3) Linearzeit-Eigenschaften

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "3) Linearzeit-Eigenschaften"

Transkript

1 3) Linearzeit-Eigenschaften

2 GPS: Linearzeit-Eigenschaften Einführung 129 Linearzeit-Eigenschaften Erinnerung: endliche Trace-Fragmente = Wörter Def.: Σ ω bezeichnet Menge aller unendlichen Wörter (Sequenzen) über Alphabe Σ Def. 20 Linearzeit-Eigenschaft ist ein P (2 AP ) ω. Eigenschaft hier implizit definiert über Menge aller Objekte, die diese besitzen in diesem Kapitel: alle LTS total

3 GPS: Linearzeit-Eigenschaften Einführung 130 Linearzeit-Eigenschaften und Zustände sei T =(S,, I, L) LTS,s S, P Linearzeit-Eigenschaft Def. 21 T, s = P gdw. Tr(s) P T = P gdw. s I : T, s = P oft geschrieben: s = P statt T, s = P beachte: Zustand identifiziert über Menge der Traces aller seiner ausgehenden Pfade existentielle Quantifizierung ebenso möglich, hier nicht betrachtet

4 GPS: Linearzeit-Eigenschaften Einführung 131 Examples AP =ZustandsnamenimBeispieldesGetränkeautomaten 1 P 1 = {A 0 A 1... i N, A i = {getraenka}} T? = P 1 2 P 2 = {A 0 A 1... i : A i = {bezahlen} j > i, A j {getraenka, getraenkb}} T? = P 2 3 P 3 = zwischen je zwei bezahlen-zuständen wurde ein Getränk serviert T? = P 3

5 GPS: Linearzeit-Eigenschaften Einführung 132 Lin.zeit-Eigenschaften und Trace-Inklusion Thm. 6 seien T 1, T 2 LTS, Tr (T 1 ) Tr (T 2 ) P (2 AP ) ω : T 2 = P T 1 = P Beweis: = klar = Angenommen Tr (T 1 ) Tr (T 2 ). Setze P := Tr (T 2 ).Beachte: 1 T 2 = P trivialerweise 2 es gibt ρ Tr (T 1 ) mit ρ Tr (T 2 ) und somit ρ P Also gilt T 1 = P. intuitiv: je mehr Traces es gibt, desto schwieriger ist es, eine Linearzeiteigenschaft zu erfüllen

6 GPS: Linearzeit-Eigenschaften Einführung 133 Lin.zeit-Eigenschaften und Trace-Äquivalenz Kor. 7 seien T 1, T 2 LTS Tr (T 1 )=Tr (T 2 ) P (2 AP ) ω : T 1 = P T 2 = P heißt: Linearzeit-Eigenschaften können trace-äquivalente Modelle nicht unterscheiden

7 GPS: Linearzeit-Eigenschaften Invarianten 134 Invarianten im folgenden: Klassen von Linearzeiteigenschaften (LZE) 1 Invarianten 2 Safety 3 Liveness 4 Fairness Def. 22 LZE P inv (2 AP ) ω ist Invariante, falls es aussagenlogisches ϕ gibt, so dass P inv = {A 0 A 1... i N : A i = ϕ}

8 GPS: Linearzeit-Eigenschaften Invarianten 135 Erreichbare Zustände sei T LTS mit Zustand s Def. 23 Post (s) ist kleinste Menge, für die gilt: s Post (s), und s Post (s) :Post(s ) Post (s) welcher Algorithmus verbirgt sich hinter dieser Definition? Breitensuche! Post (s) = alle, von s aus erreichbaren Zustände leicht erweiterbar zu: Post (T ) = alle, von einem Zustand in T aus erreichbaren Zustände

9 GPS: Linearzeit-Eigenschaften Invarianten 136 Invarianten überprüfen sei P inv Invariante mit Invariantenbedingung ϕ Lemma 8 Sei T =(S,, I, L) LTS. T = P gdw. s Post (I ):L(s) = ϕ Beweis: Übung beachte: Breitensuche liefert kürzesten Trace, der P verletzt

10 GPS: Linearzeit-Eigenschaften Safety 137 Safety intuitiv: Safety = nie passiert etwas schlechtes Def.: Seien v, w Σ Σ ω. v w gdw. u Σ Σ ω.w = vu ist strikter Anteil von Def. 24 LZE P (2 AP ) ω ist Safety-Eigenschaft, gdw. σ (2 AP ) ω \ P : ˆσ σ mit P {σ ˆσ σ } = ˆσ heißt schlechtes Präfix

11 GPS: Linearzeit-Eigenschaften Safety 138 Schlechte Präfixe Def. 25 Sei P Saftey-Eigenschaft. BadPref (P) = {ˆσ (2 AP ) σ (2 AP ) ω :ˆσσ P} ˆσ ist minimales schlechtes Präfix, falls σ (2 AP ) : σ ˆσ = σ BadPref (P) beachte: Definition macht nur für Safety-Eigenschaften Sinn

12 GPS: Linearzeit-Eigenschaften Safety 139 Beispiele System: Getränkeautomat (wie oben) Bsp.: 1 nach Bezahlen erhält man ein Getränk im nächsten Schritt 2 Summe der eingezahlten Beträge ist immer gleich der Summe der Preise der ausgegebenen Getränke werden Eigenschaften erfüllt? gibt es schlechte Präfixe?

13 GPS: Linearzeit-Eigenschaften Safety 140 Reguläre Safety-Eigenschaften Def. 26 Safety-Eigenschaft P heißt regulär, falls BadPref(P) reguläre Sprache über dem Alphabet 2 AP ist. Bsp.: 1 P = nach Bezahlen erhält man Getränk im nächsten Schritt ist regulär BadPref (P) =Σ {bezahlen} Σ \{getraenk} Σ 2 P = Summe Einzahlung = Summe Auszahlung ist nicht regulär

14 GPS: Linearzeit-Eigenschaften Safety 141 Safety-Eigenschaften und Invarianten Thm. 9 a) Für alle LZE P gilt: P ist Invariante = Pistreguläre Safety-Eigenschaft. b) Es gibt LZE P, die (reguläre) Safety-Eigenschaft, aber nicht Invariante ist. Beweis: Übung.

15 GPS: Linearzeit-Eigenschaften Safety 142 Beispiel System: Ampel AP = {rot, gelb, gruen} Anforderungen: immer ist mindestens ein Licht an und niemals drei wenn zwei Lichter an sind, dann sind dies Rot und Gelb vor jeder Rot-Phase findet immer eine Grün-Phase statt sind dies Invarianten / Safety-Eigenschaften / reguläre Safety-Eigenschaften? wie sehen dann NFAs für BadPref (P) jeweilsaus?

16 GPS: Linearzeit-Eigenschaften Safety 143 Safety-Eigenschaften überprüfen Def.: Tr fin (T )=endlichetracefragmente von T Lemma 10 Sei P Safety-Eigenschaft, T totales LTS. T = P gdw. Tr fin (T ) BadPref (P) = Beweis: Übung. liefert Charakterisierung, aber noch nicht notwendigerweise Algorithmus

17 GPS: Linearzeit-Eigenschaften Safety 144 NFA mit bewachten Transitionen Def.: AL(V ) = Menge aller aussagenlogischen Formeln über Variablenmenge V Def. 27 Nicht-deterministischer, bewachter, endlicher Automat (NFA) ist (hier) ein A =(Q, AP, q 0,δ,F ), wobei QendlicheZustandsmenge, q 0 Q Anfangszustand, F Q Endzustandsmenge Alphabet ist 2 AP Transitionsrelation ist endliches δ Q AL(AP) Q

18 GPS: Linearzeit-Eigenschaften Safety 145 Läufe bewachter NFAs aussagenlogische Formeln in Transitionsrelation repräsentieren symbolisch mehrere Alphabetsymbole q A p gdw. ϕ AL(AP) mit(q,ϕ,p) δ und A = ϕ NFAs akzeptieren Tracefragmente A 0,...,A n 1 Def. 28 Lauf ist Sequenz q 0, A 0, q 1, A 1, q 2,...,A n 1, q n,sodass A i =0,...,n 1:q i i q i+1 akzeptierender Lauf: q n F Sprache L(A) = Menge aller endlichen Tracefragmente, für die es akzeptierenden Lauf gibt

19 GPS: Linearzeit-Eigenschaften Safety 146 Produkt von LTS und NFA Idee: reduziere Testen von regulärer Safety-Eigenschaft auf Überprüfung einer Invarianten (nicht im selben System natürlich) Def. 29 Sei T =(S,, I, L) LTS über AP, A =(Q, AP, q 0,δ,F ) NFA. Produkt ist T A:= (S Q,, I, L ) über atomaren Propositionen {f}, mit I L(s = {(s 0, q) s 0 Iundq 0 ) 0 q} L {f }, falls q F (s, q) =, sonst (s, q) (t, p) gdw. s t und q L(t) p

20 GPS: Linearzeit-Eigenschaften Safety 147 Reguläre Safety-Eigenschaften überprüfen Thm. 11 Sei T LTS, P reguläre Safety-Eigenschaft, A P NFA mit L(A P )=BadPref (P) und P f = {A 0, A 1, A 2,... i N : A i = f }. T = P gdw. T A P = P f Beweis: Übung.

21 GPS: Linearzeit-Eigenschaften Liveness 148 Liveness-Eigenschaften beachte: Safety = niemals passiert etwas schlimmes normalerweise leicht zu erfüllen, indem Implementierung einfach nichts macht komplementäre Anforderung: Liveness = irgendwann wird etwas gutes passieren Def. 30 P (2 AP ) ω ist Liveness-Eigenschaft, falls {ˆσ (2 AP ) σ Pmitˆσ σ} = (2 AP ) intuitiv: jedes endliche Präfix hat keine Aussagekraft

22 GPS: Linearzeit-Eigenschaften Liveness 149 Beispiel wieder mal der Getränkeautomat... typische Liveness-Eigenschaften der Automat wird irgendwann Getränk A servieren ist nicht erfüllt, aber kein endliches Präfix zeigt dies an der Automat wird irgendwann ein Getränk servieren der Automat serviert unendlich oft ein Getränk beachte: bei Linearzeit-Eigenschaften gilt unendlich oft = immer irgendwann

23 GPS: Linearzeit-Eigenschaften Liveness 150 Safety und Liveness Prop. 12 Ist P Liveness- und Safety-Eigenschaft, soistp =(2 AP ) ω. Prop. 13 Es gibt LZE P, die weder Liveness- noch Safety-Eigenschaft ist. Prop. 14 Sei P LZE. Dann gibt es Safety-Eigenschaft P safe und Liveness-Eigenschaft P live,sodassp = P safe P live.

24 GPS: Linearzeit-Eigenschaften Fairness 151 Liveness und Nebenläufigkeit Bsp.: asynchrones Produkt zweier Ampeln Liveness-Eigenschaft beide Ampeln sind unendlich oft grün ist nicht erfüllt widerspricht Intuition über System aus zwei unabhängigen Ampeln Grund: unfaire Läufe im asynchronen Produkt sinnvoll: Einschränkung der Läufe auf solche, die gewisse Fairness-Bedingungen erfüllen

25 GPS: Linearzeit-Eigenschaften Fairness 152 Fairness Def. 31 Sei F =(P 1,...,P n ) (2 AP ) n Fairness-Constraints. Trace A 0, A 1,... ist F-fair, falls i =1,...,n. j.p i A j = = es gibt unendlich viele Def. 32 Sei T LTS, F Fairness-Constraints, P Linearzeit-Eigenschaft. Tr F (T )={σ Tr (T ) σ ist F-fair } T = F P gdw. Tr F P

26 GPS: Linearzeit-Eigenschaften Fairness 153 LZE-Eigenschaften: Zusammenspiel Jede Invariante ist eine Safety-Eigenschaft. Safety und Liveness sind in gewissem Sinne komplementäre Anforderungen. Fairness-Annahmen können notwendig sein, um Liveness zu zeigen. Fairness-Annahmen zerstören Safety-Eigenschaft nicht, solange erstere überall nicht alle Traces ausschließt.

4) Automaten auf unendlichen Wörtern

4) Automaten auf unendlichen Wörtern 4) Automaten auf unendlichen Wörtern GPS: Automaten auf unendlichen Wörtern Büchi-Automaten 169 Unendliche Wörter zur Erinnerung: Linearzeit-Eigenschaft = Menge unendlicher Traces bisher kein Spezifikationsformalismus

Mehr

Software Engineering Ergänzung zur Vorlesung

Software Engineering Ergänzung zur Vorlesung Ergänzung zur Vorlesung Prof. Dr. Markus Müller-Olm WS 2008 2009 2.6.1 Endliche und reguläre Sprachen Endliche und reguläre Sprache: fundamental in vielen Bereichen der Informatik: theorie Formale Sprachen

Mehr

Automaten, Spiele und Logik

Automaten, Spiele und Logik Automaten, Spiele und Logik Woche 13 11. Juli 2014 Inhalt der heutigen Vorlesung Linearzeit Temporale Logik (LTL) Alternierende Büchi Automaten Nicht-Determinisierung (Miyano-Ayashi) Beschriftete Transitionssysteme

Mehr

Automaten und Formale Sprachen ε-automaten und Minimierung

Automaten und Formale Sprachen ε-automaten und Minimierung Automaten und Formale Sprachen ε-automaten und Minimierung Ralf Möller Hamburg Univ. of Technology Literatur Gottfried Vossen, Kurt-Ulrich Witt: Grundkurs Theoretische Informatik, Vieweg Verlag 2 Danksagung

Mehr

Die Nerode-Relation und der Index einer Sprache L

Die Nerode-Relation und der Index einer Sprache L Die Nerode-Relation und der Index einer Sprache L Eine zweite zentrale Idee: Sei A ein vollständiger DFA für die Sprache L. Repäsentiere einen beliebigen Zustand p von A durch die Worte in Σ, die zu p

Mehr

Abstrakte Temporale Eigenschaften

Abstrakte Temporale Eigenschaften Abstrakte Temporale Eigenschaften H. Peter Gumm Philipps-Universität Marburg Sommersemester 2007 Sicherheit und Lebendigkeit Sicherheitseigenschaften Systeme nie gleichzeitig in kritischem Bereich Nie

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/07 3. Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/07 3. Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 3. Vorlesung 02.11.2006 schindel@informatik.uni-freiburg.de 1 Kapitel III Reguläre Sprachen Reguläre Sprachen und Ausdrücke Informatik III

Mehr

2.1 Lineare Temporallogiken: LTL

2.1 Lineare Temporallogiken: LTL 2.1 Lineare Temporallogiken: LTL N bezeichne die Menge der nicht-negativen ganzen Zahlen (inklusive der Null). Sei Σ ein Alphabet. Ein endliches Wort ü b e r Σ ist eine endliche Folge a 1 a 2...a n,sodassa

Mehr

Das Pumping Lemma: Ein Anwendungsbeispiel

Das Pumping Lemma: Ein Anwendungsbeispiel Das Pumping Lemma: Ein Anwendungsbeispiel Beispiel: Die Palindromsprache ist nicht regulär. L = { } w {0, 1} w ist ein Palindrom Beweis: Angenommen, L ist doch regulär. Gemäß Pumping Lemma gibt es dann

Mehr

FORMALE SYSTEME. Der Satz von Myhill und Nerode. Automaten verkleinern mit Quotientenbildung. Verschiedene Äquivalenzrelationen

FORMALE SYSTEME. Der Satz von Myhill und Nerode. Automaten verkleinern mit Quotientenbildung. Verschiedene Äquivalenzrelationen Automaten verkleinern mit Quotientenbildung Wir betrachten DFAs mit totaler Übergangsfunktion. FORMALE SYSTEME 9. Vorlesung: Minimale Automaten (2) Markus Krötzsch TU Dresden, 9. November 207 C 0 A 0 [A]

Mehr

Bsp.: Nichtdeterministische Automaten

Bsp.: Nichtdeterministische Automaten Bsp.: Nichtdeterministische Automaten,,, q q 3 Berechnungspfad zur Eingabe w= q q 3 q 3 Bsp.: Nichtdeterministische Automaten ACHTUNG: Eine Eingabe kann jetzt auf verschiedene Arten verarbeitet werden,,,

Mehr

GPS: Realzeit-Systeme Realzeit-Automaten 209. Motivation

GPS: Realzeit-Systeme Realzeit-Automaten 209. Motivation 7) Realzeit-Systeme GPS: Realzeit-Systeme Realzeit-Automaten 209 Motivation Modellierung von Systemen benutzte bisher diskrete Zeit, die schrittweise, gleichmäßig und einheitslos voranschreitet manchmal

Mehr

Formale Grundlagen der Informatik 3 Kapitel 6 Automatenbasiertes LTL Model Checking

Formale Grundlagen der Informatik 3 Kapitel 6 Automatenbasiertes LTL Model Checking Formale Grundlagen der Informatik 3 Kapitel 6 Automatenbasiertes LTL Model Checking Frank Heitmann heitmann@informatik.uni-hamburg.de 11. Januar 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/62

Mehr

Model Checking mit Büchi Automaten

Model Checking mit Büchi Automaten Ingo Weigelt Softwaretechnik 3 16.05.2007 Übersicht 1 Automaten über unendlichen Wörtern ω-automaten Büchi-Automaten 2 Model Checking mit Büchi Automaten Konstruktion von A Konstruktion von A S Leerheitstest

Mehr

Sei Σ ein endliches Alphabet. Eine Sprache L Σ ist genau dann regulär, wenn sie von einem regulären Ausdruck beschrieben werden kann.

Sei Σ ein endliches Alphabet. Eine Sprache L Σ ist genau dann regulär, wenn sie von einem regulären Ausdruck beschrieben werden kann. Der Satz von Kleene Wir haben somit Folgendes bewiesen: Der Satz von Kleene Sei Σ ein endliches Alphabet. Eine Sprache L Σ ist genau dann regulär, wenn sie von einem regulären Ausdruck beschrieben werden

Mehr

Potenzmengenkonstruktion. Vergleich DFAs NFAs. NFA DFA ohne überflüssige Zust. Ansatz nicht praktikabel

Potenzmengenkonstruktion. Vergleich DFAs NFAs. NFA DFA ohne überflüssige Zust. Ansatz nicht praktikabel Vergleich DFAs NFAs Frage: Können NFAs nichtreguläre Sprachen erkennen? NEIN Potenzmengenkonstruktion Gegeben: NFA (Q,Σ,q 0,δ,F), konstruiere DFA: Q =P (Q), q 0 = {q 0 }, F ={q q F } Satz T4.4.5: Zu jedem

Mehr

liefern eine nicht maschinenbasierte Charakterisierung der regulären

liefern eine nicht maschinenbasierte Charakterisierung der regulären Reguläre Ausdrücke 1 Ziel: L=L M für NFA M L=L(r) für einen regulären Ausdruck r Reguläre Ausdrücke über einem Alphabet Σ Slide 1 liefern eine nicht maschinenbasierte Charakterisierung der regulären Sprachen

Mehr

Seminarvortrag zum Thema ω-automaten. Simon Kostede & Markku Lammerz

Seminarvortrag zum Thema ω-automaten. Simon Kostede & Markku Lammerz Seminarvortrag zum Thema Aufbau des Vortrags: Einleitung Büchi-Automaten Nichtäquivalenz zwischen NBA und DBA Muller-Automaten Rabing-&Streett-Automaten Transformationsverfahren Komplexität von Transformationsverfahren

Mehr

Algorithmen mit konstantem Platzbedarf: Die Klasse REG

Algorithmen mit konstantem Platzbedarf: Die Klasse REG Algorithmen mit konstantem Platzbedarf: Die Klasse REG Sommerakademie Rot an der Rot AG 1 Wieviel Platz brauchen Algorithmen wirklich? Daniel Alm Institut für Numerische Simulation Universität Bonn August

Mehr

MODEL CHECKING 2 - AUTOMATEN

MODEL CHECKING 2 - AUTOMATEN MODEL CHECKING 2 - AUTOMATEN Sommersemester 2009 Dr. Carsten Sinz, Universität Karlsruhe Model Checking 2 System (Hardware/ Software) Model Checking, Formalisierung, Beweis Übersetzung in Logik Gewünschte

Mehr

Die mathematische Seite

Die mathematische Seite Kellerautomaten In der ersten Vorlesung haben wir den endlichen Automaten kennengelernt. Mit diesem werden wir uns in der zweiten Vorlesung noch etwas eingängiger beschäftigen und bspw. Ansätze zur Konstruktion

Mehr

Das Pumping-Lemma Formulierung

Das Pumping-Lemma Formulierung Das Pumping-Lemma Formulierung Sei L reguläre Sprache. Dann gibt es ein n N mit: jedes Wort w L mit w n kann zerlegt werden in w = xyz, so dass gilt: 1. xy n 2. y 1 3. für alle k 0 ist xy k z L. 59 / 162

Mehr

Grundlagen Theoretischer Informatik I SoSe 2011 in Trier. Henning Fernau Universität Trier

Grundlagen Theoretischer Informatik I SoSe 2011 in Trier. Henning Fernau Universität Trier Grundlagen Theoretischer Informatik I SoSe 2011 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Grundlagen Theoretischer Informatik I Gesamtübersicht Organisatorisches; Einführung Logik

Mehr

FORMALE SYSTEME. 8. Vorlesung: Minimale Automaten. TU Dresden, 6. November Markus Krötzsch Lehrstuhl Wissensbasierte Systeme

FORMALE SYSTEME. 8. Vorlesung: Minimale Automaten. TU Dresden, 6. November Markus Krötzsch Lehrstuhl Wissensbasierte Systeme FORMALE SYSTEME 8. Vorlesung: Minimale Automaten Markus Krötzsch Lehrstuhl Wissensbasierte Systeme TU Dresden, 6. November 2017 Rückblick Markus Krötzsch, 6. November 2017 Formale Systeme Folie 2 von 26

Mehr

2 2 Reguläre Sprachen. 2.2 Endliche Automaten. Übersicht

2 2 Reguläre Sprachen. 2.2 Endliche Automaten. Übersicht Formale Systeme, Automaten, Prozesse Übersicht 2 2. Reguläre Ausdrücke 2.3 Nichtdeterministische endliche Automaten 2.4 Die Potenzmengenkonstruktion 2.5 NFAs mit ɛ-übergängen 2.6 Minimale DFAs und der

Mehr

Homomorphismen. Defnition: Σ und Γ seien zwei endliche Alphabete, und h sei eine Abbildung h : Σ Γ. Wir definieren die folgenden Sprachen:

Homomorphismen. Defnition: Σ und Γ seien zwei endliche Alphabete, und h sei eine Abbildung h : Σ Γ. Wir definieren die folgenden Sprachen: Homomorphismen Σ und Γ seien zwei endliche Alphabete, und h sei eine Abbildung h : Σ Γ. Wir definieren die folgenden Sprachen: h(l) := {h(u) : u L} Γ, für jede Sprache L Σ, h 1 (M) := {u Σ : h(u) M} Σ,

Mehr

FORMALE SYSTEME. 10. Vorlesung: Grenzen regulärer Sprachen / Probleme für Automaten. TU Dresden, 14. November 2016.

FORMALE SYSTEME. 10. Vorlesung: Grenzen regulärer Sprachen / Probleme für Automaten. TU Dresden, 14. November 2016. FORMALE SYSTEME 10. Vorlesung: Grenzen regulärer Sprachen / Probleme für Automaten Markus Krötzsch TU Dresden, 14. November 2016 Rückblick Markus Krötzsch, 14. November 2016 Formale Systeme Folie 2 von

Mehr

Erfüllbarkeit von Formelmengen

Erfüllbarkeit von Formelmengen Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.6 Aussagenlogik Kompaktheit 75 Erfüllbarkeit von Formelmengen bisher nur Erfüllbarkeit einzelner Formeln betrachtet erweitere Begriff auf Mengen

Mehr

Formale Methoden 1. Gerhard Jäger 9. Januar Uni Bielefeld, WS 2007/2008 1/23

Formale Methoden 1. Gerhard Jäger 9. Januar Uni Bielefeld, WS 2007/2008 1/23 1/23 Formale Methoden 1 Gerhard Jäger Gerhard.Jaeger@uni-bielefeld.de Uni Bielefeld, WS 2007/2008 9. Januar 2008 2/23 Automaten (informell) gedachte Maschine/abstraktes Modell einer Maschine verhält sich

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik im WiSe 2003/2004

Lösung zur Klausur. Grundlagen der Theoretischen Informatik im WiSe 2003/2004 Lösung zur Klausur Grundlagen der Theoretischen Informatik im WiSe 2003/2004 1. Geben Sie einen deterministischen endlichen Automaten an, der die Sprache aller Wörter über dem Alphabet {0, 1} akzeptiert,

Mehr

DisMod-Repetitorium Tag 4

DisMod-Repetitorium Tag 4 DisMod-Repetitorium Tag 4 Endliche Automaten, Reguläre Sprachen und Kontextfreie Grammatiken 22. März 2018 1 Endliche Automaten Definition DFA Auswertungen Äquivalenzrelationen Verschmelzungsrelation und

Mehr

Beispiel: A d zum Automaten, der OTTO im Text erkennt. Zur Erinnerung: der nichtdeterministische Automat sieht so aus:

Beispiel: A d zum Automaten, der OTTO im Text erkennt. Zur Erinnerung: der nichtdeterministische Automat sieht so aus: Endliche Automaten Jörg Roth 80 Beispiel: A d zum Automaten, der TT im Text erkennt. Zur Erinnerung: der nichtdeterministische Automat sieht so aus: T T S 1 S 2 S 3 S 4 immer immer δ d (es sind nur S mit

Mehr

Automaten und Formale Sprachen SoSe 2013 in Trier

Automaten und Formale Sprachen SoSe 2013 in Trier Automaten und Formale Sprachen SoSe 2013 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 2. Juni 2013 1 Automaten und Formale Sprachen Gesamtübersicht Organisatorisches Einführung Endliche

Mehr

MODEL CHECKING 3 TEMPORALE LOGIKEN

MODEL CHECKING 3 TEMPORALE LOGIKEN MODEL CHECKING 3 TEMPORALE LOGIKEN Sommersemester 2009 Dr. Carsten Sinz, Universität Karlsruhe Kripke-Struktur 2 Definition: Sei A eine Menge von Aussagevariablen. Eine Kripke-Struktur M über A ist ein

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2013

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2013 Automaten und Formale Sprachen alias Theoretische Informatik Sommersemester 2013 Dr. Sander Bruggink Übungsleitung: Jan Stückrath Sander Bruggink Automaten und Formale Sprachen 1 Reguläre Ausdrücke Wozu

Mehr

FORMALE SYSTEME. Wiederholung. Beispiel: NFA. Wiederholung: NFA. 4. Vorlesung: Nichtdeterministische Endliche Automaten. TU Dresden, 20.

FORMALE SYSTEME. Wiederholung. Beispiel: NFA. Wiederholung: NFA. 4. Vorlesung: Nichtdeterministische Endliche Automaten. TU Dresden, 20. Wiederholung FORMALE SYSTEME 4. Vorlesung: Nichtdeterministische Endliche Automaten Markus Krötzsch Lehrstuhl Wissensbasierte Systeme Grammatiken können Sprachen beschreiben und sie grob in Typen unterteilen

Mehr

Grundlagen der theoretischen Informatik

Grundlagen der theoretischen Informatik Grundlagen der theoretischen Informatik Kurt Sieber Fakultät IV, Department ETI Universität Siegen SS 2013 Vorlesung vom 30.04.2013 Grenzen regulärer Sprachen Wie beweist man, dass eine Sprache nicht regulär

Mehr

Formale Systeme. Büchi-Automaten. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Büchi-Automaten. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz

Mehr

Theoretische Informatik Mitschrift

Theoretische Informatik Mitschrift 4. Reguläre Ausdrüce Theoretische Informati Mitschrift indutive Beschreibung von Sprachen, die durch endliche Automaten erennbar sind Definition 4.1: Sei Σ ein Alphabet. (a) Die Menge RA(Σ) der regulären

Mehr

Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.8 Aussagenlogik Der Sequenzen-Kalkül 99. Sequenzen

Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.8 Aussagenlogik Der Sequenzen-Kalkül 99. Sequenzen Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.8 Aussagenlogik Der Sequenzen-Kalkül 99 Sequenzen Zum Abschluss des Kapitels über Aussagenlogik behandeln wir noch Gentzens Sequenzenkalkül.

Mehr

Fundamentale Sätze. versuche folgendes: gib eine Formelmenge Φ an, so dass Mod(Φ) = {(N, +, )}

Fundamentale Sätze. versuche folgendes: gib eine Formelmenge Φ an, so dass Mod(Φ) = {(N, +, )} Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 4.7 Prädikatenlogik Fundamentale Sätze 171 Fundamentale Sätze versuche folgendes: gib eine Formelmenge Φ an, so dass Mod(Φ) = {(R, +, )} gib

Mehr

Einführung in die Logik

Einführung in die Logik Einführung in die Logik Klaus Madlener und Roland Meyer 24. April 2013 Inhaltsverzeichnis 1 Aussagenlogik 1 1.1 Syntax................................. 1 1.2 Semantik............................... 3 1.3

Mehr

10 Kellerautomaten. Kellerautomaten

10 Kellerautomaten. Kellerautomaten 10 Kellerautomaten Bisher hatten wir kontextfreie Sprachen nur mit Hilfe von Grammatiken charakterisiert. Wir haben gesehen, dass endliche Automaten nicht in der Lage sind, alle kontextfreien Sprachen

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 8. Reguläre Sprachen II Malte Helmert Gabriele Röger Universität Basel 24. März 24 Pumping Lemma Pumping Lemma: Motivation Man kann zeigen, dass eine Sprache regulär ist, indem man

Mehr

Lösungsvorschläge Blatt 4

Lösungsvorschläge Blatt 4 Theoretische Informatik Departement Informatik Prof. Dr. Juraj Hromkovič http://www.ita.inf.ethz.ch/theoinf16 Lösungsvorschläge Blatt 4 Zürich, 21. Oktober 2016 Lösung zu Aufgabe 10 (a) Wir zeigen mit

Mehr

Theoretische Informatik für Wirtschaftsinformatik und Lehramt

Theoretische Informatik für Wirtschaftsinformatik und Lehramt Theoretische Informatik für Wirtschaftsinformatik und Lehramt Eigenschaften regulärer Sprachen Priv.-Doz. Dr. Stefan Milius stefan.milius@fau.de Theoretische Informatik Friedrich-Alexander Universität

Mehr

Äquivalenzrelation R A zu DFA A. Rechtsinvarianz. Relation R L zur Sprache L

Äquivalenzrelation R A zu DFA A. Rechtsinvarianz. Relation R L zur Sprache L Rechtsinvarianz Definition T4.2.8: Eine Äquivalenzrelation R auf Σ* heißt rechtsinvariant, wenn x R y z Σ*: xz R yz. Index von R: Anzahl der Äquivalenzklassen von R. Notation: ind(r) Im Folgenden: 2 rechtsinvariante

Mehr

2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2017/2018

2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2017/2018 2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2017/2018 Hier Aufkleber mit Name und Matrikelnummer anbringen Vorname: Nachname: Matrikelnummer: Beachten Sie: Bringen Sie

Mehr

1 Was ist Model Checking? 2 Modellierung reaktiver Systeme. 3 Eigenschaften linearer Zeit & ihre Verifikation

1 Was ist Model Checking? 2 Modellierung reaktiver Systeme. 3 Eigenschaften linearer Zeit & ihre Verifikation 1 Was ist Model Checking? Verifikation reaktiver Systeme durch Model Checking Ingmar Meinecke 2 Modellierung reaktiver Systeme 3 Eigenschaften linearer Zeit & ihre Verifikation 4 Eigenschaften verzweigender

Mehr

Verifikation reaktiver Systeme durch Model Checking

Verifikation reaktiver Systeme durch Model Checking Verifikation reaktiver Systeme durch Model Checking Ingmar Meinecke Institut für Informatik, Universität Leipzig Wintersemester 2009/10 Ingmar Meinecke (Uni Leipzig) Model Checking (WS 2009/10) 1 / 228

Mehr

Aussagenlogische Testspezifikation

Aussagenlogische Testspezifikation Seminar Spezifikationsbasierter Softwaretest Aussagenlogische Testspezifikation Peer Hausding (10.06.2006) 1 Gliederung Einführung Begriffe Test Modellspezifikation AutoFocus Transformation Spezifikation

Mehr

Automaten und Formale Sprachen SoSe 2007 in Trier. Henning Fernau Universität Trier

Automaten und Formale Sprachen SoSe 2007 in Trier. Henning Fernau Universität Trier Automaten und Formale Sprachen SoSe 2007 in Trier Henning Fernau Universität Trier fernau@informatik.uni-trier.de 1 Automaten und Formale Sprachen Gesamtübersicht Organisatorisches Einführung Endliche

Mehr

Übung Theoretische Grundlagen

Übung Theoretische Grundlagen Übung Theoretische Grundlagen Nico Döttling October 25, 22 Automatenminimierung Konstruktion des Äquivalenzklassenautomaten Aus der Vorlesung bekannt Überflüssige Zustände lassen sich effizient erkennen

Mehr

Foundations of System Development

Foundations of System Development Foundations of System Development Martin Wirsing in cooperation with xel Rauschmayer WS 05/06 Transitionssysteme Reaktive Systeme 3 Reaktive Systeme Bisher standen folgende spekte der Beschreibung von

Mehr

q 0 q gdw. nicht (q A) (q A) q i+1 q gdw. q i q oder ( a Σ) δ(q, a) i δ(q, a) L = {a n b n : n N} für a, b Σ, a b

q 0 q gdw. nicht (q A) (q A) q i+1 q gdw. q i q oder ( a Σ) δ(q, a) i δ(q, a) L = {a n b n : n N} für a, b Σ, a b Kap. 2: Endliche Automaten Myhill Nerode 2.4 Minimalautomat für reguläre Sprache Abschnitt 2.4.3 L Σ regulär der Äuivalenzklassen-Automat zu L ist ein DFA mit minimaler Zustandszahl (= index( L )) unter

Mehr

FORMALE SYSTEME. Wiederholung. Beispiel: NFA. Wiederholung: NFA. 4. Vorlesung: Nichtdeterministische Endliche Automaten. TU Dresden, 19.

FORMALE SYSTEME. Wiederholung. Beispiel: NFA. Wiederholung: NFA. 4. Vorlesung: Nichtdeterministische Endliche Automaten. TU Dresden, 19. Wiederholung FORMALE SYSTEME 4. Vorlesung: Nichtdeterministische Endliche Automaten Markus Krötzsch Professur für Wissensbasierte Systeme Grammatiken können Sprachen beschreiben und sie grob in Typen unterteilen

Mehr

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 2. Mai HA-Lösung. TA-Lösung

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 2. Mai HA-Lösung. TA-Lösung Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 2. Mai 2016 HA-Lösung TA-Lösung Einführung in die theoretische Informatik Aufgabenblatt 2 Beachten Sie: Soweit

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Wintersemester 2007 / 2008 Prof. Dr. Heribert Vollmer Institut für Theoretische Informatik 29.10.2007 Reguläre Sprachen Ein (deterministischer) endlicher Automat

Mehr

Sternfreie Sprachen. 6.1 Erststufige Logik. 6.2 Das Ehrenfeucht-Fraïssé-Spiel

Sternfreie Sprachen. 6.1 Erststufige Logik. 6.2 Das Ehrenfeucht-Fraïssé-Spiel 6 Sternfreie Sprachen Wir studieren nunmehr eine echte Teilklasse der regulären Sprachen: die sternfreien Sprachen. Wie die regulären Sprachen erlauben diese mehrere äquivalente Charakterisierungen: durch

Mehr

Polynomielle Verifizierer und NP

Polynomielle Verifizierer und NP Polynomielle Verifizierer und NP Definition Polynomieller Verifizierer Sei L Σ eine Sprache. Eine DTM V heißt Verifizierer für L, falls V für alle Eingaben w Σ hält und folgendes gilt: w L c Σ : V akzeptiert

Mehr

Übung 8 Transitionssysteme Formale Techniken in der Software-Entwicklung

Übung 8 Transitionssysteme Formale Techniken in der Software-Entwicklung Übung 8 Transitionssysteme Formale Techniken in der Software-Entwicklung Christian Kroiß Christian Kroiß 1 Aufgabe 5-1 Sei T ein Transitionssystem, dass sich aus dem im Folgenden informell beschriebenen

Mehr

Vorlesungsmitschrift zur Vorlesung Theoretische Informatik I vom 23. Juni Christian Franz

Vorlesungsmitschrift zur Vorlesung Theoretische Informatik I vom 23. Juni Christian Franz Vorlesungsmitschrift zur Vorlesung Theoretische Informatik I vom 23. Juni 2 Christian Franz Inhaltsverzeichnis Wiederholung: Vorlesung vom 9.6.2... Beispiele für Äquivalenzklassen... 4.5. Minimierung

Mehr

Komplexitätstheorie WiSe 2011/12 in Trier. Henning Fernau Universität Trier

Komplexitätstheorie WiSe 2011/12 in Trier. Henning Fernau Universität Trier Komplexitätstheorie WiSe 2011/12 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Komplexitätstheorie Gesamtübersicht Organisatorisches / Einführung Motivation / Erinnerung / Fragestellungen

Mehr

Automaten, Spiele, und Logik

Automaten, Spiele, und Logik Automten, Spiele, und Logik Woche 9 13. Juni 2014 Inhlt der heutigen Vorlesung Büchi Automten co-büchi Automten Komplementierung für deterministische Büchi Automten Ein Ziel: den Stz von Büchi-Elgot-Trkhtenrot

Mehr

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln,

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln, Theorie der Informatik 8. März 25 8. Reguläre Sprachen I Theorie der Informatik 8. Reguläre Sprachen I 8. Reguläre Grammatiken Malte Helmert Gabriele Röger 8.2 DFAs Universität Basel 8. März 25 8.3 NFAs

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2 Lösungsblatt 2. Mai 2 Einführung in die Theoretische Informatik

Mehr

4. Alternative Temporallogiken

4. Alternative Temporallogiken 4. Alternative Temporallogiken Benutzung unterschiedlicher Temporallogiken entsprechend den verschiedenen Zeitbegriffen LTL: Linear Time Logic Ähnlich der CTL, aber jetzt einem linearen Zeitbegriff entspechend

Mehr

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln,

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln, Theorie der Informatik 9. März 24 7. Reguläre Sprachen I Theorie der Informatik 7. Reguläre Sprachen I Malte Helmert Gabriele Röger Universität Basel 9. März 24 7. Reguläre Grammatiken 7.2 DFAs 7.3 NFAs

Mehr

Diskrete Mathematik. Anna-Lena Rädler Christina Kohl Georg Moser Christian Sternagel Vincent van Oostrom

Diskrete Mathematik. Anna-Lena Rädler Christina Kohl Georg Moser Christian Sternagel Vincent van Oostrom Diskrete Mathematik Anna-Lena Rädler Christina Kohl Georg Moser Christian Sternagel Vincent van Oostrom Zusammenfassung der letzten LVA Definition Ein ɛ-nea N = (Q, Σ, δ, S, F) ist gegeben durch eine endliche

Mehr

Übungsaufgaben zu Formalen Sprachen und Automaten

Übungsaufgaben zu Formalen Sprachen und Automaten Universität Freiburg PD Dr. A. Jakoby Sommer 27 Übungen zum Repetitorium Informatik III Übungsaufgaben zu Formalen Sprachen und Automaten. Untersuchen Sie das folgende Spiel: A B x x 2 x 3 C D Eine Murmel

Mehr

Das Halteproblem für Turingmaschinen

Das Halteproblem für Turingmaschinen Das Halteproblem für Turingmaschinen Das Halteproblem für Turingmaschinen ist definiert als die Sprache H := { T w : T ist eine TM, die bei Eingabe w {0, 1} hält }. Behauptung: H {0, 1} ist nicht entscheidbar.

Mehr

Worterkennung in Texten speziell im Compilerbau 20. April Frank Heitmann 2/64

Worterkennung in Texten speziell im Compilerbau 20. April Frank Heitmann 2/64 Grenzen regulärer Sprachen? Formale Grundlagen der Informatik 1 Kapitel 4 Über reguläre Sprachen hinaus und Pumping Lemma Frank Heitmann heitmann@informatik.uni-hamburg.de Wir haben mittlerweile einiges

Mehr

c) {abcde, abcfg, bcade, bcafg} d) {ade, afg, bcde, bcfg} c) {abcabc} d) {abcbc, abc, a} c) {aa, ab, ba, bb} d) {{aa}, {ab}, {ba}, {bb}}

c) {abcde, abcfg, bcade, bcafg} d) {ade, afg, bcde, bcfg} c) {abcabc} d) {abcbc, abc, a} c) {aa, ab, ba, bb} d) {{aa}, {ab}, {ba}, {bb}} 2 Endliche Automaten Fragen 1. Was ergibt sich bei {a, bc} {de, fg}? a) {abc, defg} b) {abcde, abcfg} c) {abcde, abcfg, bcade, bcafg} d) {ade, afg, bcde, bcfg} 2. Was ergibt sich bei {abc, a} {bc, λ}?

Mehr

KONGRUENZEN VON VISIBLY PUSHDOWN SPRACHEN REZART QELIBARI PROSEMINAR WS14/15

KONGRUENZEN VON VISIBLY PUSHDOWN SPRACHEN REZART QELIBARI PROSEMINAR WS14/15 KONGRUENZEN VON VISIBLY PUSHDOWN SPRACHEN REZART QELIBARI PROSEMINAR WS14/15 INHALT Languages WARUM DER AUFWAND? AKTUELLE SITUATION Situation: Ziel u.a.: Wollen Programmflüsse überprüfen. - Aktuelle Situation

Mehr

Worterkennung in Texten speziell im Compilerbau 14. April Frank Heitmann 2/65

Worterkennung in Texten speziell im Compilerbau 14. April Frank Heitmann 2/65 Grenzen regulärer Sprachen? Formale Grundlagen der Informatik 1 Kapitel 4 Über reguläre Sprachen hinaus und Frank Heitmann heitmann@informatik.uni-hamburg.de Wir haben mittlerweile einiges kennengelernt,

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Sascha Böhme, Lars Noschinski Sommersemester 2 Lösungsblatt 2 3. Mai 2 Einführung in die Theoretische Informatik Hinweis:

Mehr

1. Einführung in Temporallogik CTL

1. Einführung in Temporallogik CTL 1. Einführung in Temporallogik CTL Temporallogik dient dazu, Aussagen über Abläufe über die Zeit auszudrücken und zu beweisen. Zeit wird in den hier zunächst behandelten Logiken als diskret angenommen

Mehr

TU Berlin Nachklausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2012)

TU Berlin Nachklausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2012) Berlin, 05. Oktober 2012 Name:... Matr.-Nr.:... TU Berlin Nachklausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2012) 1 2 3 4 5 6 7 Σ Bearbeitungszeit: 60 min.

Mehr

Berechenbarkeitstheorie 19. Vorlesung

Berechenbarkeitstheorie 19. Vorlesung 1 Berechenbarkeitstheorie Dr. Institut für Mathematische Logik und Grundlagenforschung WWU Münster WS 15/16 Alle Folien unter Creative Commons Attribution-NonCommercial 3.0 Unported Lizenz. Erinnerung:

Mehr

Modellierung verteilter Systeme

Modellierung verteilter Systeme Modellierung verteilter Systeme (Grundlagen der Programm- und Systementwicklung II) 09 Eigenschaften Dr. Sebastian Voss fortiss GmbH Kompetenzfeldleiter Model-based Systeme Engineering Themenübersicht

Mehr

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 11. Juli HA-Lösung. TA-Lösung

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 11. Juli HA-Lösung. TA-Lösung Technische Universität München Sommer 26 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert. Juli 26 HA-Lösung TA-Lösung Einführung in die theoretische Informatik Aufgabenblatt 3 Beachten Sie: Soweit nicht

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 2. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 1 Einelementiges Alphabet (4 Punkte) (a) Geben

Mehr

Induktive Definition

Induktive Definition Rechenregeln A B = B A A (B C) = (A B) C A (B C) = (A B) C A (B C) = A B A C (B C) A = B A C A {ε} A = A A {ε} = A (A {ε}) = A (A ) = A A A = A + A A = A + A + {ε} = A Beispiel. Real-Zahlen = {0,..., 9}

Mehr

Automaten und Formale Sprachen SoSe 2007 in Trier. Henning Fernau Universität Trier

Automaten und Formale Sprachen SoSe 2007 in Trier. Henning Fernau Universität Trier Automaten und Formale Sprachen SoSe 2007 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Automaten und Formale Sprachen Gesamtübersicht Organisatorisches Einführung Endliche Automaten und

Mehr

Lineare Temporale Logik

Lineare Temporale Logik nach Principles of Model Checking von Christel Baier und Joost-Pieter Katoen 19.Dezember 2013 Wiederholung (1) Ein Transitionssystem TS ist ein Tupel (S,Act,,I,AP,L) mit: S - Menge von Zuständen Act -

Mehr

Algorithmen auf Sequenzen

Algorithmen auf Sequenzen Algorithmen auf Sequenzen Vorlesung von Prof. Dr. Sven Rahmann im Sommersemester 2008 Kapitel 4 Reguläre Ausdrücke Webseite zur Vorlesung http://ls11-www.cs.tu-dortmund.de/people/rahmann/teaching/ss2008/algorithmenaufsequenzen

Mehr

12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP

12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP 12 Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP 12 Woche: Verifizierer, nicht-deterministische Turingmaschine, NP 254/ 333 Polynomielle Verifizierer und NP Ḋefinition Polynomieller

Mehr

Typ-0-Sprachen und Turingmaschinen

Typ-0-Sprachen und Turingmaschinen Typ-0-Sprachen und Turingmaschinen Jean Vancoppenolle Universität Potsdam Einführung in formale Sprachen und Automaten Dr. Thomas Hanneforth (Präsentation aus Foliensätzen von Dr. Thomas Hanneforth und

Mehr

Frank Heitmann 2/47. 1 Ein PDA beginnt im Startzustand z 0 und mit im Keller. 2 Ist der Automat

Frank Heitmann 2/47. 1 Ein PDA beginnt im Startzustand z 0 und mit im Keller. 2 Ist der Automat Formale Grundlagen der Informatik 1 Kapitel 5 Über reguläre Sprachen hinaus und (Teil 2) Frank Heitmann heitmann@informatik.uni-hamburg.de 21. April 2015 Der Kellerautomat - Formal Definition (Kellerautomat

Mehr

Logik. Gabriele Kern-Isberner LS 1 Information Engineering. TU Dortmund Wintersemester 2014/15 WS 2014/15

Logik. Gabriele Kern-Isberner LS 1 Information Engineering. TU Dortmund Wintersemester 2014/15 WS 2014/15 Logik Gabriele Kern-Isberner LS 1 Information Engineering TU Dortmund Wintersemester 2014/15 WS 2014/15 G. Kern-Isberner (TU Dortmund) Logik WS 2014/15 1 / 125 Übersicht Modallogik 5. Grundlagen 6. Erfüllbarkeit

Mehr

Endliche Automaten. Endliche Automaten J. Blömer 1/24

Endliche Automaten. Endliche Automaten J. Blömer 1/24 Endliche Automaten Endliche Automaten J. Blömer /24 Endliche Automaten Endliche Automaten sind ein Kalkül zur Spezifikation von realen oder abstrakten Maschinen regieren auf äußere Ereignisse (=Eingaben)

Mehr

4.2.4 Reguläre Grammatiken

4.2.4 Reguläre Grammatiken 4.2.4 Reguläre Grammatiken Eine reguläre Grammatik ist eine kontextfreie Grammatik, deren Produktionsregeln weiter eingeschränkt sind Linksreguläre Grammatik: A w P gilt: w = ε oder w = Ba mit a T und

Mehr

Formale Systeme. LTL und Büchi-Automaten. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. LTL und Büchi-Automaten. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz

Mehr

Formale Systeme. LTL und Büchi-Automaten. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. LTL und Büchi-Automaten. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz

Mehr

Teil VI. Anwendungen, Teil 1: XML und deterministische reguläre Ausdrücke

Teil VI. Anwendungen, Teil 1: XML und deterministische reguläre Ausdrücke Teil VI Anwendungen, Teil 1: XML und deterministische reguläre Ausdrücke XML anhand von Beispielen... Anwendungen XML 1 / 10 XML-Schema In vielen Anwendungen sollen nur bestimmte XML-Dokumente zugelassen

Mehr

2.3 Abschlusseigenschaften

2.3 Abschlusseigenschaften 2.3 Abschlusseigenschaften 2.3 Abschlusseigenschaften In diesem Abschnitt wollen wir uns mit Abschlusseigenschaften der regulären Sprachen, d.h. mit der Frage, ob, gegeben eine Operation und zwei reguläre

Mehr

Endliche Automaten, reguläre Ausdrücke, rechtslineare Grammatiken

Endliche Automaten, reguläre Ausdrücke, rechtslineare Grammatiken 1 / 15 Endliche Automaten, reguläre Ausdrücke, rechtslineare Grammatiken Prof. Dr. Hans Kleine Büning FG Wissensbasierte Systeme WS 08/09 2 / 15 Deterministischer endlicher Automat (DEA) Definition 1:

Mehr

LTL und CTL*-Model Checking

LTL und CTL*-Model Checking LTL und CTL*-Model Checking H. Peter Gumm Philipps-Universität Marburg Sommersemester 2007 Lineare Temporale Logik LTL ist einfacher zu verstehen als CTL Kann Fairness-Eigenschaften ausdrücken LTL- ist

Mehr

Automaten und Formale Sprachen SoSe 2013 in Trier

Automaten und Formale Sprachen SoSe 2013 in Trier Automaten und Formale Sprachen SoSe 2013 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 2. Juni 2013 1 Automaten und Formale Sprachen Gesamtübersicht Organisatorisches Einführung Endliche

Mehr

Spiele für den. Christian Dax. Betreuer: Dr. Martin Lange. Wiederholung Spiele für VAL und SAT ν-line Automaten Entscheidungsverfahren

Spiele für den. Christian Dax. Betreuer: Dr. Martin Lange. Wiederholung Spiele für VAL und SAT ν-line Automaten Entscheidungsverfahren Spiele für den Linearzeit µ-kalkül Christian Dax Betreuer: Dr. Martin Lange 1 Kurzer Rückblick 2 Linearzeit µ-kalkül Definition (µtl) ϕ ::= a X ϕ ϕ ϕ ϕ Oϕ µx.ϕ νx.ϕ Example νx.a OOX (an jd. 2. Stelle gilt

Mehr