Formelsammlung Stahlbau

Größe: px
Ab Seite anzeigen:

Download "Formelsammlung Stahlbau"

Transkript

1 Formelsammlung Stahlbau 1 Literaturverzeichnis [1] R. Kindmann, Stahlbau Teil : Stabilität und Theorie.Ordnung, Berlin: Ernst & Sohn, 008. [] Stuttgart, Hochschule für Technik, Skript Stahlbau, Stuttgart, 013. [3] C. Petersen, Statik und Stabilität der Baukonstruktionen,.Auflage, Wiesbaden: Friedr. Vieweg & Sohn, 198. [4] Deutsches Institut für Normung, DIN EN , Berlin: Beuth Verlag, Dezember 010. [5] Typisierte Verbindungen im Stahlhochbau, Stahlbau-Verlags-GmbH, [6] Deutsches Institut für Normung, DIN EN , Berlin : Beuth Verlag, Dezember 010. [7] Deutsches Institut für Normung; DIN EN , Ergänzende Regeln für kaltgeformte Bauteile und Bleche, Berlin: Beuth Verlag, Dezember 010. [8] Deutsches Institut für Normung, DIN EN , Berlin : Beuth Verlag, Dezember 010. [9] K.-J. Schneider und A. Goris, Bautabellen für Ingenieure - 0.Auflage, Werner Verlag, 01. [10] P.-I. G. Wagenknecht, Stahlbau Praxis nach Eurocode 3 Band, Beuth Verlag, 011. [11] C. Petersen, Stahlbau, Wiesbaden: Springer Vieweg, 013. [1] Deutsches Institut für Normung, DIN EN , Berlin: Beuth Verlag, Januar 011. [13] KIT Stahl und Leichtbau Versuchsanstalt für Stahl, Holz und Steine, Vorlesung Masterstudiengang, Karlsruhe, 013. Einwirkungskombinationen (vereinfacht).1 Grundkombination: E d = γ G G k + γ Q Q k,1 + γ Q Ψ 0,i Q k,i γ G : [ ] = 1,35 γ Q : [ ] = 1,5 Ψ 0,i : [ ] siehe Tabelle.1.1 Tabelle mit Kombinationsbeiwerten DIN EN 1990/NA Einwirkung: Ψ 0 Ψ 1 Ψ Nutzlast Kategorie A,B: (Wohn-, Aufenthalts-,Büroräume) Kategorie C,D: (Versammlungsräume, Verkaufsräume) Kategorie E: (Lagerräume) 0,7 0,7 1,0 0,5 0,7 0,9 0,3 0,6 0,8 Verkehrslast Kategorie F: (Fahrzeuggewicht F 30 KN) Kategorie G: (Fahrzeuggewicht 30 KN F 160 KN) Kategorie H: (Dächer) 0,7 0,7 0 0,7 0,5 0 0,6 0,3 0 Windlasten 0,6 0, 0 Schneelasten Orte bis zu NN +1000: Orte über NN +1000: 0,5 0,7 0, 0,5 0 0, Sonstige veränderliche Einwirkungen 0,8 0,7 0,5 Seite 1

2 3 Gebrauchstauglichkeitsnachweis 3.1 Durchbiegungsnachweis Vorhandene Durchbiegung Durchbiegungsformeln siehe z.b. Schneider 4.5 ff. Bei Veränderlichen Durchbiegung einzeln ausrechnen Kombinationen bilden 1,0 f g,k + 1,0 f q,1k + 1,0 Ψ 0,i f q,ik 3.1. Zulässige Durchbiegung Deckenträger und Unterzüge mit l > 5,0m: zul f l/300 Deckenträger und Unterzüge mit l < 5,0m: kein Nachweis erforderlich. Kragträger zul f l k /00 Pfetten, Wandriegel und Giebelwandstützen: zul f = l/00 l50 4 Ermittlung der Querschnittsklasse 4.1 Hinweise: Die Querschnitte von Stahlprofilen werden in 4 Querschnittsklassen eingeteilt. Rein auf Zug beanspruchte Querschnitte oder Querschnittsteile, werden zu keiner Querschnittsklasse zugeordnet. Mit der Querschnittsklasse für reine Druckbeanspruchung liegt man auf der sicheren Seite. Querschnittsklassen, die die Anforderungen der Klasse 3 nicht erfüllen, sollen in die Querschnittsklasse 4 eingestuft werden. Ein Querschnitt wird durch die höchste Klasse seiner druckbeanspruchten Querschnittsteile klassifiziert. 4. Walzprofile Walzprofile, reine Biegung oder reiner Druck siehe Kap ff. (Schneider Bautabellen) 4.3 Allgemein Vorgehen: 1. Materialparameter: ε = 35. Einstufung der Querschnittsteile (Z.B. Steg, Flansch) siehe Anhang f y f y: [KN/cm²] Streckgrenze S35: f y = 3,5 S355: f y = 35,5 S75: f y = 7,5 S450: f y = 44,0 (Werte für t 40mm) Seite

3 5 Zugkraftbeanspruchung 5.1 allgemeine Querschnitte s. DIN EN ; 6..3() N t,rd = min N pl,rd = A f y γ M0 N u,rd = 0,9 A net f u γ M A: [cm²] Bruttoquerschnittsfläche f y: [KN/cm²] Streckgrenze S35: f y = 3,5 S355: f y = 35,5 S75: f y = 7,5 S450: f y = 44,0 (Werte für t 40mm) γ M0: Teilsicherheitsbeiwert = 1,0 γ M: Teilsicherheitsbeiwert = 1,5 A net: [cm²] Nettoquerschnittsfläche 5. Winkel mit einschenkligem Anschluss: 1 Schraube: N u,rd =,0 e - 0,5 d 0 t f u γ M Schrauben: N u,rd = β A net f u γ M 3 Schrauben: N u,rd = β 3 A net f u γ M e : [cm] Randabstand = a w 1 d 0: [cm] Lochdurchmesser = d + d d: [cm] Nennlochspiel, siehe 0 t: [cm] Blechdicke f u: [KN/cm²] Zugfestigkeit S35: f u = 36 S355: f u = 49 S460: f u = 54 S75: f u = 43 S40: f u = 5 (Werte für t 40mm) γ M: Teilsicherheitsbeiwert = 1,5 A net: [cm²] Nettoquerschnittsfläche des Winkelprofils = A d 0 t Bei ungleichschenkligem Winkel mit Anschluss des kleineren Schenkels, ist A net die Nettofläche eines entsprechenden gleichschenkligen Winkelprofils mit einer Schenkellänge gleich der kleineren Schenkellänge. β : [ ] p 1,5 d 0: β = 0,4 0,3,5 d 0 < p 1 < 5,0 d 0: β = 0,4 + (p1,5 d0) p 1 5,0 d 0: β = 0,7 β 3: [ ] p 1,5 d 0: β 3 = 0,5,5 d 0 < p 1 < 5,0 d 0: β 3 = 0,5 + p 1 5,0 d 0: β 3 = 0,7 p 1: [cm] Lochabstand in Kraftrichtung,5 d 0 0,,5 d 0 (p1,5 d0) Seite 3

4 6 Druck-, Querkraft- und Biegebeanspruchung (ohne Knickgefahr) nach DIN EN Elastische Bemessung (für Querschnitte der Klasse 3 bzw. 1 und ) Querschnittsnachweis mit Spannungen: Grenzspannungen σ R,d = f y γ M0 f y τ R,d = 3 γ M0 [KN/cm²] [KN/cm²] Normalspannung: σ x,ed = N A + M y,ed 100 [KN/cm²] W el,y Schubspannung: allgemein: τ Ed = V z,ed S y I y t [KN/cm²] Vereinfachung für I-förmige Träger: τ m,ed = V z,ed A w f y: [KN/cm²] Streckgrenze S35: f y = 3,5 S355: f y = 35,5 S75: f y = 7,5 S450: f y = 44,0 (Werte für t 40mm) γ M0: Teilsicherheitsbeiwert = 1,0 W el,y [cm³] elastisches Widerstandsmoment S y: [cm³] maximales statisches Flächenmoment = A i z i z i:[cm] Abstand zwischen S ges und S i I y: [cm 4 ] Flächenträgheitsmoment des Gesamtquerschnitts t: [cm] Blechdicke am Nachweispunkt A w: [cm²] Fläche des Stegbleches, siehe Anhang Hinweis: nur falls A f /A w 0, Vergleichsspannung: Wenn σ x,ed σ R,d 0,5 oder τ Ed τ R,d 0,5 keine Vergleichsspannung (σ v,ed ) sonst für einfache Biegung: σ v,ed = σ x,ed + 3 τ Ed [KN/cm²] σ x,ed: [KN/cm²] vorh. Normalspannung σ R,d: [KN/cm²] Grenznormalspannung, siehe oben τ Ed: [KN/cm²] vorh. Schubspannung τ R,d: [KN/cm²] Grenzschubspannung, siehe oben σ v: [KN/cm²] Vergleichsspannung Hinweis: Normalerweise wird der Vergleichsspannungsnachweis an der Stelle 1 (Ende des Steges, Beginn der Ausrundung) geführt, da dort gleichzeitig große Normal- und Schubspannungen auftreten. Auf der sicheren Seite kann aber auch mit den maximalen Spannungen (σ x,ed, τ Ed) gerechnet werden Nachweise: σ d σ R,d 1 τ d τ R,d 1 σ v σ R,d 1 S y1 = S y t w d²/8 σ 1 = (M y,ed / I y) (d/) τ 1 = V z,ed S 1 / (I y t w) σ d: σ R,d: τ d: τ R,d: σ v: vorh. Normalspannung siehe oben vorh. Schubspannung siehe oben Vergleichsspannung Seite 4

5 6. Plastische Bemessung - QK 1 oder (EC3) Hinweis: Querschnitte der Klasse 3 und 4 dürfen nicht nach der Plastizitätstheorie bemessen werden 6..1 Grenzschnittgrößen: doppeltsymmetrische I-Profile: plastische Schnittgrößen siehe Schneider 8. ff. geschweißte Profile: N pl,rd = A f y γ M0 V pl,z,rd = A vz f y 3 γ M0 Streckgrenze in allen Querschnittsteilen identisch: Spannungsnulllinie läuft durch Flächenhalbierende (siehe Beispiel im Anhang) A: [cm²] Querschnittsfläche A vz: [cm²] wirksame Schubfläche, siehe Anhang gewalzte I-Profile: siehe Anhang geschweißte I-Profile: A vz = η h w t w (η = 1,0) f y: [KN/cm²] Streckgrenze S35: f y = 3,5 S355: f y = 35,5 S75: f y = 7,5 S450: f y = 44,0 (Werte für t 40mm) γ M0: [ ] 1,0 M pl,y,rd = (S y,o + S y,u ) f y γ M0 = W pl,y f y γ M0 0,01 [KNm] unterschiedliche Streckgrenze in den Querschnittsteilen: Spannungsnulllinie läuft nicht durch Flächenhalbierende. (siehe Beispiel im Anhang) S y,0: [cm³] statisches Moment = Σ (A i z i) M pl,y,rd = siehe Beispiel im Anhang Hinweise: Bei reiner Momentenbeanspruchung eines Querschnitts aus einem Material, läuft die Spannungsnulllinie nicht durch den Schwerpunkt, sondern durch die Flächenhalbierende. Generell gilt, dass das plastische Grenzmoment durch die Summenbildung aller Momente um die Spannungsnulllinie ermittelt werden kann. Mit der Bedingung, dass die Druckkräfte gleich den Zugkräften sein müssen kann die genaue Lage der Spannungsnulllinie ermittelt werden. (siehe Beispiel) 6.. Überprüfen ob Interaktion zwischen M und Q erfordelich V z,ed V pl,z,rd 0,5 keine Interaktion zwischen Moment und Querkraft erforderlich. Weiter mit 6..4 V z,ed V pl,z,rd > 0,5 Interaktion zwischen Moment und Querkraft erforderlich. Weiter mit Interaktion zwischen M und Q Hinweis: gilt für I-Profile, Hohl- und Kastenquerschnitte und rechteckige Vollquerschnitte ρ = V z,ed V pl,z,rd ρ 1,0 N V,Rd = N pl,rd (1 α V,z ρ) Walzprofile: M V,y,Rd = (1 ρ k My ) M pl,y,rd [KNm] Doppeltsymmetrische I-Profile: M V,y,Rd = W pl,y - ρ A V,z f y [KNm] 4 t w γ M0 ρ: Beiwert k My: siehe Schneider Bautabelle ff. α V,z : = A V,z/A A V,z: [cm²] wirksame Schubfläche in z-richtung gewalzte Profile: siehe Schneider Bautabelle ff. geschweißte Profile: A V,z = A b t f, bzw. A V,z = d t w A: [cm²] gesamte Querschnittsfläche t w:[cm] Stegbreite W Pl,y: [cm³] plastisches Widerstandsmoment, = S y,o + S y,u f y: [KN/cm²] Streckgrenze S35: f y = 3,5 S355: f y = 35,5 S75: f y = 7,5 S450: f y = 44,0 (Werte für t 40mm) γ M0: [ ] 1,0 Seite 5

6 6..4 Überprüfen ob Interaktion zwischen M und N erforderlich Doppeltsymmetrische I-Profile: N Ed min 0,5 N pl,rd * 1 h w t w f y (1 ρ) γ M0 *, keine Interaktion erf.: M N y,rd * 3 = M pl,y,rd [KNm] N Ed > min 0,5 N pl,rd * 1 h w t w f y (1 ρ) γ M0 * Interaktion erforderlich, weiter mit 6..5 * 1 bei Berücksichtigung der Interaktion zwischen Biegung und Querkraft (V z,ed > 0,5 V pl,z,rd) gilt: N pl,rd = N V,Rd * wenn die Interaktion zwischen Biegung und Querkraft nicht berücksichtigt werden muss (V z,ed 0,5 V pl,z,rd) gilt: ρ = 0 * 3 bei Berücksichtigung der Interaktion zwischen M und V (V z,ed > 0,5 V pl,z,rd) gilt: M N,y,Rd = M VN,y,Rd * 5 bei Berücksichtigung der Interaktion zwischen M und V (V z,ed > 0,5 V pl,z,rd) gilt: M pl,y,rd = M N,y,Rd Hohl- und Kastenquerschnitte: Interaktion erforderlich, weiter mit Rechteckige Vollquerschnitte: Interaktion erforderlich M N,Rd = M pl,rd 1 - N Ed [KNm] N pl,rd 6..5 Interaktion zwischen M und N N Ed: einwirkende Normalkraft N pl,rd: Normalkraft im vollplastischen Zustand, siehe oben N V,Rd: abgeminderte Normalkraft im vollplastischen Zustand, siehe oben M pl,y,rd [KNm] Moment im vollplastischen Zustand, siehe oben A: [cm²] gesamte Querschnittsfläche A red: [cm²] A A V,z ρ A V,z: [cm²] wirksame Schubfläche in z-richtung Walzprofile: siehe Schneider Bautabelle ff. t w:[cm] Stegbreite h w: [cm] Höhe des Stegblechs = d b: [cm] Breite des Querschnitts t f: [cm] Flanschdicke ρ: [ ] siehe oben f y: [KN/cm²] Streckgrenze S35: f y = 3,5 S355: f y = 35,5 S75: f y = 7,5 S450: f y = 44,0 (Werte für t 40mm) γ M0: [ ] 1,0 M N,y,Rd * 1 = M pl,y,rd * mit: n = N Ed N pl,rd 1 - n 1-0,5 a [KNm] [ ] a = min A * 4 - b t f A * 4 [ ] 0,5 [ ] a: [ ] bei Hohl- und Kastenquerschnitten ist a = a w M pl,y,rd [KNm] Moment im vollplastischen Zustand A: [cm²] gesamte Querschnittsfläche t f: [cm] Flanschdicke * 1 bei Berücksichtigung der Interaktion zwischen M und V (V z,ed > 0,5 V pl,z,rd) gilt: M N,y,Rd = M VN,y,Rd * bei Berücksichtigung der Interaktion zwischen M und V (V z,ed > 0,5 V pl,z,rd) gilt: M pl,y,rd = M N,y,Rd * 3 bei Berücksichtigung der Interaktion zwischen Biegung und Querkraft (V z,ed > 0,5 V pl,z,rd) gilt: N pl,rd = N V,Rd * 4 bei Berücksichtigung der Interaktion zwischen M und V (V z,ed > 0,5 V pl,z,rd) gilt: A = A red 6..6 Nachweise: V z,ed V pl,z,rd 1,0 N Ed N pl,rd 1,0 M y,ed M y,rd 1,0 * 4 * 5 * 6 * 4 bei Berücksichtigung der Interaktion zwischen M und V gilt: M y,rd = M V,y,Rd * 5 bei Berücksichtigung der Interaktion zwischen M und N gilt: M y,rd = M N,y,Rd * 6 bei Berücksichtigung der Interaktion zwischen M, V und N gilt: M y,rd = M VN,y,Rd Seite 6

7 7 Druckkraftbeanspruchung - Knicken: 7.1 Hinweise Wenn ein Moment rechtwinklig zu dem untersuchten Knickstab wirkt, ist das Biegedrillknicken i.d.r maßgebend! Der Nachweis erfolgt nach dem Ersatzstabverfahren. 7. Knicklängen: Knicken in z-richtung: L cr,y = β l 1 Knicken in y-richtung: L cr,z = β l 7.3 Trägheitsradius: gewalzte Stahlprofile: siehe Schneider Bautabellen ff. allgemein: β: [ ] Knicklängenbeiwert, siehe Anhang i z = I z A [cm] und i y = I y A [cm] 7.4 bezogener Schlankheitsgrad: QK1, QK und QK3: λ z = L cr,z i z λ 1 QK4: QK1, QK und QK3: λ y = L cr,y i y λ 1 QK4: 7.5 Abminderungsfaktor χ: λ 0,: χ = 1,0 1 λ > 0,: χ = 1,0 Φ+ Φ - λ 7.6 Nachweis: N Ed χ N pl,rd 1,0 [ ] λ z = L cr,z i z λ 1 A eff A [ ] [ ] λ y = L cr,y i y λ 1 A eff A [ ] Hinweis: für die Profile in den Schneider Bautabellen ist der Faktor γ M1 in N pl,rd nicht berücksichtigt! L cr,y : [cm] siehe oben L cr,z: [cm] siehe oben i y: [cm] siehe oben i z: [cm] siehe oben λ 1: Materialbeiwert S35: λ 1 = 93,9 S75: λ 1 = 86,8 S355: λ 1 = 76,4 S40: λ 1 = 70, S460: λ 1 = 67,1 Φ: [ ] Faktor Φ = 0,5 1+ α λ - 0, + λ α: [ ] Beiwert Knicklinie a 0: α = 0,13 Knicklinie a: α = 0,1 Knicklinie b: α = 0,34 Knicklinie c: α = 0,49 Knicklinie d: α = 0,76 Hinweis: Zuordnung zur Knickspannungslinie siehe Tabelle 6. im Anhang N Ed: einwirkende Normalkraft N pl,rd : plastische Grenznormalkraft QK1 QK3: N pl,rd = A f y γ M1 QK4: N pl,rd = A eff f y γ M1 γ M1: [ ] Sicherheitsbeiwert = 1,10 Seite 7

8 8 Druckkraftbeanspruchung - Drillknicken 8.1 Hinweise: Nachweis muss nur für Querschnitte mit geringer Steifigkeit gegen verdrehen geführt werden. (z.b. Winkel- Kreuz- und T-Profil) Die Steifigkeit gegen verdrehen ist von der Torsionssteifigkeit GI T und der Wölbsteifigkeit EI abhängig. Bei der Auswahl der Knicklinie ist das Ausweichen senkrecht zur Achse z-z zu wählen 8. Drehradius des Querschnitts: c = I ω+ 0,039 l I T I Z [cm] 8.3 polarer Trägheitsradius, bezogen auf den Schwerpunkt: i p = i y + i z [cm] I: [cm 6 ] Wölbflächenmoment. Grades Schneider Bautabelle 8.3 l: [cm] Abstand der Gabellager I T: [cm 4 ]Torsionsflächenmoment. Grades Schneider Bautabelle 8.3 I Z: [cm 4 ] Flächenträgheitsmoment. Grades Schneider Bautabelle!! Bei Winkelprofil durch I η ersetzen!! i y : [cm²] Trägheitsradius bezogen auf Hauptachse Y!! bei Winkelprofil durch i η zu ersetzen!! i z : [cm²] Trägheitsradius bezogen auf Hauptachse Z!! bei Winkelprofil durch i ζ zu ersetzen!! 8.4 polarer Trägheitsradius, bezogen auf den Schubmittelpunkt: i M = i p + z M [cm] i p : [cm²] polarer Trägheitsradius (siehe oben) z M: [cm] Abstand zwischen Schwerpunkt und Schubmittelpunkt 8.5 Schlankheitsgrad: QK1, QK, QK3: λ T = β l i z QK4: λ T = β l i z c + i M 1+ c 1-4 c² i p 1 c² + i M λ 1 c + i M 1+ c 1-4 c² i p 1 A eff c² + i M λ 1 A β: Knicklängenbeiwert (siehe Eulerfälle) l: [cm] Knicklänge i z : [cm²] Trägheitsradius bezogen auf Hauptachse Z!! bei Winkelprofil durch i ζ zu ersetzen!! c: [cm] Drehradius des Querschnitts (siehe oben) i M : [cm] polarer Trägheitsradius (siehe oben) i p: [cm] polarer Trägheitsradius, siehe oben λ 1: Materialbeiwert S35: λ 1 = 93,9 S75: λ 1 = 86,8 S355: λ 1 = 76,4 S40: λ 1 = 70, S460: λ 1 = 67,1 8.6 Abminderungsfaktor χ: λ 0,: χ = 1,0 1 λ > 0,: χ = 1,0 Φ+ Φ - λ 8.7 Nachweis: N Ed χ N pl,rd 1,0 Hinweis: für die Profile in den Schneider Bautabellen ist der Faktor γ M1 in N pl,rd nicht berücksichtigt! Φ: [ ] Faktor Φ = 0,5 1+ α λ - 0, + λ α: [ ] Beiwert Knicklinie a 0: α = 0,13 Knicklinie a: α = 0,1 Knicklinie b: α = 0,34 Knicklinie c: α = 0,49 Knicklinie d: α = 0,76 Hinweis: Zuordnung zur Knickspannungslinie siehe Tabelle 6. im Anhang N Ed: einwirkende Normalkraft N pl,rd : plastische Grenznormalkraft QK1 QK3: N pl,rd = A f y γ M1 QK4: N pl,rd = A eff f y γ M1 γ M1: [ ] Sicherheitsbeiwert = 1,10 Seite 8

9 9 Biegedrillknicken (nur Biegemoment) 9.1 Hinweise: Eine gute Herleitung der Formeln ist in dem Buch Stahlbau-Praxis nach EC3, Wagenknecht gegeben. Das folgende Verfahren gilt nur für I-Profile. 9. ideale Vezweigungslast: N cr,z = π E I z l 9.3 Torsionsflächenmoment. Grades: l I T,ges = I T + c ϑ,k π G [cm4 ] Hinweis: I T kann durch die Berücksichtigung einer elastischen Drehfeder (z.b. durch Anschluss eines Trapezprofilbleches) erhöht werden. 9.4 Drehradius des Querschnitts: c = I ω+ 0,039 l I T,ges I Z [cm] E: [KN/cm²] Elastizitätsmodul = l: [cm] Abstand der Gabellager I Z: [cm 4 ] Flächenträgheitsmoment. Grades Schneider Bautabelle ff. I T: [cm 4 ]Torsionsflächenmoment. Grades des Trägerprofils siehe Schneider Bautabelle ff. c ϑ,k: [cm 6 ] vorhandene Drehfeder siehe NW ausreichender Drehbettung l: [cm] Abstand der Gabellager G: [KN/cm ] Schubmodul = 8100 I: [cm 6 ] Wölbflächenmoment. Grades siehe Schneider Bautabelle ff. l: [cm] Abstand der Gabellager I T,ges: [cm 4 ] Torsionsflächenmoment. Grades siehe oben I Z: [cm 4 ] Flächenträgheitsmoment. Grades siehe Schneider Bautabelle ff. 9.5 Ermittlung des idealen Biegedrillknickmomentes M cr : Hinweise: Die Berechnung von M cr ist im EC3 nicht geregelt. (vgl. DIN EN ) M cr kann der Literatur entnommen werden, oder mit Hilfe von Programmen ermittelt werden. Für doppeltsymmetrische I-Profile können die folgenden Formeln verwendet werden. Schneller und exakter rechnet in der Regel die EDV! Einfeldträger (nur für doppeltsymmetrische I-Querschnitte) M cr = ζ N cr,z c + 0,5 z p + 0,5 z p 0,01 [KNm] ζ: [ ] Momentenbeiwert, siehe oben N cr,z: ideale Verzweigungslast, siehe oben c: [cm] Drehradius des Querschnitts, siehe oben z p: [cm] Abstand vom Kraftangriffspunkt zum Schwerpunkt z p < 0 wenn Kraft oberhalb des Schwerpunkts angreift z p = 0 wenn Einfluss direkter Belastung vernachlässigbar z p > 0 wenn Kraft unterhalb des Schwerpunkts angreift Momentenverlauf Beiwert ζ 1,0 1,1 1,35 1,77 0,77 Ψ 1,35 Seite 9

10 9.5. Allgemeiner Fall (nur für doppeltsymmetrische I-Querschnitte) M cr = M cr,y0 max M y M y0 mit: [KNm] M cr,y0 = ζ 0 N cr,z c + ζ 0 0,4 z p + ζ 0 0,4 z p 0,01 [KNm] Hinweise: Das gesamte Vorgehen für Träger mit Randmomenten wurde aus dem Buch Stahlbau Teil : Stabilität und Theorie.Ordnung von Rolf Kindmann übernommen. Es wird wie folgt vorgegangen: Aufteilung des Durchlaufträgers in Einfeldträger mit Randmomenten. Vgl. Bild 6.10 Bei mehreren Feldern muss für jedes Feld ein eigener Momentenbeiwert ermittelt werden. Der kleinste Wert ist maßgebend, da dieser das kleinste Biegedrillknickmoment liefert. Für einen Einfeldträger gilt: M yb = M ya = 1,1 Dieser Momentenbeiwert entspricht dem ζ-wert von oben. M y0: [KNm] = q z l 8 max M y: [KNm] maximales Feld- bzw. Stützmoment ζ 0: [ ] Momentenbeiwert, siehe Tabelle 6. N cr,z: ideale Verzweigungslast, siehe oben c: [cm] Drehradius des Querschnitts, siehe oben z p: [cm] Abstand vom Kraftangriffspunkt zum Schwerpunkt z p < 0 wenn Kraft oberhalb des Schwerpunkts angreift z p = 0 wenn Einfluss direkter Belastung vernachlässigbar z p > 0 wenn Kraft unterhalb des Schwerpunkts angreift Abbildung 1: Momentenbeiwerte ζ 0 [1] Abbildung : Beidseitig gabelgelagerter Träger mit Randmomenten und Gleichstreckenlast [1] 9.6 BDK-Schlankheit: λ LT = W y f y M cr W y: [cm³] QK1 und QK: W y = W pl,y QK3: W y = W el,y QK4: W y = W eff,y f y: [KN/cm²] Streckgrenze S35: f y = 3,5 S355: f y = 35,5 S75: f y = 7,5 S450: f y = 44,0 (Werte für t 40mm) Seite 10

11 9.7 Abminderungsfaktor: I-Querschnitte, gewalzt & gleichartig geschweißt: χ LT = min 1 Φ LT + Φ LT 0,75 λ LT 1 λ LT 1,0 mit: Φ LT = 0,5 1+ α LT λ LT - 0,4+ 0,75 λ LT Hinweis: Nach DIN EN / () kann χ LT weiter abgemindert werden allgemein: λ LT 0,4 χ LT = 1,0 (Stab ist gedrungen und eine Biegedrillknickuntersuchung ist nicht erf.) λ LT : siehe oben Φ LT : siehe unten α LT: [ ] Beiwert Knicklinie a 0: α = 0,13 Knicklinie a: α = 0,1 Knicklinie b: α = 0,34 Knicklinie c: α = 0,49 Knicklinie d: α = 0,76 Zuordnung der Knicklinie: gewalztes I-Profil: h/b,0 KL b h/b >,0 KL c geschweißtes I-Profil: h/b,0 KL c h/b >,0 KL d λ LT > 0,4 χ LT = 1 Φ LT + Φ LT - λ LT χ LT 1,0 Φ LT = 0,5 1+ α LT λ LT - 0,+ λ LT 9.8 Bemessungswert der Beansprucharkeit: M b,rd = χ LT W y f y 1 γ [KNm] W y: [cm³] QK1 und QK: W y = W pl,y QK3: W 100 y = W el,y M1 QK4: W y = W eff,y W pl,y: [cm³] plastisches Widerstandsmoment W pl,y = S y,o + S y,u (bestimmen der NL siehe Beispiele) W el,y: [cm³] elastisches Widerstandsmoment siehe Schneider Bautabelle ff. f y: [KN/cm²] Streckgrenze S35: f y = 3,5 S355: f y = 35,5 S75: f y = 7,5 S450: f y = 44,0 (Werte für t 40mm) γ M1: [ ] Sicherheitsbeiwert = 1,1 9.9 Nachweis: M y,ed M b,rd 1,0 M y,ed: [KNm] M b,rd: [KNm] Bemessungswert des einwirkenden Biegemomentes Bemessungswert der Beanspruchbarkeit siehe oben Seite 11

12 10 Biegedrillknicken (einachsige Biegung + Normalkraft) 10.1 Knicklängen: Knicken in y-richtung: L cr,z = β l 1 Knicken in z-richtung: L cr,y = β l 10. Trägheitsradius: gewalzte Stahlprofile: siehe Schneider Bautabellen ff. β: [ ] Knickbeiwert siehe Schneider Bautabellen allgemein: i z = I z A [cm] und i y = I y A [cm] 10.3 bezogener Schlankheitsgrad: Knicken in y-richtung: QK1, QK und QK3: λ z = L cr,z i z λ 1 QK4: [ ] λ z = L cr,z i z λ 1 A eff A [ ] L cr,z: [m] siehe oben i z: [cm] siehe oben λ 1: Materialbeiwert S35: λ 1 = 93,9 S75: λ 1 = 86,8 S355: λ 1 = 76,4 S40: λ 1 = 70, S460: λ 1 = 67, Knicken in z-richtung: QK1, QK und QK3: λ y = L cr,y i y λ 1 QK4: 10.4 Abminderungsfaktor χ: Knicken in y-richtung: λ 0,: χ z = 1,0 λ > 0,: χ z = 1,0 Φ z + Φ z - λ z Knicken in z-richtung: λ 0,: χ y = 1,0 λ > 0,: χ y = 1,0 Φ y + Φ y - λ y 10.5 ideale Vezweigungslast: N cr,z = π E I z l 1 1 [ ] λ y = L cr,y i y λ 1 A eff A [ ] 10.6 Torsionsflächenmoment. Grades: l I T,ges = I T + c ϑ,k π G [cm4 ] Hinweis: I T kann durch die Berücksichtigung einer elastischen Drehfeder (z.b. durch Anschluss eines Trapezprofilbleches) erhöht werden. L cr,y : [m] siehe oben i y: [cm] siehe oben λ 1: Materialbeiwert S35: λ 1 = 93,9 S75: λ 1 = 86,8 S355: λ 1 = 76,4 S40: λ 1 = 70, S460: λ 1 = 67,1 Φ: [ ] Faktor Φ z = 0,5 1+ α λ z - 0, + λ z α: [ ] Beiwert Knicklinie a 0: α = 0,13 Knicklinie a: α = 0,1 Knicklinie b: α = 0,34 Knicklinie c: α = 0,49 Knicklinie d: α = 0,76 Hinweis: Zuordnung zur Knickspannungslinie siehe Tabelle 6. im Anhang Φ: [ ] Faktor Φ y = 0,5 1+ α λ y - 0, + λ y α: [ ] Beiwert Knicklinie a 0: α = 0,13 Knicklinie a: α = 0,1 Knicklinie b: α = 0,34 Knicklinie c: α = 0,49 Knicklinie d: α = 0,76 Hinweis: Zuordnung zur Knickspannungslinie siehe Tabelle 6. im Anhang E: [KN/cm²] Elastizitätsmodul = l: [cm] Abstand der Gabellager I Z: [cm 4 ] Flächenträgheitsmoment. Grades Schneider Bautabelle ff. I T: [cm 4 ]Torsionsflächenmoment. Grades des Trägerprofils siehe Schneider Bautabelle ff. c ϑ,k: [cm 6 ] vorhandene Drehfeder siehe NW ausreichender Drehbettung l: [cm] Abstand der Gabellager G: [KN/cm ] Schubmodul = Seite 1

13 10.7 Drehradius des Querschnitts: c = I ω+ 0,039 l I T,ges I Z [cm] 10.8 Ermittlung des idealen Biegedrillknickmomentes M cr : Hinweise: Die Berechnung von M cr ist im EC3 nicht geregelt. (vgl. DIN EN ) M cr kann der Literatur entnommen werden, oder mit Hilfe von Programmen ermittelt werden. Für doppeltsymmetrische I-Profile kann die folgende Formel verwendet werden. Bei Träger unter Gleichstreckenlast und Randmomenten EDV M cr = ζ N cr,z c + 0,5 z p + 0,5 z p 0,01 [KNm] I: [cm 6 ] Wölbflächenmoment. Grades siehe Schneider Bautabelle ff. l: [cm] Abstand der Gabellager I T,ges: [cm 4 ] Torsionsflächenmoment. Grades siehe oben I Z: [cm 4 ] Flächenträgheitsmoment. Grades siehe Schneider Bautabelle ff. ζ: [ ] Momentenbeiwert, siehe oben N cr,z: ideale Verzweigungslast, siehe oben c: [cm] Drehradius des Querschnitts, siehe oben z p: [cm] Abstand vom Kraftangriffspunkt zum Schwerpunkt z p < 0 wenn Kraft oberhalb des Schwerpunkts angreift z p = 0 wenn Einfluss direkter Belastung vernachlässigbar z p > 0 wenn Kraft unterhalb des Schwerpunkts angreift Momentenverlauf Beiwert ζ 1,0 1,1 1,35 1,77 0,77 Ψ 10.9 BDK-Schlankheit: λ LT = W y f y M cr Abminderungsfaktor: I-Querschnitte, gewalzt & gleichartig geschweißt: χ LT = min 1 Φ LT + Φ LT 0,75 λ LT 1 λ LT 1,0 mit: Φ LT = 0,5 1+ α LT λ LT - 0,4+ 0,75 λ LT Hinweis: Nach DIN EN / () kann χ LT weiter abgemindert werden allgemein: λ LT 0,4 χ LT = 1,0 (Stab ist gedrungen und eine Biegedrillknickuntersuchung ist nicht erf.) W y: [cm³] QK1 und QK: W y = W pl,y QK3: W y = W el,y QK4: W y = W eff,y f y: [KN/cm²] Streckgrenze S35: f y = 3,5 S355: f y = 35,5 S75: f y = 7,5 S450: f y = 44,0 (Werte für t 40mm) M cr: [KNm] siehe oben λ LT : siehe oben Φ LT : siehe unten 1,35 α LT: [ ] Beiwert Knicklinie a: α = 0,1 Knicklinie b: α = 0,34 Knicklinie c: α = 0,49 Knicklinie d: α = 0,76 Zuordnung der Knicklinie: gewalztes I-Profil: h/b,0 KL b h/b >,0 KL c geschweißtes I-Profil: h/b,0 KL c h/b >,0 KL d λ LT > 0,4 χ LT = 1 Φ LT + Φ LT - λ LT χ LT 1,0 Φ LT = 0,5 1+ α LT λ LT - 0,+ λ LT Seite 13

14 10.11 Bemessungswerte der Beanspruchbarkeit: QK1 und QK: N b,y,rd = χ y A f y γ M1 N b,z,rd = χ z A f y γ M1 M b,rd = χ LT W pl,y f y γ M1 [KNm] QK3: N b,y,rd = χ y A f y γ M1 N b,z,rd = χ z A f y γ M1 M b,rd = χ LT W el,y f y γ M1 [KNm] 10.1 Interaktionsbeiwerte: Interaktionsbeiwert k yy : QK 1 und k yy = min QK3: k yy = min C my 1+ λ y - 0, C my 1+ 0,8 C my 1+ 0,6 λ y C my 1+ 0,6 N Ed N b,y,rd! [ ] N Ed N b,y,rd! [ ] N Ed N b,y,rd! [ ] N Ed N b,y,rd! [ ] Interaktionsbeiwert k zy : QK 1 und W pl,y: [cm³] plastisches Widerstandsmoment W pl,y = S y,o + S y,u (bestimmen der NL siehe Beispiele) W el,y: [cm³] elastisches Widerstandsmoment siehe Schneider Bautabelle ff. f y: [KN/cm²] Streckgrenze S35: f y = 3,5 S355: f y = 35,5 S75: f y = 7,5 S450: f y = 44,0 (Werte für t 40mm) γ M1: [ ] Sicherheitsbeiwert = 1,1 C my: [ ] äquivalenter Momentenbeiwert siehe Anhang Tabelle B3 λ y : [ ] Schlankheit siehe oben N Ed: einwirkende Normalkraft N b,y,rd: [KN ] Bemessungswert der Normalkraft siehe oben für " $ 0,4 gilt: k zy = max 1-1- Für " $ < 0,4 gilt: 0,1 λ z C mlt - 0,5 N Ed N b,z,rd! 0,1 C mlt - 0,5 N Ed N b,z,rd! k zy = min 0,6 + " $ 1 - QK3: k zy = max ,1 λ z C mlt - 0,5 N Ed N b,z,rd 0,05 λ z C mlt - 0,5 N Ed N b,z,rd! 0,05 C mlt - 0,5 N Ed N b,z,rd! Nachweise: N Ed + k N yy M y,ed+ M y,ed 1,0 b,y,rd M b,rd N Ed N b,z,rd + k zy M y,ed+ M y,ed M b,rd 1,0 Seite 14

15 11 St. Venantsche Torsion 11.1 Einwirkung 11. Torsionsstreckenmoment Vertikalkraft außerhalb des Schubmittelpunktes: m T = q T e m [KNm/m] Hinweise: Bei symmetrischen Profilen liegt der Schubmittelpunkt auf der Symmetrieachse. Bei Doppelsymmetrischen Profilen liegt der Schubmittelpunkt im Schwerpunkt Torsionsmoment Einfeldträger: M T = m t L [KNm] Hinweise: Die Querkraftanalogie kann bei der Ermittlung des Torsionsmomentenverlaufs helfen Torsionsflächenmomente Dünnwandige Rechteckquerschnitte (h/t 10): I T = α h t³ [cm 4 ] q Ed: [KN/m] Vertikalbelastung e m: [m] Abstand zwischen Schubmittelpunkt und Kraftangriffspunkt der Vertikalkraft. siehe Formelsammlung Schubmittelpunktberechnung L: [m] Trägerlänge h/t 1,0,0 3,0 6,0 10 α 0,14 0,9 0,36 0,99 0,313 1/ Kreisquerschnitte: I T = π (R4 r 4 ) [cm 4 ] Dickwandige Rechteckquerschnitte (h/t < 10): Schubspannung kann direkt berechnet werden Dünnwandige, offene Profile (L,C,T,I-Profile) I T = 1 η n t 3 i 3 i=1 h i [cm 4 ] R: [cm] Außenradius r: [cm] Innenradius (= 0 bei Vollquerschnitt) t i: [cm] Blechdicke eines einzelnen Blechstreifens h i: [cm] Länge eines einzelnen Blechstreifens η: [cm] Korrekturfaktor bei Walzprofilen zur Berücksichtigung der Ausrundungsradien. Kein Walzprofil: η = 1, Dünnwandige, geschlossene einzellige Querschnitte (Hohlprofil) Blechdicke konstant: I T = 4 A m [cm 4 ] s i i t i A m: [cm²] Fläche, die von der Mittellinie der Wandung eingeschlossen ist Kreis: A m = π r m² t i: [cm] Dicke des Querschnitts an der betrachteten Stelle s i: [cm] Länge eines Umfangabschnittes Kreis: s = π r m Seite 15

16 Dünnwandige, geschlossenen mehrzellige Querschnitte I T = M T G ϑ ' [cm 4 ] ϑ durch lösen des folgenden LGS: (Beispielhaft für ein Kasten mit 3 Zellen) ds b -) ds Zelle1 t(s) a 0 - G A t(s) m,1 ' b -) ds ds -) ds T d - G A, 1 0 a t(s) Zelle c t(s) t(s) m, T 0 -. = - & d 0 -) ds ds - G A + T 3 0. c t(s) Zelle3 t(s) m,3 ϑ ' M T 100 % A m,1 A m, A m,3 0 * Alternativ: Für jede Zelle die folgende Gleichung aufstellen und nach ϕ 1, ϕ, ϕ 3 auflösen: (Hinweis: k = 1,,3 bzw. die Nummer der betrachteten Zelle) B A t(s) - ϕ k-1 ds + ϕ k ds k t(s) D C t(s) ϕ k+1 ds = A m,k I T = A m,k ϕ k [cm 4 ] T k = M T I T ϕ k [KN/cm] n: [ ] Anzahl der Zellen ds : [ ] Ringintegral der Zelle 1 = Summe der einzelnen Blechlängen die an die Zelle 1 grenzen, geteilt durch deren Breite. Zelle1 t(s) ds Zelle t(s) ds Zelle3 t(s) b -) ds a t(s) d -) ds c t(s) : [ ] Ringintegral der Zelle = Summe der einzelnen Blechlängen die an die Zelle grenzen, geteilt durch deren Breite. : [ ] Ringintegral der Zelle 3 = Summe der einzelnen Blechlängen die an die Zelle 3 grenzen, geteilt durch deren Breite. : [ ] Blechlänge der Wandung die an die Zelle 1 und grenzt geteilt durch deren Breite. -) ds : [ ] Blechlänge der Wandung die an die Zelle und 3 grenzt geteilt durch deren Breite. -) ds G: [KN/cm²] Schubmodul. G = 8100 A m,1: [cm²] Fläche, die von der Mittellinie der Zellenwandung 1 eingeschlossen ist. A m,: [cm²] Fläche, die von der Mittellinie der Zellenwandung eingeschlossen ist. A m,3: [cm²] Fläche, die von der Mittellinie der Zellenwandung 3 eingeschlossen ist. b a t(s) d c t(s) = - s 1- t 1- = - s -3 t -3 Seite 16

17 11.5 Maximale Schubspannung infolge Torsion Dünnwandiger Rechteckquerschnitt (h/t 10): T τ max = M T 100 t [KN/cm²] I T M T: [KNm] Bemessungswert des Torsionsmomentes Kreisquerschnitte T τ max = M T 100 t [KN/cm²] t: [cm] bei Vollkreisquerschnitten: t = r I T Dickwandiger Rechteckquerschnitt (h/t < 10): T τ max = M T 100 [KN/cm²] β h t M T: [KNm] Bemessungswert des Torsionsmomentes Dünnwandige, offene Profile (L,C,T,I-Profile) T τ max = M T 100 t [KN/cm²] I T Dünnwandige, geschlossene Querschnitte (Hohlprofil) T τ max = M T 100 A m t min [KN/cm²] Mehrzelliger Hohlkasten τ T = T t i [KN/cm²] 11.6 Maximale Schubspannung infolge Querkraft τ V max = V z S y,max I y t [KN/cm²] 11.7 Maximale Schubspannung T V τ max = τ max + τ max [KN/cm²] t: [cm] Blechdicke Hinweis: Wenn maximale Schubspannung infolge M T und V berechnet werden soll: t = Blechdicke an der Stelle mit der maximalen Schubspannung infolge V M T: [KNm] Bemessungswert des Torsionsmomentes T: Schubfluss siehe oben t i: [cm] Blechdicke an der betrachteten Stelle V z: Einwirkende Querkraft S y,max: [cm³] größtes statisches Moment (auf Höhe der Schwerachse) siehe Formelsammlung Schubmittelpunktberechnung t: [cm] Profildicke an der Stelle s 11.8 Ermittlung der Verdrehung infolge der Torsionsmomentenbeanspruchung ϑ = ) M T M 1 dx = ) M G I T G I T 100 M dx [rad] T umrechnen in Grad: ϑ = 360 π ϑ [ ] G: [KN/cm²] Schubmodul. Für Stahl: G = 8100 I T: [cm 4 ] Torsionsflächenmoment, siehe oben M T: [KNm] Bemessungswert des Torsionsmomentes M : [ ] Momentenverlauf infolge der Einheitsverdrehung 1 L: [cm] Länge über die integriert wird. Vorgehen: 1. Aufbringen einer virtuellen Verdrehung der Größe 1. Vorhandenen Torsionsmomentenverlauf mit dem virtuellen Momentenverlauf koppeln. Seite 17

18 1 Wölbkrafttorsion 1.1 Vorgehen: 1.) Integrationsweg s festlegen (vom frei gewählten Nullpunkt zu den Enden hin) bei Achsensymmetrischen Querschnitten am besten auf Symmetrieachse legen ω A0 = 0 Wenn Schubmittelpunkt und Schwerpunkt zusammenfallen: ω S = ω M.) Ermittlung der r t -Flächen 3.) Ermittlung der Einheitsverwölbung 4.) Ermittlung des Wölbwiderstandes I ω,m 5.) Ermittlung der Wölbnormalspannungen 1. Ermittlung der r t -Flächen: r t ist der Abstand zwischen der Tangenten an den Querschnitt und dem Drehpunkt A (z.b. S oder M) r t ist positiv, wenn die Tangente an den Querschnitt (bzw. Richtung des Integrationsweges) im Uhrzeigersinn um die x-achse dreht. Beispiel: 1.3 Einheitsverwölbung ω A : ω A = ω A + ω A0 [cm²] Abbildung 3: r t-verlauf Beispiel: ω A = ) r t ds = Flächeninhalt des r t -Verlaufs Für den Verlauf der Einheitsverwölbung ω A müssen die r t- Flächen beginnend am Nullpunkt mit einer virtuellen Größe 1 über die jeweilige Länge gekoppelt werden. Integrationskonstante: ω A0 = - 1 ) ω A A A da = - t (Flächeninhalt des ω A Verlaufs) A Hinweise: ω A0 = 0, wenn: - achsensymmetrischer Querschnitt - Drillachse auf Symmetrieachse - Nullpunkt der Integration im Schnittpunkt von Symmetrieachse und Profilmittellinie. ω A0 entspricht dem Flächeninhalt des ω A Verlaufes bei konstanter Blechdicke kann das t aus dem Integral herausgezogen werden. 1.4 Einheitsverwölbung ω B : ω B = ω A (y B y A ) z + (z B z A ) y + ω 0 [cm²] 1.5 Wölbwiderstandsmoment: I ω,m = t ) ω M A ds [cm 6 ] Hinweis: Das Wölbwiderstandsmoment kann durch die Kopplung der Einheitsverwölbung mit sich selber ermittelt werden. Abbildung 4: Einheitsverwölbung ω M ω A (1) = 1,0 1,96 5,0 = +9,8 cm² ω A () = 9,8-1,0,15,5 +,5 = +, ω A (3) =, - 1,0 7,5 3,0 = -0,3 ω A: [cm²] Verwölbung bezogen auf den Punkt A ω B: [cm²] Verwölbung bezogen auf den Punkt B ω M: [cm²] Verwölbung bezogen auf den Momentanpol ω 0: [cm²] = - 1 ) ω A A A da = - t (Flächeninhalt des ωa Verlaufs) A y B - y A: [cm] Abstand zwischen Punkt A und Punkt B in y-richtung z B - z A: [cm] Abstand zwischen Punkt A und Punkt B in z-richtung z: [cm] Stelle in z-richtung an der die Einheitsverwölbung berechnet wird. y: [cm] Stelle in y-richtung an der die Einheitsverwölbung berechnet wird. Beispiel: (Blechdicke t = mm) I ω,m = [ 1 9,8² 5, (9,8 9,8 +,,) /,5² +,5² (9,8, +, 9,8) /,5² +,5² (-0,3)² 3,0 + 1,² 3, (-0,3), 3,0 + 1, (-0,3) 3,0 ] 0, x 6 6 = 70,7 cm 6 Seite 18

19 1.6 Abklingfaktor: λ = G I T E I ω,m [1/cm] 1.7 Grenzfälle λ L reine St. Venantsche Torsion I ω,m 0 λ L 0 reine Wölbkrafttorsion G I T 0 λ L < 0,5 reine Wölbkrafttorsion 0,5 < λ L < 10 gemischte Torsion λ L > 10 reine St. Venantsche Torsion G: [KN/cm²] Schubmodul = 8100 I T: [cm 4 ] Torsionsflächenmoment, siehe oben E: [KN/cm²] E-Modul von Stahl = 1000 I ω,m: [cm6] Wölbwiderstand, siehe oben L: [m] Trägerlänge 1.8 Primäres Torsionsmoment MTP Einfeldträger mit Gabellagerung M TP = m T λ λ Maximales M TP (x = L): M TP,max = m T cosh 0λ x1 - cosh λ (L - x) L - x+ [KNcm] sinh (λ L) λ - L λ + cosh 0λ L1-1 sinh (λ L) [KNcm] 1.9 Sekundäres Torsionsmoment Einfeldträger mit Gabellagerung M TS = - m T λ cosh 0λ x1 - cosh (λ L-x) [KNcm] sinh ( λ L) Maximales M TS (x=l): M TS = - m T λ 0λ L1-1 cosh [KNcm] sinh (λ L) 1.10 Wölbmoment Einfeldträger mit Gabellagerung M ω = - m T sinh 0λ x1 + sinh (λ L - x) 0λ1-1+ [KNcm²] Maximales M ω : (x = L/) sinh (λ L) m T: [KNm/m] einwirkendes Torsionsmoment x: [cm] Stelle an der das Moment gesucht ist. λ: [1/cm] Abklinkfaktor L: [cm] Trägerlänge m T: [KNm/m] einwirkendes Torsionsmoment x: [cm] Stelle an der das Moment gesucht ist. λ: [1/cm] Abklinkfaktor L: [cm] Trägerlänge m T: [KNm/m] einwirkendes Torsionsmoment x: [cm] Stelle an der das Moment gesucht ist. λ: [1/cm] Abklinkfaktor L: [cm] Trägerlänge max. M ω = - m T sinh (λ 0,5 L 0λ1-1+ [KNcm²] 1.11 Trägerverdrehung ϑ = λ m T G I T (λ) (L x - x ) - 1+ sinh (λ L) sinh (λ x) + sinh (λ (L x)) sinh (λ L)! [rad] m T: [KNm/m] einwirkendes Torsionsmoment x: [cm] Stelle an der die Verdrehung gesucht ist. λ: [1/cm] Abklinkfaktor L: [cm] Trägerlänge maximale Verdrehung: ϑ max = m T λ G I T (λ) 8 L - 1+ sinh (λ 0,5 L) sinh (λ L)! [rad] ϑ = 360 ϑ π [ ] 1.1 Wölbnormalspannungen: σ ω = M ω,m I ω,m ω M [KN/cm ] M ω,m: [KNcm²] Wölbmoment I ω,m: [cm 6 ] Wölbwiderstandsmoment, siehe oben Seite 19

20 13 Plattenbeulen Nachweis Querschnitte der Klasse Plattenbeulen bei Längsspannungen - Nachweis der wirksamen Fläche Randspannung σ xo = N Ed + M Ed 100 z mo [KN/cm²] A I y σ xu = N Ed + M Ed 100 z A I mu [KN/cm²] y τ = V z A Steg [KN/cm²] z mu: [cm] Nachweis Stegblech Abstand zwischen Schwerpunkt und Oberkante des unteren Gurtblechs z mo: [cm] Nachweis Stegblech Abstand zwischen Schwerpunkt und Unterkante des oberen Gurtblechs A Steg: [cm²] = h ges 0,5 t 1 0,5 t Abbildung 5: Beulfeld [] Randspannungsverhältnis bezogen auf größte Druckspannung Ψ = σ xu σ xo Hinweis: Druckspannungen sind positiv! die Spannungen sind vorzeichengerecht einzusetzen! Seitenverhältnis α = a b [ ] a: [cm] Länge des untersuchten Feldes = Abstand der Schotte b: [cm] Breite des untersuchten Feldes = h Steg Beulwert k σ Beidseitig gestützte Querschnittsteile (z.b. Stege) ψ = 1,0 0 < ψ < 1,0 0-1,0 < ψ < 0-1,0-3,0 < ψ < -1,0 k σ = 4,0 8, 1,05 + ψ Einseitig gestützt, größte Druckspannung am freien Ende 7,81 7,81 6,9 ψ + 9,78 ψ² 3,9 5,98 (1 + ψ )² ψ = 1,0 0-1,0-3,0 ψ 1,0 k σ = 0,43 0,57 0,85 0,57 0,1 ψ + 0,07 ψ² Einseitig gestützt, größte Druckspannung am gestützten Ende ψ = 1,0 0 < ψ < 1,0 0-1,0 < ψ < 0-1 k σ = 0,43 0,578 ψ + 0,34 Hinweis: Alternativ kann der Beulwert aus Abbildung 68: Beulwerte im Anhang abgelesen werden Bezugsspannung σ e = 1, t b [KN/cm²] Kritische Beulspannung σ cr,p = k σ σ e [KN/cm²] 1,70 1,70 5 ψ + 17,1 ψ² 3,8 t: [cm] Blechdicke (Stegdicke bei I-Querschnitt der Klasse 4) b: [cm] Breite des untersuchten Beulfeldes Steghöhe d bei I-Querschnitt der Klasse 4 Flanschachsenabstand bei Kastenprofil Gurtbreite bei Trapezprofil Seite 0

21 Kritische Knickspannung Unausgesteiftes Beulfeld σ cr,c = 1, t a [KN/cm²] t: [cm] Blechdicke (Stegdicke bei I-Querschnitt der Klasse 4) a: [cm] Länge des untersuchten Beulfeldes (z.b. Abstand der Querschotte) Ausgesteiftes Beulfeld σ cr,c = π E I sl,1 [KN/cm²] A sl,1: [cm²] Bruttoquerschnittsfläche des Ersatzdruckstabes nach Bild A1 im Anhang A sl,1 a I sl,1: [cm 4 ] Flächenträgheitsmoment des Bruttoquerschnitts des Ersatzdruckstabes nach Bild A1 im Anhang für Knicken quer zur Blechebene. a: [cm] Länge des untersuchten Beulfeldes (z.b. Abstand der Querschotte) E: [KN/cm²] E-Modul von Stahl = Beulschlankheit λ p = f y σ cr,p [ ] Knickschlankheit λ c = f y σ cr,c [ ] Abminderungsfaktor für Beulen Beidseitig gestützte Querschnittsteile (z.b. Stege) λ p 0,5 + 0,085-0,055 ψ ρ = 1,0 λ p > 0,5 + 0,085-0,055 ψ ρ = min f y: [KN/cm²] Streckgrenze S35: f y = 3,5 S355: f y = 35,5 S75: f y = 7,5 S450: f y = 44,0 (Werte für t 40mm) σ cr,p: [KN/cm²] kritische Beulspannung, siehe oben f y: [KN/cm²] Streckgrenze S35: f y = 3,5 S355: f y = 35,5 S75: f y = 7,5 S450: f y = 44,0 (Werte für t 40mm) σ cr,c: [KN/cm²] kritische Knickspannung, siehe oben λ p - 0,055 (3 + ψ) λ p 1, Einseitig gestützte Querschnittsteile (z.b. Flansch) λ p 0,748 ρ = 1,0 λ p > 0,748 ρ = min λ p - 0,188 λ p 1, Abminderungsfaktor für Knicken λ c 0,: χ c = 1,0 1 λ c > 0,: χ c = 1,0 Φ+ Φ - λ c Endgültiger Abminderungsfaktor ρ c = (ρ χ c ) ξ ( ξ) + χ c [ ] Hinweis: Interaktion zwischen ρ und χ c Φ: [ ] Faktor Φ = 0,5 1+ 0,1 λ c - 0, + λ c λ p : [ ] Beulschlankheit, siehe oben Ψ: [ ] Randspannungsverhältnis, siehe oben λ p : [ ] Beulschlankheit, siehe oben ξ: [ ] Beiwert = (σ cr,p/σ cr,c) 1 jedoch 0 ξ 1 σ cr,p: [KN/cm²] elastische Plattenbeulspannung, siehe oben σ cr,c: [KN/cm²] elastische Knickspannung, siehe oben Seite 1

22 Effektive Querschnittsgrößen zweiseitig gestützt Abbildung 6: Zweiseitg gestützte druckbeanspruchte Querschnittsteile [4] Hinweise: Bevor die effektiven Querschnittswerte eines zweiseitig gestützten Querschnittsteils (z.b. Steg) berechnet werden, muss überprüft werden ob eventuell auch andere Querschnittsteile (z.b. Flansche) Ausfallflächen besitzen! Tipp: am besten den Querschnitt mit den dazugehörigen Ausfallflächen skizzieren und erst dann die effektiven Querschnittsgrößen ermitteln. Fall 1: (ggf. sind noch andere Querschnittsteile zu berücksichtigen!) A c,eff = ρ c A c [cm²] W eff = I eff z max [cm³] Fall : (ggf. sind noch andere Querschnittsteile zu berücksichtigen!) A c,eff = b e1 t + b e t [cm²] W eff = I eff z max [cm³] Fall 3: (ggf. sind noch andere Querschnittsteile zu berücksichtigen!) b c = z G (- t f ) [cm] b t = b b c [cm] A c,eff = b e1 t + b e t + b t t [cm²] W eff = I eff z max [cm³] ρ c: [ ] Endgültiger Abminderungsfaktor, siehe oben A c: [cm²] wirklich vorhandene Fläche A c,eff: [cm²] Gesamtquerschnittsfläche abzüglich der Ausfallflächen. A c,eff = Ac - A I eff: [cm 4 ] Flächenträgheitsmoment des wirskamen Querschnittes. z max: [cm] Abstand zwischen Schwerelinie des wirksamen Querschnittes und Blechrand. z G: [cm] Lage der Schwerelinie des Bruttoquerschnitts. z G = A i z i A ges z G : [cm] Lage der Schwerelinie des wirksamen Querschnitts. z G = A i,eff z i,eff A eff Seite

23 Effektive Querschnittsgrößen einseitig gestützt Abbildung 7: Einseitig gestützte druckbeanspruchte Querschnittsteile [4] A c,eff = b eff t [cm²] W eff = I eff z max [cm³] Nachweis η 1 = N Ed fy A eff γ M0 + MEd NEd en fy W eff 1,0 γ M0 N Ed: Bemessungswert der einwirkenden Normalkraft M Ed: [KNm] Bemessungswert des einwirkenden Biegemomentes e N: [cm] Abstand zwischen Schwerelinie des Bruttoquerschnitts und Schwerelinie des wirksamen Querschnitts. e N = z G - z G z G: [cm] Lage der Schwerelinie des Bruttoquerschnitts. z G = A i z i A ges z G : [cm] Lage der Schwerelinie des wirksamen Querschnitts. z G = A i,eff z i,eff A eff f y: [KN/cm²] Streckgrenze S35: f y = 3,5 S355: f y = 35,5 S75: f y = 7,5 S450: f y = 44,0 (Werte für t 40mm) A eff: [cm²] wirksame Querschnittsfläche, siehe oben W eff: [cm³] wirksames Widerstandsmoment, siehe oben γ M0: [ ] Sicherheitsbeiwert = 1,0 Seite 3

24 14 Schubbeulen 14.1 Prüfen ob Nachweis erforderlich ist Nicht ausgesteiftes Stegblech: h w > 7 t η ϵ Nachweis erforderlich Ausgesteiftes Stegblech: h w: [cm] Steghöhe. h w = h t f η: [ ] 1, für S35 S460 1,0 für > S460 ϵ: [ ] Faktor. ϵ = 35 f y h w t > 31 η ϵ /k τ Nachweis erforderlich 14. Schubbeulwerte Blechfeld ohne oder > Längssteifen, die durch starre Quersteifen begrenzt sind a h w 1 k τ = 5,34 + 4,00 h w a + k τsl [ ] a h w < 1 k τ = 4,00 + 5,34 h w a + k τsl [ ] h w: [cm] Steghöhe. h w = h t f a: [cm] Abstand der starren Quersteifen. I sl: [cm 4 ] Flächenträgheitsmoment einer Längssteife um die z-z-achse (siehe Bild). Bei Stegblechen mit Steifen ist I sl die Summe der Steifigkeiten. t: [cm] Dicke des Stegblechs mit: keine Längssteife: k τsl = 0 > Längssteifen: k τsl = max 9 h 4 w a I sl 3 t 3 h w [ ] Abbildung 8: Stegblech mit Längssteifen [4],1 t 3 I sl h w [ ] 14.. Blechfeld mit einer oder zwei Längssteifen und α = a/h w 3 a h w 1 k τ = 5,34 + 4,00 h w a + k τsl [ ] a h w < 1 k τ = 4,00 + 5,34 h w a + k τsl [ ] h w: [cm] Steghöhe. h w = h t f a: [cm] Abstand der starren Quersteifen. I sl: [cm 4 ] Flächenträgheitsmoment einer Längssteife um die z-z-achse (siehe Bild). Bei Stegblechen mit Steifen ist I sl die Summe der Steifigkeiten. t: [cm] Dicke des Stegblechs mit: k τsl = max 9 h 4 w a I sl 3 t 3 h w [ ],1 t 3 I sl h w [ ] Blechfeld mit einer oder zwei Längssteifen und α = a/h w < 3 k τ = 4,1 + 6,3+0,18 I sl 14.3 Bezugsspannung σ e = 1, t b t 3 hw α +, I sl t 3 h w 3 [KN/cm²] [ ] h w: [cm] Steghöhe. h w = h t f a: [cm] Abstand der starren Quersteifen. I sl: [cm 4 ] Flächenträgheitsmoment einer Längssteife um die z-z-achse (siehe Bild). Bei Stegblechen mit Steifen ist I sl die Summe der Steifigkeiten. t: [cm] Dicke des Stegblechs t: [cm] Blechdicke (Stegdicke bei I-Querschnitt der Klasse 4) b: [cm] Breite des untersuchten Beulfeldes (Steghöhe bei I-Querschnitt der Klasse 4) 14.4 Kritische Schubbeulspannung τ cr = k τ σ e [KN/cm²] Seite 4

25 14.5 Schubbeulschlankheit λ w = 0,76 f yw τ cr [ ] f yw: [KN/cm²] Streckgrenze des Steges 14.6 Anteil Schubtragfähigkeit des Steges Abbildung 9: Beitrag des Steges χ w zur Schubbeanspruchbarkeit [4] η: [ ] 1, für S35 S460 1,0 für > S Beanspruchbarkeit V bw,rd = χ w f yw h w t 3 γ M1 η: [ ] 1, für S35 S460 1,0 für > S460 V bf,rd = 0 (sichere Seite) V b,rd = min V bw,rd + V bf,rd η f yw h w t 3 γ M Nachweis η 3 = V Ed V b,rd 1,0 V Ed: Bemessungswert der einwirkenden Schubkraft aus Querkraft und Torsion. Seite 5

26 14.9 Interaktion zwischen Schub, Biegemoment und Normalkraft Überprüfen ob Interaktion erforderlich ist η 3 = V Ed V b,rd 0,5 Interaktion nicht erforderlich η 3 = V Ed V b,rd > 0,5 Interaktion erforderlich, weiter mit Bemessungswert M f,rd Vorgehen: 1.) Lage der plastischen Nulllinie ermitteln..) Momentenbeanspruchbarkeit über Kraft x Hebelarm ermitteln. (vgl. Beispiele) Bemessungswert Mpl,Rd: Vorgehen: 1.) Lage der plastischen Nulllinie ermitteln..) Momentenbeanspruchbarkeit über Kraft x Hebelarm ermitteln. (vgl. Beispiele) M f,rd: [KNm] Bemessungswert der plastischen Momentenbeanspruchbarkeit des Querschnitts, der nur mit der effektiven Querschnittsfläche der Flansche berechnet wird. M pl,rd: [KNm] Bemessungswert der plastischen Momentenbeanspruchbarkeit des Querschnitts, der mit der effektiven Querschnittsfläche der Flansche und der vollen Querschnittsfläche des Steges berechnet wird Ausnutzungsgrad η 1 η 1 = max M Ed M pl,rd [ ] M f,rd M pl,rd [ ] Nachweis Interaktion M f,rd: [KNm] Bemessungswert der plastischen Momentenbeanspruchbarkeit des Querschnitts, der nur mit der effektiven Querschnittsfläche der Flansche berechnet wird. M pl,rd: [KNm] Bemessungswert der plastischen Momentenbeanspruchbarkeit des Querschnitts, der mit der effektiven Querschnittsfläche der Flansche und der vollen Querschnittsfläche des Steges berechnet wird. η M f,rd M pl,rd η 3-1 1,0 Seite 6

27 15 Schraubenverbindungen 15.1 Hinweise: Eine plastische Berechnung ist nur möglich wenn für alle Schrauben die Bedingung F v,rd F b,rd erfüllt ist. 15. Beanspruchbarkeit auf Abscheren: (EC3) F v,rd siehe Schneider 8.50 Tafel 8.50c alternativ mit Fomel: F v,rd = A α v f u,b γ M F V,Rd: Grenzabscherkraft A: [cm²] Schaftquerschnittsfläche siehe unten Scherfuge im Gewinde Spannungsquerschnittsfläche A s bei Passschrauben muss die Scherfuge im Schaft liegen α v: [ ] Scherfuge im Schaft: α v = 0,6 für Schrauben 4.6, 5.6, 8.8, 10.9 Scherfuge im Gewinde: α v = 0,6 für Schrauben 4.6, 5.6, 8.8 Scherfuge im Gewinde: α v = 0,5 für Schrauben 10.9 f u,b: [KN/cm²] Zugfestigkeit der Schraube (ultimate tensile strenght) γ M : Teilsicherheitsbeiwert = 1,5 Schraubengröße M1 M16 M0 M M4 M7 M30 M36 A (rohe Schraube) 1,13,01 3,14 3,80 4,5 5,73 7,07 10,18 A (Passschraube) 1,33,7 3,46 4,15 4,91 6,16 7,55 10,75 A s 0,843 1,57,45 3,03 3,53 4,59 5,61 8,17 Hinweis: der Spannungsquerschnitt A s für Regelgewinde ist in der DIN 13-8 angegeben Lange Anschlüsse Wenn L j > 15 d Abschertragfähigkeit F v,rd aller Verbindungsmittel muss mit β Lf abgemindert werden! β Lf = 1 - L j- 15 d 00 d [ ] und 0,75 β Lf 1,0 L j: [mm] Abstand zwischen den Achsen des ersten und letzten Verbindungsmittels d: [mm] Durchmesser der Schraube 15.3 Beanspruchbarkeit auf Zug: F t,rd siehe Schneider 8.51 Tafel 8.51a 15.4 Beanspruchbarkeit auf Zug + Abscheren: Hinweis: Bei gleichzeitiger Beanspruchung müssen zunächst die jeweiligen Einzelnachweise geführt werden und dann der folgende Interaktionsnachweis: F t,ed = N x n F v,ed = V S,d n Abbildung 10: Lange Anschlüsse [5] N x: Zugkraft V S,d: Abscherkraft n : Anzahl der Schrauben (nach DIN 18800max. 8 Schrauben anrechenbar!!) Nachweis: F v,ed F t,ed + 1,0 F v,rd 1,4 F t,rd Seite 7

28 15.5 Beanspruchbarkeit auf Lochleibung Ermittlung der Beiwerte: Lochabstand maßgebend (Innenschraube): p α b = min 1-0,5 k 1 = min 3 d 0 1,4 p d 0-1,7 f ub f u,5 1,0 Randabstand maßgebend (Randschraube): e α b = min 1 k 3 d 1 = min 0,8 e d 0-1,7 f ub f u 1,4 p d 0-1,7 1,0,5 Hinweise: Die Beiwerte müssen jeweils für die Innenschraube und die Randschraube ermittelt werden. Maßgebend ist am Ende die kleinere Grenzlochleibungskraft. Wenn quer zur Kraftrichtung nur eine Schraubenreihe vorhanden ist, dann können direkt die Beiwerte für die Randschraube ermittelt werden. Bei Anschlüssen in denen die Schrauben in x- und in z-richtung beansprucht werden, kann der Nachweis der Lochleibungstragfähigkeit getrennt für die Kraftkomponenten parallel und senkrecht zum Rand nachgewiesen werden. Die Kraftrichtung wird also einmal horizontal und einmal vertikal angenommen. Bei der Ermittlung der Beiwerte berücksichtigt der untere Wert die Abstände für die maximale Beanspruchbarkeit. Bei Beanspruchung in nur einer Richtung und mit ausreichend großen Abständen in Querrichtung beträgt k 1 =, Grenzlochleibungskraft einer Schraube: F b,rd = k 1 α b t d f u γ M [kn] Abbildung 11: Definition Randschraube/Innenschraube p 1: [mm] Lochabstand in Kraftrichtung, siehe oben p : [mm] Lochabstand quer zur Kraftrichtung, siehe oben e 1: [mm] Randabstand in Kraftrichtung e : [mm] Randabstand quer zur Kraftrichtung d 0: [mm] Lochdurchmesser = d + d f ub: [KN/cm²] charakteristische Zugfestigkeit von Schrauben, 4.6: f ub = : f ub = : f ub = : f ub = 100 f u: [KN/cm²] charakteristische Zugfestigkeit, S35: f u = 36, S355: f u = 49 k 1: [ ] Beiwert zur Lochleibungskraft quer zur Kraftrichtung α b: [ ] Beiwert zur Lochleibungskraft in Kraftrichtung t: [cm] minimale Dicke des Bleches d: [cm] Schaftdurchmesser f u: [kn/cm²] charakteristische Zugfestigkeit S35: f u = 36 kn/cm² S355: f u = 49 kn/cm² γ M: [ ] = 1,5 Seite 8

29 15.6 Konstruktive Gestaltung - Nach DIN EN Nennlochspiel s. DIN EN 1090-; Tabelle 11 Schraubengröße M1 M16 M0 M M4 M7 M30 M36 d [mm] Das Nennlochspiel von Passschrauben beträgt: d 0,3mm Bei Türmen und Masten ist das Nennlochspiel um 0,5mm zu reduzieren Rand- und Lochabstände: Minimum Abstand für maximale Beanspruchbarkeit Größtmöglicher Abstand e 1 (Randabstand in Kraftrichtung) 1, d 0 (,1 d 0 ) 3,0 d 0 4 t + 40mm e (Randabstand quer zur Kraftrichtung) 1, d 0 (1,5 d 0 ) 1,5 d 0 4 t + 40mm p 1 (Lochabstand in Kraftrichtung), d 0 (,85 d 0 ) 3,75 d 0 min {14 t ; 00mm} p (Lochabstand quer zur Kraftrichtung) d 0: [mm] Lochdurchmesser = d + d d: [mm] siehe oben t: [mm] Dicke des dünnsten außen liegenden Bleches,4 d 0 (3,0 d 0 ) 3,0 d 0 min {14 t ; 00mm} Abbildung 1: Defintition der Abstände Hinweis: Die Verwendung der eingeklammerten Mindestwerte ergibt Beiwerte k1 =,5 und αb = 0,7 Seite 9

Einwirkungskombinationen (vereinfacht) Sonstiges. Profil wählen. Gerbrauchstauglichkeitsnachweis

Einwirkungskombinationen (vereinfacht) Sonstiges. Profil wählen. Gerbrauchstauglichkeitsnachweis Einwirkungskombinationen (vereinfacht) Grundkombination 1: 1,35 G k + 1,5 Q k Grundkombination : 1,35 G k + 1,35 ΣQ k Grundkombination 3: 1,0 G k + 0,9 ΣQ k + 1,0 F A,k Sonstiges Gewicht Stahl: g k 78,5

Mehr

Beispiel 1: Querschnittstragfähigkeit

Beispiel 1: Querschnittstragfähigkeit Titel: Querschnittstragfähigkeit Blatt: Seite 1 von 10 Beispiel 1: Querschnittstragfähigkeit Belastung: M y,ed = 190 knm N Ed = 700 kn V z,ed = 100 kn Material: S 235 Nachweis des Querschnitts nach DIN-EN

Mehr

Studienblätter für Stahl und Holzbau

Studienblätter für Stahl und Holzbau Studienblätter für Stahl und Holzbau Kehlnähte: Nahtdicke "a": für tragende Nähte mind. 3 mm lt. EC 3 Pkt. 6.6.5.2 (2) Nahtlänge "l" : bezieht sich auf die endkraterfreie Länge für tragende Schweißnähte:

Mehr

EC3 Seminar Teil 3 1/6 Ausnutzung plastischer Reserven im Querschnitt

EC3 Seminar Teil 3 1/6 Ausnutzung plastischer Reserven im Querschnitt EC3 Seminar Teil 3 1/6 Aufgabe 1 400 mm 84 0 mm 84 t f =8 t w =6 t w =6 S 35 500 mm y M y, Ed N x, Ed V z,ed a=??? t f =8 Gegeben ist der dargestellte geschweißte Kastenquerschnitt. a) Berechnen Sie die

Mehr

Auftraggeber. Aufgestellt. Geprüft NRB Datum Dez Korrigiert MEB Datum April 2006

Auftraggeber. Aufgestellt. Geprüft NRB Datum Dez Korrigiert MEB Datum April 2006 Nr. OSM 4 Blatt 1 von 8 Index B Stainless Steel Valorisation Project BEMESSUNGSBEISPIEL 9 KALTVERFESTIGTES U-PROFIL UNTER BIEGUNG MIT ABGESTUFTEN, SEITLICHEN HALTERUNGEN DES DRUCKFLANSCHES, BIEGEDRILLKNICKEN

Mehr

Bemessung von nichtrostenden Stählen

Bemessung von nichtrostenden Stählen Bemessung von nichtrostenden Stählen Beispiel : Quadratisches Rechteckhohlprofil unter Stand 16.0.018 Bemessungshilfen zu nichtrostenden Stählen im Bauwesen (DMSSS) - Erläuterungen - Bemessungsbeispiele

Mehr

Nachweis des Biegedrillknickens für Kragträger

Nachweis des Biegedrillknickens für Kragträger Nachweis des Biegedrillknickens für Kragträger 1. Allgemeines Nach DIN 18800 Teil dürfen die Stabilitätsfälle Biegeknicken und Biegedrillknicken getrennt untersucht werden. Bei dieser Vorgehensweise sind

Mehr

Stahl bau-praxis nach Eurocode 3

Stahl bau-praxis nach Eurocode 3 Prof. Dr.-Ing. Gerd Wagenknecht Stahl bau-praxis nach Eurocode 3 ~ Mit CD-ROM Band 1 Tragwerksplanung Grundlagen 4., vollständig überarbeitete Auflage Beuth Verlag GmbH Berlin. Wien Zürich 1 1.1 1.2 1.2.1

Mehr

Standsicherheitsnachweis

Standsicherheitsnachweis 2 1 XIPLAN Ingenieurbüro für Stahlbau Standsicherheitsnachweis Auftrags-Nr.: Bauherr: Inhalt: usterfirma Bemessung Kranbahnträger Index 0 1 2 3 4 5 Seite 1-11 Angaben zur Erstellung und Revisionen Bearbeitung

Mehr

Beispiel 3: Ersatzstabverfahren

Beispiel 3: Ersatzstabverfahren Beispiel: Ersatzstabverfahren Blatt: Seite 1 von 9 Beispiel 3: Ersatzstabverfahren Bestimmung der maßgeblichen Knickfigur und zugehörigen Knicklänge in der Ebene. Nachweis gegen Biegeknicken nach dem Ersatzstabverfahren

Mehr

Achtung! Verschiedene NAs enthalten unterschiedliche Teilsicherheitsbeiwerte!

Achtung! Verschiedene NAs enthalten unterschiedliche Teilsicherheitsbeiwerte! Beispiel: Einfeldträger in Verbund Blatt: Seite 1 von 11 Achtung! Verschiedene NAs enthalten unterschiedliche Teilsicherheitsbeiwerte! System: Querschnitt: 50 h c = 109mm h p = 51mm h IPE = 450 mm h ges

Mehr

Einführung Eurocode Anwendungsbeispiele

Einführung Eurocode Anwendungsbeispiele 1 Einführung Eurocode 3 + 4 Prof. Dr.-Ing. Karsten Geißler, Dipl.-Ing. Matthias Mager TU Berlin, FG Entwerfen und Konstruieren Stahlbau Berlin, 15.05.2013 Einführung Eurocode 3 + 4-2 1 Beulnachweis nach

Mehr

Nr. Blatt 1 von 8 Index A. Auftraggeber. Aufgestellt ER/EM Datum Feb. 2006

Nr. Blatt 1 von 8 Index A. Auftraggeber. Aufgestellt ER/EM Datum Feb. 2006 Nr. Blatt von 8 Index A BEMESSUNGSBEISPIEL GEKANTETES U-PROFIL AUS KALT VERFESTIGTEM EDELSTAHL IN EINEM OFFENEN GESCHOSS UNTER BIEGUNG. Zu bemessen ist ein einfach gelagerter Balken als gekantetes U-Profil

Mehr

8 F Stahlbauprofile. Prof. Dr.-Ing. Christof Hausser, Prof. Dr.-Ing. Christoph Seeßelberg

8 F Stahlbauprofile. Prof. Dr.-Ing. Christof Hausser, Prof. Dr.-Ing. Christoph Seeßelberg 8.159 8 F Stahlbauprofile Prof. Dr.-Ing. Christof Hausser, Prof. Dr.-Ing. Christoph Seeßelberg Kurzzeichen für Walzmaterial (Beispiele) Kurzbezeichnung zeichnerisch IPE 240-4600 DIN 1025-5 HEB 400-8000

Mehr

-BEMESSUNG EINFACHER BAUTEILE- Prof. Dr.-Ing. Jens Minnert Fachhochschule Gießen-Friedberg TEIL 7 BEMESSUNG IM STAHLBAU.

-BEMESSUNG EINFACHER BAUTEILE- Prof. Dr.-Ing. Jens Minnert Fachhochschule Gießen-Friedberg TEIL 7 BEMESSUNG IM STAHLBAU. STAHLBAU -BEMESSUNG EINFACHER BAUTEILE- Prof. Dr.-Ing. Jens Minnert Fachhochschule Gießen-Friedberg Nachweiskonzept Die Beanspruchung S d darf nicht größer sein als die Beanspruchbarkeit R d eines Bauteils

Mehr

KAPPA Biegeknicknachweis nach DIN 18800, Teil 2 (Ersatzstabverfahren)

KAPPA Biegeknicknachweis nach DIN 18800, Teil 2 (Ersatzstabverfahren) Fassung Januar 011 Programm KAPPA Biegeknicknachweis nach DI 18800, Teil (Ersatzstabverfahren) Beispielrechnung 1 Alle Rechte, auch das der Übersetzung, vorbehalten. Ohne ausdrückliche Genehmigung der

Mehr

Stahlbau Grundlagen. Das elastische Biegetorsionsproblem 2. Ordnung dünnwandiger Stäbe. Prof. Dr.-Ing. Uwe E. Dorka

Stahlbau Grundlagen. Das elastische Biegetorsionsproblem 2. Ordnung dünnwandiger Stäbe. Prof. Dr.-Ing. Uwe E. Dorka Stahlbau Grundlagen Das elastische Biegetorsionsproblem. Ordnung dünnwandiger Stäbe Prof. Dr.-Ing. Uwe E. Dorka Leitbauwerk Halle Hallenrahmen als Haupttragsstem mit Lasten Ein möglicher Grenustand ist

Mehr

Stahlbau I. Übungsaufgaben. - Lösungen - Seite 1

Stahlbau I. Übungsaufgaben. - Lösungen - Seite 1 Übungsaufgaben - - Seite Übungsaufgabe.) Beanspruchung für M a) charakteristische Werte der Einwirkungen Einflußbreite: b = 0,6 m Länge: l = 3,6 m - ständige Einwirkung: g k = g * b = 0,6 kn/m - veränderliche

Mehr

Datenblatt EuroSta (MicroFe 2006) Biegedrillknicken (2)

Datenblatt EuroSta (MicroFe 2006) Biegedrillknicken (2) D16-ES-1 Thema: Biegedrillknicken mit seitlicher Verformungsbehinderung DIN 18800 ermöglicht es, konstruktive Gegebenheiten im Tragsicherheitsnachweis zu berücksichtigen, die die Biegedrillknickverformung

Mehr

Inhaltsverzeichnis. 1 Grundlagen der Bemessung 1. 2 Beanspruchbarkeit des Querschnittes 32

Inhaltsverzeichnis. 1 Grundlagen der Bemessung 1. 2 Beanspruchbarkeit des Querschnittes 32 1 Grundlagen der Bemessung 1 1.1 Einleitung 1 1.2 Einwirkungen 3 1.2.1 Ständige Einwirkungen 4 1.2.2 Veränderliche Einwirkungen 4 1.2.2.1 Nutzlasten 5 1.2.2.2 Schneelasten 5 1.2.2.3 Windlasten 6 1.2.3

Mehr

Übung zu Mechanik 2 Seite 62

Übung zu Mechanik 2 Seite 62 Übung zu Mechanik 2 Seite 62 Aufgabe 104 Bestimmen Sie die gegenseitige Verdrehung der Stäbe V 2 und U 1 des skizzierten Fachwerksystems unter der gegebenen Belastung! l l F, l alle Stäbe: EA Übung zu

Mehr

Inhaltsverzeichnis. Vorwort...

Inhaltsverzeichnis. Vorwort... Vorwort... V 1 Sicherheitskonzept und Beanspruchungen... 1 1.1 Sicherheitskonzept... 1 1.1.1 Einwirkungen... 2 1.1.2 Auswirkungen... 2 1.1.3 Widerstandsgrößen... 2 1.1.4 Charakteristische Werte... 3 1.1.5

Mehr

Hinweise zum Buch Kindmann, R., Frickel, J.: Elastische und plastische Querschnittstragfähigkeit

Hinweise zum Buch Kindmann, R., Frickel, J.: Elastische und plastische Querschnittstragfähigkeit Prof. Dr.-Ing. Rolf Kindmann Lehrstuhl für Stahl-, Holz- und Leichtbau Hinweise zum Buch Kindmann, R., Frickel, J.: Elastische und plastische Querschnittstragfähigkeit S. 38, Bild.3 γ xs ist durch γ 1

Mehr

Stahlbau Grundlagen. Verbindungen im Stahlbau. Prof. Dr.-Ing. Uwe E. Dorka

Stahlbau Grundlagen. Verbindungen im Stahlbau. Prof. Dr.-Ing. Uwe E. Dorka Stahlbau Grundlagen Verbindungen im Stahlbau Prof. Dr.-Ing. Uwe E. Dorka Leitbauwerk Halle: Verbindung in einer Rahmenecke Verbindungen im Stahlbau Nieten (heute nicht mehr) Schrauben Bild: Georg Slickers

Mehr

=10kN angegeben. , eine Geschwindigkeit von v=5 km/h und eine plastische Verformung des Fahrzeugs und des Tragwerkes von δ b

=10kN angegeben. , eine Geschwindigkeit von v=5 km/h und eine plastische Verformung des Fahrzeugs und des Tragwerkes von δ b Dr.-Ing. M. Schmid, Augartenstr. 51, 76137 Karlsruhe Tel.: 0721/1803150-0, Fax: -9; schmid@bureau-schmid.de bureau-schmid, Augartenstr. 51, 76137 Karlsruhe SIHGA GmbH A-4694 Ohlsdorf Anprall an Holzstütze

Mehr

STAHLBAU. Prof. Dipl.-Ing. Eduard Kahlmeyer t Prof. Dr.-Ing. Kerstin Hebestreit Prof. Dr.-Ing. Werner Vogt. 5. überarbeitete Auflage 2008

STAHLBAU. Prof. Dipl.-Ing. Eduard Kahlmeyer t Prof. Dr.-Ing. Kerstin Hebestreit Prof. Dr.-Ing. Werner Vogt. 5. überarbeitete Auflage 2008 Prof. Dipl.-Ing. Eduard Kahlmeyer t Prof. Dr.-Ing. Kerstin Hebestreit Prof. Dr.-Ing. Werner Vogt STAHLBAU 5. überarbeitete Auflage 2008 r.werter Verlag 3 Berechnung der Vollwandträger 4 3.1 Einwirkungen..

Mehr

Beispiel 4: Theorie II. Ordnung

Beispiel 4: Theorie II. Ordnung Beispiel: Theorie II. Ordnung Blatt: Seite 1 von 10 Beispiel 4: Theorie II. Ordnung Nachweis: Stabilität des Systems nach Theorie II. Ordnung. Schnittgrößen nach Theorie I. Ordnung, ohne Imperfektion F

Mehr

Baustatik 2. Gottfried CO. Lohmeyer Stefan Baar

Baustatik 2. Gottfried CO. Lohmeyer Stefan Baar Gottfried CO. Lohmeyer Stefan Baar Baustatik 2 Bemessung und Sicherheitsnachweise 11., überarbeitete Auflage Mit 266 Abbildungen, 92 Tabellen und 48 Übungsaufgaben STUDIUM VIEWEG+ TEUBNER (Abschnitte,

Mehr

Stahlbau in Beispielen

Stahlbau in Beispielen Stahlbau in Beispielen Berechnungspraxis nach DIN 18 800 Teil 1 bis Teil 3 (11.90) Dr.-Ing. habil. Gottfried Hünersen Dr. sc. techn. Ehler Fritzsche Werner-Verlag Inhaltsverzeichnis 1 Bemessungsvoraussetzungen

Mehr

Stahbau nach DIN (11.90) Bemessung und Konstruktion Träger - Stützen -Verbindungen

Stahbau nach DIN (11.90) Bemessung und Konstruktion Träger - Stützen -Verbindungen Stahbau nach DIN18 800 (11.90) Bemessung und Konstruktion Träger - Stützen -Verbindungen Prof. Dipl.-Ing. Eduard Kahlmeyer Werner-Verlag VII Hauptteil I: Träger 1 Trägerarten 1 2 Trägersysteme 3 3 Berechnung

Mehr

KLAUSUR STAHLBAU GRUNDLAGEN

KLAUSUR STAHLBAU GRUNDLAGEN Fachgebiet Stahl- und Verbundbau Prof. Dr.-Ing. Uwe E. Dorka KLAUSUR STAHLBAU GRUNDLAGEN 06. September 2011 - Theorieteil - Bearbeitungsdauer: 90 Minuten Name: Vorname: Matr.-Nr.: Versuch Nummer: Aufgabe

Mehr

Gottfried C. O. Lohmeyer. Baustatik 2. Festigkeitslehre

Gottfried C. O. Lohmeyer. Baustatik 2. Festigkeitslehre Gottfried C. O. Lohmeyer Baustatik 2 Festigkeitslehre 8., überarbeitete und erweiterte Auflage Mit 260 Abbildungen, 90 Tafeln, 145 Beispielen und 48 Übungsaufgaben Te Ubner HLuHB Darmstadt MI HU 15182717

Mehr

Verschiedene NAs enthalten unterschiedliche Teilsicherheitsbeiwerte!

Verschiedene NAs enthalten unterschiedliche Teilsicherheitsbeiwerte! Beispiel: -Feldträger in Verbund Blatt: Seite 1 von 11 Achtung! System: Verschiedene NAs enthalten unterschiedliche Teilsicherheitsbeiwerte! qed 113,38 kn/m L 7,m Schnittgrößen: MS,Ed 0,15 qed L -734,7

Mehr

Überprüfen Sie, ob die Tragfähigkeit des Tragwerkes gewährleistet ist.

Überprüfen Sie, ob die Tragfähigkeit des Tragwerkes gewährleistet ist. Stahlfachwerk Für eine 10 m hohe Lagerhalle in Saarbrücken hat der Tragwerksplaner für Ober- und Untergurt ein HEA 180 S235 Profil gewählt, für die Streben 2 L100 x 65 x 8 S235 Winkelprofile und für die

Mehr

NACHWEIS AUSREICHENDER QUERSCHNITTS-

NACHWEIS AUSREICHENDER QUERSCHNITTS- Rolf Kindmann Henning Uphoff NACHWEIS AUSREICHENDER QUERSCHNITTS- TRAGFÄHIGKEIT NACH DER PLASTIZITÄTS- THEORIE Entwurf vom 05.06.2014 Veröffentlichung des Lehrstuhls für Stahl-, Holz- und Leichtbau Univ.-Prof.

Mehr

Auftraggeber. Aufgestellt. Geprüft MAP Datum Feb. 2006

Auftraggeber. Aufgestellt. Geprüft MAP Datum Feb. 2006 Nr. VALCOSS Blatt von 9 Index A BEMESSUNGSBEISPIEL 3 FACHWERKTRÄGER AUS HOHLPROFILEN AUS KALTVERFESTIGTEM EDELSTAHL Bemessen Sie einen Fachwerkträger aus elstahl als Hauptträger für ein Glasdach. Der Träger

Mehr

Stahlbau 1. Name:... Matr. Nr.:...

Stahlbau 1. Name:... Matr. Nr.:... 1/7 Name:... Matr. Nr.:... A. Rechnerischer steil 1. Stabilitätsnachweis Pylon Der mittige Pylon [Rechteckprofil 180.100.8 - warmgefertigt] wird im System 1 durch die zwei Kragstützen seitlich gestützt,

Mehr

Anlage Formelzeichen im Eurocode Griechische Buchstaben

Anlage Formelzeichen im Eurocode Griechische Buchstaben Prof. Dr.-Ing. Dirk Werner A1-19 Anlage 1.3 - Formelzeichen im Eurocode Griechische Buchstaben In den EN Normen für die Tragwerksplanung und speziell für den Stahlbau werden, soweit möglich, einheitliche

Mehr

zur Liste der Technischen Baubestimmungen Fassung September 2012

zur Liste der Technischen Baubestimmungen Fassung September 2012 534 6. (67.) Jahrgang Hannover, den 30. 10. 01 Nummer 37 i I N H A L T 9. A N L A G E N B A N D zur Liste der Technischen Baubestimmungen Fassung September 01 DIN EN 1993-1-5 DIN EN 1993-1-5/NA DIN EN

Mehr

Mechanik 2. Übungsaufgaben

Mechanik 2. Übungsaufgaben Mechanik 2 Übungsaufgaben Professor Dr.-Ing. habil. Jörg Schröder Universität Duisburg Essen, Standort Essen Fachbereich 10 - Bauwesen Institut für Mechanik Übung zu Mechanik 2 Seite 1 Aufgabe 1 Berechnen

Mehr

7.2 Dachverband Achse Pos A1

7.2 Dachverband Achse Pos A1 7.2 Dachverband Achse 1 + 2 Pos A1 Dieser neukonstruierte Dachverband ersetzt den vorhandenen alten Verband. Um die Geschosshöhe der Etage über der Zwischendecke einhalten zu können, wird er auf dem Untergurt

Mehr

XX Medientrasse. siframo Befestigungsvorschlag. SIKLA GmbH In der Lache 14 D VS-Schwenningen

XX Medientrasse. siframo Befestigungsvorschlag. SIKLA GmbH In der Lache 14 D VS-Schwenningen Seite: / STATISCHE BERECHNUNG BAUVORHABEN 7-0- Medientrasse siframo Befestigungsvorschlag BAUHERR ERSTELLER SIKLA GmbH In der Lache D-7806 VS-Schwenningen www.sikla.de Seite: / MODELL Modell-Basisangaben

Mehr

Aufgabe Gesamt Mögliche Punkte Erzielte Punkte

Aufgabe Gesamt Mögliche Punkte Erzielte Punkte KLAUSUR STAHLBAU 1 11. Februar 2014 PO 2011 und PO 2005 Name: Vorname: Matr.-Nr. PO: 2005 2011 Ob die Aufgaben nach DIN 18800 oder nach Eurocode 3 gelöst werden, kann frei gewählt werden. Alle Aufgaben

Mehr

Bemessungsmodul: T02 - Zugstoß nach DIN EN 1995 Version

Bemessungsmodul: T02 - Zugstoß nach DIN EN 1995 Version Seite 1/7 Nachweis Zugstoß nach DIN EN 1995-1-1:010-1 und Nationalem Anhang DIN EN 1995-1-1/NA:013-08 Anschluss & Geometrie -schnittige Stabdübelverbindung mit innenliegenden Schlitzblechen Holzart: Brettschichtholz

Mehr

Nachweispraxis Biegeknicken und Biegedrillknicken

Nachweispraxis Biegeknicken und Biegedrillknicken 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Jürgen Meister Nachweispraxis Biegeknicken und Biegedrillknicken

Mehr

Bemessungsmodul: T02 - Zugstoß nach DIN EN 1995 Version

Bemessungsmodul: T02 - Zugstoß nach DIN EN 1995 Version Seite 1/8 Nachweis Zugstoß nach DIN EN 1995-1-1:010-1 und Nationalem Anhang DIN EN 1995-1-1/NA:013-08 Anschluss & Geometrie -schnittige Stabdübelverbindung mit innenliegenden Schlitzblechen Holzart: Brettschichtholz

Mehr

9 Zusammenfassung 155

9 Zusammenfassung 155 Die vorliegende Arbeit befasst sich mit der plastischen Querschnittstragfähigkeit von doppeltsymmetrischen I-Profilen. Dazu wird das grundlegende Tragverhalten für verschiedene Schnittgrößenkombinationen

Mehr

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr)

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr) Seite 1/14 rage 1 ( 2 Punkte) Ein Stab mit kreisförmiger Querschnittsfläche wird mit der Druckspannung σ 0 belastet. Der Radius des Stabes ist veränderlich und wird durch r() beschrieben. 0 r () Draufsicht:

Mehr

Stahlbau Grundlagen. Verbindungen im Stahlbau. Prof. Dr.-Ing. Uwe E. Dorka

Stahlbau Grundlagen. Verbindungen im Stahlbau. Prof. Dr.-Ing. Uwe E. Dorka Stahlbau Grundlagen Verbindungen im Stahlbau Prof. Dr.-Ing. Uwe E. Dorka Leitbauwerk Halle: Verbindung in einer Rahmenecke 2 Verbindungen im Stahlbau Nieten (heute nicht mehr) Schrauben Bild: Georg Slickers

Mehr

Stahlbau Grundlagen. Verbindungen im Stahlbau. Prof. Dr.-Ing. Uwe E. Dorka

Stahlbau Grundlagen. Verbindungen im Stahlbau. Prof. Dr.-Ing. Uwe E. Dorka Stahlbau Grundlagen Verbindungen im Stahlbau Prof. Dr.-Ing. Uwe E. Dorka Leitbauwerk Halle: Verbindung in einer Rahmenecke Verbindungen im Stahlbau Nieten (heute nicht mehr) Schrauben Bild: Georg Slickers

Mehr

Stahlbau 1. Name:... Matr. Nr.: Geschraubter Kopfplattenstoß Gleitfeste Verbindung im Grenzzustand der Gebrauchstauglichkeit

Stahlbau 1. Name:... Matr. Nr.: Geschraubter Kopfplattenstoß Gleitfeste Verbindung im Grenzzustand der Gebrauchstauglichkeit 1/1 Name:... Matr. Nr.:... A. Rechnerischer steil 1. Geschraubter Kopfplattenstoß Gleitfeste Verbindung im Grenzzustand der Gebrauchstauglichkeit Die beiden Biegeträger werden mit Hilfe von 6 vorgespannten

Mehr

ingtools - Bemessungssoftware An der Eickesmühle Mönchengladbach Nachweis Zugstoß

ingtools - Bemessungssoftware An der Eickesmühle Mönchengladbach Nachweis Zugstoß Seite 1/6 Nachweis Zugstoß nach DIN EN 1995-1-1:010-1 und Nationalem Anhang DIN EN 1995-1-1/NA:013-08 Anschluss & Geometrie -schnittige Stabdübelverbindung mit innenliegenden Schlitzblechen Holzart: Nadelholz

Mehr

Bei Erreichen der Streckgrenze treten zu große Verformungen auf. Die Grenzspannung σrd muss deutlich im elastischen Bereich bleiben.

Bei Erreichen der Streckgrenze treten zu große Verformungen auf. Die Grenzspannung σrd muss deutlich im elastischen Bereich bleiben. TK 3 Spannungen und Dehnungen Prof. Dr.-Ing. Michael Maas Sicherheitsabstnd ε=0,114% S235 ε=0,171% S355 ε=3% - 3,5% ε=20% - 25% Bei Erreichen der Streckgrenze treten zu große Verformungen auf. Die Grenzspannung

Mehr

Leichtbau ist nicht schwer

Leichtbau ist nicht schwer Leichtbau ist nicht schwer Dünnwandige Stahl und Aluminiumprofile in einem Schritt nachweisen Nach Einführung der Eurocode Normenfamilie müssen Tragwerke mit kaltgeformten, dünnwandigen Bauteilen und Wandstärken

Mehr

Typenstatische Berechnung für GH Gerberverbinder Typ 3

Typenstatische Berechnung für GH Gerberverbinder Typ 3 Datei: GH-Gerberverbinder 07-12-2010.doc Datum: 07.12.2010 Typenstatische Berechnung für GH Gerberverbinder Typ 3 Auftraggeber: GH-Baubeschläge GmbH Austraße 34 D 73235 Weilheim/Teck Umfang der Berechnungen:

Mehr

STAHLBAU 1. Name:... Matr. Nr.:...

STAHLBAU 1. Name:... Matr. Nr.:... 1 Name:... Matr. Nr.:... A. Rechnerischer Prüfungsteil 1. Rahmen mit aussteifendem System Die Tragkonstruktion besteht aus einem Zweigelenkrahmen [der Querschnitte 1 und 2], dessen Horizontalkraft Q k

Mehr

Statik 1 Hausübungen - 3. Semester (Bachelor)

Statik 1 Hausübungen - 3. Semester (Bachelor) Statik 1 Hausübungen - 3. Semester (Bachelor) Aufgabenstellung Download als PDF per Internet: Homepage Fachbereich B: www.fbb.h-da.de Studium / Bachelor (B.Eng.) Grundstudium Modul-Übersicht Grundstudium

Mehr

EC3 Seminar Teil 6 1/7 Anschlüsse und Verbindungen

EC3 Seminar Teil 6 1/7 Anschlüsse und Verbindungen EC3 Seminar Teil 6 1/7 Aufgabe 1 max. F t, Ed??? 18 mm 27 mm t 6 mm S355 a w 4 mm M..?.. 5.6 65 mm Für den dargestellten Anschluss ist die maximal mögliche Zugkraft F t, Ed nach E 1993-1-1 und E 1993-1-8

Mehr

Übung zu Mechanik 2 Seite 38

Übung zu Mechanik 2 Seite 38 Übung zu Mechanik 2 Seite 38 Aufgabe 64 Gegeben sind die Zustandslinien für Biegemoment und Normalkraft von einem räumlich beanspruchten geraden Stab. a) Bemessen Sie den Stab auf Normalspannungen! Es

Mehr

Klausur Stahlbau Grundlagen. - Theorieteil -

Klausur Stahlbau Grundlagen. - Theorieteil - Fachgebiet Stahl- & Verbundbau Prof. Dr.-Ing. Uwe E. Dorka Klausur Stahlbau Grundlagen 11. Oktober 2005 - Theorieteil - Bearbeitungsdauer: 90 Minuten Name:............................ Vorname:............................

Mehr

Bemessung einer einachsig gespannten Geschoßdecke nach dem Leitfaden Brettsperrholz Bemessung und ÖNORM B :2014, Anhang K.

Bemessung einer einachsig gespannten Geschoßdecke nach dem Leitfaden Brettsperrholz Bemessung und ÖNORM B :2014, Anhang K. Beispiel Decke Bemessung einer einachsig gespannten Geschoßdecke nach dem Leitfaden Brettsperrholz Bemessung und ÖNORM B 1995-1-1:2014, Anhang K. Berechnungsbeispiel im Rahmen des Seminars Brettsperrholz

Mehr

4. Balken. Brücken Tragflügel KFZ-Karosserie: A-Säule, B-Säule Rahmen: Fahrrad, Motorrad. Prof. Dr. Wandinger 2. Festigkeitslehre TM 2.

4. Balken. Brücken Tragflügel KFZ-Karosserie: A-Säule, B-Säule Rahmen: Fahrrad, Motorrad. Prof. Dr. Wandinger 2. Festigkeitslehre TM 2. 4. Balken Balken sind eindimensionale Idealisierungen für Bauteile, die Längskräfte, Querkräfte und Momente übertragen können. Die Querschnittsabmessungen sind klein gegenüber der Länge. Beispiele: Brücken

Mehr

Bemessung von nichtrostenden Stählen

Bemessung von nichtrostenden Stählen Bemessung von nichtrostenden Stählen Beispiel 1: Kreisförmiges Hohlprofil unter zentrischer Stand 15.0.018 Bemessungshilfen zu nichtrostenden Stählen im Bauwesen (DMSSS) - Erläuterungen - Bemessungsbeispiele

Mehr

EC3 Seminar Teil 7 1/6 Stabilitätstheorie Beispiele

EC3 Seminar Teil 7 1/6 Stabilitätstheorie Beispiele EC3 Seminar Teil 7 1/6 Aufgabe 1 F cr??? IPE 160, S355 6 m HEA 140, S355 4 m Für den dargestellten Halbrahmen ist die kritische Last F cr nach EN 1993-1-1 zu berechnen. Ausweichen senkrecht zur Darstellungsebene

Mehr

Beispiel 6: Anschlusskonstruktion unter Zug- und Schubkraft

Beispiel 6: Anschlusskonstruktion unter Zug- und Schubkraft Titel: Anschluss Blatt: Seite 1 von 12 Beispiel 6: Anschlusskonstruktion unter Zug- und Schubkraft Es soll der Anschluss des Zugstabes für die Bemessungslast F Ed = 300 kn nachgewiesen werden. Zur Anwendung

Mehr

Stahlbau 1. Name:... Matr. Nr.:...

Stahlbau 1. Name:... Matr. Nr.:... 1/10 Name:... Matr. Nr.:... A. Rechnerischer steil 1. Stabilitätsnachweis Der in Abb.1 dargestellte Rahmen, bestehend aus zwei Stützen [rechteckige Hohlprofile, a= 260mm,b= 140mm, s= 8mm] und einem Riegel

Mehr

Nachweis Elastisch Elastisch eines I-Querschnittes mit zweiachsiger Biegung und Normalkraft

Nachweis Elastisch Elastisch eines I-Querschnittes mit zweiachsiger Biegung und Normalkraft Name : Nr. 4 03.00 60 1. Aufgabe Seite 1 Nachweis Elastisch Elastisch eines I-Querschnittes mit zweiachsiger Biegung und Normalkraft h 1 y b 1 t 3 4 s 5 6 7 8 9 z h Bezeichnungen der Abmessungen und Querschnittspunkte

Mehr

STÜTZEN EINTEILIG/MEHRTEILIG

STÜTZEN EINTEILIG/MEHRTEILIG STÜTZEN EINTEILIG/MEHRTEILIG ALLGEMEINES STÜTZEN AUS HOLZ EINTEILIGE DRUCKSTÄBE AUS HOLZ MEHRTEILIGE DRUCKSTÄBE AUS HOLZ MEHRTEILIGE DRUCKSTÄBE AUS HOLZ MIT KONTINUIERLICHEN VERBINDUNGEN BIEGUNG MIT NORMALKRAFT

Mehr

Stahlbau Stabilität Schriftliche Prüfung am Musterlösung

Stahlbau Stabilität Schriftliche Prüfung am Musterlösung B8 Seite 1/5 Stahlbau Stabilität Schriftliche Prüfung am 07.02.2008 Musterlösung Erreichbare Punktzahl: 88 (entspr. 117 %); erreichte Punkte (Unterschrift Prüfer) Name, Vorname, Matrikelnummer:... Bearbeitungsdauer:

Mehr

Musterlösung zur 10. Übung Mechanik II SS 08. Aufgabe 1: Schubspannungen infolge Querkraft: Bei dünnwandigen Querschnitten t 1, t 2

Musterlösung zur 10. Übung Mechanik II SS 08. Aufgabe 1: Schubspannungen infolge Querkraft: Bei dünnwandigen Querschnitten t 1, t 2 Musterlösung ur 10. Übung Mechanik II SS 08 Aufgabe 1: Schubspannungen infolge Querkraft: Bei dünnwandigen Querschnitten t 1, t 2 b, h können die Schubspannungen in Richtung der bereichsweise einuführenden

Mehr

Bemessungsverfahren für zugkraftbeanspruchte Querkraftanschlüsse

Bemessungsverfahren für zugkraftbeanspruchte Querkraftanschlüsse 07/0 PRÜFAT FÜR BAUSTATK NÜRNBERG Bemessungsverfahren für zugkraftbeanspruchte uerkraftanschlüsse Für die Bemessung der Anschlüsse gelenkig gelagerter Träger stehen Tabellenwerke [1], [] zur Verfügung,

Mehr

EN /NA:

EN /NA: Tipp 17/06 Tragwerksnachweise nach Theorie I. oder II. Ordnung für Rahmen nach DIN EN 1993-1-1:2010-12 [1] und DIN EN 1993-1-1/A1:2014-07 [2] in Verbindung mit DIN EN 1993-1-1/NA:2015-08 [3] Vorgaben bzgl.

Mehr

KLAUSUR STAHLBAU GRUNDLAGEN

KLAUSUR STAHLBAU GRUNDLAGEN Fachgebiet Stahl- und Verbundbau Prof. Dr.-Ing. Uwe E. Dorka KLAUSUR STAHLBAU GRUNDLAGEN 23. Februar 2015 - Theorieteil - Bearbeitungsdauer: 90 Minuten Name: Vorname: Matr.-Nr.: Versuch Nummer: Aufgabe

Mehr

Skript. Technische Mechanik. Festigkeitslehre

Skript. Technische Mechanik. Festigkeitslehre Fachhochschule Mannheim Hochschule für Technik und Gestaltung Fachbereich Verfahrens- und Chemietechnik Skript zur Vorlesung Technische Mechanik Teil Festigkeitslehre Prof. Dr. Werner Diewald Stand: März

Mehr

Frank Weber GRAITEC GmbH Roonstrasse 6 Tel.: 030 / Berlin

Frank Weber GRAITEC GmbH Roonstrasse 6 Tel.: 030 / Berlin Projekt: CS-STATIK 2005 Beispiele Position: CS-STAB_H2 Beispiel Seite: 1 CS-ANHO/H8 2011.03 Dachdetails Einzelpunkte für Sparren links Ausgeklinktes Auflager 2 8 Eingabedaten Geometrie und Art der Berechnung:

Mehr

Stahlbau Schriftliche Prüfung am Musterlösung

Stahlbau Schriftliche Prüfung am Musterlösung Bachelor B6 Seite 1/7 Stahlbau Schriftliche Prüfung 6620000 am 31.01.2013 Musterlösung Erreichbare Punktzahl: 134 (entspr. 149 %) erreichte Punkte (Unterschrift Prüfer) Name, Vorname, Matrikelnummer:...

Mehr

Stahlbau 1. Name:... Matr. Nr.:...

Stahlbau 1. Name:... Matr. Nr.:... 1/12 Name:... Matr. Nr.:... A. Rechnerischer steil 1. Knicknachweis eines zentrisch gedrückten Stabes Zwei zentrisch gedrückte Gelenkstäbe [HEA 220, E= 210000N/mm²] werden in der x-z Ebene durch Seile

Mehr

Das Webinar beginnt in Kürze!

Das Webinar beginnt in Kürze! Das Webinar beginnt in Kürze! Veranstalter Das Audiosignal des Webinars können Sie über Ihre Computerlautsprecher mithören. Mit freundlicher Unterstützung von Bitte vergewissern Sie sich, dass die Lautsprecher

Mehr

Tragfähigkeitsnachweise für Querschnitte / Gebrauchstauglichkeitsnachweise

Tragfähigkeitsnachweise für Querschnitte / Gebrauchstauglichkeitsnachweise II Holzbalkendecke Tragfähigkeitsnachweise für Querschnitte / Gebrauchstauglichkeitsnachweise Nachfolgend ist eine Holzbalkendecke eines Einfamilienhauses dargestellt. Die Balken 120/240, VH C 24 liegen

Mehr

1.Torsion # Frage Antw. P.

1.Torsion # Frage Antw. P. 1.Torsion # Frage Antw. P. 1 Der skizzierte Schalthebel mit Schaltwelle wird durch die Kraft F = 1 kn belastet. Die zulässigen Spannungen beträgt für eine Torsion 20 N/mm 2. a b 2 3 4 Bestimmen Sie das

Mehr

Teilübung Gesamtstabilität

Teilübung Gesamtstabilität WS 005/06 Lagergebäude Gesamtstabilität Teilübung Gesamtstabilität System. Grundriss. Ansicht.3 Bauwerksdaten Gesamthöhe über OK Fundament: h ges = 7,00 m Anzahl der Geschosse m = 4 E-Modul Beton C30/37)

Mehr

Sachverzeichnis 427. nichtlineare Theorie 15 Normalkraft: s. Schnittgrößen Normalspannungen: s. Spannungen

Sachverzeichnis 427. nichtlineare Theorie 15 Normalkraft: s. Schnittgrößen Normalspannungen: s. Spannungen Sachverzeichnis A abgespannte Konstruktionen 113 Ableitung von Abtriebskräften 332f Ableitung von planmäßigen Horizontallasten 326, 331f Abminderungsfaktoren für das Biegedrillknicken 131,140ff für das

Mehr

Formeln und Tabellen Stahlbau

Formeln und Tabellen Stahlbau Erwin Piechatzek Eva-Maria Kaufmann Formeln und Tabellen Stahlbau Nach DIN 18800 (1990) mit 146 Tabellen und 18 vollständig durchgerechneten Beispielen 3., überarbeitete und aktualisierte Auflage vieweg

Mehr

Stahlbau 1. Name:... Matr. Nr.:...

Stahlbau 1. Name:... Matr. Nr.:... 1/11 Name:... Matr. Nr.:... A. Rechnerischer steil 1. Stabilitätsnachweis Das in Abb.1 dargestellte System, bestehend aus einer eingespannten Stütze [rechteckiges, geschweißtes Hohlprofil, a= 300mm,b=

Mehr

Inhaltsverzeichnis. Einführung in DIN EN 1993 (EC 3) 1 Einführung in DIN EN 1993 (EC 3) 1.1 Allgemeines über Eurocodes

Inhaltsverzeichnis. Einführung in DIN EN 1993 (EC 3) 1 Einführung in DIN EN 1993 (EC 3) 1.1 Allgemeines über Eurocodes Inhaltsverzeichnis Einführung in DIN EN 1993 (EC3) Prof. Dipl.-Ing. Jürgen Fehlau Beuth-Hochschule für Technik Berlin Querschnittsnachweise nach DIN EN 1993-1-1 Prof. Dipl.-Ing. Jürgen Fehlau Beuth-Hochschule

Mehr

STATISCHE BERECHNUNG EINSCHIENEN-KATZBAHNTRÄGER FÜR UNTERFLANSCHLAUFKATZEN

STATISCHE BERECHNUNG EINSCHIENEN-KATZBAHNTRÄGER FÜR UNTERFLANSCHLAUFKATZEN STATISCHE BERECHNUNG EINSCHIENEN-KATZBAHNTRÄGER FÜR UNTERFLANSCHLAUFKATZEN STAND 5. SEP. 2014 Folgende Normen wurden als Grundlage für die Berechnung herangezogen: EN 1990 und B 1990-1 EN 1991-3 und B

Mehr

KLAUSUR STAHLBAU GRUNDLAGEN

KLAUSUR STAHLBAU GRUNDLAGEN Fachgebiet Stahl- und Verbundbau Prof. Dr.-Ing. Uwe E. Dorka KLAUSUR STAHLBAU GRUNDLAGEN 16. März 2011 - Theorieteil - Bearbeitungsdauer: 90 Minuten Name: Vorname: Matr.-Nr.: Versuch Nummer: Aufgabe 1

Mehr

Prof. Dr.-Ing. A. Albert

Prof. Dr.-Ing. A. Albert Aufgabe 1: Berechnen Sie die mitwirkende Plattenbreite für den unten dargestellten Plattenbalken. (4 Punkte) mit,, 0,2 0,1 0,2 Querschnitt: Statisches System: 18 32 70 24 180 6,90, 0,2 0,7 0,1 6,9 0,83

Mehr

Biegung

Biegung 2. Biegung Wie die Normalkraft resultiert auch das Biegemoment aus einer Normalspannung. Das Koordinatensystem des Balkens wird so gewählt, dass die Flächenschwerpunkte der Querschnitte auf der x-achse

Mehr

Stahlbau-Praxis nach Eurocode 3

Stahlbau-Praxis nach Eurocode 3 Prof. Dr.-Ing. Gerd Wagenknecht Stahlbau-Praxis nach Eurocode 3 Band 2 Verbindungen und Konstruktionen 4., überarbeitete und erweiterte Auflage Beuth Verlag GmbH Berlin. Wien Zürich 1 Schraubenverbindungen..

Mehr

Kippen von Biegeträgern

Kippen von Biegeträgern Grundaufgaben Seite 1/9 von Biegeträgern 0. Inhalt 0. Inhalt 1 1. Allgemeines 1 2. Grundlagen 2 3. Begriffe / Abkürzungen / Formelzeichen 2 4. Bemessung eines Trägers gegen 2 4.1 Elastisches, perfekter

Mehr

Spannungen mit griechischen Kleinbuchstaben

Spannungen mit griechischen Kleinbuchstaben B. Wietek, Faserbeton, DOI 10.1007/978-3-658-07764-8_2, Springer Fachmedien Wiesbaden 2015 2.2 Zeichen 15 Spannungen mit griechischen Kleinbuchstaben E c... Elastizitätsmodul von Beton [N/mm 2 ] E s...

Mehr

Berechnung von Tragwerksverformungen: Durchbiegungsberechnung - Plattenbalken

Berechnung von Tragwerksverformungen: Durchbiegungsberechnung - Plattenbalken 1 Berechnung von Tragwerksverormungen: Durchbiegungsberechnung - Plattenbalken Dipl.-Ing. Maike Schneider (Ausgewählte Kapitel des Massivbaus) Wintersemester 2010/2011 Allgemeines 2 Durchbiegungsberechnung

Mehr

4. Torsion. Sie werden z. B. bei Antriebswellen verwendet, die zur Übertragung von Drehmomenten eingesetzt werden

4. Torsion. Sie werden z. B. bei Antriebswellen verwendet, die zur Übertragung von Drehmomenten eingesetzt werden 4. Torsion Die Belastung eines Balkens durch ein Moment um die x- Achse wird als Torsion bezeichnet. Das Torsionsmoment Mx resultiert aus einer über den Querschnitt verteilten Schubspannung. Für Kreis-

Mehr

Vereinfachtes Bemessungsverfahren für kombinierte Spundwände

Vereinfachtes Bemessungsverfahren für kombinierte Spundwände Vereinfachtes Bemessungsverfahren für kombinierte Spundwände Kaimauerworkshop am 17.02.2016 in Hamburg 01 Veranlassung, Chronologie 3 Veranlassung, Chronologie 2014 2015 2016 Vorschlag von Herr Glimm zur

Mehr

Hauptdiplomprüfung Statik und Dynamik Pflichtfach

Hauptdiplomprüfung Statik und Dynamik Pflichtfach UNIVERSITÄT STUTTGART Institut für Statik und Dynamik der Luft- und Raumfahrtkonstruktionen Komm. Leiter: Prof. Dr.-Ing. S. Staudacher Hauptdiplomprüfung Statik und Dynamik Pflichtfach Herbst 2011 Aufgabenteil

Mehr

Rheinische Fachhochschule Köln

Rheinische Fachhochschule Köln Rheinische Fachhochschule Köln Matrikel-Nr. Nachname Dozent Ianniello Semester BM I, S Klausur Datum K8 18. 01. 1 Fach Kinetik+Kinematik Genehmigte Hilfsmittel: Urteil Ergebnis: Punkte Taschenrechner Formelsammlungen

Mehr