3) Linearzeit-Eigenschaften

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "3) Linearzeit-Eigenschaften"

Transkript

1 3) Linearzeit-Eigenschaften

2 GPS: Linearzeit-Eigenschaften Einführung 129 Linearzeit-Eigenschaften Erinnerung: endliche Trace-Fragmente = Wörter Def.: Σ ω bezeichnet Menge aller unendlichen Wörter (Sequenzen) über Alphabe Σ Def. 20 Linearzeit-Eigenschaft ist ein P (2 AP ) ω. Eigenschaft hier implizit definiert über Menge aller Objekte, die diese besitzen in diesem Kapitel: alle LTS total

3 GPS: Linearzeit-Eigenschaften Einführung 130 Linearzeit-Eigenschaften und Zustände sei T =(S,, I, L) LTS,s S, P Linearzeit-Eigenschaft Def. 21 T, s = P gdw. Tr(s) P T = P gdw. s I : T, s = P oft geschrieben: s = P statt T, s = P beachte: Zustand identifiziert über Menge der Traces aller seiner ausgehenden Pfade existentielle Quantifizierung ebenso möglich, hier nicht betrachtet

4 GPS: Linearzeit-Eigenschaften Einführung 131 Examples AP =ZustandsnamenimBeispieldesGetränkeautomaten 1 P 1 = {A 0 A 1... i N, A i = {getraenka}} T? = P 1 2 P 2 = {A 0 A 1... i : A i = {bezahlen} j > i, A j {getraenka, getraenkb}} T? = P 2 3 P 3 = zwischen je zwei bezahlen-zuständen wurde ein Getränk serviert T? = P 3

5 GPS: Linearzeit-Eigenschaften Einführung 132 Lin.zeit-Eigenschaften und Trace-Inklusion Thm. 6 seien T 1, T 2 LTS, Tr (T 1 ) Tr (T 2 ) P (2 AP ) ω : T 2 = P T 1 = P Beweis: = klar = Angenommen Tr (T 1 ) Tr (T 2 ). Setze P := Tr (T 2 ).Beachte: 1 T 2 = P trivialerweise 2 es gibt ρ Tr (T 1 ) mit ρ Tr (T 2 ) und somit ρ P Also gilt T 1 = P. intuitiv: je mehr Traces es gibt, desto schwieriger ist es, eine Linearzeiteigenschaft zu erfüllen

6 GPS: Linearzeit-Eigenschaften Einführung 133 Lin.zeit-Eigenschaften und Trace-Äquivalenz Kor. 7 seien T 1, T 2 LTS Tr (T 1 )=Tr (T 2 ) P (2 AP ) ω : T 1 = P T 2 = P heißt: Linearzeit-Eigenschaften können trace-äquivalente Modelle nicht unterscheiden

7 GPS: Linearzeit-Eigenschaften Invarianten 134 Invarianten im folgenden: Klassen von Linearzeiteigenschaften (LZE) 1 Invarianten 2 Safety 3 Liveness 4 Fairness Def. 22 LZE P inv (2 AP ) ω ist Invariante, falls es aussagenlogisches ϕ gibt, so dass P inv = {A 0 A 1... i N : A i = ϕ}

8 GPS: Linearzeit-Eigenschaften Invarianten 135 Erreichbare Zustände sei T LTS mit Zustand s Def. 23 Post (s) ist kleinste Menge, für die gilt: s Post (s), und s Post (s) :Post(s ) Post (s) welcher Algorithmus verbirgt sich hinter dieser Definition? Breitensuche! Post (s) = alle, von s aus erreichbaren Zustände leicht erweiterbar zu: Post (T ) = alle, von einem Zustand in T aus erreichbaren Zustände

9 GPS: Linearzeit-Eigenschaften Invarianten 136 Invarianten überprüfen sei P inv Invariante mit Invariantenbedingung ϕ Lemma 8 Sei T =(S,, I, L) LTS. T = P gdw. s Post (I ):L(s) = ϕ Beweis: Übung beachte: Breitensuche liefert kürzesten Trace, der P verletzt

10 GPS: Linearzeit-Eigenschaften Safety 137 Safety intuitiv: Safety = nie passiert etwas schlechtes Def.: Seien v, w Σ Σ ω. v w gdw. u Σ Σ ω.w = vu ist strikter Anteil von Def. 24 LZE P (2 AP ) ω ist Safety-Eigenschaft, gdw. σ (2 AP ) ω \ P : ˆσ σ mit P {σ ˆσ σ } = ˆσ heißt schlechtes Präfix

11 GPS: Linearzeit-Eigenschaften Safety 138 Schlechte Präfixe Def. 25 Sei P Saftey-Eigenschaft. BadPref (P) = {ˆσ (2 AP ) σ (2 AP ) ω :ˆσσ P} ˆσ ist minimales schlechtes Präfix, falls σ (2 AP ) : σ ˆσ = σ BadPref (P) beachte: Definition macht nur für Safety-Eigenschaften Sinn

12 GPS: Linearzeit-Eigenschaften Safety 139 Beispiele System: Getränkeautomat (wie oben) Bsp.: 1 nach Bezahlen erhält man ein Getränk im nächsten Schritt 2 Summe der eingezahlten Beträge ist immer gleich der Summe der Preise der ausgegebenen Getränke werden Eigenschaften erfüllt? gibt es schlechte Präfixe?

13 GPS: Linearzeit-Eigenschaften Safety 140 Reguläre Safety-Eigenschaften Def. 26 Safety-Eigenschaft P heißt regulär, falls BadPref(P) reguläre Sprache über dem Alphabet 2 AP ist. Bsp.: 1 P = nach Bezahlen erhält man Getränk im nächsten Schritt ist regulär BadPref (P) =Σ {bezahlen} Σ \{getraenk} Σ 2 P = Summe Einzahlung = Summe Auszahlung ist nicht regulär

14 GPS: Linearzeit-Eigenschaften Safety 141 Safety-Eigenschaften und Invarianten Thm. 9 a) Für alle LZE P gilt: P ist Invariante = Pistreguläre Safety-Eigenschaft. b) Es gibt LZE P, die (reguläre) Safety-Eigenschaft, aber nicht Invariante ist. Beweis: Übung.

15 GPS: Linearzeit-Eigenschaften Safety 142 Beispiel System: Ampel AP = {rot, gelb, gruen} Anforderungen: immer ist mindestens ein Licht an und niemals drei wenn zwei Lichter an sind, dann sind dies Rot und Gelb vor jeder Rot-Phase findet immer eine Grün-Phase statt sind dies Invarianten / Safety-Eigenschaften / reguläre Safety-Eigenschaften? wie sehen dann NFAs für BadPref (P) jeweilsaus?

16 GPS: Linearzeit-Eigenschaften Safety 143 Safety-Eigenschaften überprüfen Def.: Tr fin (T )=endlichetracefragmente von T Lemma 10 Sei P Safety-Eigenschaft, T totales LTS. T = P gdw. Tr fin (T ) BadPref (P) = Beweis: Übung. liefert Charakterisierung, aber noch nicht notwendigerweise Algorithmus

17 GPS: Linearzeit-Eigenschaften Safety 144 NFA mit bewachten Transitionen Def.: AL(V ) = Menge aller aussagenlogischen Formeln über Variablenmenge V Def. 27 Nicht-deterministischer, bewachter, endlicher Automat (NFA) ist (hier) ein A =(Q, AP, q 0,δ,F ), wobei QendlicheZustandsmenge, q 0 Q Anfangszustand, F Q Endzustandsmenge Alphabet ist 2 AP Transitionsrelation ist endliches δ Q AL(AP) Q

18 GPS: Linearzeit-Eigenschaften Safety 145 Läufe bewachter NFAs aussagenlogische Formeln in Transitionsrelation repräsentieren symbolisch mehrere Alphabetsymbole q A p gdw. ϕ AL(AP) mit(q,ϕ,p) δ und A = ϕ NFAs akzeptieren Tracefragmente A 0,...,A n 1 Def. 28 Lauf ist Sequenz q 0, A 0, q 1, A 1, q 2,...,A n 1, q n,sodass A i =0,...,n 1:q i i q i+1 akzeptierender Lauf: q n F Sprache L(A) = Menge aller endlichen Tracefragmente, für die es akzeptierenden Lauf gibt

19 GPS: Linearzeit-Eigenschaften Safety 146 Produkt von LTS und NFA Idee: reduziere Testen von regulärer Safety-Eigenschaft auf Überprüfung einer Invarianten (nicht im selben System natürlich) Def. 29 Sei T =(S,, I, L) LTS über AP, A =(Q, AP, q 0,δ,F ) NFA. Produkt ist T A:= (S Q,, I, L ) über atomaren Propositionen {f}, mit I L(s = {(s 0, q) s 0 Iundq 0 ) 0 q} L {f }, falls q F (s, q) =, sonst (s, q) (t, p) gdw. s t und q L(t) p

20 GPS: Linearzeit-Eigenschaften Safety 147 Reguläre Safety-Eigenschaften überprüfen Thm. 11 Sei T LTS, P reguläre Safety-Eigenschaft, A P NFA mit L(A P )=BadPref (P) und P f = {A 0, A 1, A 2,... i N : A i = f }. T = P gdw. T A P = P f Beweis: Übung.

21 GPS: Linearzeit-Eigenschaften Liveness 148 Liveness-Eigenschaften beachte: Safety = niemals passiert etwas schlimmes normalerweise leicht zu erfüllen, indem Implementierung einfach nichts macht komplementäre Anforderung: Liveness = irgendwann wird etwas gutes passieren Def. 30 P (2 AP ) ω ist Liveness-Eigenschaft, falls {ˆσ (2 AP ) σ Pmitˆσ σ} = (2 AP ) intuitiv: jedes endliche Präfix hat keine Aussagekraft

22 GPS: Linearzeit-Eigenschaften Liveness 149 Beispiel wieder mal der Getränkeautomat... typische Liveness-Eigenschaften der Automat wird irgendwann Getränk A servieren ist nicht erfüllt, aber kein endliches Präfix zeigt dies an der Automat wird irgendwann ein Getränk servieren der Automat serviert unendlich oft ein Getränk beachte: bei Linearzeit-Eigenschaften gilt unendlich oft = immer irgendwann

23 GPS: Linearzeit-Eigenschaften Liveness 150 Safety und Liveness Prop. 12 Ist P Liveness- und Safety-Eigenschaft, soistp =(2 AP ) ω. Prop. 13 Es gibt LZE P, die weder Liveness- noch Safety-Eigenschaft ist. Prop. 14 Sei P LZE. Dann gibt es Safety-Eigenschaft P safe und Liveness-Eigenschaft P live,sodassp = P safe P live.

24 GPS: Linearzeit-Eigenschaften Fairness 151 Liveness und Nebenläufigkeit Bsp.: asynchrones Produkt zweier Ampeln Liveness-Eigenschaft beide Ampeln sind unendlich oft grün ist nicht erfüllt widerspricht Intuition über System aus zwei unabhängigen Ampeln Grund: unfaire Läufe im asynchronen Produkt sinnvoll: Einschränkung der Läufe auf solche, die gewisse Fairness-Bedingungen erfüllen

25 GPS: Linearzeit-Eigenschaften Fairness 152 Fairness Def. 31 Sei F =(P 1,...,P n ) (2 AP ) n Fairness-Constraints. Trace A 0, A 1,... ist F-fair, falls i =1,...,n. j.p i A j = = es gibt unendlich viele Def. 32 Sei T LTS, F Fairness-Constraints, P Linearzeit-Eigenschaft. Tr F (T )={σ Tr (T ) σ ist F-fair } T = F P gdw. Tr F P

26 GPS: Linearzeit-Eigenschaften Fairness 153 LZE-Eigenschaften: Zusammenspiel Jede Invariante ist eine Safety-Eigenschaft. Safety und Liveness sind in gewissem Sinne komplementäre Anforderungen. Fairness-Annahmen können notwendig sein, um Liveness zu zeigen. Fairness-Annahmen zerstören Safety-Eigenschaft nicht, solange erstere überall nicht alle Traces ausschließt.

Automaten, Spiele und Logik

Automaten, Spiele und Logik Automaten, Spiele und Logik Woche 13 11. Juli 2014 Inhalt der heutigen Vorlesung Linearzeit Temporale Logik (LTL) Alternierende Büchi Automaten Nicht-Determinisierung (Miyano-Ayashi) Beschriftete Transitionssysteme

Mehr

Automaten und Formale Sprachen ε-automaten und Minimierung

Automaten und Formale Sprachen ε-automaten und Minimierung Automaten und Formale Sprachen ε-automaten und Minimierung Ralf Möller Hamburg Univ. of Technology Literatur Gottfried Vossen, Kurt-Ulrich Witt: Grundkurs Theoretische Informatik, Vieweg Verlag 2 Danksagung

Mehr

Abstrakte Temporale Eigenschaften

Abstrakte Temporale Eigenschaften Abstrakte Temporale Eigenschaften H. Peter Gumm Philipps-Universität Marburg Sommersemester 2007 Sicherheit und Lebendigkeit Sicherheitseigenschaften Systeme nie gleichzeitig in kritischem Bereich Nie

Mehr

liefern eine nicht maschinenbasierte Charakterisierung der regulären

liefern eine nicht maschinenbasierte Charakterisierung der regulären Reguläre Ausdrücke 1 Ziel: L=L M für NFA M L=L(r) für einen regulären Ausdruck r Reguläre Ausdrücke über einem Alphabet Σ Slide 1 liefern eine nicht maschinenbasierte Charakterisierung der regulären Sprachen

Mehr

Algorithmen mit konstantem Platzbedarf: Die Klasse REG

Algorithmen mit konstantem Platzbedarf: Die Klasse REG Algorithmen mit konstantem Platzbedarf: Die Klasse REG Sommerakademie Rot an der Rot AG 1 Wieviel Platz brauchen Algorithmen wirklich? Daniel Alm Institut für Numerische Simulation Universität Bonn August

Mehr

Lösungsvorschläge Blatt 4

Lösungsvorschläge Blatt 4 Theoretische Informatik Departement Informatik Prof. Dr. Juraj Hromkovič http://www.ita.inf.ethz.ch/theoinf16 Lösungsvorschläge Blatt 4 Zürich, 21. Oktober 2016 Lösung zu Aufgabe 10 (a) Wir zeigen mit

Mehr

2 2 Reguläre Sprachen. 2.2 Endliche Automaten. Übersicht

2 2 Reguläre Sprachen. 2.2 Endliche Automaten. Übersicht Formale Systeme, Automaten, Prozesse Übersicht 2 2. Reguläre Ausdrücke 2.3 Nichtdeterministische endliche Automaten 2.4 Die Potenzmengenkonstruktion 2.5 NFAs mit ɛ-übergängen 2.6 Minimale DFAs und der

Mehr

Formale Systeme. Büchi-Automaten. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Büchi-Automaten. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz

Mehr

Formale Methoden 1. Gerhard Jäger 9. Januar Uni Bielefeld, WS 2007/2008 1/23

Formale Methoden 1. Gerhard Jäger 9. Januar Uni Bielefeld, WS 2007/2008 1/23 1/23 Formale Methoden 1 Gerhard Jäger Gerhard.Jaeger@uni-bielefeld.de Uni Bielefeld, WS 2007/2008 9. Januar 2008 2/23 Automaten (informell) gedachte Maschine/abstraktes Modell einer Maschine verhält sich

Mehr

Einführung in die Logik

Einführung in die Logik Einführung in die Logik Klaus Madlener und Roland Meyer 24. April 2013 Inhaltsverzeichnis 1 Aussagenlogik 1 1.1 Syntax................................. 1 1.2 Semantik............................... 3 1.3

Mehr

Übungsaufgaben zu Formalen Sprachen und Automaten

Übungsaufgaben zu Formalen Sprachen und Automaten Universität Freiburg PD Dr. A. Jakoby Sommer 27 Übungen zum Repetitorium Informatik III Übungsaufgaben zu Formalen Sprachen und Automaten. Untersuchen Sie das folgende Spiel: A B x x 2 x 3 C D Eine Murmel

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 2. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 1 Einelementiges Alphabet (4 Punkte) (a) Geben

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 8. Reguläre Sprachen II Malte Helmert Gabriele Röger Universität Basel 24. März 24 Pumping Lemma Pumping Lemma: Motivation Man kann zeigen, dass eine Sprache regulär ist, indem man

Mehr

4. Alternative Temporallogiken

4. Alternative Temporallogiken 4. Alternative Temporallogiken Benutzung unterschiedlicher Temporallogiken entsprechend den verschiedenen Zeitbegriffen LTL: Linear Time Logic Ähnlich der CTL, aber jetzt einem linearen Zeitbegriff entspechend

Mehr

Satz 18 (Satz von der totalen Wahrscheinlichkeit)

Satz 18 (Satz von der totalen Wahrscheinlichkeit) Ausgehend von der Darstellung der bedingten Wahrscheinlichkeit in Gleichung 1 zeigen wir: Satz 18 (Satz von der totalen Wahrscheinlichkeit) Die Ereignisse A 1,..., A n seien paarweise disjunkt und es gelte

Mehr

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 2. Mai HA-Lösung. TA-Lösung

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 2. Mai HA-Lösung. TA-Lösung Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 2. Mai 2016 HA-Lösung TA-Lösung Einführung in die theoretische Informatik Aufgabenblatt 2 Beachten Sie: Soweit

Mehr

Automaten, Spiele, und Logik

Automaten, Spiele, und Logik Automten, Spiele, und Logik Woche 9 13. Juni 2014 Inhlt der heutigen Vorlesung Büchi Automten co-büchi Automten Komplementierung für deterministische Büchi Automten Ein Ziel: den Stz von Büchi-Elgot-Trkhtenrot

Mehr

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln,

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln, Theorie der Informatik 8. März 25 8. Reguläre Sprachen I Theorie der Informatik 8. Reguläre Sprachen I 8. Reguläre Grammatiken Malte Helmert Gabriele Röger 8.2 DFAs Universität Basel 8. März 25 8.3 NFAs

Mehr

Reguläre Sprachen Endliche Automaten

Reguläre Sprachen Endliche Automaten Endliche Automaten (Folie 54, Seite 16 im Skript) Einige Vorteile endlicher deterministischer Automaten: durch Computer schnell simulierbar wenig Speicher benötigt: Tabelle für δ (read-only), aktueller

Mehr

Einführung in LTL unter MAUDE. Maschine!es Beweisen Einführung in LTL Seit# 1

Einführung in LTL unter MAUDE. Maschine!es Beweisen Einführung in LTL Seit# 1 Einführung in LTL unter MAUDE Mashine!es Beweisen Einführung in LTL Seit# 1 Verifikation eines Systems System- Verhalte% System- Spezifikatio% Mashine!es Beweisen Einführung in LTL Seit# 2 Verifikation

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 27. Aussagenlogik: Logisches Schliessen und Resolution Malte Helmert Universität Basel 28. April 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26.

Mehr

c) {abcde, abcfg, bcade, bcafg} d) {ade, afg, bcde, bcfg} c) {abcabc} d) {abcbc, abc, a} c) {aa, ab, ba, bb} d) {{aa}, {ab}, {ba}, {bb}}

c) {abcde, abcfg, bcade, bcafg} d) {ade, afg, bcde, bcfg} c) {abcabc} d) {abcbc, abc, a} c) {aa, ab, ba, bb} d) {{aa}, {ab}, {ba}, {bb}} 2 Endliche Automaten Fragen 1. Was ergibt sich bei {a, bc} {de, fg}? a) {abc, defg} b) {abcde, abcfg} c) {abcde, abcfg, bcade, bcafg} d) {ade, afg, bcde, bcfg} 2. Was ergibt sich bei {abc, a} {bc, λ}?

Mehr

Endliche Automaten. Endliche Automaten J. Blömer 1/23

Endliche Automaten. Endliche Automaten J. Blömer 1/23 Endliche Automaten Endliche Automaten sind ein Kalkül zur Spezifikation von realen oder abstrakten Maschinen regieren auf äußere Ereignisse (=Eingaben) ändern ihren inneren Zustand produzieren gegebenenfalls

Mehr

Induktive Definition

Induktive Definition Rechenregeln A B = B A A (B C) = (A B) C A (B C) = (A B) C A (B C) = A B A C (B C) A = B A C A {ε} A = A A {ε} = A (A {ε}) = A (A ) = A A A = A + A A = A + A + {ε} = A Beispiel. Real-Zahlen = {0,..., 9}

Mehr

Frank Heitmann 2/47. 1 Ein PDA beginnt im Startzustand z 0 und mit im Keller. 2 Ist der Automat

Frank Heitmann 2/47. 1 Ein PDA beginnt im Startzustand z 0 und mit im Keller. 2 Ist der Automat Formale Grundlagen der Informatik 1 Kapitel 5 Über reguläre Sprachen hinaus und (Teil 2) Frank Heitmann heitmann@informatik.uni-hamburg.de 21. April 2015 Der Kellerautomat - Formal Definition (Kellerautomat

Mehr

Berechenbarkeit und Komplexität

Berechenbarkeit und Komplexität Berechenbarkeit und Komplexität Prof. Dr. Dietrich Kuske FG Theoretische Informatik, TU Ilmenau Wintersemester 2010/11 1 Organisatorisches zur Vorlesung Informationen, aktuelle Version der Folien und Übungsblätter

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Wintersemester 2007 / 2008 Prof. Dr. Heribert Vollmer Institut für Theoretische Informatik 29.10.2007 Reguläre Sprachen Ein (deterministischer) endlicher Automat

Mehr

KONGRUENZEN VON VISIBLY PUSHDOWN SPRACHEN REZART QELIBARI PROSEMINAR WS14/15

KONGRUENZEN VON VISIBLY PUSHDOWN SPRACHEN REZART QELIBARI PROSEMINAR WS14/15 KONGRUENZEN VON VISIBLY PUSHDOWN SPRACHEN REZART QELIBARI PROSEMINAR WS14/15 INHALT Languages WARUM DER AUFWAND? AKTUELLE SITUATION Situation: Ziel u.a.: Wollen Programmflüsse überprüfen. - Aktuelle Situation

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 3 14. Mai 2010 Einführung in die Theoretische

Mehr

Formale Sprachen und Automaten

Formale Sprachen und Automaten Avant Propos Formale Sprachen und Automaten Sie [die Theorie der formalen Sprachen] ist ein Musterbeispiel einer informatischen Theorie, weil es ihr gelingt, einen großen Bestand an Einsichten und Zusammenhängen

Mehr

Automaten, Spiele, und Logik

Automaten, Spiele, und Logik Automaten, Spiele, und Logik Woche 2 25. April 2014 Inhalt der heutigen Vorlesung 1. Reguläre Ausdrücke 2. der Satz von Kleene 3. Brzozowski Methode 4. grep und perl Reguläre Ausdrücke Rekursive Definition,

Mehr

Spiele für den. Christian Dax. Betreuer: Dr. Martin Lange. Wiederholung Spiele für VAL und SAT ν-line Automaten Entscheidungsverfahren

Spiele für den. Christian Dax. Betreuer: Dr. Martin Lange. Wiederholung Spiele für VAL und SAT ν-line Automaten Entscheidungsverfahren Spiele für den Linearzeit µ-kalkül Christian Dax Betreuer: Dr. Martin Lange 1 Kurzer Rückblick 2 Linearzeit µ-kalkül Definition (µtl) ϕ ::= a X ϕ ϕ ϕ ϕ Oϕ µx.ϕ νx.ϕ Example νx.a OOX (an jd. 2. Stelle gilt

Mehr

Automaten und Coinduktion

Automaten und Coinduktion Philipps-Univestität Marburg Fachbereich Mathematik und Informatik Seminar: Konzepte von Programmiersprachen Abgabedatum 02.12.03 Betreuer: Prof. Dr. H. P. Gumm Referentin: Olga Andriyenko Automaten und

Mehr

1. Klausur zur Vorlesung Informatik III Wintersemester 2004/2005

1. Klausur zur Vorlesung Informatik III Wintersemester 2004/2005 Universität Karlsruhe Theoretische Informatik Fakultät für Informatik WS 2004/05 ILKD Prof. Dr. D. Wagner 24. Februar 2005 1. Klausur zur Vorlesung Informatik III Wintersemester 2004/2005 Aufkleber Beachten

Mehr

Formale Methoden 1. Gerhard Jäger 23. Januar Uni Bielefeld, WS 2007/2008 1/18

Formale Methoden 1. Gerhard Jäger 23. Januar Uni Bielefeld, WS 2007/2008 1/18 1/18 Formale Methoden 1 Gerhard Jäger Gerhard.Jaeger@uni-bielefeld.de Uni Bielefeld, WS 2007/2008 23. Januar 2008 2/18 Das Pumping-Lemma Sein L eine unendliche reguläre Sprache über ein endliches Alphabet

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Nichtdeterminismus David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Nichtdeterminismus NTM Nichtdeterministische Turingmaschine Die

Mehr

Erfüllbarkeit und Allgemeingültigkeit

Erfüllbarkeit und Allgemeingültigkeit Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.3 Aussagenlogik Erfüllbarkeit 44 Erfüllbarkeit und Allgemeingültigkeit Def.: eine Formel ϕ heißt erfüllbar, wennesein I gibt, so dass I = ϕ

Mehr

Automaten und Formale Sprachen

Automaten und Formale Sprachen Automaten und Formale Sprachen Einführung Ralf Möller Hamburg Univ. of Technology Übung Fr. 14:30-15:15 Max Berndt, D1025 Literatur Gottfried Vossen, Kurt-Ulrich Witt: Grundkurs Theoretische Informatik,

Mehr

Theorie der Informatik. Theorie der Informatik. 6.1 Einführung. 6.2 Alphabete und formale Sprachen. 6.3 Grammatiken. 6.4 Chomsky-Hierarchie

Theorie der Informatik. Theorie der Informatik. 6.1 Einführung. 6.2 Alphabete und formale Sprachen. 6.3 Grammatiken. 6.4 Chomsky-Hierarchie Theorie der Informatik 17. März 2014 6. Formale Sprachen und Grammatiken Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 6.1 Einführung

Mehr

Theoretische Informatik Mitschrift

Theoretische Informatik Mitschrift 3. Endliche Automaten endliche Zustandsübergangssysteme Theoretische Informatik Mitschrift Beispiel: 2-Bit-Ringzähler: ={Inc} L R ={IncInc Inc,Inc 7, Inc 11,...} n ' mod ' 4=3 ={Inc n k 0.n=4 k3 } 2-Bit-Ringzähler

Mehr

Kapitel 2: Formale Sprachen Gliederung

Kapitel 2: Formale Sprachen Gliederung Gliederung. Einleitung und Grundbegriffe. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 2.. Chomsky-Grammatiken 2.2. Reguläre Sprachen Reguläre Grammatiken, ND-Automaten

Mehr

Formale Sprachen und Automaten: Tutorium Nr. 8

Formale Sprachen und Automaten: Tutorium Nr. 8 Formale Sprachen und Automaten: Tutorium Nr. 8 15. Juni 2013 Übersicht 1 Nachtrag 2 Besprechung von Übungsblatt 7 Aufgabe 1 Aufgabe 2 Aufgabe 3 3 CFG PDA Definitionen Ein Beispiel! Aufgabe 4 Der PDA als

Mehr

Einführung in die Informatik

Einführung in die Informatik Universität Innsbruck - Institut für Informatik Datenbanken und Informationssysteme Prof. Günther Specht, Eva Zangerle 24. November 28 Einführung in die Informatik Übung 7 Allgemeines Für die Abgabe der

Mehr

Suche nach einem solchen Kreis. Endlichkeitstest. Vereinigung und Durchschnitt. Abschlusseigenschaften

Suche nach einem solchen Kreis. Endlichkeitstest. Vereinigung und Durchschnitt. Abschlusseigenschaften Endlichkeitstest Eingabe: DFA/NFA M. Frage: Ist die von M akzeptierte Sprache endlich? Nahe liegende Beobachtung: In einem DFA/NFA, der eine unendliche Sprache akzeptiert, muss es einen Kreis geben, der

Mehr

Teil III. Komplexitätstheorie

Teil III. Komplexitätstheorie Teil III Komplexitätstheorie 125 / 160 Übersicht Die Klassen P und NP Die Klasse P Die Klassen NP NP-Vollständigkeit NP-Vollständige Probleme Weitere NP-vollständige Probleme 127 / 160 Die Klasse P Ein

Mehr

Worterkennung in Texten speziell im Compilerbau 14. April Frank Heitmann 2/65

Worterkennung in Texten speziell im Compilerbau 14. April Frank Heitmann 2/65 Grenzen regulärer Sprachen? Formale Grundlagen der Informatik 1 Kapitel 4 Über reguläre Sprachen hinaus und Frank Heitmann heitmann@informatik.uni-hamburg.de Wir haben mittlerweile einiges kennengelernt,

Mehr

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche: Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 24/ 44 Zwei Beispiele a 0

Mehr

Tableaukalkül für Aussagenlogik

Tableaukalkül für Aussagenlogik Tableaukalkül für Aussagenlogik Tableau: Test einer Formel auf Widersprüchlichkeit Fallunterscheidung baumförmig organisiert Keine Normalisierung, d.h. alle Formeln sind erlaubt Struktur der Formel wird

Mehr

Berechenbarkeitstheorie 7. Vorlesung

Berechenbarkeitstheorie 7. Vorlesung 1 Berechenbarkeitstheorie Dr. Institut für Mathematische Logik und Grundlagenforschung WWU Münster W 15/16 Alle Folien unter Creative Commons Attribution-NonCommercial 3.0 Unported Lizenz. Das Pumpinglemma

Mehr

Automaten und formale Sprachen Klausurvorbereitung

Automaten und formale Sprachen Klausurvorbereitung Automaten und formale Sprachen Klausurvorbereitung Rami Swailem Mathematik Naturwissenschaften und Informatik FH-Gießen-Friedberg Inhaltsverzeichnis 1 Definitionen 2 2 Altklausur Jäger 2006 8 1 1 Definitionen

Mehr

2. Übungsblatt 6.0 VU Theoretische Informatik und Logik

2. Übungsblatt 6.0 VU Theoretische Informatik und Logik 2. Übungsblatt 6.0 VU Theoretische Informatik und Logik 25. September 2013 Aufgabe 1 Geben Sie jeweils eine kontextfreie Grammatik an, welche die folgenden Sprachen erzeugt, sowie einen Ableitungsbaum

Mehr

Seminar Model-Based Testing - Preorder. Marcel Bosling

Seminar Model-Based Testing - Preorder. Marcel Bosling Seminar Model-Based Testing - Preorder Marcel Bosling 1 / 34 Inhaltsverzeichnis Systeme, Prozesse und LTS Ausgewählte Preorder Trace Preorder Observable Testing Preorder Testing Preorder Conformance Testing

Mehr

Satz 16 (Multiplikationssatz)

Satz 16 (Multiplikationssatz) Häufig verwendet man die Definition der bedingten Wahrscheinlichkeit in der Form Damit: Pr[A B] = Pr[B A] Pr[A] = Pr[A B] Pr[B]. (1) Satz 16 (Multiplikationssatz) Seien die Ereignisse A 1,..., A n gegeben.

Mehr

Ludwig-Maximilians-Universität München SoSe 2009 Institut für Informatik PD Dr. Martin Lange Dipl.-Inf. Markus Latte 25. Juni 2009

Ludwig-Maximilians-Universität München SoSe 2009 Institut für Informatik PD Dr. Martin Lange Dipl.-Inf. Markus Latte 25. Juni 2009 Ludwig-Maximilians-Universität München SoSe 2009 Institut für Informati PD Dr. Martin Lange Dipl.-Inf. Marus Latte 25. Juni 2009 Übung zur Vorlesung Logi für Informatier Übungsblatt 8 Abgabe bis Freitag,

Mehr

Hoffmann (HAW Hamburg) Automatentheorie und formale Sprachen

Hoffmann (HAW Hamburg) Automatentheorie und formale Sprachen Hoffmann (HAW Hamburg) Automatentheorie und formale Sprachen 18.4. 2012 176 Automatentheorie und formale Sprachen VL 5 Reguläre und nichtreguläre Sprachen Kathrin Hoffmann 18. Aptil 2012 Hoffmann (HAW

Mehr

Theoretische Informatik I

Theoretische Informatik I heoretische Informatik I Einheit 2 Endliche Automaten & Reguläre Sprachen. Deterministische endliche Automaten 2. Nichtdeterministische Automaten 3. Reguläre Ausdrücke 4. Grammatiken 5. Eigenschaften regulärer

Mehr

Operationen auf endlichen Automaten und Transduktoren

Operationen auf endlichen Automaten und Transduktoren Operationen auf endlichen Automaten und Transduktoren Kursfolien Karin Haenelt 1 Notationskonventionen L reguläre Sprache A endlicher Automat DEA deterministischer endlicher Automat NEA nichtdeterministischer

Mehr

Satz 90 Sei A = (Q, Σ, δ, q 0, F ) ein DFA. Der Zeitaufwand des obigen Minimalisierungsalgorithmus ist O( Q 2 Σ ).

Satz 90 Sei A = (Q, Σ, δ, q 0, F ) ein DFA. Der Zeitaufwand des obigen Minimalisierungsalgorithmus ist O( Q 2 Σ ). Satz 90 Sei A = (Q, Σ, δ, q 0, F ) ein DFA. Der Zeitaufwand des obigen Minimalisierungsalgorithmus ist O( Q 2 Σ ). Beweis: Für jedes a Σ muss jede Position in der Tabelle nur konstant oft besucht werden.

Mehr

Das Postsche Korrespondenzproblem

Das Postsche Korrespondenzproblem Das Postsche Korrespondenzproblem Eine Instanz des PKP ist eine Liste von Paaren aus Σ Σ : (v 1, w 1 ),..., (v n, w n ) Eine Lösung ist eine Folge i 1,..., i k von Indizes 1 i j n mit v i1... v ik = w

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen)

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Weitere Beweistechniken und aussagenlogische Modellierung

Weitere Beweistechniken und aussagenlogische Modellierung Weitere Beweistechniken und aussagenlogische Modellierung Vorlesung Logik in der Informatik, HU Berlin 2. Übungsstunde Aussagenlogische Modellierung Die Mensa versucht ständig, ihr Angebot an die Wünsche

Mehr

6. Induktives Beweisen - Themenübersicht

6. Induktives Beweisen - Themenübersicht 6. Induktives Beweisen - Themenübersicht Ordnungsrelationen Partielle Ordnungen Quasiordnungen Totale Ordnungen Striktordnungen Ordnungen und Teilstrukturen Noethersche Induktion Anwendung: Terminierungsbeweise

Mehr

11. Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P

11. Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P 11 Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P 11 Woche: Turingmaschinen, Entscheidbarkeit, P 239/ 333 Einführung in die NP-Vollständigkeitstheorie

Mehr

Übungen zur Vorlesung Einführung in die Theoretische Informatik, Blatt 12 LÖSUNGEN

Übungen zur Vorlesung Einführung in die Theoretische Informatik, Blatt 12 LÖSUNGEN Universität Heidelberg / Institut für Informatik 7. Juli 24 Prof. Dr. Klaus Ambos-Spies Nadine Losert Übungen zur Vorlesung Einführung in die Theoretische Informatik, Blatt 2 LÖSUNGEN Aufgabe Verwenden

Mehr

Beweisen mit Semantischen Tableaux

Beweisen mit Semantischen Tableaux Beweisen mit Semantischen Tableaux Semantische Tableaux geben ein Beweisverfahren, mit dem ähnlich wie mit Resolution eine Formel dadurch bewiesen wird, dass ihre Negation als widersprüchlich abgeleitet

Mehr

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise:

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise: Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 192 Beispiel Bsp.: Betrachte Schlussweise in: 1 Wenn es regnet, dann wird die Straße nass. R N

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 15.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

I.2. Endliche Automaten (ohne Ausgabe)

I.2. Endliche Automaten (ohne Ausgabe) I2 Endliche Automaten (ohne Ausgabe) I2 Deterministische endliche Automaten Beispiel: Pascal-Syntax für Zahlen hat folgende Form: ::=

Mehr

Grundlagen der Informatik II

Grundlagen der Informatik II Grundlagen der Informatik II Tutorium 2 Professor Dr. Hartmut Schmeck Miniaufgabe * bevor es losgeht * Finden Sie die drei Fehler in der Automaten- Definition. δ: A = E, S, δ, γ, s 0, F, E = 0,1, S = s

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/07 5. Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/07 5. Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 5. Vorlesung 09.11.2006 schindel@informatik.uni-freiburg.de 1 Äquivalenzklassen Definition und Beispiel Definition Für eine Sprache L Σ* bezeichnen

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 heoretische Informatik 1 uringmaschinen David Kappel Institut für Grundlagen der Informationsverarbeitung echnische Universität Graz 11.03.2016 Übersicht uring Maschinen Algorithmusbegriff konkretisiert

Mehr

Anwendungen des Fréchet-Abstandes Das Constrained Free Space Diagram zur Analyse von Körperbewegungen

Anwendungen des Fréchet-Abstandes Das Constrained Free Space Diagram zur Analyse von Körperbewegungen Anwendungen des Fréchet-Abstandes Das Constrained Free Space Diagram zur Analyse von Körperbewegungen David Knötel Freie Universität Berlin, Institut für Informatik Seminar über Algorithmen Leitfaden Wiederholung

Mehr

Formale Methoden 1. Gerhard Jäger 16. Januar Uni Bielefeld, WS 2007/2008 1/19

Formale Methoden 1. Gerhard Jäger 16. Januar Uni Bielefeld, WS 2007/2008 1/19 1/19 Formale Methoden 1 Gerhard Jäger Gerhard.Jaeger@uni-bielefeld.de Uni Bielefeld, WS 2007/2008 16. Januar 2008 2/19 Reguläre Ausdrücke vierte Art (neben Typ-3-Grammatiken, deterministischen und nicht-deterministischen

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Sascha Böhme, Lars Noschinski Sommersemester 2 Lösungsblatt 23. Mai 2 Einführung in die Theoretische Informatik Hinweis:

Mehr

Abschlusseigenschaften. Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Abschlusseigenschaften

Abschlusseigenschaften. Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Abschlusseigenschaften Automaten und Formale Sprachen alias Theoretische Informatik Sommersemester 2012 Dr. Sander Bruggink Übungsleitung: Jan Stückrath Abgeschlossenheit (Definition) Gegeben sei eine Menge M und ein n-ärer

Mehr

Für jede Sprache L X sind die folgenden Aussagen äquivalent:

Für jede Sprache L X sind die folgenden Aussagen äquivalent: Was bisher geschah Für jede Sprache L X sind die folgenden Aussagen äquivalent: Es existiert ein NFA A mit L = L(A) (L REC(NFA)). Es existiert ein vollständiger NFA B mit L = L(B). Es existiert ein ε-nfa

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 10 4.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Organisatorisches Hauptklausur: Montag, 23.07.2012, 16:00-18:00,

Mehr

Automaten und Formale Sprachen Endliche Automaten und Reguläre sprachen

Automaten und Formale Sprachen Endliche Automaten und Reguläre sprachen Automaten und Formale Sprachen Endliche Automaten und Reguläre sprachen Ralf Möller Hamburg Univ. of Technology Literatur Gottfried Vossen, Kurt-Ulrich Witt: Grundkurs Theoretische Informatik, Vieweg Verlag

Mehr

Kapitel 3: Grundlegende Ergebnisse aus der Komplexitätstheorie Gliederung

Kapitel 3: Grundlegende Ergebnisse aus der Komplexitätstheorie Gliederung Gliederung 1. Berechenbarkeitstheorie 2. Grundlagen 3. Grundlegende Ergebnisse aus der Komplexitätstheorie 4. Die Komplexitätsklassen P und NP 5. Die Komplexitätsklassen RP und BPP 3.1. Ressourcenkompression

Mehr

Endlicher Automat (EA)

Endlicher Automat (EA) Endlicher Automat (EA) 1 Motivation: Automaten für die Modellierung, Spezifikation und Verifikation verwenden! Definition Ein Endlicher Automat A = (S,I,Σ,T,F) besteht aus Menge von Zuständen S (normalerweise

Mehr

Rekursiv aufzählbare Sprachen

Rekursiv aufzählbare Sprachen Kapitel 4 Rekursiv aufzählbare Sprachen 4.1 Grammatiken und die Chomsky-Hierarchie Durch Zulassung komplexer Ableitungsregeln können mit Grammatiken größere Klassen als die kontextfreien Sprachen beschrieben

Mehr

Formale Sprachen und endliche Automaten

Formale Sprachen und endliche Automaten Formale Sprachen und endliche Automaten Formale Sprachen Definition: 1 (Alphabet) Ein Alphabet Σ ist eine endliche, nichtleere Menge von Zeichen oder Symbolen. Ein Wort über dem Alphabet Σ ist eine endliche

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Ulrich Furbach. Sommersemester 2014

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Ulrich Furbach. Sommersemester 2014 Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Ulrich Furbach Institut für Informatik Sommersemester 2014 Furbach Grundlagen d. Theoretischen Informatik:

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

Reguläre Sprachen und endliche Automaten

Reguläre Sprachen und endliche Automaten Reguläre Sprachen und endliche Automaten 1 Motivation: Syntaxüberprüfung Definition: Fließkommazahlen in Java A floating-point literal has the following parts: a whole-number part, a decimal point (represented

Mehr

Transformation von regulärer Linearzeit- Temporallogik zu Paritätsautomaten

Transformation von regulärer Linearzeit- Temporallogik zu Paritätsautomaten Transformation von regulärer Linearzeit- Temporallogik zu Paritätsautomaten Malte Schmitz, Lübeck im Januar 2012 korrigierte Fassung, Lübeck im März 2014 Diese Bachelorarbeit wurde ausgegeben und betreut

Mehr

Wissensbasierte Systeme

Wissensbasierte Systeme WBS4 Slide 1 Wissensbasierte Systeme Vorlesung 4 vom 03.11.2004 Sebastian Iwanowski FH Wedel WBS4 Slide 2 Wissensbasierte Systeme 1. Motivation 2. Prinzipien und Anwendungen 3. Logische Grundlagen 4. Suchstrategien

Mehr

Theoretische Informatik Kap 1: Formale Sprachen/Automatentheorie

Theoretische Informatik Kap 1: Formale Sprachen/Automatentheorie Gliederung der Vorlesung. Grundbegriffe. Formale Sprachen/Automatentheorie.. Grammatiken.2..3. Kontext-freie Sprachen 2. Berechnungstheorie 2.. Berechenbarkeitsmodelle 2.2. Die Churchsche These 2.3. Unentscheidbarkeit

Mehr

Theoretische Informatik 2

Theoretische Informatik 2 Theoretische Informatik 2 Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2009/10 Die Chomsky-Hierarchie Definition Sei G = (V, Σ, P, S) eine Grammatik. 1 G heißt vom Typ 3 oder

Mehr

Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14

Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14 Kapitel: Die Chomsky Hierarchie Die Chomsky Hierarchie 1 / 14 Allgemeine Grammatiken Definition Eine Grammatik G = (Σ, V, S, P) besteht aus: einem endlichen Alphabet Σ, einer endlichen Menge V von Variablen

Mehr

Probeklausur Lösungen

Probeklausur Lösungen Probeklausur Lösungen 1. Aufgabe Der obere Teil in dem creenshot zeigt den Zustandsgraph. Es fehlen jedoch die Eingaben bzw. die Ausgaben. Im unteren Teil des creenshots ist die Übergangstabelle aufgeführt.

Mehr

Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat

Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat Vortrag von Kristina Rupp und Benjamin Letschert am 29.01.2008 Inhaltsverzeichnis 13 Speziallfälle des Satzes von Fermat 1 13.1 Der Große Satz

Mehr

11.1 Kontextsensitive und allgemeine Grammatiken

11.1 Kontextsensitive und allgemeine Grammatiken Theorie der Informatik 7. April 2014 11. Kontextsensitive und Typ-0-Sprachen Theorie der Informatik 11. Kontextsensitive und Typ-0-Sprachen 11.1 Kontextsensitive und allgemeine Grammatiken Malte Helmert

Mehr

Umformung NTM DTM. Charakterisierung rek. aufz. Spr. Chomsky-3-Grammatiken (T5.3) Chomsky-0-Grammatik Rek. Aufz.

Umformung NTM DTM. Charakterisierung rek. aufz. Spr. Chomsky-3-Grammatiken (T5.3) Chomsky-0-Grammatik Rek. Aufz. Chomsky-0-Grammatik Rek. Aufz. Satz T5.2.2: Wenn L durch eine Chomsky-0- Grammatik G beschrieben wird, gibt es eine NTM M, die L akzeptiert. Beweis: Algo von M: Schreibe S auf freie Spur. Iteriere: Führe

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2011/12 Deterministische Kellerautomaten Von besonderem Interesse sind kontextfreie Sprachen,

Mehr

Mengenlehre. Aufgaben mit Lösungen

Mengenlehre. Aufgaben mit Lösungen Mengenlehre Aufgaben mit Lösungen Inhaltsverzeichnis 1 Hilfsmittel 1 1. Zahlenmengen........................................ 1 2. Symbole........................................... 1 3. Intervalle: Schreibweise...................................

Mehr

Universität des Saarlandes

Universität des Saarlandes Universität des Saarlandes FR 6.2 Informatik Prof. Dr. Kurt Mehlhorn, Dr. Konstantinos Panagiotou WiSe 2011/2012 Übungen zu Computational Thinking http://www.mpi-inf.mpg.de/departments/d1/teaching/ws11/ct/

Mehr

Unabhängige Zufallsvariablen

Unabhängige Zufallsvariablen Kapitel 9 Unabhängige Zufallsvariablen Die Unabhängigkeit von Zufallsvariablen wird auf die Unabhängigkeit von Ereignissen zurückgeführt. Im Folgenden sei Ω, A, P ) ein Wahrscheinlichkeitsraum. Definition

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 11 15. Juli 2010 Einführung in die Theoretische

Mehr

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Kapitel 8 Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Wir hatten im Beispiel 5. gesehen, dass die Wärmeleitungsgleichung t u u = f auf Ω (0, ) (8.1) eine parabolische Differentialgleichung

Mehr