Beispiele zu Bildgebenden Untersuchungsmethoden. Medizinische Physik und Informatik II 2. Semester 2015

Größe: px
Ab Seite anzeigen:

Download "Beispiele zu Bildgebenden Untersuchungsmethoden. Medizinische Physik und Informatik II 2. Semester 2015"

Transkript

1 Beispiele zu Bildgebenden Untersuchungsmethoden. Medizinische Physik und Informatik II 2. Semester 2015 Tamás Marek 15. April 2015

2 Bildgebende Verfahren Bildgebende Verfahren Invasive Verfahren Nichtinvasive Verfahren Summations- Verfahren Tomographie- Verfahren

3 Die invasive Verfahren Invasiv bedeutet allgemein das Eindringen von einem Körper in einen anderen Körper. Der Begriff invasiv wird in der Medizin verwendet, um diagnostische oder therapeutische Maßnahmen zu charakterisieren, die in den Körper eindringen, d.h. seine Integrität verletzen.

4 Einleitung Gliederung Invasive Verfahren: Endoskopie Summationsverfahren: Szintigraphie Röntgendurchleuchtung Tomographieverfahren: Computer (Röntgen) Tomographie Ultraschall Magnetische Kernspinresonanz Diskussion

5 Die Endoskopie Ein Endoskop ist ein Gerät, mit dem das Innere von lebenden Organismen, aber auch technischen Hohlräumen untersucht oder auch manipuliert werden kann. Ursprünglich für die humanmedizinische Diagnostik entwickelt, wird es heute auch für minimalinvasive operative Eingriffe an Mensch und Tier sowie in der Industrie zur Sichtprüfung schwer zugänglicher Hohlräume eingesetzt. 1.Lichtleiter Endoskope 2.Video Endoskope

6 Grenzfläche zwischen Medien ( Reflexion Brechung (Snellius-Descartes) sin 1 sin 2 c1 c 2 n n 2 1

7 Lichtleiter Endoskopie Totalreflexion Grenzwinkel Θ c Für c Reflexion

8 Totalreflexion Lichtleiter Grenzwinkel Θ c

9 Lichtleiter Endoskopie

10 Lichtleiter Endoskopie

11 Die lichtempfindliche Transistoren

12 Lichtleiter Endoskopie Endoskopie Minimalinvasive operative Eingriffe

13 Video-Endoskopie In der Endoskopspitze ist ein kleiner CCD-Sensor (charged coupled device) eingebaut, welcher die Bildinformation über kleine lichtempfindliche Transistoren (wie bei einer Digitalkamera) aufnimmt und über einen Videocontroller zu einem Monitor leitet. Diese Technik ist heute insbesondere bei flexiblen Gastroskopen und Bronchoskopen weit verbreitet. Die hohe Bildqualität der CCD-Endoskope hat hier teilweise die faseroptischen Geräte verdrängt.

14 Video-Endoskopie

15 Video-Endoskopie

16 Summationsverfahren Summationsverfahren projizieren alle Strukturen, die sich unter eine Oberfläche befinden, übereinander auf die Bildebene. Die Bilder der hintereinander befindlichen Einzelheiten projizieren sich somit aufeinander. In diesem Summations- oder Superpositionsbild kann die dritte Dimension in der Strahlenrichtung nicht in ihre Details aufgelöst werden.

17 Die Szintigraphie Als Szintigraphie bezeichnet man eine nuklearmedizinische Untersuchungsmethode, bei der dem Patienten radioaktiv markierte Stoffe gespritzt werden, die sich in bestimmten Organen anreichern und mit Hilfe einer Gammakamera aufgenommen werden. Es können dadurch bestimmte Körpergewebe sichtbar gemacht werden (v.a. Schilddrüse und Skelett). Je nachdem wie viel Strahlung ein Gebiet aussendet, erscheint es in unterschiedlicher Farbe. Jede Farbe steht also für eine unterschiedliche Intensität der Gamma-Strahlung. Beim typischen Szintigraphie- Farbbild steht z.b. blau für geringe, rot für viel Aktivität.

18 Radioaktive Strahlung und Ihre Erzeugung Mit Radioaktivität bezeichnet man die Eigenschaft instabiler Atomkerne, sich spontan in andere Atomkerne umzuwandeln und dabei ionisierende Strahlung auszusenden. Die beim Umwandlungsprozess frei werdende Energie wird in der Regel als α-, β- oder γ-strahlung emittiert.

19 Die Szintigraphie Aufsicht des Szintillationskristalls und des gekoppelten sechseckigen Photomultipliers. Kollimator Kanäle Szintillationskristall Photomultiplier

20 Die Szintigraphie

21 Die Röntgendurchleuchtung Röntgengenerator

22 Die Entstehung von Röntgenstrahlen

23 Die Röntgendurchleuchtung Bei dem herkömmlichen Röntgenverfahren wird das abzubildende Objekt von einer Röntgenquelle durchleuchtet und auf einem Röntgenfilm abgebildet. Es entsteht eine Projektion des Volumens auf eine Fläche. In Strahlrichtung hintereinander liegende Bildteile des durchleuchteten Körpers überlagern sich zwangsläufig. Dadurch kann beispielsweise nicht unterschieden werden, ob die im Röntgenbild sichtbare Schwächung (helle Bereiche im Bild) durch ein Material höherer Absorption oder durch eine größere Schichtdicke hervorgerufen wurde (siehe Lambert-Beersches Gesetz).

24 Die Röntgendurchleuchtung Die konventionellen Röntgenbilder werden also auf einem lumineszierenden Schirm oder auf Röntgenfilmen erstellt. Der Röntgenstrahl durchdringt die hintereinander liegenden Gewebeschichten mit unterschiedlichen Schwächungskoeffizienten μ i. An der Intensitätsschwächung nehmen alle Schichten der Dicke x i teil: J J 0 e ( x 1 1 2x2...) z.b. Gewebe, Knochen,

25 Die Röntgendurchleuchtung Photonenenergie Ordnungszahl Dichte Dicke

26 Die Röntgendurchleuchtung Digitalisierung

27 Die Tomographiemethoden Unter dem Begriff Tomografie werden verschiedene bildgebende Verfahren zusammengefasst, welche die innere räumliche Struktur eines Objektes ermitteln und in Form von Schnittbildern (auch Tomogramme) darstellen können. Synonyme Bezeichnungen sind Schnittbildverfahren oder Schichtaufnahmeverfahren.

28 Die Tomographiemethoden Ein Schnittbild gibt die inneren Strukturen so wieder, wie sie nach dem Aufschneiden des Objekts oder nach dem Herausschneiden einer dünnen Scheibe vorlägen. Man spricht hier von einer überlagerungsfreien Darstellung der entsprechenden Objektschicht (im Gegensatz insbesondere zu Projektionsverfahren wie z.b. der gewöhnlichen Röntgenuntersuchung, bei der sich alle Strukturen überlagern, die im Strahlengang hintereinander liegen). Dieser Unterschied ist in der vorangegangenen Abbildung mit zwei tomografischen Schnittbildern (S1 und S2) und einem Projektionsbild (P) des gleichen Volumens illustriert.

29 Die Computer (Röntgen) Tomographie In der Computertomographie werden EINDIMENSIONALE Absorptionsprofile des Objekts aus vielen Richtungen erstellt und daraus die Volumenstruktur rekonstruiert.

30 Die Computer (Röntgen) Tomographie Schwächungskoeffizient μ n eff, x p Z s Z A eff HU Wasser Wasser 1000

31 Die Computer (Röntgen) Tomographie Im Gegensatz zum klassischen Röntgen bestehen die gemessenen Daten also nicht aus einem zweidimensionalen Bild, sondern sind ein eindimensionales Absorptionsprofil. Erst durch die computergestützte Bildrekonstruktion, die heute mit dem Algorithmus der gefilterten Rückprojektion erfolgt, kann für jedes Volumenelement des Objektes der Absorptionsgrad ermittelt und das Bild errechnet werden. Für die Berechnung eines CT-Bildes sind Aufnahmen notwendig, die mindestens eine 180 -Rotation um das abzubildende Objekt abdecken.

32 Die Computer (Röntgen) Tomographie Spiral CT Mit mehreren aufeinander folgenden Röhrenumläufen lassen sich angrenzende Schnitte erzeugen. Volumengrafiken setzen sich aus mehreren Dutzend, bis zu mehreren hundert Einzelschnitten zusammen.

33 Die Computer (Röntgen) Tomographie Eine CT-Anlage Prinzipieller Aufbau einer CT-Anlage

34 Der Schall

35 Der Ultraschall Akustische Spektrum

36 Die Sonographie / Ultraschall Ultraschall bedeutet, dass Schallwellen mit einer Frequenz oberhalb der menschlichen Hörgrenze schwingen. Gegenstände und Gewebe reflektieren diese Schallwellen, sie werden von einem Empfänger aufgenommen. Ein Computer errechnet aus diesen Informationen ein Bild. Dieses Prinzip wird in der Medizin häufig zur Diagnose genutzt. Die Ultraschallwellen werden mit in der Sonde angeordneten Kristallen durch den piezoelektrischen Effekt erzeugt und auch wieder nachgewiesen.

37 Der Ultraschall Die Erzeugung und Messung

38 Der Ultraschall Von Bedeutung für die Schallausbreitung in einem Material ist die Impedanz, also der Widerstand, der der Ausbreitung von Wellen entgegenwirkt. An der Grenzfläche zweier Stoffe mit großem Impedanzunterschied wird der Schall stark reflektiert. Dieser Unterschied ist zwischen Luft und z. B. Wasser besonders stark ausgeprägt, deshalb wird die Ultraschallsonde immer mittels eines stark wasserhaltigen Gels angekoppelt, damit der Schall nicht von Lufteinschlüssen zwischen dem Sondenkopf und der Hautoberfläche reflektiert wird.

39 Der Ultraschall

40 Der Ultraschall A-Mode Die erste angewandte Darstellungsform ist die A-Mode (A steht für Amplitudenmodulation). Das von der Sonde empfangene Echo wird in einem Diagramm dargestellt, wobei auf der x-achse die Eindringtiefe und auf der y- Achse die Echostärke abgetragen wird. Je höher der Ausschlag der Messkurve, desto echogener ist das Gewebe in der angegebenen Tiefe. B-Mode B-Mode (B für englisch brightness modulation) ist eine andere Darstellung der Information des Amplituden- Modus, bei der die Echointensität in eine Helligkeit umgesetzt wird. Der Grauwert eines Bildpunktes auf dem Bildschirm ist ein Maß für die Amplitude eines Echos an dieser Stelle.

41 Der Ultraschall

42 Der Ultraschall 2D-Sonogramm eines Menschenfötus von neun Wochen

43 Der Ultraschall Anwendung des Dopplerverfahrens bei einer Herzuntersuchung: Mitralklappe mit Mitralinsuffizienz

44 Magnet Resonanz Tomographie Nuclear Magnetic Resonance Magnetic Resonance Imaging Kern Spin Tomographie

45 Die Kernspintomographie (MRT, NMR, MRI) 1) Die Kernspinresonanz 2) Die Ortskodierung 3) Beispiele

46 Die Kernspintomographie Die Kernspinresonanz Jedes Atomkern hat einen Eigendrehimpuls und rotiert um sich selbst. Er hat einen sog. Spin. Nach den Gesetzen der Elektrodynamik folgt, dass ein unvorstellbar winziges Magnetfeld um diesen Atomkern entsteht. Es ist selbst ein kleiner Magnet. Kernspin und magnetisches Moment: Das Proton rotiert mit dem Kernspin I (blau) um eine Achse (gelb). Es resultiert das magnetische Moment µ (rot).

47 Die Kernspintomographie Die Kernspinresonanz Wenn man diesen Atomkern in ein starkes, äußeres Magnetfeld bringt, zwingt man es, sich entlang bzw. entgegen dieses Magnetfeldes auszurichten. Der Atomkern klappt jedoch nicht einfach nur um, sondern torkelt in Richtung des Magnetfeldes wie ein Kreisel.

48 Die Kernspintomographie Die Kernspinresonanz Die Frequenz dieser Torkelbewegung ist abhängig von der Stärke des äußeren Magnetfeldes B. Sie ist für jede Atomsorte (γ) und Magnetfeldstärke (B) chrakteristisch und wird Larmorfrequenz genannt. Kreiselanalogie γ = gyromagnetisches Verhältnis, Materialabhängig

49 Die Kernspintomographie Die Kernspinresonanz Wenn die Larmorfrequenz bekannt ist, kann man mit starken Radiowellen der gleichen Frequenz (Resonanzfrequenz), die man in das Messfeld einstrahlt, die Atome gezielt in bestimmte Richtungen auslenken.

50 Die Kernspintomographie Die Kernspinresonanz An den Makrokörper wird ein externes Magnetfeld B 0 (orange) in z-richtung angelegt. Die einzelnen Protonen präzedieren unterschiedlich, aber nur in den durch die Quantenphysik zulässigen Orientierungen. Insgesamt resultiert ein Gesamtmagnetfeld M z für den Makrokörper. Nun wird auf diesen Makrokörper ein 90 - Hochfrequenzimpuls in der xy-ebene (braun) eingestrahlt. Dadurch richten sich die Protonenpräzessionen in der xy-ebene aus (gelbe Pfeile und Achsen). Es resultiert ein Gesamtmagnetfeld des Makrokörpers in xy- Richtung (grün).

51 Die Kernspintomographie Die Kernspinresonanz Die eingestrahlte Energie wird nach Abschalten des Hochfrequenzimpulses wieder abgegeben, während die Kerne wieder in die ursprüngliche z-richtung zurück präzedieren (Relaxation). Die Zeitcharakteristika dieser Vorgänge lassen Rückschlüsse auf die Struktur bzw. Zusammensetzung des jeweiligen Volumenelements zu. Der magnetische Fluss des rotierenden Dipols induziert in der Messspule eine Spannung.

52 Die Kernspintomographie Die Kernspinresonanz Charakteristisch sind die sog. T 1 oder T 2 Relaxationen: T 1 - oder Längs-Relaxation: Die Zeit bis die z-komponente der Magnetisierung M z ca. 63 % ihres Ausgangswertes M 0 wieder erreicht hat, nennt man Spin-Gitter, Längs-Relaxationszeit oder auch T 1 -Zeit. T 2 - oder Querrelaxationzeit-Relaxation: Die Quermagnetisierung M T eines Spin-Ensembles zerfällt nun, ähnlich wie die Längs-Komponente steigt, durch Wechselwirkung mit benachbarten Atomen. Hier ist es allerdings die sog. Spin-Spin- Wechselwirkung, die für die Dephasierung verantwortlich ist. Die T 2 - Zeit beschreibt die Zeit, nach der diese Amplitude auf 37% des Signals der maximalen Quermagnetisierung MT abgenommen hat.

53 Die Kernspintomographie (MRT, NMR, MRI) Zusammenfassend können wir also sagen: Es wird um den Patienten ein sehr starkes, homogenes Magnetfeld erzeugt. Anschließend werden mittels Einstrahlung von stoffspezifisch hochfrequenter Radiowellenimpulse der Spin bestimmte Atomkerne im Körper angeregt (Resonanz). Diese Energie wird dann nach einer charakteristische Zeit wieder in Form von elektromagnetischen Wellen abgegeben. Diese Wellen werden durch Empfängerspulen, welche den Patienten umgeben, aufgenommen. Eine wesentliche Grundlage für den Bildkontrast sind unterschiedliche Relaxationszeiten (T 1, T 2 ) verschiedener Gewebearten. Daneben trägt auch der unterschiedliche Gehalt an Wasserstoff-Atomen in verschiedenen Geweben (z. B. Muskel, Knochen) zum Bildkontrast bei.

54 Die Kernspintomographie Die Ortskodierung Um die aufgefangenen Hochfrequenz-Signale der Kernspinresonanz einzelnen Punkten bzw. Volumenelementen (sog. Voxeln) zuordnen zu können, werden zusätzlich zum Hauptmagnetfeld drei Gradientenfelder aufgebaut. Diese Gradientenfelder sind inhomogen und haben eine linear abnehmende Feldstärke. Ohne diese Felder würde man von jedem (Wasserstoff-) Kern einen identischen Resonanzimpuls empfangen, der im Rauschen untergeht und nicht einem Ort zugeordnet werden kann.

55 Die Kernspintomographie Die Ortskodierung Schichtselektionsgradient (z-gradient) Der erste Gradient wird vor der Anregung in z-richtung zugeschaltet und stellt sicher, dass nur eine Schicht des Körpers die passende Larmorfrequenz besitzt und somit die Anregung nur selektiv für eine Schicht stattfindet, also nur dort die Spins ausgelenkt werden.

56 Die Kernspintomographie Die Ortskodierung Phasenkodiergradient (y-gradient) Der zweite Gradient wird kurz nach der Anregung in y- Richtung angelegt und verursacht eine Dephasierung der Präzession und somit in der zuvor selektierten Schicht wird jeweils nur eine Zeile mit einer gewissen Phase zum Schwingen angeregt.

57 Die Kernspintomographie Die Ortskodierung Frequenzkodiergradient (x-gradient) Der dritte Gradient wird während der Messung rechtwinklig zu den beiden anderen in x-richtung geschaltet. Dieser verursacht, dass in jeder Spalte der Schicht verschiedene Präzessionsgeschwindigkeiten vorliegen, und somit die Kerne dort jeweils verschiedene Resonanz-Frequenzen abstrahlen.

58 Die Kernspintomographie Die Ortskodierung Zusammenspiel der drei Gradienten Das empfangene Signal ist nun einer bestimmten Schicht des Körpers zugeordnet und ist frequenz- und phasenmoduliert. Somit kann über komplizierte Fourier- Transformationen eine Matrix (oftmals 256x256) mit Grauwerten der Voxel aus der selektierten Schicht berechnet werden Schicht + + Linie Voxel

59 Die Kernspintomographie Die Ortskodierung Bildaufbau Nun können den zweidimensionalen Koordinaten der untersuchten Schicht Graustufenwerte zugeordneten werden, damit man einen Kontrast auf dem Bild erkennen kann. Die Faktoren von denen nun die Helligkeit eines Voxels abhängt, sind die Dichte der Kernspins, die Spin-Gitter- Relaxationszeit T1, die Spin-Spin-Relaxationszeit T2, der Molekulare Fluss, die magnetische Suszeptibilität und der chemische Aufbau. Dabei ausschlaggebend sind hauptsächlich die Relaxationszeiten T1 und T2, die sich von Gewebe zu Gewebe stark unterscheiden können.

60 Die Kernspintomographie Beispiele

61 Die Kernspintomographie Beispiele

62 Die Kernspintomographie Beispiele Die funktionelle MRT Übersicht der verschieden Beobachtungsebenen einer fmrt-aufnahme nach linksseitigem Finger-Tapping. Die farbig dargestellten Bereiche symbolisieren einen erhöhten Stoffwechsel und somit eine Hirnaktivität. Je weiter die Farbe ins Gelbliche abweicht, desto wahrscheinlicher ist Aktivität. Die Darstellung der Hirnaktivität erfolgt über die BOLD-Antwort der Hirnregionen. BOLD-Kontrast macht sich unterschiedliche magnetische Eigenschaften von oxygeniertem und desoxygeniertem Blut zu nutze.

63 Diskussion

64 Literatur Vorlesungsskript ( Biophysik für Mediziner, Damjanovich Fidy Szöllősi (2. Auflage) Abschnitt VIII Bildgebende Verfahren Abschnitt X/4.1 Die physikalischen Grundlagen von NMR und ESR Lehrbücher Internet

Merke: Zwei Oszillatoren koppeln am stärksten, wenn sie die gleiche Eigenfrequenz besitzen. RESONANZ

Merke: Zwei Oszillatoren koppeln am stärksten, wenn sie die gleiche Eigenfrequenz besitzen. RESONANZ Merke: Zwei Oszillatoren koppeln am stärksten, wenn sie die gleiche Eigenfrequenz besitzen. RESONANZ Viele Kerne besitzen einen Spindrehimpuls. Ein Kern mit der Spinquantenzahl I hat einen Drehimpuls (L)

Mehr

Physikalische Grundlagen der Magnetresonanz-Tomographie MRT

Physikalische Grundlagen der Magnetresonanz-Tomographie MRT Physikalische Grundlagen der Magnetresonanz-Tomographie MRT http://www.praxis-nuramed.de/images/mrt_3_tesla.png Seminarvortrag am 30.05.2016 von Nanette Range MRT Bilder Nanette Range 30.05.2016 2 Motivation

Mehr

MRT. Benoit Billebaut MTRA, Institut für Klinische Radiologie UKM

MRT. Benoit Billebaut MTRA, Institut für Klinische Radiologie UKM MRT Benoit Billebaut MTRA, Institut für Klinische Radiologie UKM WARUM SIND RÖNTGEN UND CT NICHT GENUG? MAGNETRESONANZTOMOGRAPHIE Die Große Frage? "Image by AZRainman.com Wie schaffen wir das überhaupt?

Mehr

Dirk Eßer (Autor) Ultraschalldiagnostik im Kopf- und Halsbereich (A- und B- Bild- Verfahren)

Dirk Eßer (Autor) Ultraschalldiagnostik im Kopf- und Halsbereich (A- und B- Bild- Verfahren) Dirk Eßer (Autor) Ultraschalldiagnostik im Kopf- und Halsbereich (A- und B- Bild- Verfahren) https://cuvillier.de/de/shop/publications/885 Copyright: Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier,

Mehr

Bildbeispiele Physikalisches Prinzip Hounsfield-Einheiten Bilderzeugung. Strahlenbelastung Bildbeispiele. Hirn - Weichteilfenster

Bildbeispiele Physikalisches Prinzip Hounsfield-Einheiten Bilderzeugung. Strahlenbelastung Bildbeispiele. Hirn - Weichteilfenster Prof. Dr. med. P. Schramm Röntgen- Computer-Tomografie Magnet-Resonanz-Tomografie Physikalisches Prinzip Dr. rer. nat. Uwe H. Melchert Röntgen - Computer-Tomografie Bildbeispiele Physikalisches Prinzip

Mehr

Grundlagen der Kernspintomographie (NMR) Richard Bauer, JLU Gießen

Grundlagen der Kernspintomographie (NMR) Richard Bauer, JLU Gießen Grundlagen der Kernspintomographie (NMR) Richard Bauer, JLU Gießen Physikalische Grundlagen der Bildgebung Röntgen, CT Ultraschall Szintigraphie MR-Tomographie Absorption von Röntgenstrahlen Änderung der

Mehr

Computertomographie (CT), Ultraschall (US) und Magnetresonanztomographie (MRT)

Computertomographie (CT), Ultraschall (US) und Magnetresonanztomographie (MRT) Computertomographie (CT), Ultraschall (US) und Magnetresonanztomographie (MRT) Prof. Dr. Willi Kalender, Ph.D. Institut für Medizinische Physik Universität Erlangen-Nürnberg www.imp.uni-erlangen.de 3D

Mehr

Zusammenfassung des Seminarsvortrags Nuclear magnetic resonance

Zusammenfassung des Seminarsvortrags Nuclear magnetic resonance Zusammenfassung des Seminarsvortrags Nuclear magnetic resonance Andreas Bünning 9. Januar 2012 Betreuer: Dr. Andreas Thomas Seite 1 3 PHYSIKALISCHE GRUNDLAGEN 1 Motivation Die nuclear magnetic resonance,

Mehr

Bilderzeugung und Bildrekonstruktion

Bilderzeugung und Bildrekonstruktion Medizinische Bilder werden auf vielerlei Arten erstellt. Wir stellen einige kurz vor. In der Tomographie werden die gemessenen Signale einem Rekonstruktionsschritt unterworfen, bevor ein Bild entsteht.

Mehr

Bilderzeugung und Bildrekonstruktion

Bilderzeugung und Bildrekonstruktion und Bildrekonstruktion Medizinische Bilder werden auf vielerlei Arten erstellt. Wir stellen einige kurz vor. In der Tomographie werden die gemessenen Signale einem Rekonstruktionsschritt unterworfen, bevor

Mehr

Eigenschaften einiger für die NMR-Spektrometrie organischer Verbindungen wichtiger Kerne

Eigenschaften einiger für die NMR-Spektrometrie organischer Verbindungen wichtiger Kerne Der Zusammenhang zwischen dem magnetischen Moment eines Atomkerns und seines mechanischen Drehimpulses lautet: μ=γ J, wobei γ das gyromagnetische Verhältnis ist. Der mechanische Drehimpuls ist durch die

Mehr

Bestimmung der Struktur einer (un)bekannten Verbindung

Bestimmung der Struktur einer (un)bekannten Verbindung Bestimmung der Struktur einer (un)bekannten Verbindung Elementaranalyse Massenspektrometrie andere spektroskopische Methoden Röntgen- Strukturanalyse Kernmagnetische Resonanz - Spektroskopie H 3 C H 3

Mehr

Grundlagen der magnetischen Kernresonanz

Grundlagen der magnetischen Kernresonanz Grundlagen der magnetischen Kernresonanz 26.05.2014 Spin und gyromagnetisches Verhältnis Zeeman-Effekt Spin-Präzession Magnetisierung Teilchen haben Spin S Erfüllt Eigenwertgleichungen ˆ S 2 Ψ = s(s +

Mehr

Kernspintomographie (MRT)

Kernspintomographie (MRT) Kernspintomographie (MRT) Wichtig! Der physikalische Hintergrund (NMR) müssen Sie bei diesem Titel auch wissen (Spin, Auswirkungen des Spins im Magnetfeld, Zeemann-Effekt, Präzession von Elementarteilchen

Mehr

Magnetresonanztomographie (MRT) Grundlagen der Tomographie

Magnetresonanztomographie (MRT) Grundlagen der Tomographie Gegeben: Körper in einem starken B 0 -Feld - Folge von HF-Pulsen erzeugt rotierende Quermagnetisierung M T - M T variiert je nach Gewebetyp ortsabhängige Observable: M T (x,y,z) - kleine Volumenelemente

Mehr

2. Magnetresonanztomographie (MRT, MRI) 2.3. Spin und Magnetisierung

2. Magnetresonanztomographie (MRT, MRI) 2.3. Spin und Magnetisierung 2. Magnetresonanztomographie (MRT, MRI) 2.3. Spin und Magnetisierung Übergang zwischen den beiden Energieniveaus ω l = γb 0 γ/2π Larmor-Frequenz ν L 500 400 300 200 100 ν L = (γ/2π)b 0 [MHz/T] 1 H 42.57

Mehr

Kernmagnetische Resonanzspektroskopie. N Nuclear M Magnetic R Resonance Beobachtung magnetisch aktiver Kerne in einem äußeren Magnetfeld

Kernmagnetische Resonanzspektroskopie. N Nuclear M Magnetic R Resonance Beobachtung magnetisch aktiver Kerne in einem äußeren Magnetfeld NMR- SPEKTROSKOPIE Prüfungsfrage Radiospektroskopische Methode: NMR. Das Spin und magnetische Moment, die Bedingung der Resonanz, Spektralspaltung, chemische Verschiebung. Kernmagnetische Resonanzspektroskopie

Mehr

DR. ARZT MUSTER FA für Radiologie

DR. ARZT MUSTER FA für Radiologie 1 DR. ARZT MUSTER FA für Radiologie 2 Herzlich willkommen in meiner Ordination! 3 Ich freue mich, dass Sie meine Ordination gewählt haben. 4 MEIN TEAM 5 Dr. Arzt Muster Medizinstudium in Wien Ausbildung

Mehr

Spektroskopische Methoden in der Organischen Chemie (OC IV) NMR Spektroskopie 1. Physikalische Grundlagen

Spektroskopische Methoden in der Organischen Chemie (OC IV) NMR Spektroskopie 1. Physikalische Grundlagen NMR Spektroskopie 1. Physikalische Grundlagen Viele Atomkerne besitzen einen von Null verschiedenen Eigendrehimpuls (Spin) p=ħ I, der ganz oder halbzahlige Werte von ħ betragen kann. I bezeichnet die Kernspin-Quantenzahl.

Mehr

Anamnese Neurologische Untersuchung Weiterführende Diagnostik

Anamnese Neurologische Untersuchung Weiterführende Diagnostik Diagnostik 2 Anamnese Neurologische Untersuchung Weiterführende Diagnostik Die Basisdiagnostik (!)» Anamnese & körperliche Untersuchung/ neurologische Untersuchung» Anamnese: Die Krankengeschichte!» Fallbeispiel

Mehr

Bildgebende Verfahren in der Medizinischen Physik

Bildgebende Verfahren in der Medizinischen Physik -1- Einführung in die Medizinische Physik Sommersemester 25, Fr 8-1, W2 1-148 Stichworte zur Vorlesung am 1.7.25 Bildgebende Verfahren in der Medizinischen Physik Dr. Stefan Uppenkamp

Mehr

10. Der Spin des Elektrons

10. Der Spin des Elektrons 10. Elektronspin Page 1 10. Der Spin des Elektrons Beobachtung: Aufspaltung von Spektrallinien in nahe beieinander liegende Doppellinien z.b. die erste Linie der Balmer-Serie (n=3 -> n=2) des Wasserstoff-Atoms

Mehr

Was wir heute daher vorhaben: Was Sie heute lernen sollen...

Was wir heute daher vorhaben: Was Sie heute lernen sollen... 18.05.16 Technik der MRT MRT in klinischer Routine und Forschung Magnet Resonanz Tomographie Kernspintomographie PD Dr. Alex Frydrychowicz Was wir heute daher vorhaben: Was Sie heute lernen sollen... Allgemeine

Mehr

MRT. Funktionsweise MRT

MRT. Funktionsweise MRT MRT 1 25.07.08 MRT Funktionsweise Wofür steht MRT? Magnetische Resonanz Tomographie. Alternative Bezeichnung: Kernspintomographie. Das Gerät heißt dann Kernspintomograph. S N Womit wird der Körper bei

Mehr

Zentralabstand b, Spaltbreite a. Dreifachspalt Zentralabstand b, Spaltbreite a. Beugungsgitter (N Spalte, N<10 4, Abstand a)

Zentralabstand b, Spaltbreite a. Dreifachspalt Zentralabstand b, Spaltbreite a. Beugungsgitter (N Spalte, N<10 4, Abstand a) Doppelspalt (ideal) Doppelspalt (real) Zentralabstand b, Spaltbreite a Dreifachspalt Zentralabstand b, Spaltbreite a Beugungsgitter (N Spalte, N

Mehr

1. Allgemeine Grundlagen Quantenmechanik

1. Allgemeine Grundlagen Quantenmechanik 1. Allgemeine Grundlagen 1.3. Quantenmechanik Klassische Mechanik vs Quantenmechanik Klassische (Newton sche) Mechanik klassischer harmonischer Oszillator Quantenmechanik quantenmechanischer harmonischer

Mehr

NMR - Seite 1. NMR (Kernresonanzspektroskopie) Allgemeines zur Theorie

NMR - Seite 1. NMR (Kernresonanzspektroskopie) Allgemeines zur Theorie NMR - Seite 1 NMR (Kernresonanzspektroskopie) Allgemeines zur Theorie Protonen besitzen ebenso wie Elektronen einen eigenen Spin (Drehung um die eigene Achse).Allerdings gibt es mehrere Möglichkeiten als

Mehr

Relaxation. Dominik Weishaupt. 2.1 T1: Longitudinale Relaxation T2/T2*: Transversale Relaxation 8

Relaxation. Dominik Weishaupt. 2.1 T1: Longitudinale Relaxation T2/T2*: Transversale Relaxation 8 2 Relaxation 7 7 2 Relaxation Dominik Weishaupt 2.1 T1: Longitudinale Relaxation 8 2.2 T2/T2*: Transversale Relaxation 8 D. Weishaupt, V. D. Köchli, B. Marincek, Wie funktioniert MRI?, DOI 10.1007/978-3-642-41616-3_2,

Mehr

DR. ARZT MUSTER MEIN TEAM MEIN TEAM. Ich freue mich, dass Sie meine Ordination gewählt haben. Herzlich willkommen in meiner Ordination!

DR. ARZT MUSTER MEIN TEAM MEIN TEAM. Ich freue mich, dass Sie meine Ordination gewählt haben. Herzlich willkommen in meiner Ordination! 1 DR. ARZT MUSTER FA für Radiologie 2 Herzlich willkommen in meiner Ordination! Ich freue mich, dass Sie meine Ordination gewählt haben. 3 4 Dr. Arzt Muster MEIN TEAM Medizinstudium in Wien Ausbildung

Mehr

F CT1 Verschiedene Abtastverfahren in der Computertomographie

F CT1 Verschiedene Abtastverfahren in der Computertomographie F CT1 Verschiedene Abtastverfahren in der Computertomographie AB CT1 Prinzip der Computertomographie AB CT1 Prinzip der Computertomographie - Musterlösung Kollimatoren blenden ein etwa bleistiftdickes

Mehr

NMR Vortag im Rahmen des Fortgeschrittenen-Praktikums

NMR Vortag im Rahmen des Fortgeschrittenen-Praktikums NMR Vortag im Rahmen des Fortgeschrittenen-Praktikums Martin Fuchs 1 Motivation Die Nuclear Magnetic Resonance, oder zu deutsch Kernspinresonanz ist vor allem durch die aus der Medizin nicht mehr wegzudenkende

Mehr

Klausur -Informationen

Klausur -Informationen Klausur -Informationen Datum: 4.2.2009 Uhrzeit und Ort : 11 25 im großen Physikhörsaal (Tiermediziner) 12 25 ibidem Empore links (Nachzügler Tiermedizin, bitte bei Aufsichtsperson Ankunft melden) 11 25

Mehr

Wo ist der magnetische Nordpol der Erde?

Wo ist der magnetische Nordpol der Erde? Wo ist der magnetische Nordpol der Erde? A B C D am geographischen Nordpol am geographischen Südpol Nahe am geographischen Südpol Nahe am geographischen Nordpol 3. Magnetische Phänomene 3.1. Navigation,

Mehr

Gymnasium / Realschule. Atomphysik 2. Klasse / G8. Aufnahme und Abgabe von Energie (Licht)

Gymnasium / Realschule. Atomphysik 2. Klasse / G8. Aufnahme und Abgabe von Energie (Licht) Aufnahme und Abgabe von Energie (Licht) 1. Was versteht man unter einem Elektronenvolt (ev)? 2. Welche physikalische Größe wird in Elektronenvolt gemessen? Definiere diese Größe und gib weitere Einheiten

Mehr

Das NMR-Experiment in der Vektordarstellung

Das NMR-Experiment in der Vektordarstellung Das NMR-Experiment in der Vektordarstellung Kerne mit einer Spinquantenzahl I = ½ ( 1 H, 13 C) können in einem äußeren statischen homogenen Magnetfeld B 0 (Vektorfeld) zwei Energiezustände einnehmen: +½

Mehr

das?", Bechterew-Brief Nr. 21 S ), war die große Überraschung der 80er Jahre in dieser Sparte die Kernspin-Tomographie

das?, Bechterew-Brief Nr. 21 S ), war die große Überraschung der 80er Jahre in dieser Sparte die Kernspin-Tomographie Kernspin-Tomographie was ist das? von Prof. Dr. Ernst Feldtkeller, Physiker, Redaktion Bechterew-Brief Während der Clou der 70er Jahre in der medizinischen Bildtechnik die Röntgen- Computertomographie

Mehr

Röntgen Physik und Anwendung

Röntgen Physik und Anwendung Röntgen Physik und Anwendung Entstehung und Beschreibung von Röntgenstrahlung Was ist der wesentliche Unterschied zwischen Röntgen-Photonen und Photonen, die bei Phosphoreszenz/Lumineszenz entstehen? Begründen

Mehr

Welche Aussage trifft zu? Schallwellen (A) sind elektromagnetische Wellen hoher Energie (B) sind infrarote, elektromagnetische Wellen (C) können sich im Vakuum ausbreiten (D) sind Schwingungen miteinander

Mehr

NMR Spektroskopie. 1nm Frequenz X-ray UV/VIS Infrared Microwave Radio

NMR Spektroskopie. 1nm Frequenz X-ray UV/VIS Infrared Microwave Radio NMR Spektroskopie 1nm 10 10 2 10 3 10 4 10 5 10 6 10 7 Frequenz X-ray UV/VIS Infrared Microwave Radio Anregungsmodus electronic Vibration Rotation Nuclear Spektroskopie X-ray UV/VIS Infrared/Raman NMR

Mehr

Teil 1: Röntgen-Computertomographie CT

Teil 1: Röntgen-Computertomographie CT 11/12/2008 Page 1 HeiCuMed: Blockkurs Bildgebende Verfahren, Strahlenbehandlung, Strahlenschut Teil 1: Röntgen-Computertomographie CT Lehrstuhl für Computerunterstütte Klinische Mediin Mediinische Fakultät

Mehr

8. Röntgen-Diagnostik

8. Röntgen-Diagnostik 8. Röntgen-Diagnostik In der Medizin dient das Röntgen zur Feststellung von Anomalien im Körper, die im Zusammenhang mit Symptomen, sonstigen Anzeichen und eventuell weiteren Untersuchungen eine Diagnose

Mehr

Quantenphysik in der Sekundarstufe I

Quantenphysik in der Sekundarstufe I Quantenphysik in der Sekundarstufe I Atome und Atomhülle Quantenphysik in der Sek I, Folie 1 Inhalt Voraussetzungen 1. Der Aufbau der Atome 2. Größe und Dichte der Atomhülle 3. Die verschiedenen Zustände

Mehr

Neurobiologie. Workshop A. PET & fmrt. Diagnoseaufgabe. BR Arnsberg GY/GE. KQ-Gruppe Biologie

Neurobiologie. Workshop A. PET & fmrt. Diagnoseaufgabe. BR Arnsberg GY/GE. KQ-Gruppe Biologie Neurobiologie Workshop A PET & fmrt Diagnoseaufgabe Experimentelle Aufgabe Dokumentationsaufgabe Analyseaufgabe Darstellungsaufgabe Überprüfungsformen.. Präsentationsaufgabe Bewertungsaufgabe Reflexionsaufgabe

Mehr

Molekulare Biophysik. NMR-Spektroskopie (Teil 1)

Molekulare Biophysik. NMR-Spektroskopie (Teil 1) Molekulare Biophysik NMR-Spektroskopie (Teil 1) Das Vorlesungs-Programm 2/94 Vorlesung Molekulare Biophysik : NMR-Spektroskopie Tag 1 Theoretische Grundlagen der NMR-Spektroskopie (1) Tag 2 Theoretische

Mehr

Radiologie Modul I. Teil 1 Grundlagen Röntgen

Radiologie Modul I. Teil 1 Grundlagen Röntgen Radiologie Modul I Teil 1 Grundlagen Röntgen Teil 1 Inhalt Physikalische Grundlagen Röntgen Strahlenbiologie Technische Grundlagen Röntgen ROENTGENTECHNIK STRAHLENPHYSIK GRUNDLAGEN RADIOLOGIE STRAHLENBIOLOGIE

Mehr

Leibniz-Institut für Neurobiologie Speziallabor Nicht-Invasive Bildgebung

Leibniz-Institut für Neurobiologie Speziallabor Nicht-Invasive Bildgebung Leibniz-Institut für Neurobiologie Speziallabor Nicht-Invasive Bildgebung Das Magnetische Feld als Folge von Ladungsverschiebungen Gerader stromdurchflossener Leiter Spulenförmiger Leiter Wichtige Kenngrößen

Mehr

Analytische Methoden in Org. Chemie und optische Eigenschaften von chiralen Molekülen

Analytische Methoden in Org. Chemie und optische Eigenschaften von chiralen Molekülen Analytische Methoden in Org. Chemie und optische Eigenschaften von chiralen Molekülen Seminar 5. 0. 200 Teil : NMR Spektroskopie. Einführung und Physikalische Grundlagen.2 H NMR Parameter: a) Chemische

Mehr

Elektromagnetische Wellen

Elektromagnetische Wellen Elektromagnetische Wellen Im Gegensatz zu Schallwellen sind elektromagnetische Wellen nicht an ein materielles Medium gebunden -- sie können sich auch in einem perfekten Vakuum ausbreiten. Sie sind auch

Mehr

Radiologie Sonnenhof Buchserstrasse Bern Tel Fax

Radiologie Sonnenhof Buchserstrasse Bern Tel Fax Radiologie Sonnenhof Buchserstrasse 30 3006 Bern Tel. +41 31 358 16 21 Fax +41 31 358 19 04 radiologie.sonnenhof@lindenhofgruppe.ch www.lindenhofgruppe.ch 10.15 500 LSE 3.411.1 RADIOLOGIE PRÄZIS UND EFFIZIENT

Mehr

Computertomographie an einfachen Objekten. Verwandte Begriffe. Prinzip. Material TEP Strahlhärtung, Artefakte, Algorithmen.

Computertomographie an einfachen Objekten. Verwandte Begriffe. Prinzip. Material TEP Strahlhärtung, Artefakte, Algorithmen. Verwandte Begriffe Strahlhärtung, Artefakte, Algorithmen. Prinzip An einfachen Objekten wird das Prinzip von CT veranschaulicht. Bei sehr einfachen Zielen reichen bereits wenige Aufnahmen, um ein gutes

Mehr

MR Grundlagen. Marco Lawrenz

MR Grundlagen. Marco Lawrenz MR Grundlagen Marco Lawrenz Department of Systems Neuroscience University Medical Center Hamburg-Eppendorf Hamburg, Germany and Neuroimage Nord University Medical Centers Hamburg Kiel Lübeck Hamburg Kiel

Mehr

LMU LUDWIG- p E kin 2 R. Girwidz Drehimpuls. 7.5 Drehimpuls. für Zentralkräfte: F dt. Geschwindigkeit. Masse. Translationsenergie. 1 mv.

LMU LUDWIG- p E kin 2 R. Girwidz Drehimpuls. 7.5 Drehimpuls. für Zentralkräfte: F dt. Geschwindigkeit. Masse. Translationsenergie. 1 mv. 7.5 Drehimpuls Translation Rotation Geschwindigkeit Masse v m Translationsenergie Kraft Impuls Ekin F 1 mv F ma p d p F dt p m v p E kin m R. Girwidz 1 7.5 Drehimpuls Drehscheml für Zentralkräfte: M 0

Mehr

Magnetresonanztomographie

Magnetresonanztomographie Magnetresonanztomographie 1 Inhalt Geschichtlicher Überblick MRT in Kürze Verfahrensschritte Physikalische Grundlagen der MRT Signal/Messung Bildgebung Vor- und Nachteile der MRT 2 Geschichtlicher Überblick

Mehr

NMR-Spektroskopie Nuclear Magnetic Resonance - Spektroskopie H2N HO2C CH3

NMR-Spektroskopie Nuclear Magnetic Resonance - Spektroskopie H2N HO2C CH3 NMR-Spektroskopie Nuclear Magnetic Resonance - Spektroskopie anwendbar auf Atomkerne mit magnetischem Moment z.b. 1 H, 13 C, und andere Kerne O H 2 N NH HO 2 C Si CH 3 6. 5. 4. 3. 2. 1.. ppm Folie 1 Bedeutung

Mehr

Teil 2 NMR-Spektroskopie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17

Teil 2 NMR-Spektroskopie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 Teil 2 NMR-Spektroskopie Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 www.ruhr-uni-bochum.de/chirality 1 Einführung: NMR, was ist das? NMR = Nuclear Magnetic Resonance oder zu deutsch: Kernspinresonanz

Mehr

MRT-GRUNDLAGEN. Dr. Felix Breuer. 64. Heidelberger Bildverarbeitungsforum, Fürth, Fraunhofer

MRT-GRUNDLAGEN. Dr. Felix Breuer. 64. Heidelberger Bildverarbeitungsforum, Fürth, Fraunhofer MRT-GRUNDLAGEN Dr. Felix Breuer 64. Heidelberger Bildverarbeitungsforum, Fürth, 07.03.2017 Fraunhofer INHALT NMR (Nuclear Magnetic Resonance) Grundlagen Signalentstehung/Detektion NMR Bildgebung Schichtselektion

Mehr

Magnetresonanztomographie (MRT) * =

Magnetresonanztomographie (MRT) * = γ * γ π Beispiel: - Protonen ( H) Messung - konstantes B-Feld (T) in -Richtung - Gradientenfeld (3mT/m) in -Richtung - bei 0: f 00 4,6 MH Wie stark ist Frequenveränderung Df der Spins bei 0 mm? f (0mm)

Mehr

Methoden der kognitiven Neurowissenschaften

Methoden der kognitiven Neurowissenschaften Methoden der kognitiven Neurowissenschaften SS 2013 Magnet-Resonanz-Tomographie (MRT) Jöran Lepsien Zeitplan Datum Thema 12.4. Einführung und Organisation 19.4. Behaviorale Methoden 26.4. Augenbewegungen

Mehr

Grundlagen der radiologischen Diagnostik

Grundlagen der radiologischen Diagnostik Grundlagen der radiologischen Diagnostik Mit den wachsenden technischen Möglichkeiten entwickeln sich immer bessere Methoden, um Verletzungen oder andere Krankheitsbilder zu diagnostizieren. Trotz aller

Mehr

Computertomographie. Kernspintomographie. Nuklearmedizin. Mammographie. Röntgen. zr3.de

Computertomographie. Kernspintomographie. Nuklearmedizin. Mammographie. Röntgen. zr3.de Computertomographie CT Kernspintomographie MRT Nuklearmedizin Mammographie Röntgen zr3.de zr3.de Herzlich Willkommen im Zentrum Radiologie Dreiländereck Die moderne bildgebende Diagnostik ist für die Erkennung

Mehr

1 Physikalische Grundlagen

1 Physikalische Grundlagen 1 hysikalische Grundlagen 1.1 Atome und ihre Eigenschaften Ein Atom besteht aus einem Atomkern und ihn umgebenden Elektronen (negativ geladen). Der Atomkern besteht aus rotonen (positiv geladen) und eutronen

Mehr

Medizinische Bildverarbeitung

Medizinische Bildverarbeitung Medizinische Bildverarbeitung Studiengang Medizintechnik, SS 18, MT-B 6 richard rascher-friesenhausen richard.rascher-friesenhausen@hs-bremerhaven.de 12. März 2018 Inhalt Organisatorisches MBV, SS 18 March

Mehr

Hauptseminar Experimentalphysik Sommersemester 2006

Hauptseminar Experimentalphysik Sommersemester 2006 Hauptseminar Experimentalphysik Sommersemester 2006 Physikalische Grundlagen der medizinischen Diagnostik Thema: Magnetresonanztomografie von: Kay Fremuth 20.04.2006 2 Inhalt: I. Einführung II. Historische

Mehr

6.2.2 Mikrowellen. M.Brennscheidt

6.2.2 Mikrowellen. M.Brennscheidt 6.2.2 Mikrowellen Im vorangegangen Kapitel wurde die Erzeugung von elektromagnetischen Wellen, wie sie im Rundfunk verwendet werden, mit Hilfe eines Hertzschen Dipols erklärt. Da Radiowellen eine relativ

Mehr

Physikalische Grundlagen der Kernspin-Tomographie

Physikalische Grundlagen der Kernspin-Tomographie Vorlesung: Bildgebende Diagnoseverfahren SS 2008 Physikalische Grundlagen der Kernspin-Tomographie Hans-Jochen Foth TU Kaiserslautern Für diese Bildgebende Diagnosemethode werden auch andere Begriffe verwendet:

Mehr

Physik der bildgebenden Verfahren in der Medizin

Physik der bildgebenden Verfahren in der Medizin Physik der bildgebenden Verfahren in der Medizin Herausgegeben von H.-J. Maurer und E. Zieler Mit Beiträgen von H.Birken F.Buchmann B.vanderEijk F.Goos F.Gudden J.Heinzerling D.Lange H.-J.Maurer F.Wachsmann

Mehr

15 Kernphysik Physik für E-Techniker. 15 Kernphysik

15 Kernphysik Physik für E-Techniker. 15 Kernphysik 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion 15. Kernphysik 15.

Mehr

Funktionsweise und Rekonstruktionsverfahren SPECT & SPECT/CT. C. Schütze

Funktionsweise und Rekonstruktionsverfahren SPECT & SPECT/CT. C. Schütze Funktionsweise und Rekonstruktionsverfahren SPECT & SPECT/CT C. Schütze Gammakamera und SPECT-Systeme http://www.healthcare.siemens.com, http://www.healthcare.philips.com, http://www.miegermany.de Grundprinzip

Mehr

5.5 Kernspintomographie und Spektroskopie

5.5 Kernspintomographie und Spektroskopie 334 5. Elektrizität schen Evolution entstammenden Störfaktoren krankmachende Bedeutung zukommt. Mögliche Schädigung durch Strahlung niederfrequenter als sichtbares Licht muß wegen des Fehlens eines eindeutigen

Mehr

Die Lage der Emissionsbanden der charakteristischen Röntgenstrahlung (anderer Name: Eigenstrahlung) wird bestimmt durch durch das Material der Kathode durch das Material der Anode die Größe der Anodenspannung

Mehr

Radioaktivität. den 7 Oktober Dr. Emőke Bódis

Radioaktivität. den 7 Oktober Dr. Emőke Bódis Radioaktivität den 7 Oktober 2016 Dr. Emőke Bódis Prüfungsfrage Die Eigenschaften und Entstehung der radioaktiver Strahlungen: Alpha- Beta- und Gamma- Strahlungen. Aktivität. Zerfallgesetz. Halbwertzeit.

Mehr

Methodische Ansätze zur Strukturaufklärung: Rnt. - Kernmagnetische Resonanzspektroskopie (NMR)

Methodische Ansätze zur Strukturaufklärung: Rnt. - Kernmagnetische Resonanzspektroskopie (NMR) ? Methodische Ansäte ur Strukturaufklärung: - Rastersondenmikroskopie (AFM, SPM) SPM - Röntgenbeugung Rnt. - Elektronenspektroskopie (UV-vis) UV-vis - Schwingungsspektroskopie (IR) IR - Massenspektroskopie

Mehr

Quantenphysik in der Sekundarstufe I

Quantenphysik in der Sekundarstufe I Quantenphysik in der Sekundarstufe I Atomphysik Dr. Holger Hauptmann Europa-Gymnasium Wörth holger.hauptmann@gmx.de Quantenphysik in der Sek I, Folie 1 Inhalt 1. Der Aufbau der Atome 2. Größe und Dichte

Mehr

Magnetresonanztomographie (MRT)

Magnetresonanztomographie (MRT) Prinzip - aktiver Abbildungsvorgang durch Zuführung von Energie (starkes konstantes Magnetfeld + elektromagnetische Pulse) und - passiver Abbildungsvorgang durch Ausnutzung körpereigener Signale (Spin-Ensembles

Mehr

15 Kernphysik Der Atomkern 15.2 Kernspin Zerfallsgesetz radioaktiver Kerne

15 Kernphysik Der Atomkern 15.2 Kernspin Zerfallsgesetz radioaktiver Kerne 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität ität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 1553K 15.5.3 Kettenreaktion 15. Kernphysik

Mehr

Nuklearmedizin. dr. Erzsébet Schmidt Institut für Nuklearmedizin, Universität Pécs

Nuklearmedizin. dr. Erzsébet Schmidt Institut für Nuklearmedizin, Universität Pécs Nuklearmedizin dr. Erzsébet Schmidt Institut für Nuklearmedizin, Universität Pécs Nuklearmedizin - Radioaktive Isotope zur Diagnostik (und Therapie) - Funktionelle Methoden - Man sieht nur das, was funktioniert

Mehr

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)

Mehr

VL 17. VL16. Hyperfeinstruktur Hyperfeinstruktur Kernspinresonanz VL Elektronenspinresonanz Kernspintomographie

VL 17. VL16. Hyperfeinstruktur Hyperfeinstruktur Kernspinresonanz VL Elektronenspinresonanz Kernspintomographie VL 17 VL16. Hyperfeinstruktur 16.1. Hyperfeinstruktur 16.2. Kernspinresonanz VL 17 17.1. Elektronenspinresonanz 17.2. Kernspintomographie Wim de Boer, Karlsruhe Atome und Moleküle, 21.06.2012 1 Magnetische

Mehr

VL 17. VL16. Hyperfeinstruktur Hyperfeinstruktur Kernspinresonanz VL Elektronenspinresonanz Kernspintomographie

VL 17. VL16. Hyperfeinstruktur Hyperfeinstruktur Kernspinresonanz VL Elektronenspinresonanz Kernspintomographie VL 17 VL16. Hyperfeinstruktur 16.1. Hyperfeinstruktur 16.2. Kernspinresonanz VL 17 17.1. Elektronenspinresonanz 17.2. Kernspintomographie Wim de Boer, Karlsruhe Atome und Moleküle, 21.06.2012 1 Magnetische

Mehr

8.3 Die Quantenmechanik des Wasserstoffatoms

8.3 Die Quantenmechanik des Wasserstoffatoms Dieter Suter - 409 - Physik B3 8.3 Die Quantenmechanik des Wasserstoffatoms 8.3.1 Grundlagen, Hamiltonoperator Das Wasserstoffatom besteht aus einem Proton (Ladung +e) und einem Elektron (Ladung e). Der

Mehr

Das Magnetfeld. Das elektrische Feld

Das Magnetfeld. Das elektrische Feld Seite 1 von 5 Magnetisches und elektrisches Feld Das Magnetfeld beschreibt Eigenschaften der Umgebung eines Magneten. Auch bewegte Ladungen rufen Magnetfelder hervor. Mithilfe von Feldlinienbilder können

Mehr

Klausur für die Teilnehmer des Physikalischen Praktikums für Mediziner und Zahnmediziner im Wintersemester 2006/2007

Klausur für die Teilnehmer des Physikalischen Praktikums für Mediziner und Zahnmediziner im Wintersemester 2006/2007 Name: Gruppennummer: Nummer: Aufgabe 1 2 3 4 5 6 7 8 9 10 insgesamt erreichte Punkte erreichte Punkte Aufgabe 11 12 13 14 15 16 erreichte Punkte Klausur für die Teilnehmer des Physikalischen Praktikums

Mehr

RÖNTGEN- UND STRAHLENKLINIK

RÖNTGEN- UND STRAHLENKLINIK R Ö N T G E N- UND S T R A H L E N KLINIK LIEBE PATIENTIN, LIEBER PATIENT, wir bieten das gesamte Spektrum radiologischer und nuklearmedizinischer Verfahren inkl. moderner Hybridtechniken an. Die Diagnostik

Mehr

Allgemeine Angaben der Diagnostischen Radiologie

Allgemeine Angaben der Diagnostischen Radiologie B-7 Diagnostische Radiologie B-7.1 Allgemeine Angaben der Diagnostischen Radiologie Fachabteilung: Art: Diagnostische Radiologie nicht Betten führend Abteilungsdirektor: Prof. Dr. Joachim Lotz Ansprechpartner:

Mehr

12.8 Eigenschaften von elektronischen Übergängen. Übergangsfrequenz

12.8 Eigenschaften von elektronischen Übergängen. Übergangsfrequenz phys4.024 Page 1 12.8 Eigenschaften von elektronischen Übergängen Übergangsfrequenz betrachte die allgemeine Lösung ψ n der zeitabhängigen Schrödinger-Gleichung zum Energieeigenwert E n Erwartungswert

Mehr

1. Einführung. 2. Geschichte I + II. 3. DIN / Pflege. 4. DIN / Untersuchung und Behandlung

1. Einführung. 2. Geschichte I + II. 3. DIN / Pflege. 4. DIN / Untersuchung und Behandlung 1. Einführung 2. Geschichte I + II 3. DIN 13080 / Pflege 4. DIN 13080 / Untersuchung und Behandlung DIN 13080 DIN 13080 Untersuchung und Behandlung DIN 13080 Untersuchung und Behandlung DIN 13080 Untersuchung

Mehr

Multipuls-NMR in der Organischen Chemie. Puls und FID

Multipuls-NMR in der Organischen Chemie. Puls und FID Puls und FID Obwohl der Puls eine bestimmte, am NMR-Spektrometer vorab eingestellte Sendefrequenz ν 1 hat, ist er in der Lage, über einen relativ weiten Frequenzbereich von mehreren khz, den gesamten Resonanzbereich

Mehr

Kernspinresonanz, Kernspin-Tomographie

Kernspinresonanz, Kernspin-Tomographie Kernspinresonanz, Kernspin-Tomographie nützt die Wechselwirkungen von Kerndipolmomenten mit elektromagnetischen Feldern NMRS... Nuclear Magnetic Resonance Spectroscopy MRT... Magnetic Resonance Tomography

Mehr

MaReCuM MRT. OA PD Dr. med Dietmar Dinter Leiter des Geschäftsfelds Onkologische Bildgebung Institut für Klinische Radiologie und Nuklearmedzin

MaReCuM MRT. OA PD Dr. med Dietmar Dinter Leiter des Geschäftsfelds Onkologische Bildgebung Institut für Klinische Radiologie und Nuklearmedzin MaReCuM MRT OA PD Dr. med Dietmar Dinter Leiter des Geschäftsfelds Onkologische Bildgebung Institut für Klinische Radiologie und Nuklearmedzin Definition MRT MRT Magnetresonanztomographie = MRI Magnetic

Mehr

Kontrollaufgaben zur Optik

Kontrollaufgaben zur Optik Kontrollaufgaben zur Optik 1. Wie schnell bewegt sich Licht im Vakuum? 2. Warum hat die Lichtgeschwindigkeit gemäss moderner Physik eine spezielle Bedeutung? 3. Wie nennt man die elektromagnetische Strahlung,

Mehr

Magnetismus. Vorlesung 5: Magnetismus I

Magnetismus. Vorlesung 5: Magnetismus I Magnetismus Erzeugung eines Magnetfelds möglich durch: Kreisende Elektronen: Permanentmagnet Bewegte Ladung: Strom: Elektromagnet (Zeitlich veränderliches elektrisches Feld) Vorlesung 5: Magnetismus I

Mehr

Kernmagnetische Resonanzspektroskopie (NMR) Spektroskopische Methoden

Kernmagnetische Resonanzspektroskopie (NMR) Spektroskopische Methoden Kernmagnetische Resonanzspektroskopie (NMR) Spektroskopische Methoden Grundlagen Die meisten Atomkerne führen eine Drehbewegung um die eigene Achse aus ("Spin"). Da sie geladene Teilchen (Protonen) enthalten,

Mehr

Klinik für Radiologie

Klinik für Radiologie KLINIKUM WESTFALEN Klinik für Radiologie Knappschaftskrankenhaus Dortmund Akademisches Lehrkrankenhaus der Ruhr-Universität Bochum Mit modernster Diagnostik zu erfolgreicher Therapie Chefarzt Priv.-Doz.

Mehr

Definition: Ultraschall ist Schall mit einer Frequenz jenseits der menschlichen Hörschwelle, ab 20 khz bis 1 GHz.

Definition: Ultraschall ist Schall mit einer Frequenz jenseits der menschlichen Hörschwelle, ab 20 khz bis 1 GHz. Ultraschall Definition: Ultraschall ist Schall mit einer Frequenz jenseits der menschlichen Hörschwelle, ab 20 khz bis 1 GHz. Was ist eine Ultraschall-Untersuchung? Bei einer Ultraschall-Untersuchung werden

Mehr

Magnetresonanztomographie

Magnetresonanztomographie Ratgeber für Patienten Magnetresonanztomographie in der Gastroenterologie Deutsche Gesellschaft zur Bekämpfung der Krankheiten von Magen, Darm, Leber und Stoffwechsel sowie von Störungen der Ernährung

Mehr

15 Kernphysik Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne

15 Kernphysik Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne Inhalt 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion Der Atomkern

Mehr

10.6. Röntgenstrahlung

10.6. Röntgenstrahlung 10.6. Röntgenstrahlung Am 8. November 1895 entdeckte Wilhelm Conrad Röntgen in Würzburg die Röntgenstrahlung. Seine Entdeckung zählt zu den wohl bedeutendsten Entdeckungen in der Menschheitsgeschichte.

Mehr

4.6 Bildgebende NMR. s(t) = ρ(x, y, z) e -i ω L t dx dy dz = ρ x (x) e -i γ G x t dx,

4.6 Bildgebende NMR. s(t) = ρ(x, y, z) e -i ω L t dx dy dz = ρ x (x) e -i γ G x t dx, Prof. D. Suter / Prof. R. Böhmer Magnetische Resonanz SS 2003 4.6 Bildgebende NMR 4.6.1 MRI: Grundlagen Wenn man die Stärke der Resonanzabsorption als Funktion des Ortes misst, d.h. ein Dichtebild einer

Mehr