c p dt ds = dh T v T dp; aus id. Gasgleichung folgt: v T = R p 2,L s = 300, K 2,L s = 000 J/kgK) ln 300 K ds = c p T dt R p dp 2 2 ds = c p 2 T dt R ) 287 J/kgK) ln 4 Kontrolle ob der Prozess möglich ist Bedingung: Ṡ irr 0 2. Hauptsatz: 0 ds dτ = i Ṡ 0 Q,i + Ṡirr + j ṁ s p dp = c p ln 2, bar 2 bar T2 T ) R ln p2 p ) ) = 0, 039 kj/kgk) < 0 Ṡ irr = ṁ s s 2 ) < 0 die Bedingung des 2. Hauptsatzes wird verletzt mit Luft }{{} 2,L s wäre dieser Prozess nicht durchführbar 0

Änderungen der kinetischen Energien sind ausschließlich in der Düse zu berücksichtigen.

Änderungen der kinetischen Energien sind ausschließlich in der Düse zu berücksichtigen. Thermodynamik II - Lösung 3 Aufgabe 5: Auf den windreichen Kanarischen Inseln ist eine Kühlanlage geplant, die Kaltwasser (Massenstrom ṁ w = 5 kg/s) von t aus = 18 C liefern soll. Das Wasser wird der Umgebung

Mehr

Eine (offene) Gasturbine arbeitet nach folgendem Vergleichsprozess:

Eine (offene) Gasturbine arbeitet nach folgendem Vergleichsprozess: Aufgabe 12: Eine offene) Gasturbine arbeitet nach folgendem Vergleichsprozess: Der Verdichter V η s,v 0,75) saugt Luft im Zustand 1 1 bar, T 1 288 K) an und verdichtet sie adiabat auf den Druck p 2 3,7

Mehr

Thermodynamik I Formeln

Thermodynamik I Formeln Thermodynamik I Formeln Tobi 4. September 2006 Inhaltsverzeichnis Thermodynamische Systeme 3. Auftriebskraft........................................ 3 2 Erster Hauptsatz der Thermodynamik 3 2. Systemenergie........................................

Mehr

a) Wie nennt man den oben beschriebenen Vergleichsprozess in Bezug auf die Klassifizierung der Idealprozesse?

a) Wie nennt man den oben beschriebenen Vergleichsprozess in Bezug auf die Klassifizierung der Idealprozesse? Aufgabe 11: Das Betriebsverhalten eines Viertakt- Dieselmotors kann durch folgenden reversiblen Kreisprozess näherungsweise beschrieben werden, wobei kinetische und potenzielle Energien zu vernachlässigen

Mehr

Q i + j. dτ = i. - keine pot. und kin. Energien: depot. - adiabate ZÄ: Q i = 0 - keine technische Arbeit: Ẇ t,j = 0

Q i + j. dτ = i. - keine pot. und kin. Energien: depot. - adiabate ZÄ: Q i = 0 - keine technische Arbeit: Ẇ t,j = 0 Institut für hermodynamik hermodynamik - Formelsammlung. Hauptsätze der hermodynamik (a. Hauptsatz der hermodynamik i. Offenes System de = de pot + de kin + du = i Q i + j Ẇ t,j + ein ṁ ein h tot,ein aus

Mehr

Aufgabe 1: Theorie Punkte

Aufgabe 1: Theorie Punkte Aufgabe 1: Theorie.......................................... 30 Punkte (a) (2 Punkte) In einen Mischer treten drei Ströme ein. Diese haben die Massenströme ṁ 1 = 1 kg/s, ṁ 2 = 2 kg/s und ṁ 3 = 2 kg/s.

Mehr

Thermodynamik I Klausur 1

Thermodynamik I Klausur 1 Aufgabenteil / 100 Minuten Name: Vorname: Matr.-Nr.: Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und mit Namen versehenen) Lösungsblättern abgegeben werden. Nicht nachvollziehbare

Mehr

c ) Wie verhält sich die Enthalpieänderung, wenn das Wasser in einer Düse beschleunigt wird?

c ) Wie verhält sich die Enthalpieänderung, wenn das Wasser in einer Düse beschleunigt wird? Aufgabe 4 An einer Drosselstelle wird ein kontinuierlich fließender Strom von Wasser von p 8 bar auf p 2 2 bar entspannt. Die Geschwindigkeiten vor und nach der Drosselung sollen gleich sein. Beim des

Mehr

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik II - Lösung 01. Aufgabe 1:

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik II - Lösung 01. Aufgabe 1: Istitut für Thermodyamik Prof. Dr. rer. at. M. Pfitzer Thermodyamik II - Lösug 0 Aufgabe : Ei zweistrahliges Verkehrsflugzeug fliegt mit eier Geschwidigkeit c 250 m/s i großer Höhe. Der Druck ud die Temperatur

Mehr

2. so rasch ausströmen, dass keine Wärmeübertragung stattfinden kann.

2. so rasch ausströmen, dass keine Wärmeübertragung stattfinden kann. Aufgabe 33 Aus einer Druckluftflasche V 50 dm 3 ) mit einem Anfangsdruck p 0 60 bar strömt solange Luft in die Umgebung p U bar, T U 300 K), bis der Druck in der Flasche auf 0 bar gefallen ist. Dabei soll

Mehr

Aufgabe 1 (60 Punkte, TTS & TTD1) Bitte alles LESBAR verfassen!!!

Aufgabe 1 (60 Punkte, TTS & TTD1) Bitte alles LESBAR verfassen!!! Aufgabe (60 Punkte, TTS & TTD) Bitte alles LESBAR verfassen!!!. In welcher Weise ändern sich intensive und extensive Zustandsgrößen bei der Zerlegung eines Systems in Teilsysteme?. Welche Werte hat der

Mehr

Prüfung: Thermodynamik II (Prof. Adam)

Prüfung: Thermodynamik II (Prof. Adam) Prüfung: Thermodynamik II (Prof. Adam) 18.09.2008 Erreichbare Gesamtpunktzahl: 48 Punkte Aufgabe 1 (30 Punkte): In einem Heizkraftwerk (siehe Skizze) wird dem Arbeitsmedium Wasser im Dampferzeuger 75 MW

Mehr

Übungsaufgaben zur Thermodynamik

Übungsaufgaben zur Thermodynamik Übungsaufgaben zur Thermodynamik Übungsbeispiel 1 Ein ideales Gas hat bei einem Druck von 2,5 bar und ϑl = 27 C eine Dichte von ρ1 = 2,7 kg/m 3. Durch isobare Wärmezufuhr soll sich das Gasvolumen Vl verdoppeln

Mehr

Thermodynamik I PVK - Tag 2. Nicolas Lanzetti

Thermodynamik I PVK - Tag 2. Nicolas Lanzetti Thermodynamik I PVK - Tag 2 Nicolas Lanzetti Nicolas Lanzetti 05.01.2016 1 Heutige Themen Carnot; Wirkungsgrad/Leistungsziffer; Entropie; Erzeugte Entropie; Isentroper Wirkungsgrad; Isentrope Prozesse

Mehr

Thermodynamik Hauptsatz

Thermodynamik Hauptsatz Thermodynamik. Hauptsatz Inhalt Wärmekraftmaschinen / Kälteprozesse. Hauptsatz der Thermodynamik Reversibilität Carnot Prozess Thermodynamische Temperatur Entropie Entropiebilanzen Anergie und Exergie

Mehr

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik I - Lösung 8. Aufgabe kg Luft (perfektes Gas: κ = 1,4 ; R L = 287 J

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik I - Lösung 8. Aufgabe kg Luft (perfektes Gas: κ = 1,4 ; R L = 287 J Aufgabe 3 0 kg Luft perfektes Gas: κ,4 ; R L 287 J von T 293 K und p 0,96 bar werden auf 0 bar verdichtet. Dies soll. isochor 2. isotherm 3. reversibel adiabat und 4. polytrop mit n,3 geschehen. a Skizzieren

Mehr

Annahmen: Arbeitsmedium ist Luft, die spezifischen Wärmekapazitäten sind konstant

Annahmen: Arbeitsmedium ist Luft, die spezifischen Wärmekapazitäten sind konstant Ü 11.1 Nachrechnung eines Otto-ergleichsprozesses (1) Annahmen: Arbeitsmedium ist Luft, die spezifischen Wärmekapazitäten sind konstant Anfangstemperatur T 1 288 K Anfangsdruck p 1 1.013 bar Maximaltemperatur

Mehr

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj Aufgabe 4 Zylinder nach oben offen Der dargestellte Zylinder A und der zugehörige bis zum Ventil reichende Leitungsabschnitt enthalten Stickstoff. Dieser nimmt im Ausgangszustand ein Volumen V 5,0 dm 3

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 8. September 2015 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Thermodynamik I Klausur WS 2010/2011

Thermodynamik I Klausur WS 2010/2011 Thermodynamik I Klausur WS 010/011 Aufgabenteil / Blatt 1-50 Minuten Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und mit Namen versehenen) Lösungsblättern abgegeben werden.

Mehr

a) Skizzieren Sie den Prozess in einem T,s-, h,s- und p,h-diagramm.

a) Skizzieren Sie den Prozess in einem T,s-, h,s- und p,h-diagramm. Institut für hermodynamik hermodynamik II - Lösung 8 Aufgabe 13: In einem nach dem Clausius-Rankine-Prozess arbeitenden Damfkraftwerk wird flüssiges Wasser in der Kesselseiseume von 1 =,2 bar und t 1 =

Mehr

Thermodynamik I Klausur SS 2010

Thermodynamik I Klausur SS 2010 Thermodynamik I Klausur 00 Prof. Dr. J. Kuck, Prof. Dr. G. Wilhelms Aufgabenteil / 00 Minuten/eite Name: Vorname: Matr.-Nr.: Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 25. Februar 2016 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Thermodynamik 1 Klausur 02. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen.

Thermodynamik 1 Klausur 02. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen. Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Thermodynamik 1 Klausur 02. März 2011 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung:

Mehr

Klausur zur Vorlesung. Thermodynamik

Klausur zur Vorlesung. Thermodynamik Institut für Thermodynamik 18. Februar 2010 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Thermodynamik 1 Klausur, 3. August Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen.

Thermodynamik 1 Klausur, 3. August Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen. Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Thermodynamik 1 Klausur, 3. August 2009 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung:

Mehr

Thermodynamik 1 Klausur 08. September 2016

Thermodynamik 1 Klausur 08. September 2016 Thermodynamik 1 Klausur 08. September 2016 Bearbeitungszeit: 150 Minuten Umfang der Aufgabenstellung: 7 nummerierte Seiten Alle Unterlagen zur Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 9. September 2014 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Klausur im Fach Thermodynamik I, WS 2015/2016 am

Klausur im Fach Thermodynamik I, WS 2015/2016 am e c o r e n e n o m g i y e c s n g i e n n v i e e r i n g.. t. e n r o n m Technische Universität Berlin INSTITUT FÜR ENERGIETECHNIK Prof. Dr.-Ing. G. Tsatsaronis. Klausur im Fach Thermodynamik I, WS

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 9. März 2015 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

3 Grundlegende strömungstechnische und thermodynamische Voraussetzungen

3 Grundlegende strömungstechnische und thermodynamische Voraussetzungen 3 Grundlegende strömungstechnische und thermodynamische Voraussetzungen 3.1 Stationär durchströmte offene Systeme - Grundlegende Beziehungen - nergiesatz stationär durchströmter offener Systeme - nwendung

Mehr

Thermodynamik 1 Klausur 02. August 2010

Thermodynamik 1 Klausur 02. August 2010 Thermodynamik 1 Klausur 02. August 2010 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 6 nummerierte Seiten Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als

Mehr

Technische Universität Hamburg

Technische Universität Hamburg NAME, Vorname Studiengang Technische Universität Hamburg ÈÖÓ º Öº¹ÁÒ º Ö Ö Ë Ñ ØÞ Prüfung am 16. 08. 2016 im Fach Technische Thermodynamik II Fragenteil ohne Hilfsmittel erreichbare Punktzahl: 20 Dauer:

Mehr

Klausur im Fach Thermodynamik I, SS 2010 am

Klausur im Fach Thermodynamik I, SS 2010 am e c o r e n e n o m g i y e c s n g i e n n v i e e r i n g..t. e n r o n m Technische Universität Berlin INSTITUT FÜR ENERGIETECHNIK Prof. Dr.-Ing. G. Tsatsaronis. Klausur im Fach Thermodynamik I, SS

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr. Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr. Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 2 Prof. Dr. Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3Bilanzgleichungen 3.3.1Massenbilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

1 Thermodynamik allgemein

1 Thermodynamik allgemein Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der

Mehr

1. Aufgabe (26 Punkte) a) Massen in den Kammern. m 1 = p 0V 0. = m 1. b) Kraft in der Kolbenstange (Freischnitt System I): System I

1. Aufgabe (26 Punkte) a) Massen in den Kammern. m 1 = p 0V 0. = m 1. b) Kraft in der Kolbenstange (Freischnitt System I): System I Musterlösung WS08 1. Aufgabe (26 Punkte) a) Massen in den Kammern b) Kraft in der Kolbenstange (Freischnitt System I): c) Gleichungssystem m 1 = p 0V 0, m 2 = p 0/4 2V 0 = m 1 RT 0 RT 0 2 F = M g Gleichgewicht:

Mehr

II. Thermodynamische Energiebilanzen

II. Thermodynamische Energiebilanzen II. Thermodynamische Energiebilanzen 1. Allgemeine Energiebilanz Beispiel: gekühlter Verdichter stationärer Betrieb über Systemgrenzen Alle Energieströme werden bezogen auf Massenstrom 1 Energieformen:

Mehr

Thermodynamik 1 Klausur 02. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen.

Thermodynamik 1 Klausur 02. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen. Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Thermodynamik 1 Klausur 02. März 2012 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung:

Mehr

Thermodynamik 1 Klausur 01. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen.

Thermodynamik 1 Klausur 01. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen. Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Thermodynamik 1 Klausur 01. März 2013 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung:

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 18. März 2011 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 23. August 2013 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Thermodynamik I - Übung 6. Nicolas Lanzetti

Thermodynamik I - Übung 6. Nicolas Lanzetti Thermodynamik I - Übung 6 Nicolas Lanzetti Nicolas Lanzetti 06.11.2015 1 Heutige Themen Zusammenfassung letzter Woche; Zweiter Hauptsatz der Thermodynamik; Halboffene Systeme; Reversible und irreversible

Mehr

Zusammenfassung - Thermodynamik I

Zusammenfassung - Thermodynamik I Zusammenfassung - hermodynamik I imothy Habermacher, Ismail Morgenegg auf Basis von S. Liechti Allgemeines. Begriffe Begriffe Amorph Zähflüssiger Feststoff Glas Latente Energie Energie z. Phasenumwandlung

Mehr

Thermodynamik 1 Klausur 12. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen.

Thermodynamik 1 Klausur 12. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen. Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Thermodynamik 1 Klausur 12. März 2014 Bearbeitungszeit: 150 Minuten Umfang der Aufgabenstellung:

Mehr

Thermodynamik 2 Klausur 19. September 2013

Thermodynamik 2 Klausur 19. September 2013 Thermodynamik 2 Klausur 19. September 2013 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 5 nummerierte Seiten Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 26. August 2011 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch Thermodynamik Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch Thermodynamik Einleitung Grundbegriffe 3 Systembeschreibung 4 Zustandsgleichungen 5 Kinetische

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 2 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3 Bilanzgleichungen 3.3.1 Massebilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

kg K dp p = R LuftT 1 ln p 2a =T 2a Q 12a = ṁq 12a = 45, 68 kw = 288, 15 K 12 0,4 Q 12b =0. Technische Arbeit nach dem Ersten Hauptsatz:

kg K dp p = R LuftT 1 ln p 2a =T 2a Q 12a = ṁq 12a = 45, 68 kw = 288, 15 K 12 0,4 Q 12b =0. Technische Arbeit nach dem Ersten Hauptsatz: Übung 9 Aufgabe 5.12: Kompression von Luft Durch einen Kolbenkompressor sollen ṁ = 800 kg Druckluft von p h 2 =12bar zur Verfügung gestellt werden. Der Zustand der angesaugten Außenluft beträgt p 1 =1,

Mehr

0tto-von-Guericke-Universität Magdeburg

0tto-von-Guericke-Universität Magdeburg 0tto-von-Guericke-Universität Magdeburg Institut für Strömungstechnik und Thermodynamik, Lehrstuhl Strömungsmechanik und Strömungstechnik Übungsaufgaben Fluidenergiemaschinen Aufgabe 1.01 In einer Bewässerungsanlage

Mehr

Klausur zur Vorlesung. Thermodynamik

Klausur zur Vorlesung. Thermodynamik Institut für Thermodynamik 10. März 2010 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Klausur im Fach Thermodynamik I, SS 08 am

Klausur im Fach Thermodynamik I, SS 08 am e c o r e n e n o m g i y e c s n g i e n n v i e e r i n g..t. e n r o n m Technische Universität Berlin INSTITUT FÜR ENERGIETECHNIK Prof. Dr.-Ing. G. Tsatsaronis. Klausur im Fach Thermodynamik I, SS

Mehr

Regeln. Lösung zum Fragenteil. Nur eine eindeutige Markierung wird bewertet, z. B.:

Regeln. Lösung zum Fragenteil. Nur eine eindeutige Markierung wird bewertet, z. B.: Klausurlösungen Thermodynamik II Wintersemester 2015/16 Fragenteil Lösung zum Fragenteil Regeln Nur eine eindeutige Markierung wird bewertet, z. B.: Für eine Korrektur kann die zweite Spalte mögl. Korrektur

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 23. Februar 2017 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 19. Februar 2013 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Thermodynamik 2 Klausur 17. Februar 2015

Thermodynamik 2 Klausur 17. Februar 2015 Thermodynamik 2 Klausur 17. Februar 2015 Bearbeitungszeit: Umfang der Aufgabenstellung: 120 Minuten 5 nummerierte Seiten 2 Diagramme Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner

Mehr

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K Fundamentalgleichung für die Entropie Entropie S [S] = J/K spezifische Entropie: s = S/m molare Entropie: s m = S/n Mit dem 1. Hauptsatz für einen reversiblen Prozess und der Definition für die Entropie

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 10. März 2012 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

9.4 Stationäre kompressible Strömungen in Rohren oder Kanälen konstanten Querschnitts

9.4 Stationäre kompressible Strömungen in Rohren oder Kanälen konstanten Querschnitts 9.4 Stationäre kompressible Strömungen in Rohren oder Kanälen konstanten Querschnitts Die Strömung tritt mit dem Zustand 1 in die Rohrleitung ein. Für ein aus der Rohrstrecke herausgeschnittenes Element

Mehr

10. Thermodynamik Der erste Hauptsatz Der zweite Hauptsatz Thermodynamischer Wirkungsgrad Der Carnotsche Kreisprozess

10. Thermodynamik Der erste Hauptsatz Der zweite Hauptsatz Thermodynamischer Wirkungsgrad Der Carnotsche Kreisprozess Inhalt 10.10 Der zweite Hauptsatz 10.10.1 Thermodynamischer Wirkungsgrad 10.10.2 Der Carnotsche Kreisprozess Für kinetische Energie der ungeordneten Bewegung gilt: Frage: Frage: Wie kann man mit U Arbeit

Mehr

Theoretische Luftverflüssigungsanlage. Reversibler Kälteprozess. - Isotherme Verdichtung des Gases bei Umgebungstemperatur

Theoretische Luftverflüssigungsanlage. Reversibler Kälteprozess. - Isotherme Verdichtung des Gases bei Umgebungstemperatur Lösung Aufgabe 6.2 Gaserflüssigung nach Linde heoretische Lufterflüssigungsanlage Reersibler Kälteprozess - Isotherme Verdichtung des Gases bei Umgebungstemperatur 1 2 2 1 - adiabate und reibungsfreie

Mehr

Thermodynamik 1 Klausur 01. August 2011

Thermodynamik 1 Klausur 01. August 2011 Thermodynamik 1 Klausur 01. August 2011 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 5 nummerierte Seiten Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 2. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 2. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 4, Teil 2 Prof. Dr.-Ing. Heinz Pitsch Kapitel 4, Teil 2: Übersicht 4 Zweiter Hauptsatz der Thermodynamik 4.5 Entropiebilanz 4.5.1 Allgemeine Entropiebilanz 4.5.2

Mehr

Aufgabe 1: Kolben. Allgemeine Hinweise:

Aufgabe 1: Kolben. Allgemeine Hinweise: Matrikelnummer Anzahl der bisherigen Antritte Familienname Vorname Allgemeine Hinweise: Alle Blätter sind mit Namen und Matrikelnummer zu versehen. Aus der Beschriftung muss deutlich ersichtlich sein,

Mehr

Klausur im Fach Thermodynamik I, SS 2013 am

Klausur im Fach Thermodynamik I, SS 2013 am e c o r e n e n o m g i y e c s n g i e n n v i e e r i n g..t. e n r o n m Technische Universität Berlin INSTITUT FÜR ENERGIETECHNIK Prof. Dr.-Ing. G. Tsatsaronis. Klausur im Fach Thermodynamik I, SS

Mehr

1. Klausur in "Technischer Thermodynamik II" (SoSe2014, ) - VERSION 1 -

1. Klausur in Technischer Thermodynamik II (SoSe2014, ) - VERSION 1 - UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Al. Professor Dr.-Ing. K. Sindler. Klausur in "Technischer Thermodynamik II" (SoSe04, 03.06.04) - VERSION - Name: Fachr.: Matr.-Nr.: Es

Mehr

Thermodynamik I. Sommersemester 2014 Kapitel 5. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2014 Kapitel 5. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2014 Kapitel 5 Prof. Dr.-Ing. Heinz Pitsch Kapitel 5: Übersicht 5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 27. August 2012 Technische Universität Braunschweig Prof. Dr. ürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Aufgabe 1 (10 Punkte, TTS & TTD1) Bitte alles LESBAR verfassen!!!

Aufgabe 1 (10 Punkte, TTS & TTD1) Bitte alles LESBAR verfassen!!! Aufgabe 1 (10 Punkte, TTS & TTD1) Bitte alles LESBAR verfassen!!! 1.1. Wie erklärt man die dissipierte Energie in einem System? 1.. Kann man aus dieser noch etwas während der folgenden Prozesse in einer

Mehr

TU-München, Musterlösung. Experimentalphysik II - Ferienkurs Andreas Schindewolf

TU-München, Musterlösung. Experimentalphysik II - Ferienkurs Andreas Schindewolf TU-München, 18.08.2009 Musterlösung Experimentalphysik II - Ferienkurs Andreas Schindewolf 1 Random Kreisprozess a Wärme wird nur im isochoren Prozess ab zugeführt. Hier ist W = 0 und Q ab = nc V t b T

Mehr

Klausur Strömungsmaschinen I SoSe 2008

Klausur Strömungsmaschinen I SoSe 2008 Klausur Strömungsmaschinen I SoSe 2008 9 August 2008, Beginn 3:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Vorlesungsskript (einschließlich handschriftlicher Notizen und Formelsammlung)

Mehr

4 Hauptsätze der Thermodynamik

4 Hauptsätze der Thermodynamik I Wärmelehre -21-4 Hauptsätze der hermodynamik 4.1 Energieformen und Energieumwandlung Innere Energie U Die innere Energie U eines Körpers oder eines Systems ist die gesamte Energie die darin steckt. Es

Mehr

Fluiddynamik / Strömungsmaschinen Hauptstudium II. Prof. Dr.-Ing. F.-K. Benra Prof. Dr.-Ing. D. Hänel. Nach Prüfungsordnung 2002

Fluiddynamik / Strömungsmaschinen Hauptstudium II. Prof. Dr.-Ing. F.-K. Benra Prof. Dr.-Ing. D. Hänel. Nach Prüfungsordnung 2002 Universität Duisburg-Essen Standort Duisburg Fachbereich Ingenieurwissenschaften Abteilung Maschinenbau Fachprüfung: Prüfer: Fluiddynamik / Hauptstudium II Prof. Dr.-Ing. F.-K. Benra Prof. Dr.-Ing. D.

Mehr

UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habil. H. Müller-Steinhagen

UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habil. H. Müller-Steinhagen UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habil. H. Müller-Steinhagen Prüfung in "Technische Thermodynamik 1/2" 23. Februar 2007 Zeit: 3 Stunden zugelassen:

Mehr

Hauptsatz der Thermodynamik

Hauptsatz der Thermodynamik 0.7. Hauptsatz der Thermodynamik Die einem System von außen zugeführte Wärmemenge Q führt zu Erhöhung U der inneren Energie U und damit Erhöhung T der Temperatur T Expansion des olumens gegen den äußeren

Mehr

Kompressible Strömungen

Kompressible Strömungen Kompressible Strömungen Problemstellungen: - Wie lassen sich Überschallströmungen realisieren? - Welche Windkanalgeometrie ist notwendig? - Thermodynamische Beziehungen in Überschallströmungen? - Unterschall

Mehr

Enthalpienullpunkt von Luft und Wasser am Tripelpunkt des siedenden Wassers T=T tr = 273,16 K:

Enthalpienullpunkt von Luft und Wasser am Tripelpunkt des siedenden Wassers T=T tr = 273,16 K: 3.3.5 Energiebilanz bei der Mischung feuchter Luft Bezugsgröße: Masse der trockenen Luft m L Beladung: Auf die Masse der Luft bezogene Enthalpie Enthalpienullpunkt von Luft und Wasser am Tripelpunkt des

Mehr

1. Die Wellengleichung

1. Die Wellengleichung 1. Die Wellengleichung Die Wellengleichung ist eine partielle Differenzialgleichung für das Schallfeld. Sie lässt sich durch Linearisierung aus der Massenbilanz, der Impulsbilanz und der Energiebilanz

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 3. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 3. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 3 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3 Bilanzgleichungen 3.3.1 Massebilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

Thermodynamik. oder Website der Fachhochschule Osnabrück

Thermodynamik.  oder Website der Fachhochschule Osnabrück Thermodynamik Prof. Dr.-Ing. Matthias Reckzügel Vorlesung, Übung und Praktikum im 3. Semester für die Studiengänge: Maschinenbau Fahrzeugtechnik Maschinenbauinformatik Integrierte Produktentwicklung EMS

Mehr

Universität Hannover Institut für Strömungsmaschinen Prof. Dr.-Ing. J.Seume. Klausur Frühjahr Strömungsmechanik I. Name Vorname Matr.

Universität Hannover Institut für Strömungsmaschinen Prof. Dr.-Ing. J.Seume. Klausur Frühjahr Strömungsmechanik I. Name Vorname Matr. Universität Hannover Institut für Strömungsmaschinen Prof. Dr.-Ing. J.Seume Klausur Frühjahr 2002 Strömungsmechanik I Bearbeitungsdauer: 90 min zugelassene Hilfsmittel: Taschenrechner Formelsammlung-IfS,

Mehr

Physik 2 (B.Sc. EIT) 2. Übungsblatt

Physik 2 (B.Sc. EIT) 2. Übungsblatt Institut für Physik Werner-Heisenberg-Weg 9 Fakultät für Elektrotechnik 85577 München / Neubiberg Universität der Bundeswehr München / Neubiberg Prof Dr H Baumgärtner Übungen: Dr-Ing Tanja Stimpel-Lindner,

Mehr

Mögliche Klausurfragen und aufgaben (Beispiele mit keinem Anspruch auf Vollständigkeit)

Mögliche Klausurfragen und aufgaben (Beispiele mit keinem Anspruch auf Vollständigkeit) LTT ERLANGEN 1 VON 5 FRAGENSAMMLUNG Mögliche Klausurfragen und aufgaben (Beispiele mit keinem Anspruch auf Vollständigkeit) Neben den Fragen können einfachste Rechenaufgaben gestellt werden. Bei einigen

Mehr

Kapitel IV Wärmelehre und Thermodynamik

Kapitel IV Wärmelehre und Thermodynamik Kapitel IV Wärmelehre und Thermodynamik a) Definitionen b) Temperatur c) Wärme und Wärmekapazität d) Das ideale Gas - makroskopisch e) Das reale Gas / Phasenübergänge f) Das ideale Gas mikroskopisch g)

Mehr

Inhaltsverzeichnis. Formelzeichen. 1 Einleitung 1. 2 Einheiten physikalischer Größen 3

Inhaltsverzeichnis. Formelzeichen. 1 Einleitung 1. 2 Einheiten physikalischer Größen 3 Formelzeichen XIII 1 Einleitung 1 2 Einheiten physikalischer Größen 3 3 Systeme 7 3.1 Definition von Systemen 7 3.2 Systemarten 8 3.2.1 Geschlossenes System 8 3.2.2 Offenes System 9 3.2.3 Adiabates System

Mehr

Thermodynamik 2 Klausur 15. September 2010

Thermodynamik 2 Klausur 15. September 2010 Thermodynamik 2 Klausur 15. September 2010 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 5 nummerierte Seiten Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind

Mehr

d) Das ideale Gas makroskopisch

d) Das ideale Gas makroskopisch d) Das ideale Gas makroskopisch Beschreibung mit Zustandsgrößen p, V, T Brauchen trotzdem n, R dazu Immer auch Mikroskopische Argumente dazunehmen Annahmen aus mikroskopischer Betrachtung: Moleküle sind

Mehr

Exergie. Aufgabe 1: Berechnen Sie: a) die Eintrittstemperatur T Dampf,ein des gesättigten Dampfes, b) den Exergieverluststrom ĖV des Prozesses und

Exergie. Aufgabe 1: Berechnen Sie: a) die Eintrittstemperatur T Dampf,ein des gesättigten Dampfes, b) den Exergieverluststrom ĖV des Prozesses und Übung 1 Exergie Aufgabe 1: Flüssiges Wasser (15 C) wird durch Einmischen von Dampf in einer Mischkammer erwärmt. Das Wasser tritt mit einem Massenstrom von ṁ W asser = 1 kg/s in die Kammer ein, der Dampf

Mehr

Inhaltsverzeichnis. Formelzeichen...XIII. 1 Einleitung Einheiten physikalischer Größen...3

Inhaltsverzeichnis. Formelzeichen...XIII. 1 Einleitung Einheiten physikalischer Größen...3 Inhaltsverzeichnis Formelzeichen...XIII 1 Einleitung...1 2 Einheiten physikalischer Größen...3 3 Systeme...6 3.1 Definition von Systemen...6 3.2 Systemarten...7 3.2.1 Geschlossenes System...7 3.2.2 Offenes

Mehr

6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme

6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme 6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme Für isotherme reversible Prozesse gilt und daher mit der

Mehr

Spontane und nicht spontane Vorgänge Freiwillig und nicht freiwillig ablaufende Vorgänge

Spontane und nicht spontane Vorgänge Freiwillig und nicht freiwillig ablaufende Vorgänge Prof. Dr. Norbert Hampp 1/7 6. Freie Energie und Freie Enthalphie / 2. Hauptsatz Spontane und nicht spontane Vorgänge Freiwillig und nicht freiwillig ablaufende Vorgänge 1. Empirischer Befund: Bei einer

Mehr

Becker: Thermodynamik (WS14/15) Zammefassung von Thomas Welter Stand:

Becker: Thermodynamik (WS14/15) Zammefassung von Thomas Welter Stand: Becker: Thermdynamik (WS4/5 Zammefassung vn Thmas Welter Stand: 9.0.5 Arten vn thermdynamischen Systemen ffen Austausch vn Masse und Wärme/Arbeit geschlssen Austausch vn Wärme/Arbeit, kein Masseaustausch

Mehr

O. Sternal, V. Hankele. 5. Thermodynamik

O. Sternal, V. Hankele. 5. Thermodynamik 5. Thermodynamik 5. Thermodynamik 5.1 Temperatur und Wärme Systeme aus vielen Teilchen Quelle: Wikimedia Commons Datei: Translational_motion.gif Versuch: Beschreibe 1 m 3 Luft mit Newton-Mechanik Beschreibe

Mehr

Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. Juli 2006

Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. Juli 2006 Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. Juli 2006 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 7 nummerierte Seiten; Die Foliensammlung, Ihre Mitschrift der Vorlesung

Mehr

Thermodynamik Thermodynamische Systeme

Thermodynamik Thermodynamische Systeme Thermodynamik Thermodynamische Systeme p... Druck V... Volumen T... Temperatur (in Kelvin) U... innere Energie Q... Wärme W... Arbeit Idealisierung; für die Betrachtung spielt die Temperatur eine entscheidende

Mehr

Inhaltsverzeichnis VII

Inhaltsverzeichnis VII Inhaltsverzeichnis 1 Grundlagen 1 1.1 Mathe für Thermodynamiker und -innen 1 1.2 Deutsch für Thermodynamiker (m/w) 2 1.2.1 Hier geht nix verloren - die Sache mit der Energie 4 1.2.2 Erst mal Bilanz ziehen

Mehr

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch hermodynamik _ hermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch _ hermodynamik Einleitung Grundbegriffe 3 Systembeschreibung 4 Zustandsgleichungen 5 Kinetische

Mehr