Shader für Geometrische Grundprimitive. Beispielszene mit vielen Kegeln unterschiedlicher Größe und Farbe

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Shader für Geometrische Grundprimitive. Beispielszene mit vielen Kegeln unterschiedlicher Größe und Farbe"

Transkript

1 Shader für Geometrische Grundprimitive Beispielszene mit vielen Kegeln unterschiedlicher Größe und Farbe

2 0. Gliederung Gliederung: 1. Motivation 2. Verwandte Arbeiten 3. Überblick über das Vorgehen 3.1 Allgemeiner Überblick 3.2 Gemeinsame Merkmale der Shader 3.3 Vertex Shader Allgemein 3.4 Fragment Shader Allgemein 4. Spezielle Shader 4.1 Kugel 4.2 Zylinder 4.3 Kegel 5. Performanzanalyse 6. Ausblick 2

3 1. Motivation Modellierung: Visualisierung: Zerlegung komplexer Objekte in Grundprimitive Molekülvisualisierung (viele Kugeln für einzelne Atome) fördert Verständnis (z.b. durch Roboter), Kommunikation, Speicherbarkeit Visualisierung physikalischer Systeme: Vektorfelder: viele Ellipsoide entlang der Vektorlinien Volumen: um Dichte sichtbar zu machen 3D-Wolken CAD-Systeme visuelle Komplexität ist messbar Ziel: Bibliothek bzw. Framework zum schnellen zeichnen von Grundprimitiven (Kugel, Zylinder, Kegel; andere möglich) Integration in OpenGL einfache Handhabung 3

4 2. Verwandte Arbeiten Gumhold : Basis meiner Arbeit gleicher Ansatz, nur für Kugel kein verzögertes Beleuchten Grafik aus Sigg Sigg et al : ähnliche Arbeit (Kugel und Zylinder) Silhouette nicht durch Viereck, sondern durch großen Punkt abgedeckt verzögerter Shader mit Beleuchtung, weichen Schatten und Silhouettenlinien Grafik aus Gumhold

5 2. Verwandte Arbeiten Grafik aus Pabst Pabst et al : Grafik aus Pabst Primitive sind NURBS-Flächen pro-strahl Schnittberechnung in Shadern Vorberechnung der Silhouette als Dreiecks-Netz Unterstützung von NURBS-Schnitt-Kurven Reina & Ertl : Primitive sind molekulare Glyphen (2 Kugeln (Moleküle) und 1 Zylinder) großer Punkt für Silhouette Phong Shading pro Pixel Aber: Silhouette sehr ungenau Grafik aus Reina & Ertl

6 2. Verwandte Arbeiten Loop 2006 (SIGGRAPH): Primitive sind implizite Flächen, durch Bézier-Tetraeder definiert Begrenzung auf umgebendes Tetraeder auf CPU Silhouette berechnen (3 / 4 Dreiecke) im Fragment Shader Schnitt berechnen algebraische Ermittlung der Nullstellen max. Flächen Grad 4 Grafik aus Loop Offen & Fellner 2007: BioBrowser Anwendung mit Plugin-System zur Visualisierung von Molekülen Plugins: Ball and Stick, Sticks, Spacefill, Ribbons und Surface GPU Raytracing (Kugel, Zylinder) Unterteilungsflächen (Ribbons) Grafik aus Loop

7 3.1 Konventionelle Techniken Triangulierung: Objekt-Zerlegung in Dreiecke sehr hohe Anzahl für gute Qualität Übertragung kostspielig Triangulation (quadratisches Patch) große Entfernung: Dreiecke nur noch einzelne Pixel Verschwendung Raytracing: kompakte Szenen-Speicherung (Objekt: Parameter (z.b. Position, Radius)) Strahlen durch Bildschirmpixel Schnittpunkte Reflektion / Brechung recht einfach Aber: komplett auf CPU niedrige Frame-Raten Grafik aus Skript CG I (Gumhold) 7

8 3.1 Raytracing auf GPU Raytracing auf GPU: lokales, nicht rekursives Raytracing keine Reflektion / Brechung Vertex Shader: Silhouette berechnen Approximation: großer Punkt inkrementell nicht möglich n-eck Kompromiss Fehler / Transfer Fragment Shader: Strahlen durch gerasterte Pixel Schnittpunkte Phong-Shading komplette Berechnung auf GPU hohe Frame-Raten 8

9 3.1 Vorgehen Eingabe: Vertex-Attribute: typabhängige Parameter (Radius, Höhe etc.), optional Verschiebung 4 Vertices mit festgelegten Koordinaten (Ecken des Splats) OpenGL-Kontext Ausgabe: Farbe und Tiefenwert des Pixels Vertex Shader (auf Primitiv zugeschnitten) Schnittberechnung, Beleuchtung Splat (viereckige Annäherung des Objektes) Rasterisierung Fragment Shader (auf Primitiv zugeschnitten) 9

10 3.1 Erweitertes Vorgehen Eingabe: Vertex-Attribute: typabhängige Parameter (Radius, Höhe etc.), optional Verschiebung 4 Vertices mit festgelegten Koordinaten (Ecken des Splats) OpenGL-Kontext Vertex Shader (auf Primitiv zugeschnitten) Schnittberechnung Splat (viereckige Annäherung des Objektes) Rasterisierung Fragment Shader (auf Primitiv zugeschnitten) Phase 1 Tiefenwert; diffuse Farbe, Position und Normale (in Augenkoordinaten) Phase 2 Verzögerter Fragment Shader (allgemein) Beleuchtung Ausgabe: Farbe des Pixels 10

11 3.2 Shader Allgemein Integration in OpenGL: Berechnungen komplett in Objektkoordinaten (gegeben durch aktuelle ModelView-Matrix) z-clip mit aktuellem OpenGL Zustand (Near- / Far-Clipping-Plane) Material- und Lichtquellen-Eigenschaften für Beleuchtungs-Berechnung user clipping, display lists Beschleunigung: Shader pro Objekttyp aktivieren Vorberechnung Parameter, dann über Viereck interpolieren (für Fragment-Shader) keine Matrix-Vektor-Multiplikationen im Fragment-Shader Mittelpunkt direkt angeben, erspart 'gltranslate(x, y, z)' Aufrufe wesentlich schneller 11

12 3.3 Vertex-Shader Allgemein Silhouette: Berechnung approximierte Silhouette als Viereck Umrechnung in clip space, Senden an Rasterisierer Weitergabe an Fragment-Shader (in Objektkoordinaten) Sonderfall: wenn Betrachter im Objekt ganzer Bildschirm Blick von innerhalb des Zylinders nach Oben (schematisch) Blick von innerhalb des Zylinders nach Oben 12

13 3.4 Schnittberechnung-Shader Allgemein Schnittberechnung: Objekt in Ursprung verschieben Strahlen durch Silhouetten-Pixel (nach Rasterisierung) Schnittpunkt mit Objekt nur möglich, wenn Objekt geometrisch beschreibbar aus Schnittpunkt Normale ableiten Tiefenwert: z-koordinate in normaliserten Gerätekoordinaten Strahlen durch Silhouetten-Pixel Manueller z-clip: 1. Treffer (rot) hinter Near-Clipping- Plane würde weggeschnitten durch z-clip lila Punkt sichtbar manueller z-clip mit Near-Clipping-Plane grüner Punkt sichtbar Zylinder (Seitenansicht) 13

14 3.4 Fragment-Shader Allgemein Optimierung: pro Pixel: Position, Normale und Tiefenwert berechnen in Texturen speichern: diffuse Materialeigenschaft Normale (Augenkoordinaten, nicht normalisiert) z- und negative w-kooordinate der Position in clip Koordinaten Verzögerter Shader: Framebuffer-Objekt mit Tiefenpuffer für automatischen z-clip bekommt Array mit Status der Lichtquellen (nicht im eingebauten OpenGL-Zustand) Problem: Zustand kann zwischen Objekten geändert werden (Phase 1), aber in Phase 2 fester Zustand einige Parameter speichern (diffuse Farbe) restlicher Zustand aus Phase 2 pro -Pixel Lichtberechnung (Phong-Shading) 14

15 4.1 Kugel Silhouette Vorgehen: vorgestellt in [Gumhold 2003] kreisförimge Silhouette orthogonal EC E... Augpunkt C... Kreismittelpunkt Kugeln mit Silhouetten 15

16 4.2 Zylinder Silhouette (Fall 1) Draufsicht auf 9 Zylinder Fall 1: Betrachter über / unter Zylinder Silhouette ist kompletter Kreis oben / unten 16

17 4.2 Zylinder Silhouette (Fall 2) Vorgehen: Projektion Augpunkt in Ebene unterer Randkreis, dann ähnlich Kugel möglich, da ny = 0 (n... Normale) Höhenkorrektur erforderlich Seitenansicht von 5 Zylindern Fall 2: Betrachter außerhalb verlängerter Zylinder Höhenkorrektur Zylinder (Seitenansicht) 17

18 4.3 Kegel Silhouette (Fall 1) Fall 1: Betrachter im verlängertem Kegel Silhouette ist kompletter Kreis oben / unten 4 Kegel mit 3 Silhouetten (Fall 1) 18

19 4.3 Kegel Silhouette (Fall 2) KEGEL Fall 2: Betrachter außerhalb verlängerter Kegel, ober- / unterhalb sichtbar oberer / unterer Kreis Kegel Fall 2 (Seitenansicht) Verlängerung, damit Spitze (kompletter Kegel) sichtbar 3 Kegel mit Silhouetten (Fall 2) Kegel Fall 2 (Seitenansicht) 19

20 4.3 Kegel Silhouette (Fall 3) Fall 3: Betrachter vor Kegel Dreieck P bestimmen Projektion nach vorn Verlängern Projektion der Silhouette (Fall 3, Draufsicht) Fall 3 mit Silhouette 20

21 4.3 Kegel Schnittberechnung Sonderfall: Sichtstrahl parallel zum Rand des Kegels nur ein Schnittpunkt Kegelgleichung ersten Grades (Gerade) Sichtstrahl parallel Kegel (Seitenansicht) 21

22 5. Performanzanalyse Silhouettenbestimmung Dauer pro Silhouettenbestimmung [ns] Sphere translated Cylinder translated Cone translate Sphere normal Cylinder normal Cone normal Shader 250 Schnittpunkt Berechnung Pixel Durchsatz [Pixel / Sekunde] Sphere Explicit Cylinder Hybrid Cone Explicit Sphere Hybrid Sphere Implicit Cylinder Explicit Shader 22

23 5. Performanzanalyse Shader-Tessellierung Vergleich [in ms] Kugeln klein Kugeln groß Zylinder klein Zylinder groß Kegel klein Kegel groß Szenen Einfache Tessellierung Bessere Tessellierung Shader normal Shader verschoben 23

24 6. Ausblick Vertex Shader: Normale korrekt transformieren (perspektivisch) Verzögerter Shader: backface culling richtiges user clipping volle OpenGL-Unterstützung korrekter User-Clip (vorne 2 Reihen Zylinder weggeschnitten) Allgemein: Texturierung inkorrekter User-Clip (vorne 2 Reihen Zylinder weggeschnitten) 24

(7) Normal Mapping. Vorlesung Computergraphik II S. Müller. Dank an Stefan Rilling U N I V E R S I T Ä T KOBLENZ LANDAU

(7) Normal Mapping. Vorlesung Computergraphik II S. Müller. Dank an Stefan Rilling U N I V E R S I T Ä T KOBLENZ LANDAU (7) Normal Mapping Vorlesung Computergraphik II S. Müller Dank an Stefan Rilling Einleitung Die Welt ist voller Details Viele Details treten in Form von Oberflächendetails auf S. Müller - 3 - Darstellung

Mehr

Probelektion zum Thema. Shadow Rendering. Shadow Maps Shadow Filtering

Probelektion zum Thema. Shadow Rendering. Shadow Maps Shadow Filtering Probelektion zum Thema Shadow Rendering Shadow Maps Shadow Filtering Renderman, 2006 CityEngine 2011 Viewport Real reconstruction in Windisch, 2013 Schatten bringen viel Realismus in eine Szene Schatten

Mehr

"rendern" = ein abstraktes geometrisches Modell sichtbar machen

rendern = ein abstraktes geometrisches Modell sichtbar machen 3. Grundlagen des Rendering "rendern" = ein abstraktes geometrisches Modell sichtbar machen Mehrere Schritte: Sichtbarkeitsberechnung Beleuchtungsrechnung Projektion Clipping (Abschneiden am Bildrand)

Mehr

computer graphics & visualization

computer graphics & visualization Entwicklung und Implementierung echtzeitfähiger Verfahren zur Darstellung von reflektierenden Objekten auf GPUs echtzeitfähiger Verfahren zur Darstellung von reflektierenden Objekten auf GPUs Motivation

Mehr

Photonik Technische Nutzung von Licht

Photonik Technische Nutzung von Licht Photonik Technische Nutzung von Licht Raytracing und Computergraphik Überblick Raytracing Typen von Raytracern z-buffer Raytracing Lichtstrahlen-Verfolgung (engl. ray tracing): Berechnung von Lichtstrahlen

Mehr

VHDL - Grundlagen des Pointrenderings

VHDL - Grundlagen des Pointrenderings VHDL - Grundlagen des Pointrenderings Marc Reichenbach, Timo Nieszner Informatik 3 / Rechnerarchitektur Universität Erlangen Nürnberg 2013 1 / 25 Rendern von Dreiecksnetzen Quelle: Inf9, CG-Slides grobmaschiges

Mehr

Seminar Game Development Game Computer Graphics. Einleitung

Seminar Game Development Game Computer Graphics. Einleitung Einleitung Gliederung OpenGL Realismus Material Beleuchtung Schatten Echtzeit Daten verringern Grafik Hardware Beispiel CryEngine 2 Kristian Keßler OpenGL Was ist OpenGL? Grafik API plattform- und programmiersprachenunabhängig

Mehr

1 Pyramide, Kegel und Kugel

1 Pyramide, Kegel und Kugel 1 Pyramide, Kegel und Kugel Pyramide und Kegel sind beides Körper, die - anders als Prismen und Zylinder - spitz zulaufen. Während das Volumen von Prismen mit V = G h k berechnet wird, wobei G die Grundfläche

Mehr

1 Transformationen. 1.1 Transformationsmatrizen. Seite 1

1 Transformationen. 1.1 Transformationsmatrizen. Seite 1 Seite 1 1 Transformationen 1.1 Transformationsmatrizen In den folgenden Teilaufgaben sind die Koeffizienten von 4 4 Transformationsmatrizen zur Repräsentation von affinen Abbildungen im R 3 zu bestimmen.

Mehr

:= Modellabbildung. Bildsynthese (Rendering) Bildsynthese

:= Modellabbildung. Bildsynthese (Rendering) Bildsynthese Geometrisches Modell bestehend aus Datenstrukturen zur Verknüpfung geometrischer Primitive, welche eine Gesamtszene beschreiben Bildsynthese := Modellabbildung Pixelbasiertes Modell zur Darstellung eines

Mehr

Computer Graphik. Mitschrift von www.kuertz.name

Computer Graphik. Mitschrift von www.kuertz.name Computer Graphik Mitschrift von www.kuertz.name Hinweis: Dies ist kein offizielles Script, sondern nur eine private Mitschrift. Die Mitschriften sind teweilse unvollständig, falsch oder inaktuell, da sie

Mehr

Lokale Beleuchtungsmodelle

Lokale Beleuchtungsmodelle Lokale Beleuchtungsmodelle Oliver Deussen Lokale Modelle 1 Farbschattierung der Oberflächen abhängig von: Position, Orientierung und Charakteristik der Oberfläche Lichtquelle Vorgehensweise: 1. Modell

Mehr

Kollisionserkennung

Kollisionserkennung 1 Kollisionserkennung von Jens Schedel, Christoph Forman und Philipp Baumgärtel 2 1. Einleitung Wozu wird Kollisionserkennung benötigt? 3 - für Computergraphik 4 - für Simulationen 5 - für Wegeplanung

Mehr

Workshop: Einführung in die 3D-Computergrafik. Julia Tolksdorf Thies Pfeiffer Christian Fröhlich Nikita Mattar

Workshop: Einführung in die 3D-Computergrafik. Julia Tolksdorf Thies Pfeiffer Christian Fröhlich Nikita Mattar Workshop: Einführung in die 3D-Computergrafik Julia Tolksdorf Thies Pfeiffer Christian Fröhlich Nikita Mattar 1 Organisatorisches Tagesablauf: Vormittags: Theoretische Grundlagen Nachmittags: Bearbeitung

Mehr

Aus Zahlen werden Bilder. Jan Tobias Mühlberg

Aus Zahlen werden Bilder. Jan Tobias Mühlberg <muehlber@fh-brandenburg.de> Aus Zahlen werden Bilder 1 Aus Zahlen werden Bilder Jan Tobias Mu hlberg Quelle: http://www.emperor-penguin.com 2 3 Modellierung einer Realität Ein endlich genaues Modell der

Mehr

Computergrafik 2010 Oliver Vornberger. Kapitel 18: Beleuchtung

Computergrafik 2010 Oliver Vornberger. Kapitel 18: Beleuchtung Computergrafik 2010 Oliver Vornberger Kapitel 18: Beleuchtung 1 Ausgangslage am Ende der Viewing Pipeline liegt vor: P A Materialeigenschaften P B P C 2 Beleuchtungmodelle lokal: Objekt, Lichtquellen,

Mehr

OpenGL. (Open Graphic Library)

OpenGL. (Open Graphic Library) OpenGL (Open Graphic Library) Agenda Was ist OpenGL eigentlich? Geschichte Vor- und Nachteile Arbeitsweise glscene OpenGL per Hand Debugging Trend Was ist OpenGL eigentlich? OpenGL ist eine Spezifikation

Mehr

Kapitel 0. Einführung. 0.1 Was ist Computergrafik? 0.2 Anwendungsgebiete

Kapitel 0. Einführung. 0.1 Was ist Computergrafik? 0.2 Anwendungsgebiete Kapitel 0 Einführung 0.1 Was ist Computergrafik? Software, die einen Computer dazu bringt, eine grafische Ausgabe (oder kurz gesagt: Bilder) zu produzieren. Bilder können sein: Fotos, Schaltpläne, Veranschaulichung

Mehr

Proseminar Computergraphik. Raytracing

Proseminar Computergraphik. Raytracing TECHNISCHE UNIVERSITÄT DRESDEN FAKULTÄT INFORMATIK INSTITUT FÜR SOFTWARE- UND MULTIMEDIATECHNIK PROFESSUR FÜR COMPUTERGRAPHIK UND VISUALISIERUNG PROF. DR. STEFAN GUMHOLD Proseminar Computergraphik Raytracing

Mehr

Inhalt. Grundlagen - Licht und visuelle Wahrnehmung 1. Grundlagen - 2D-Grafik (Teil 1) 43. Grundlagen - 2D-Grafik (Teil 2) 67

Inhalt. Grundlagen - Licht und visuelle Wahrnehmung 1. Grundlagen - 2D-Grafik (Teil 1) 43. Grundlagen - 2D-Grafik (Teil 2) 67 Grundlagen - Licht und visuelle Wahrnehmung 1 Physikalische Grundlagen 2 Licht 2 Fotometrie 6 Geometrische Optik 9 Schatten 13 Farben 15 Visuelle Wahrnehmung - vom Reiz zum Sehen und Erkennen 17 Das Auge

Mehr

Computergrafik 2016 Oliver Vornberger. Kapitel 16: 3D-Repräsentation

Computergrafik 2016 Oliver Vornberger. Kapitel 16: 3D-Repräsentation Computergrafik 2016 Oliver Vornberger Kapitel 16: 3D-Repräsentation 1 Sequenz von Transformationen grün rot Kamera blau Modeling View Orientation View Mapping Device Mapping 2 Repräsentation + Darstellung

Mehr

Zwischenvortrag zum Entwicklungsstand der Bachelor-Arbeit. Direct 3D-Output für ein Rendering Framework

Zwischenvortrag zum Entwicklungsstand der Bachelor-Arbeit. Direct 3D-Output für ein Rendering Framework Zwischenvortrag zum Entwicklungsstand der Bachelor-Arbeit Direct 3D-Output für ein Rendering Framework von Benjamin Betting unter der Betreuung von Daniel Schiffner 1 Gliederung Kapitel I und II: Motivation,Einführung,Grundlagen

Mehr

MaTHEMATISCHE GRUNDLAGEN BUGA-AR TELESCOPE. Marko HeRBERTZ

MaTHEMATISCHE GRUNDLAGEN BUGA-AR TELESCOPE. Marko HeRBERTZ MaTHEMATISCHE GRUNDLAGEN BUGA-AR TELESCOPE Marko HeRBERTZ Wiederholung: Objekt-, Welt- und Kamerakoordinaten Kugelkoordinaten in kartesische Mögliche Schwierigkeiten Kameralinse Lage der Festung Lagerichtige

Mehr

Aufgaben für den Mathematikunterricht. Inhaltsbereich 1: Raum und Form. 1.2 elementare geometrische Figuren kennen und herstellen

Aufgaben für den Mathematikunterricht. Inhaltsbereich 1: Raum und Form. 1.2 elementare geometrische Figuren kennen und herstellen Nr. 1 Geometrische Körper und ihre Eigenschaften Fülle die Tabelle aus. Würfel Quader Pyramide Zylinder Kegel Kugel Ecken Kanten Flächen Nr. 1 Geometrische Körper und ihre Eigenschaften Fülle die Tabelle

Mehr

Wima-Praktikum 2: Bildsynthese-Phong

Wima-Praktikum 2: Bildsynthese-Phong Wima-Praktikum 2: Bildsynthese-Phong Wima-Praktikum 2: Prof. Dr. Lebiedz, M. Sc. Radic 1 Inhaltsverzeichnis 1 Einleitung 3 2 Kurze Beschreibung der Aufgabenstellung und dem Phong- Modell 3 3 Modellierung

Mehr

Lernstraße zum Thema geometrische Körper. Vorbemerkungen. Liebe 10 a, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung

Lernstraße zum Thema geometrische Körper. Vorbemerkungen. Liebe 10 a, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung Vorbemerkungen 02.06.2011 Liebe, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung meiner Kinder am Wochenende etwas später und aufgrund einer Bemerkung von Arian in der letzten Stunde etwas kürzer.

Mehr

Non-Photorealistic Rendering

Non-Photorealistic Rendering Übersicht 1. Motivation und Anwendungen 2. Techniken - Cel Shading - Konturlinien - Hatching Einführung Traditionelle Computergraphik Ziel: Fotorealismus Einführung Motivation Bewusste Vermeidung von

Mehr

Kurs zur Ergänzungsprüfung Darstellende Geometrie CAD. Ebenes Zeichnen (2D-CAD) und die ersten Befehle

Kurs zur Ergänzungsprüfung Darstellende Geometrie CAD. Ebenes Zeichnen (2D-CAD) und die ersten Befehle CAD Ebenes Zeichnen (2D-CAD) und die ersten Befehle Schnellzugriff-Werkzeugkasten (Quick Access Toolbar) Registerkarten (Tabs) Gruppenfenster (Panels) Zeichenfläche Befehlszeile: für schriftl. Eingabe

Mehr

Computergrafik - Projekt

Computergrafik - Projekt Computergrafik - Projekt SS 2012 M.Sc. Peter Salz Einführung Erweiterung der CG-Übungen Nicht nur akademische Beispiele Kerntechnologien der Computergrafik vertiefen C++ (Programmiersprache) OpenGL (Grafik-Framework,

Mehr

Erinnerung. Arbeitsschritte der Computergraphik. Modellierung. Animation. Rendering. Ausgabemedium. Generierung

Erinnerung. Arbeitsschritte der Computergraphik. Modellierung. Animation. Rendering. Ausgabemedium. Generierung Erinnerung Arbeitsschritte der Computergraphik Modellierung Animation Generierung Ausgabemedium Graphik/-Pipeline Wandelt die Beschreibung einer Szene im dreidimensionalen Raum in eine zweidimensionale

Mehr

Integration von 3D-Visualisierungstechniken in 2D-Grafiksystemen

Integration von 3D-Visualisierungstechniken in 2D-Grafiksystemen Mitglied der Helmholtz-Gemeinschaft Inhaltsverzeichnis Integration von 3D-Visualisierungstechniken in 2D-Grafiksystemen Motivation Ergebnisse Ausblick 24. August 2012 Florian Rhiem 24. August 2012 PGI/JCNS

Mehr

Shadingalgorithmen zur Visualisierung nanostrukturierter Oberflächen

Shadingalgorithmen zur Visualisierung nanostrukturierter Oberflächen Universität Hamburg Fachbereich Informatik Arbeitsbereich Technische Aspekte Multimodaler Systeme Seminar Informatikanwendungen in Nanotechnologien Betreuer: Bernd Schütz Sommersemester 2014 Shadingalgorithmen

Mehr

Universität Osnabrück Fachbereich Mathematik / Informatik. 5. Vorlesung ( )

Universität Osnabrück Fachbereich Mathematik / Informatik. 5. Vorlesung ( ) Universität Osnabrück Fachbereich Mathematik / Informatik 5. Vorlesung (06.05.2013) Prof. Dr. rer. nat. Oliver Vornberger Nico Marniok, B. Sc. Erik Wittkorn, B. Sc. Game Application Layer Rückblick Game

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

Computergraphik Grundlagen

Computergraphik Grundlagen Computergraphik Grundlagen VIII. Beleuchtung und Shading Prof. Stefan Schlechtweg Hochschule Anhalt Fachbereich Informatik Inhalt Lernziele 1. Beleuchtungsmodelle 2. Lichtquellen Punktförmige und flächenhafte

Mehr

Lehrbuch der Grafikprogrammierung

Lehrbuch der Grafikprogrammierung Klaus Zeppenfeld Lehrbuch der Grafikprogrammierung Grundlagen Programmierung Anwendung unter Mitwirkung von Regine Wolters mit 2 CD-ROMs Spektrum Akademischer Verlag Heidelberg Berlin LE 1 1 Grundlagen

Mehr

Globale Beleuchtung. Thorsten Grosch. Thorsten Grosch Seit September 2009 Juniorprofessor für CV in Magdeburg

Globale Beleuchtung. Thorsten Grosch. Thorsten Grosch Seit September 2009 Juniorprofessor für CV in Magdeburg Praktikum Globale Beleuchtung Thorsten Grosch Wer bin ich Thorsten Grosch Seit September 2009 Juniorprofessor für CV in Magdeburg g Davor Studium Informatik TU Darmstadt Fraunhofer IGD Lichtsimulation

Mehr

Softwareprojekt Spieleentwicklung

Softwareprojekt Spieleentwicklung Softwareprojekt Spieleentwicklung Prototyp I (2D) Prototyp II (3D) Softwareprojekt 12.04. 19.04. 26.04. 03.05. 31.05. Meilenstein I 28.06. Meilenstein II Prof. Holger Theisel, Tobias Günther, OvGU Magdeburg

Mehr

Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2)

Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2) Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 2815 Bremen Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2) Name: Ich 1. 2. 3. So schätze ich meinen Lernzuwachs ein. kann die

Mehr

Komplexpraktikum Graphische Datenverarbeitung im WS 04/05

Komplexpraktikum Graphische Datenverarbeitung im WS 04/05 Komplexpraktikum Graphische Datenverarbeitung im WS 04/05 von Enrico Leonhardt 28 45 669 TU Dresden Medieninformatik 29. März 2005 Graphische Datenverarbeitung WS 04/05 Einführung Dieser Raytracer entstand

Mehr

Grafikkarten-Architektur

Grafikkarten-Architektur > Grafikkarten-Architektur Parallele Strukturen in der GPU Name: Sebastian Albers E-Mail: s.albers@wwu.de 2 > Inhalt > CPU und GPU im Vergleich > Rendering-Pipeline > Shader > GPGPU > Nvidia Tesla-Architektur

Mehr

Inhaltsverzeichnis. 1 Hardwaregrundlagen

Inhaltsverzeichnis. 1 Hardwaregrundlagen Inhaltsverzeichnis 1 Hardwaregrundlagen 2.4 2.5 Perspektivische 2.6 Parallele 2.7 Umsetzung der Zentralprojektion 2.8 Weitere 2.9 Koordinatensysteme, Frts. 2.10 Window to Viewport 2.11 Clipping 3 Repräsentation

Mehr

Legt man die vom Betrachter aus gesehen vor den, wird die spätere Konstruktion kleiner als die Risse. Legt man die hinter das Objekt, wird die perspek

Legt man die vom Betrachter aus gesehen vor den, wird die spätere Konstruktion kleiner als die Risse. Legt man die hinter das Objekt, wird die perspek Gegeben ist ein und ein. Der wird auf eine gezeichnet, der unterhalb von dieser in einiger Entfernung und mittig. Parallel zur wird der eingezeichnet. Dieser befindet sich in Augenhöhe. Üblicherweise wird

Mehr

Programmierpraktikum 3D Computer Grafik

Programmierpraktikum 3D Computer Grafik Dipl.Inf. Otmar Hilliges Programmierpraktikum 3D Computer Grafik Szenegraphen, Texturen und Displaylisten. Agenda Beleuchtungsmodelle in OpenGL Bump-Maps zur Erzeugung von Reliefartigen Oberflächen Height-Maps

Mehr

Wurzelfunktionen Aufgaben

Wurzelfunktionen Aufgaben Wurzelfunktionen Aufgaben. Für jedes k (k > 0) ist die Funktion f k (x) = 8 (x k ) kx, 0 x gegeben. a) Untersuchen Sie die Funktion f k auf Nullstellen und Extrema. Ermitteln Sie lim f k(x) sowie für 0

Mehr

Schrägbilder von Körpern Quader

Schrägbilder von Körpern Quader Schrägbilder von Körpern Quader Vervollständige die Zeichnung jeweils zum Schrägbild eines Quaders. Bezeichne die für die Berechnung des Volumens und des Oberflächeninhalts notwendigen Seiten und bestimme

Mehr

Spline-artige Kurven auf Subdivision Surfaces. Jörn Loviscach Hochschule Bremen, Germany

Spline-artige Kurven auf Subdivision Surfaces. Jörn Loviscach Hochschule Bremen, Germany Spline-artige Kurven auf Subdivision Surfaces Jörn Loviscach Hochschule Bremen, Germany Überblick Spline-artige Kurven auf Spline-Flächen Kurven auf SDS: Problem, Anwendung Verwandte Arbeiten Spline-artige

Mehr

Flächeninhalt, Volumen und Integral

Flächeninhalt, Volumen und Integral Flächeninhalt, Volumen und Integral Prof. Herbert Koch Mathematisches Institut - Universität Bonn Schülerwoche 211 Hausdorff Center for Mathematics Donnerstag, der 8. September 211 Inhaltsverzeichnis 1

Mehr

8.1 Vorstellen im Raum

8.1 Vorstellen im Raum äumliche Geometrie 1 8 äumliche Geometrie 8.1 Vorstellen im aum 1. Alle dargestellten Körper sind aus elf Würfeln zusammengesetzt. a) Welche der Körper sind deckungsgleich zueinander? b) Welche der Körper

Mehr

D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.

D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten. V. Körper, Flächen und Punkte ================================================================= 5.1 Körper H G E F D C A B Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.

Mehr

Simulation multipler Streuung an Haaren mit Hilfe eines Photon-Mapping-Ansatzes

Simulation multipler Streuung an Haaren mit Hilfe eines Photon-Mapping-Ansatzes Fakultät Informatik Institut für Software- und Multimediatechnik, Professur für Computergraphik und Visualisierung Simulation multipler Streuung an Haaren mit Hilfe eines Photon-Mapping-Ansatzes Hauptseminar

Mehr

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie Abitur Mathematik: Prüfungsteil, Aufgabe 4 Analytische Geometrie Nordrhein-Westfalen 0 GK Aufgabe a (). SCHRITT: MITTELPUNKT DER GRUNDFLÄCHE BERECHNEN Die Spitze befindet sich einen Meter senkrecht über

Mehr

Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung

Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung Vektoren - Skalar- und Vektorprodukt ================================================================== 1. Gegeben sind die Punkte A 1 2 3 und B 3 4 1 bzgl. eines kartesischen Koordina- tensystems mit

Mehr

4. Kapitel 3D Engine Geometry

4. Kapitel 3D Engine Geometry 15.11.2007 Mathematics for 3D Game Programming & Computer Graphics 4. Kapitel 3D Engine Geometry Anne Adams & Katharina Schmitt Universität Trier Fachbereich IV Proseminar Numerik Wintersemester 2007/08

Mehr

Computergraphik I. Scan Conversion: Lines & Co. Einordnung in die Pipeline. G. Zachmann Clausthal University, Germany zach@tu-clausthal.

Computergraphik I. Scan Conversion: Lines & Co. Einordnung in die Pipeline. G. Zachmann Clausthal University, Germany zach@tu-clausthal. 11/4/10 lausthal omputergraphik I Scan onversion of Lines. Zachmann lausthal University, ermany zach@tu-clausthal.de Einordnung in die Pipeline Rasterisierung der Objekte in Pixel Ecken-Werte interpolieren

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Shading-Verfahren Graphische DV und BV, Regina Pohle, 22. Shading-Verfahren Einordnung in die Inhalte der Vorlesung Einführung mathematische

Mehr

Überblick Echtzeit-Rendering. Uwe Domaratius dou@hrz.tu-chemnitz.de

Überblick Echtzeit-Rendering. Uwe Domaratius dou@hrz.tu-chemnitz.de Überblick Echtzeit-Rendering Uwe Domaratius dou@hrz.tu-chemnitz.de Gliederung 1. Einleitung 2. geometriebasierende Verbesserungen 3. Level-of-Detail 4. Culling 5. Texturen 6. bildbasiertes Rendering Was

Mehr

Rendering Grundlagen Autodesk Maya. Grundlagen. Version 1.0-2009-04-08. 2009 Ingo Clemens brave rabbit www.braverabbit.de

Rendering Grundlagen Autodesk Maya. Grundlagen. Version 1.0-2009-04-08. 2009 Ingo Clemens brave rabbit www.braverabbit.de Rendering Grundlagen Version 1.0-2009-04-08 Allgemeine Unterschiede bei Renderern Scanline Rendering Raytrace Rendering Renderlayer Einsatz von Renderlayern Overrides Material Overrides Layer Presets Batch

Mehr

Aufbereitung und Visualisierung von Live-Daten. aus verteilten Molekulardynamiksimulationen

Aufbereitung und Visualisierung von Live-Daten. aus verteilten Molekulardynamiksimulationen Masterarbeit im Rahmen des Studiengangs Technomathematik Fachhochschule Aachen, Campus Jülich Fachbereich 9 Medizintechnik und Technomathematik Aufbereitung und Visualisierung von Live-Daten aus verteilten

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Beleuchtungsberechnung Graphische DV und BV, Regina Pohle, 21. Beleuchtungsberechnung 1 Einordnung in die Inhalte der Vorlesung

Mehr

Das Prisma ==================================================================

Das Prisma ================================================================== Das Prisma ================================================================== Wird ein Körper von n Rechtecken und zwei kongruenten und senkrecht übereinander liegenden n-ecken begrenzt, dann heißt der

Mehr

Oberfläche von Körpern

Oberfläche von Körpern Definition Die Summe der Flächeninhalte der Flächen eines Körpers nennt man Oberflächeninhalt. Quader Der Oberflächeninhalt eines Quaders setzt sich folgendermaßen zusammen: O Q =2 h b+2 h l+2 l b=2 (h

Mehr

1. Lineare Funktionen und lineare Gleichungen

1. Lineare Funktionen und lineare Gleichungen Liebe Schülerin! Lieber Schüler! In den folgenden Unterrichtseinheiten wirst du die Unterrichtssoftware GeoGebra kennen lernen. Mit ihrer Hilfe kannst du verschiedenste mathematische Objekte zeichnen und

Mehr

Gegeben ist die Funktion f durch. Ihr Schaubild sei K.

Gegeben ist die Funktion f durch. Ihr Schaubild sei K. Aufgabe I 1 Gegeben ist die Funktion f durch. Ihr Schaubild sei K. a) Geben Sie die maximale Definitionsmenge D f an. Untersuchen Sie K auf gemeinsame Punkte mit der x-achse. Bestimmen Sie die Intervalle,

Mehr

Bild 1: Gegeben ist der in der Zentralperspektive zentrale Fluchtpunkt, der Distanzpunkt und der Grundriss des zu zeichnenden Vierecks.

Bild 1: Gegeben ist der in der Zentralperspektive zentrale Fluchtpunkt, der Distanzpunkt und der Grundriss des zu zeichnenden Vierecks. Bild 1: Gegeben ist der in der Zentralperspektive zentrale, der und der Grundriss des zu zeichnenden Vierecks. Die Breite des Vierecks trägt man auf der ab und verbindet die Schnittpunkte mit dem zentralen

Mehr

Thema: Ein Ausblick auf die Möglichkeiten durch den Software-Einsatz im Mathematikunterricht.

Thema: Ein Ausblick auf die Möglichkeiten durch den Software-Einsatz im Mathematikunterricht. Vorlesung 2 : Do. 10.04.08 Thema: Ein Ausblick auf die Möglichkeiten durch den Software-Einsatz im Mathematikunterricht. Einführung in GeoGebra: Zunächst eine kleine Einführung in die Benutzeroberfläche

Mehr

Lösungen zu Differentialrechnung IV-Extremalprobleme

Lösungen zu Differentialrechnung IV-Extremalprobleme Diff rechnung IV 12.12.2006 Lösungen 1 Lösungen zu Differentialrechnung IV-Extremalprobleme 1. Ein Kugelstösser stösst eine Kugel. Die Flugbahn der Kugel lässt sich mit dem folgenden Gesetz beschreiben:

Mehr

Was bisher geschah. 1. Zerlegung in monotone Polygone 2. Triangulierung der monotonen Teilpolygone

Was bisher geschah. 1. Zerlegung in monotone Polygone 2. Triangulierung der monotonen Teilpolygone Was bisher geschah Motivation, Beispiele geometrische Objekte im R 2 : Punkt, Gerade, Halbebene, Strecke, Polygon, ebene Zerlegung in Regionen (planare Graphen) maschinelle Repräsentation geometrischer

Mehr

Parallele und funktionale Programmierung Wintersemester 2013/14. 8. Übung Abgabe bis 20.12.2013, 16:00 Uhr

Parallele und funktionale Programmierung Wintersemester 2013/14. 8. Übung Abgabe bis 20.12.2013, 16:00 Uhr 8. Übung Abgabe bis 20.12.2013, 16:00 Uhr Aufgabe 8.1: Zeigerverdopplung Ermitteln Sie an folgendem Beispiel den Rang für jedes Listenelement sequentiell und mit dem in der Vorlesung vorgestellten parallelen

Mehr

Seminar: Grafikprogrammierung

Seminar: Grafikprogrammierung Game Developer Converence 08 Seminar: Grafikprogrammierung Alexander Weggerle 17.04.08 Seite 2 Einführung Themenüberblick Organisatorisches Seminarablauf liches Seite 3 Einführung Seminar Motivation Vorbereitung

Mehr

Themenerläuterung. Die wichtigsten benötigten Formeln

Themenerläuterung. Die wichtigsten benötigten Formeln Themenerläuterung In diesem Kapitel geht es um die Berechnung von Volumen und Oberfläche von zusammengesetzten Körpern aus z.b. Würfeln, Quadern, Pyramiden, Kegeln, Halbkugeln usw. s kommen auch Aufgaben

Mehr

Maturitätsprüfung Mathematik

Maturitätsprüfung Mathematik Maturitätsprüfung 007 Mathematik Klasse 4bN Kantonsschule Solothurn Mathematisch-naturwissenschaftliches Maturitätsprofil Name: Note: Hinweise zur Bearbeitung der Prüfung: Zur Lösung der Aufgaben stehen

Mehr

Skalierbarkeit virtueller Welten

Skalierbarkeit virtueller Welten $86=8*'(5 )2/,(1 9505 9RUOHVXQJ Dr. Ralf Dörner *RHWKH8QLYHUVLWlWÃ)UDQNIXUW *UDSKLVFKHÃ'DWHQYHUDUEHLWXQJ hehueolfn Der Begriff VR Perspektivisches Sehen in 3D Skalierbarkeit virtueller Welten Echtzeitanforderungen

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Trigonometrische Funktionen. Gegeben ist die Funktion f() = (sin( π )) Ihr Graph sei K. a) Skizzieren Sie K im Intervall [0,]. Geben Sie die Periode von f an. Geben Sie alle Hoch- und Tiefpunkte von K

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Clippen in 2D und 3D Graphische DV und BV, Regina Pohle, 19. Clippen in 2D und 3D 1 Einordnung in die Inhalte der Vorlesung Einführung

Mehr

3D rendering. Introduction and interesting algorithms. PHP Usergroup Dortmund, Dortmund, 2006-12-14. Kore Nordmann

3D rendering. Introduction and interesting algorithms. PHP Usergroup Dortmund, Dortmund, 2006-12-14. Kore Nordmann <kore@php.net> 3D rendering Introduction and interesting algorithms PHP Usergroup Dortmund, Dortmund, 2006-12-14 Kore Nordmann Speaker Kore Nordmann Studies computer science at the University Dortmund

Mehr

Computer Graphik I Polygon Scan Conversion

Computer Graphik I Polygon Scan Conversion 11/23/09 lausthal omputer raphik I Polygon Scan onversion. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Klassifikation der Polygone Konvex Für jedes Punktepaar in einem konvexen Polygon

Mehr

ACG - Projekt. Konstruktion einer. E-Gitarre

ACG - Projekt. Konstruktion einer. E-Gitarre ACG - Projekt Konstruktion einer E-Gitarre 1. Grundriss des Gitarrenkörpers anfertigen Konstruktion des Grundrisses durch Hilfskreise und Linien: Maße der Kreise (Radius): A: 5,7 cm B: 2,7 cm C: 5,2 cm

Mehr

Games Engines. Realtime Terrain Rendering

Games Engines. Realtime Terrain Rendering Games Engines Realtime Terrain Rendering RTR Gliederung Probleme & Anforderungen Grundlagen Heightmaps und Paging Visibility View Frustrum Culling Occlusion Culling/ Occlusion Map Fogging Level of Detail

Mehr

die Planung eindrucksvoll präsentieren

die Planung eindrucksvoll präsentieren Ambientes Licht die Planung eindrucksvoll präsentieren Fotorealismus Linsensystem, Blende, Schärfentiefe/Tiefenschärfe Fotorealismus Materialeigenschaften, Oberflächenstruktur, Reflektion, Absorption Fotorealismus

Mehr

Kurven. Mathematik-Repetitorium

Kurven. Mathematik-Repetitorium Kurven 7.1 Vorbemerkungen, Koordinatensysteme 7.2 Gerade 7.3 Kreis 7.4 Parabel 7.5 Ellipse 7.6 Hyperbel 7.7 Allgemeine Gleichung 2. Grades Kurven 1 7. Kurven 7.1 Vorbemerkungen, Koordinatensysteme Koordinatensystem

Mehr

SEK I - Geogebra Lösungen

SEK I - Geogebra Lösungen Einführung Algebrafenster, Menüleiste Eingabezeile Zeichenfenster Trennungslinie zwischen Algebra- und Zeichenfenster erkennst du dort? 12 Hier sind die und ihre Kurzbeschreibung etwas durcheinander geraten.

Mehr

Jörn Loviscach Hochschule Bremen

Jörn Loviscach Hochschule Bremen Programmierbare Hardware-Shader Jörn Loviscach Hochschule Bremen Überblick Vertex- und Pixel-Shader Anwendungsbeispiele fx-dateien Anwendungsbeispiele Zusammenfassung Puffer Vertex- und Pixel-Shader Hardware-Renderpipeline

Mehr

Über die regelmäßigen Platonischen Körper

Über die regelmäßigen Platonischen Körper Hermann König, Mathematisches Seminar Studieninformationstage an der Universität Kiel Über die regelmäßigen Platonischen Körper Winkelsumme im n-eck Zerlegung eines ebenen n-ecks in (n-2) Dreiecke, oben

Mehr

Blender Tutorial Dresden in 3D

Blender Tutorial Dresden in 3D Blender Tutorial Dresden in 3D Einführung In Blender wird viel mit Tastenkürzeln gearbeitet. (Die Kürzel sind am Ende nochmal gelistet). Damit diese Kürzel funktionieren, müsst ihr mit der Maus über dem

Mehr

Postprocessing. Algorithmen für Computerspiele. Alexander Martin 19. Juli 2010

Postprocessing. Algorithmen für Computerspiele. Alexander Martin 19. Juli 2010 Postprocessing Algorithmen für Computerspiele Alexander Martin 19. Juli 2010 Inhaltsverzeichnis 1. Einführung Definition Postprocessing Überblick Postprocessing generierte Bildeffekte Einordnung in den

Mehr

Untersuchungen von Funktionen 1

Untersuchungen von Funktionen 1 Untersuchungen von Funktionen 1 Führen Sie für die Funktionen diese Untersuchungen durch : Untersuchen Sie den Graphen auf Symmetrie. Untersuchen Sie das Verhalten der Funktionswerte im Unendlichen. Bestimmen

Mehr

DSM Das Mathe-Sommer-Ferien-Vergnügen Klasse 9 auf 10 Juni 2016 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10

DSM Das Mathe-Sommer-Ferien-Vergnügen Klasse 9 auf 10 Juni 2016 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10 Die Aufgaben sollen während der Sommerferien gelöst werden, damit notwendige Grundkenntnisse und Grundfertigkeiten nicht

Mehr

geschlossene Schachtel mit einem kleinen Loch

geschlossene Schachtel mit einem kleinen Loch Kameramodellierung Lochkamera Kamerakonstante Kamerazentrum geschlossene Schachtel mit einem kleinen Loch ideale Kamera: Loch hat keine Ausdehnung die Strahlen sind ein Büschel von Geraden Abbildung erfolgt

Mehr

Reconstruction and simplification of surfaces from contoures

Reconstruction and simplification of surfaces from contoures CG Seminar Reconstruction and simplification of surfaces from contoures Nach Klein, Schilling und Straßer Referent Thomas Kowalski Anfangssituation - Punktdaten Das zu rekonstruierende Objekt besteht aus

Mehr

Strahlensätze anwenden. ähnliche Figuren erkennen und konstruieren. ähnliche Figuren mit Hilfe zentrischer Streckung konstruieren.

Strahlensätze anwenden. ähnliche Figuren erkennen und konstruieren. ähnliche Figuren mit Hilfe zentrischer Streckung konstruieren. MAT 09-01 Ähnlichkeit 14 Doppelstunden Leitidee: Raum und Form Thema im Buch: Zentrische Streckung (G), Ähnlichkeit (E) Strahlensätze anwenden. ähnliche Figuren erkennen und konstruieren. ähnliche Figuren

Mehr

Körper erkennen und beschreiben

Körper erkennen und beschreiben Vertiefen 1 Körper erkennen und beschreiben zu Aufgabe 6 Schulbuch, Seite 47 6 Passt, passt nicht Nenne zu jeder Aussage alle Formen, auf die die Aussage zutrifft. a) Die Form hat keine Ecken. b) Die Form

Mehr

1. Das Koordinatensystem

1. Das Koordinatensystem Liebe Schülerin! Lieber Schüler! In den folgenden Unterrichtseinheiten wirst du die Unterrichtssoftware GeoGebra kennen lernen. Mit ihrer Hilfe kannst du verschiedenste mathematische Objekte zeichnen und

Mehr

Eignungstest Mathematik

Eignungstest Mathematik Eignungstest Mathematik Klasse 4 Datum: Name: Von Punkten wurden Punkte erreicht Zensur: 1. Schreibe in folgende Figuren die Bezeichnungen für die jeweilige Figur! Für eine Rechteck gibt ein R ein, für

Mehr

Projektionskurve Abiturprüfung LK Bayern 2003

Projektionskurve Abiturprüfung LK Bayern 2003 Projektionskurve Abiturprüfung LK Bayern 03 In einem kartesischen Koordinatensystem des R 3 ist die Ebene H: x 1 + x 2 + x 3 8 = 0 sowie die Schar von Geraden ( a 2 ) ( ) 3a g a : x = 0 a 2 + λ 3a 8, λ

Mehr

Billboard Clouds for Extreme Model Simplification

Billboard Clouds for Extreme Model Simplification Fakultät für Elektrotechnik, Informatik und Mathematik Arbeitsgruppe Algorithmen und Komplexität Prof. Friedhelm Meyer auf der Heide Billboard Clouds for Extreme Model Simplification Seminararbeit im Rahmen

Mehr

Lösungen. S. 167 Nr. 6. S. 167 Nr. 8. S.167 Nr.9

Lösungen. S. 167 Nr. 6. S. 167 Nr. 8. S.167 Nr.9 Lösungen S. 167 Nr. 6 Schätzung: Es können ca. 5000 Haushaltstanks gefüllt werden. Man beachte die Dimensionen der Tanks: Der Haushaltstank passt in ein kleines Zimmer, der große Öltank besitzt jedoch

Mehr

Hardware Tessellation in DirectX11 zur Berechnung von Levels of Detail in Echtzeitanwendungen

Hardware Tessellation in DirectX11 zur Berechnung von Levels of Detail in Echtzeitanwendungen MASTER THESIS zur Erlangung des akademischen Grades Master of Science in Engineering im Studiengang 585 Hardware Tessellation in DirectX11 zur Berechnung von Levels of Detail in Echtzeitanwendungen Ausgeführt

Mehr

C# Programm: Raytracer (3D Renderer)

C# Programm: Raytracer (3D Renderer) C# Programm: Raytracer (3D Renderer) Hiermit verbrachten wir die letzte Einheit in C# des Informatikunterrichtes. Dieser Raytracer ist ein Programm, das nur mit wenigen Informationen über einen Raum, der

Mehr

2.2A. Das allgemeine Dreieck

2.2A. Das allgemeine Dreieck .A. Das allgemeine Dreieck Koordinatentransformation eines Dreiecks Jedes Dreieck läßt sich nach geeigneter Drehung und Verschiebung in ein Dreieck mit den Eckpunkten A = ( x, 0 ), B = ( y, 0 ), C = (

Mehr